1
|
Malone K, LaCasse E, Beug ST. Cell death in glioblastoma and the central nervous system. Cell Oncol (Dordr) 2025; 48:313-349. [PMID: 39503973 PMCID: PMC11997006 DOI: 10.1007/s13402-024-01007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2024] [Indexed: 04/15/2025] Open
Abstract
Glioblastoma is the commonest and deadliest primary brain tumor. Glioblastoma is characterized by significant intra- and inter-tumoral heterogeneity, resistance to treatment and dismal prognoses despite decades of research in understanding its biological underpinnings. Encompassed within this heterogeneity and therapy resistance are severely dysregulated programmed cell death pathways. Glioblastomas recapitulate many neurodevelopmental and neural injury responses; in addition, glioblastoma cells are composed of multiple different transformed versions of CNS cell types. To obtain a greater understanding of the features underlying cell death regulation in glioblastoma, it is important to understand the control of cell death within the healthy CNS during homeostatic and neurodegenerative conditions. Herein, we review apoptotic control within neural stem cells, astrocytes, oligodendrocytes and neurons and compare them to glioblastoma apoptotic control. Specific focus is paid to the Inhibitor of Apoptosis proteins, which play key roles in neuroinflammation, CNS cell survival and gliomagenesis. This review will help in understanding glioblastoma as a transformed version of a heterogeneous organ composed of multiple varied cell types performing different functions and possessing different means of apoptotic control. Further, this review will help in developing more glioblastoma-specific treatment approaches and will better inform treatments looking at more direct brain delivery of therapeutic agents.
Collapse
Affiliation(s)
- Kyle Malone
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Eric LaCasse
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Shawn T Beug
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada.
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
2
|
Yang F, Chen Y, Zheng G, Gu K, Fan L, Li T, Zhu L, Yan Y. LIMA1 O-GlcNAcylation Promotes Hepatic Lipid Deposition through Inducing β-catenin-Regulated FASn Expression in Metabolic Dysfunction-Associated Steatotic Liver Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415941. [PMID: 39921472 PMCID: PMC12005730 DOI: 10.1002/advs.202415941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/20/2025] [Indexed: 02/10/2025]
Abstract
Hepatic lipid deposition is a key factor in progressing metabolic dysfunction-associated steatotic liver disease (MASLD). This study investigates the impact of the LIM domain and actin-binding protein 1 (LIMA1) on hepatic steatotic in MASLD and explore the underlying mechanisms. Increased levels of LIMA1 is observed in both serum and serum sEV of metabolic dysfunction-associated steatohepatitis (MASH) patients compared to healthy controls, with AUROC values of 0.76 and 0.86, respectively. Furthermore, increased LIMA1 O-GlcNAcylation is observed in mouse models of MASLD, and steatotic hepatocytes. Mechanistic studies revealed that steatosis upregulated Host cell factor 1 (HCF1) and O-GlcNAc transferase (OGT) expression, leading to catalyzed O-GlcNAcylation at the T662 site of LIMA1 and subsequent inhibition of its ubiquitin-dependent degradation. O-GlcNAcylation of LIMA1 enhances hepatocyte lipid deposition by activating β-catenin/FASn-associated signaling. Additionally, compared with their AAV8-TBG-LIMA1-WT counterparts, AAV8-TBG-LIMA1ΔT662 injection exhibited decreases in systemic insulin resistance, steatosis severity, inflammation and fibrosis in HFD-fed and CDAHFD-fed LIMA1 HKO (hepatocyte-specific knockout) mice. Moreover, LTH-sEV-mediated delivery of LIMA1 promoted MASLD progression by promoting hepatic stellate cell (HSC) activation. The findings suggest that serum sEV LIMA1 may be a potential noninvasive biomarker and therapeutic target for individuals with MASH.
Collapse
Affiliation(s)
- Fuji Yang
- Department of Laboratory MedicineWujin Hospital Affiliated with Jiangsu UniversityJiangsu UniversityChangzhou213017China
- Department of Laboratory MedicineSchool of MedicineJiangsu UniversityZhenjiang212013China
| | - Yifei Chen
- Department of Laboratory MedicineWujin Hospital Affiliated with Jiangsu UniversityJiangsu UniversityChangzhou213017China
- Department of Laboratory MedicineSchool of MedicineJiangsu UniversityZhenjiang212013China
| | - Guojun Zheng
- Department of Laboratory MedicineThe Third People's Hospital of ChangzhouChangzhou213017China
| | - Kefeng Gu
- Changzhou Key Laboratory of Exosome Foundation and Transformation ApplicationWujin Hospital Affiliated with Jiangsu UniversityJiangsu UniversityChangzhou213017China
| | - Lin Fan
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu UniversityJiangsu UniversityChangzhou213017China
| | - Tingfen Li
- Department of laboratory medicineThe Second People's Hospital of ChangzhouChangzhou213614China
| | - Ling Zhu
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu UniversityJiangsu UniversityChangzhou213017China
| | - Yongmin Yan
- Department of Laboratory MedicineWujin Hospital Affiliated with Jiangsu UniversityJiangsu UniversityChangzhou213017China
- Changzhou Key Laboratory of Exosome Foundation and Transformation ApplicationWujin Hospital Affiliated with Jiangsu UniversityJiangsu UniversityChangzhou213017China
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu UniversityJiangsu UniversityChangzhou213017China
| |
Collapse
|
3
|
Zhang Z, Chen M, Xu Y, Wang Z, Liu Z, He C, Zhang F, Feng X, Ni X, Chen Y, Wang J, Liang X, Xie Z, Li J, Banach M, Pelisek J, Huo Y, Hu Y, Evans PC, Wang L, Tian XY, Xiao J, Shang Y, Zheng Y, Xian X, Weng J, Xu S. A natural small molecule isoginkgetin alleviates hypercholesterolemia and atherosclerosis by targeting ACLY. Theranostics 2025; 15:4325-4344. [PMID: 40225566 PMCID: PMC11984407 DOI: 10.7150/thno.105782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/17/2025] [Indexed: 04/15/2025] Open
Abstract
Rationale: Atherosclerotic cardiovascular disease (ASCVD) represents the predominant cause of mortality and morbidity globally. Given the established role of hypercholesterolemia as a significant risk factor for ASCVD, the discovery of new lipid-lowering medications is of paramount importance. ATP citrate lyase (ACLY) is a crucial enzyme in cellular metabolism, providing acetyl-CoA as the building block for the biosynthesis of fatty acids and cholesterol. Consequently, it has emerged as a promising drug target for innovative treatments of lipid metabolic disorders. Methods: Virtual screening of a natural product library was performed to identify small-molecule ACLY inhibitors, leading to the discovery of isoginkgetin (ISOGK). The lipid-lowering and anti-atherosclerotic effects of ISOGK were validated in hypercholesterolemic diet-induced animal models (mice and hamsters). The inhibitory effects of ISOGK on ACLY enzymatic activity were measured using commercial assay kits. The direct interaction between ISOGK and ACLY was confirmed by surface plasmon resonance (SPR) and cellular thermal shift assays (CETSA). Liver-specific ACLY knockdown mice were generated using GalNAc-conjugated siRNA (GalNAc-siAcly). Results: ISOGK directly bind to ACLY and inhibit its enzymatic activity in vitro and in vivo. By inhibiting ACLY, ISOGK treatment thus alleviates hypercholesterolemia and atherosclerosis in mice and hamsters. However, ISOGK fails to attenuate lipid accumulation and the expression of lipid-metabolism related genes in Acly knockout or depleted hepatocytes. In vivo, the lipid-lowering and anti-atherosclerotic effects of ISOGK were reversed by hepatic knockdown of Acly via treatment with GalNAc-siAcly in mice. Conclusions: Taken together, the present study identifies ISOGK as an effective and naturally-occurring small-molecule inhibitor of ACLY that limits hypercholesterolemia and atherosclerosis. ISOGK thus serves as a promising drug lead in cardiovascular therapeutics.
Collapse
Affiliation(s)
- Zhidan Zhang
- Department of Endocrinology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Meijie Chen
- Department of Endocrinology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Yitong Xu
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Zhihua Wang
- Department of Endocrinology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Zhenghong Liu
- Department of Endocrinology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Chenyang He
- Department of Endocrinology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Fanshun Zhang
- Department of Endocrinology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Xiaojun Feng
- Department of Endocrinology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Xiayun Ni
- Department of Endocrinology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Yuanli Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jixia Wang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xinmiao Liang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhifu Xie
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences. Shanghai, 201203, China
| | - Jingya Li
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences. Shanghai, 201203, China
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz 23 (MUL), Rzgowska 281/289, 93-338, Lodz, Poland
| | - Jaroslav Pelisek
- Department of Vascular Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Yuqing Huo
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yunhui Hu
- Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China; National Key Laboratory of Chinese Medicine Modernization, Tianjin, 301617, China
| | - Paul C Evans
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ, UK
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, China
| | - Xiao-yu Tian
- School of Biomedical Sciences, Chinese University of Hong Kong, NT, Hong Kong SAR, China
| | - Jianbo Xiao
- Universidade de Vigo, Department of Analytical and Food Chemistry, Faculty of Sciences, Ourense, 32004, Spain
| | - Yuhua Shang
- Anhui Genebiol Biotech. Ltd., Hefei, 230000, China
| | - Yijun Zheng
- Clinical Pharmacy (Sino-Foreign Cooperation) Class, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xunde Xian
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jianping Weng
- Department of Endocrinology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
- Anhui Provincial Key Laboratory of Metabolic Health and Panvascular Diseases, Hefei, 230001, China
- Institute of Endocrine and Metabolic Diseases, University of Science and Technology of China, Hefei, 230001, China
| | - Suowen Xu
- Department of Endocrinology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
- Anhui Provincial Key Laboratory of Metabolic Health and Panvascular Diseases, Hefei, 230001, China
- Institute of Endocrine and Metabolic Diseases, University of Science and Technology of China, Hefei, 230001, China
| |
Collapse
|
4
|
Lin Z, Yang P, Hu Y, Xu H, Duan J, He F, Dou K, Wang L. RING finger protein 13 protects against nonalcoholic steatohepatitis by targeting STING-relayed signaling pathways. Nat Commun 2023; 14:6635. [PMID: 37857628 PMCID: PMC10587083 DOI: 10.1038/s41467-023-42420-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disorder worldwide. Recent studies show that innate immunity-related signaling pathways fuel NAFLD progression. This study aims to identify potent regulators of innate immunity during NAFLD progression. To this end, a phenotype-based high-content screening is performed, and RING finger protein 13 (RNF13) is identified as an effective inhibitor of lipid accumulation in vitro. In vivo gain- and loss-of-function assays are conducted to investigate the role of RNF13 in NAFLD. Transcriptome sequencing and immunoprecipitation-mass spectrometry are performed to explore the underlying mechanisms. We reveal that RNF13 protein is upregulated in the liver of individuals with NASH. Rnf13 knockout in hepatocytes exacerbate insulin resistance, steatosis, inflammation, cell injury and fibrosis in the liver of diet-induced mice, which can be alleviated by Rnf13 overexpression. Mechanically, RNF13 facilitates the proteasomal degradation of stimulator of interferon genes protein (STING) in a ubiquitination-dependent way. This study provides a promising innate immunity-related target for NAFLD treatment.
Collapse
Affiliation(s)
- Zhibin Lin
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Peijun Yang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yufeng Hu
- Gannan Innovation and Transformation Medical Research Institute, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, 341000, China
| | - Hao Xu
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Juanli Duan
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Fei He
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Kefeng Dou
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
5
|
Tripartite motif 16 ameliorates nonalcoholic steatohepatitis by promoting the degradation of phospho-TAK1. Cell Metab 2021; 33:1372-1388.e7. [PMID: 34146477 DOI: 10.1016/j.cmet.2021.05.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/12/2021] [Accepted: 05/27/2021] [Indexed: 12/18/2022]
Abstract
Nonalcoholic steatohepatitis (NASH)-related hepatocellular carcinoma and liver disorders have become the leading causes for the need of liver transplantation in developed countries. Lipotoxicity plays a central role in NASH progression by causing endoplasmic reticulum stress and disrupting protein homeostasis. To identify key molecules that mitigate the detrimental consequences of lipotoxicity, we performed integrative multiomics analysis and identified the E3 ligase tripartite motif 16 (TRIM16) as a candidate molecule. In particular, we found that lipid accumulation and inflammation in a mouse NASH model is mitigated by TRIM16 overexpression but aggravated by its depletion. Multiomics analysis showed that TRIM16 suppressed NASH progression by attenuating the activation of the mitogen-activated protein kinase (MAPK) signaling pathway; specifically, by preferentially interacting with phospho-TAK1 to promote its degradation. Together, these results identify TRIM16 as a promising therapeutic target for the treatment of NASH.
Collapse
|
6
|
Vitamin D(3) regulates hepatic VEGF-A and apelin expression in experimental type 1 diabetes. UKRAINIAN BIOCHEMICAL JOURNAL 2020. [DOI: 10.15407/ubj92.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
7
|
Rex J, Lutz A, Faletti LE, Albrecht U, Thomas M, Bode JG, Borner C, Sawodny O, Merfort I. IL-1β and TNFα Differentially Influence NF-κB Activity and FasL-Induced Apoptosis in Primary Murine Hepatocytes During LPS-Induced Inflammation. Front Physiol 2019; 10:117. [PMID: 30842741 PMCID: PMC6391654 DOI: 10.3389/fphys.2019.00117] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 01/30/2019] [Indexed: 12/12/2022] Open
Abstract
Macrophage-derived cytokines largely influence the behavior of hepatocytes during an inflammatory response. We previously reported that both TNFα and IL-1β, which are released by macrophages upon LPS stimulation, affect Fas ligand (FasL)-induced apoptotic signaling. Whereas TNFα preincubation leads to elevated levels of caspase-3 activity and cell death, pretreatment with IL-1β induces increased caspase-3 activity but keeps cells alive. We now report that IL-1β and TNFα differentially influence NF-κB activity resulting in a differential upregulation of target genes, which may contribute to the distinct effects on cell viability. A reduced NF-κB activation model was established to further investigate the molecular mechanisms which determine the distinct cell fate decisions after IL-1β and TNFα stimulation. To study this aspect in a more physiological setting, we used supernatants from LPS-stimulated bone marrow-derived macrophages (BMDMs). The treatment of hepatocytes with the BMDM supernatant, which contains both IL-1β and TNFα, sensitized to FasL-induced caspase-3 activation and cell death. However, when TNFα action was blocked by neutralizing antibodies, cell viability after stimulation with the BMDM supernatant and FasL increased as compared to single FasL stimulation. This indicates the important role of TNFα in the sensitization of apoptosis in hepatocytes. These results give first insights into the complex interplay between macrophages and hepatocytes which may influence life/death decisions of hepatocytes during an inflammatory reaction of the liver in response to a bacterial infection.
Collapse
Affiliation(s)
- Julia Rex
- Institute for System Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Anna Lutz
- Department of Pharmaceutical Biology and Biotechnology, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Laura E Faletti
- Institute of Molecular Medicine and Cell Research, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Ute Albrecht
- Clinic of Gastroenterology, Hepatology and Infection Diseases, Heinrich-Heine-University, Duesseldorf, Germany
| | - Maria Thomas
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart and University of Tuebingen, Tuebingen, Germany
| | - Johannes G Bode
- Clinic of Gastroenterology, Hepatology and Infection Diseases, Heinrich-Heine-University, Duesseldorf, Germany
| | - Christoph Borner
- Department of Pharmaceutical Biology and Biotechnology, Albert Ludwigs University Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signaling Studies, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Oliver Sawodny
- Institute for System Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Irmgard Merfort
- Department of Pharmaceutical Biology and Biotechnology, Albert Ludwigs University Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| |
Collapse
|
8
|
Wang H, Ge C, Zhou J, Guo Y, Cui S, Huang N, Yan T, Cao L, Che Y, Zheng Q, Zheng X, Gonzalez FJ, Wang G, Hao H. Noncanonical farnesoid X receptor signaling inhibits apoptosis and impedes liver fibrosis. EBioMedicine 2018; 37:322-333. [PMID: 30337250 PMCID: PMC6286639 DOI: 10.1016/j.ebiom.2018.10.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/30/2018] [Accepted: 10/10/2018] [Indexed: 02/07/2023] Open
Abstract
Background Hepatocyte is particularly vulnerable to apoptosis, a hallmark of many liver diseases. Although pro-apoptotic mechanisms have been extensively explored, less is known about the hepatocyte-specific anti-apoptotic molecular events and it lacks effective approach to combat hepatocyte apoptosis. We investigated the anti-apoptotic effect and mechanism of farnesoid X receptor (FXR), and strategies of how to target FXR for inhibiting apoptosis implicated in liver fibrosis. Methods Sensitivity to apoptosis was compared between wild type and Fxr−/− mice and in cultured cells. Cell-based and cell-free assays were employed to identify the binding protein of FXR and to uncover the mechanism of its anti-apoptotic effect. Overexpression of FXR by adenovirus-FXR was employed to determine its anti-fibrotic effect in CCl4-treated mice. Specimens from fibrotic patients were collected to validate the relevance of FXR on apoptosis/fibrosis. Findings FXR deficiency sensitizes hepatocytes to death receptors (DRs)-engaged apoptosis. FXR overexpression, but not FXR ligands, inhibits apoptosis both in vitro and in vivo. Apoptotic stimuli lead to drastic reduction of FXR protein levels, a prerequisite for DRs-engaged apoptosis. Mechanistically, FXR interacts with caspase 8 (CASP8) in the cytoplasm, thus preventing the formation of death-inducing signaling complex (DISC) and activation of CASP8. Adenovirus-FXR transfection impedes liver fibrosis in CCl4-treated mice. Specimens from fibrotic patients are characterized with reduced FXR expression and compromised FXR/CASP8 colocalization. Interpretation FXR represents an intrinsic apoptosis inhibitor in hepatocytes and can be targeted via restoring its expression or strengthening FXR/CASP8 interaction for inhibiting hepatocytes apoptosis in liver fibrosis. Fund National Natural Science Foundation of China. FXR physically interacts with CASP8 in cytoplasm. FXR inhibits death receptors-engaged apoptosis independent of transactivation. Reduction of cytosolic FXR is a prerequisite initiating apoptosis cascade. Forced overexpression of FXR impedes liver fibrosis.
Collapse
Affiliation(s)
- Hong Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Chaoliang Ge
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Jiyu Zhou
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Yitong Guo
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Shuang Cui
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Ningning Huang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Tingting Yan
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lijuan Cao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Yuan Che
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Qiuling Zheng
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao Zheng
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China.
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
9
|
Abstract
The human body generates 10-100 billion cells every day, and the same number of cells die to maintain homeostasis in our body. Cells infected by bacteria or viruses also die. The cell death that occurs under physiological conditions mainly proceeds by apoptosis, which is a noninflammatory, or silent, process, while pathogen infection induces necroptosis or pyroptosis, which activates the immune system and causes inflammation. Dead cells generated by apoptosis are quickly engulfed by macrophages for degradation. Caspases are a large family of cysteine proteases that act in cascades. A cascade that leads to caspase 3 activation mediates apoptosis and is responsible for killing cells, recruiting macrophages, and presenting an "eat me" signal(s). When apoptotic cells are not efficiently engulfed by macrophages, they undergo secondary necrosis and release intracellular materials that represent a damage-associated molecular pattern, which may lead to a systemic lupus-like autoimmune disease.
Collapse
Affiliation(s)
- Shigekazu Nagata
- Laboratory of Biochemistry and Immunology, World Premier International Research Center Initiative Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan;
| |
Collapse
|
10
|
Crosstalk of liver immune cells and cell death mechanisms in different murine models of liver injury and its clinical relevance. Hepatobiliary Pancreat Dis Int 2017; 16:245-256. [PMID: 28603092 PMCID: PMC7172563 DOI: 10.1016/s1499-3872(17)60014-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Liver inflammation or hepatitis is a result of pluripotent interactions of cell death molecules, cytokines, chemokines and the resident immune cells collectively called as microenvironment. The interplay of these inflammatory mediators and switching of immune responses during hepatotoxic, viral, drug-induced and immune cell-mediated hepatitis decide the fate of liver pathology. The present review aimed to describe the mechanisms of liver injury, its relevance to human liver pathology and insights for the future therapeutic interventions. DATA SOURCES The data of mouse hepatic models and relevant human liver diseases presented in this review are systematically collected from PubMed, ScienceDirect and the Web of Science databases published in English. RESULTS The hepatotoxic liver injury in mice induced by the metabolites of CCl4, acetaminophen or alcohol represent necrotic cell death with activation of cytochrome pathway, formation of reactive oxygen species (ROS) and mitochondrial damage. The Fas or TNF-alpha induced apoptotic liver injury was dependent on activation of caspases, release of cytochrome c and apoptosome formation. The ConA-hepatitis demonstrated the involvement of TRAIL-dependent necrotic/necroptotic cell death with activation of RIPK1/3. The alpha-GalCer-induced liver injury was mediated by TNF-alpha. The LPS-induced hepatitis involved TNF-alpha, Fas/FasL, and perforin/granzyme cell death pathways. The MHV3 or Poly(I:C) induced liver injury was mediated by natural killer cells and TNF-alpha signaling. The necrotic ischemia-reperfusion liver injury was mediated by hypoxia, ROS, and pro-inflammatory cytokines; however, necroptotic cell death was found in partial hepatectomy. The crucial role of immune cells and cell death mediators in viral hepatitis (HBV, HCV), drug-induced liver injury, non-alcoholic fatty liver disease and alcoholic liver disease in human were discussed. CONCLUSIONS The mouse animal models of hepatitis provide a parallel approach for the study of human liver pathology. Blocking or stimulating the pathways associated with liver cell death could unveil the novel therapeutic strategies in the management of liver diseases.
Collapse
|
11
|
Joglekar MV, Trivedi PM, Kay TW, Hawthorne WJ, O'Connell PJ, Jenkins AJ, Hardikar AA, Thomas HE. Human islet cells are killed by BID-independent mechanisms in response to FAS ligand. Apoptosis 2016; 21:379-89. [PMID: 26758067 DOI: 10.1007/s10495-016-1212-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cell death via FAS/CD95 can occur either by activation of caspases alone (extrinsic) or by activation of mitochondrial death signalling (intrinsic) depending on the cell type. The BH3-only protein BID is activated in the BCL-2-regulated or mitochondrial apoptosis pathway and acts as a switch between the extrinsic and intrinsic cell death pathways. We have previously demonstrated that islets from BID-deficient mice are protected from FAS ligand-mediated apoptosis in vitro. However, it is not yet known if BID plays a similar role in human beta cell death. We therefore aimed to test the role of BID in human islet cell apoptosis immediately after isolation from human cadaver donors, as well as after de-differentiation in vitro. Freshly isolated human islets or 10-12 day cultured human islet cells exhibited BID transcript knockdown after BID siRNA transfection, however they were not protected from FAS ligand-mediated cell death in vitro as determined by DNA fragmentation analysis using flow cytometry. On the other hand, the same cells transfected with siRNA for FAS-associated via death domain (FADD), a molecule in the extrinsic cell death pathway upstream of BID, showed significant reduction in cell death. De-differentiated islets (human islet-derived progenitor cells) also demonstrated similar results with no difference in cell death after BID knockdown as compared to scramble siRNA transfections. Our results indicate that BID-independent pathways are responsible for FAS-dependent human islet cell death. These results are different from those observed in mouse islets and therefore demonstrate potentially alternate pathways of FAS ligand-induced cell death in human and mouse islet cells.
Collapse
Affiliation(s)
- Mugdha V Joglekar
- Diabetes and Islet Biology Group, NHMRC-Clinical Trials Centre, University of Sydney, Camperdown, Australia
| | - Prerak M Trivedi
- St. Vincent's Institute of Medical Research, 41 Victoria Parade, Fitzroy, Melbourne, VIC, 3065, Australia.,Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Melbourne, Australia
| | - Thomas W Kay
- St. Vincent's Institute of Medical Research, 41 Victoria Parade, Fitzroy, Melbourne, VIC, 3065, Australia.,Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Melbourne, Australia
| | - Wayne J Hawthorne
- The Centre for Transplant and Renal Research, Westmead Millennium Research Institute, University of Sydney, Westmead, Australia
| | - Philip J O'Connell
- The Centre for Transplant and Renal Research, Westmead Millennium Research Institute, University of Sydney, Westmead, Australia
| | - Alicia J Jenkins
- Diabetes and Islet Biology Group, NHMRC-Clinical Trials Centre, University of Sydney, Camperdown, Australia.,Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Melbourne, Australia
| | - Anandwardhan A Hardikar
- Diabetes and Islet Biology Group, NHMRC-Clinical Trials Centre, University of Sydney, Camperdown, Australia
| | - Helen E Thomas
- St. Vincent's Institute of Medical Research, 41 Victoria Parade, Fitzroy, Melbourne, VIC, 3065, Australia. .,Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
12
|
Weerasinghe SVW, Park MJ, Portney DA, Omary MB. Mouse genetic background contributes to hepatocyte susceptibility to Fas-mediated apoptosis. Mol Biol Cell 2016; 27:3005-3012. [PMID: 27535425 PMCID: PMC5063609 DOI: 10.1091/mbc.e15-06-0423] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 07/15/2016] [Accepted: 08/11/2016] [Indexed: 12/11/2022] Open
Abstract
Liver disease progression is modulated by genetic modifiers in mouse strains and across human races and ethnicities. We hypothesized that hepatocyte culture duration and genetic background regulate hepatocyte susceptibility to apoptosis. Hepatocytes were isolated from FVB/N, C57BL/6, and C3H/He mice and cultured or treated with Fas ligand or acetaminophen after different culture times. Protein and mRNA expressions of Fas receptor, caspases-3/7/8, and Bak/Bax/Bid proteins were determined. FVB/N hepatocytes manifested rapid decreases of caspases-3/7 but not caspase-8 as culture time increased, which paralleled decreased susceptibility to apoptosis. Some changes were also found in Fas-receptor and Bak, Bax, and Bid proteins; caspase mRNA decreases were also noted. Caspase protein degradation was partially reversed by lysosomal protease but not proteasome or autophagy inhibitors. C57BL/6 and FVB/N hepatocytes behaved similarly in their limited susceptibility to apoptosis, whereas C3H/He hepatocytes show limited alterations in caspases, with consequent increased susceptibility to apoptosis. Similarly, C3H/He mice were more susceptible than C57BL/6 and FVB/N mice to Fas-mediated liver injury. Therefore there are significant mouse strain-dependent differences in susceptibility to apoptosis and selective loss of caspases upon short-term hepatocyte culture, with consequent decrease in susceptibility to apoptosis. These differences likely reflect genetic modifiers that provide resistance or predisposition to hepatocyte death.
Collapse
Affiliation(s)
- Sujith V W Weerasinghe
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Min-Jung Park
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Daniel A Portney
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - M Bishr Omary
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109 Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
13
|
Dong Y, Shen X, He M, Wu Z, Zheng Q, Wang Y, Chen Y, Wu S, Cui J, Zeng Z. Activation of the JNK-c-Jun pathway in response to irradiation facilitates Fas ligand secretion in hepatoma cells and increases hepatocyte injury. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:114. [PMID: 27431384 PMCID: PMC4950705 DOI: 10.1186/s13046-016-0394-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/11/2016] [Indexed: 01/09/2023]
Abstract
Background It is well established that some irradiated liver non-parenchymal cells secrete pro-inflammatory cytokines to facilitate the development of radiation-induced liver disease. However, little is known on whether the irradiated hepatoma cells-mediated non-irradiated hepatocyte injury occurs in HCC patients. Here, we elucidated the roles of the irradiated hepatoma cells in driving non-irradiated hepatocyte injury and its underlying mechanism. Methods SMMC7721 cells were cultured and divided into irradiated (4-Gy X-ray, R) and non-irradiated (NR) groups. At 24th hour after irradiation, conditioned medium (CM) from these cultures was mixed with normal culture medium in specific proportions, and termed as 7721-R-CM and 7721-NR-CM. Following incubation with these CM compound, the biological characteristics of L02 cells related to liver cell injury including viability, apoptosis and liver dysfunction indices were comparatively analyzed. Simultaneously, the levels of proliferation- and apoptosis-related cytokines in irradiated and non-irradiated SMMC7721 cells were also measured. FasL as a cytokine with significantly differential expression, was selected to clarify its effects on L02 apoptosis. Subsequently, FasL expression following irradiation was examined in SMMC7721 and other HCC cells with varying malignant potentials, as well as in HCC tissues, the related mechanism of higher expression of FasL in irradiated HCC cells was further investigated. Results Apoptosis and liver dysfunction indices were all significantly enhanced in L02 cells treated with 7721-R-CM, whereas viability was suppressed, compared to those with 7721-NR-CM stimulation. FasL was identified as a leading differential cytokine in the irradiated SMMC7721 cells. Higher proportion of apoptosis was also found in L02 cells following FasL incubation. A recombinant Fas-Fc protein, which blocks Fas-FasL interaction, ameliorated 7721-R-CM-induced apoptosis in L02 cells. FasL was highly expressed in a dose-dependent manner, and peaked at the 24th hour post-irradiation in different HCC cells and their culture supernatant. Meanwhile, phosphorylation levels of JNK, ERK, Akt, and p38 were all upregulated significantly in irradiated HCC cells. But, only JNK inhibition was validated to block radiation-induced FasL expression in HCC cells. c-Jun, the target transcription factor of JNK, was also activated. Conclusion In HCC cells, the JNK-c-Jun pathway plays an important role in mediating irradiation- induced FasL expression, which may be critical in determining non-irradiated hepatocyte injury. Electronic supplementary material The online version of this article (doi:10.1186/s13046-016-0394-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yinying Dong
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, People's Republic of China
| | - Xiaoyun Shen
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, People's Republic of China
| | - Mingyan He
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 180 Feng Lin Road, Shanghai, 200032, People's Republic of China
| | - Zhifeng Wu
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, People's Republic of China
| | - Qiongdan Zheng
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 180 Feng Lin Road, Shanghai, 200032, People's Republic of China
| | - Yaohui Wang
- Department of Radiology, Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China
| | - Yuhan Chen
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, People's Republic of China
| | - Sifan Wu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 180 Feng Lin Road, Shanghai, 200032, People's Republic of China
| | - Jiefeng Cui
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 180 Feng Lin Road, Shanghai, 200032, People's Republic of China.
| | - Zhaochong Zeng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
14
|
Ariza J, González-Reyes JA, Jódar L, Díaz-Ruiz A, de Cabo R, Villalba JM. Mitochondrial permeabilization without caspase activation mediates the increase of basal apoptosis in cells lacking Nrf2. Free Radic Biol Med 2016; 95:82-95. [PMID: 27016073 PMCID: PMC4906443 DOI: 10.1016/j.freeradbiomed.2016.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/09/2016] [Accepted: 03/18/2016] [Indexed: 12/27/2022]
Abstract
Nuclear factor E2-related factor-2 (Nrf2) is a cap'n'collar/basic leucine zipper (b-ZIP) transcription factor which acts as sensor of oxidative and electrophilic stress. Low levels of Nrf2 predispose cells to chemical carcinogenesis but a dark side of Nrf2 function also exists because its unrestrained activation may allow the survival of potentially dangerous damaged cells. Since Nrf2 inhibition may be of therapeutic interest in cancer, and a decrease of Nrf2 activity may be related with degenerative changes associated with aging, it is important to investigate how the lack of Nrf2 function activates molecular mechanisms mediating cell death. Murine Embryonic Fibroblasts (MEFs) bearing a Nrf2 deletion (Nrf2KO) displayed diminished cellular growth rate and shortened lifespan compared with wild-type MEFs. Basal rates of DNA fragmentation and histone H2A.X phosphorylation were higher in Nrf2KO MEFs, although steady-state levels of reactive oxygen species were not significantly increased. Enhanced rates of apoptotic DNA fragmentation were confirmed in liver and lung tissues from Nrf2KO mice. Apoptosis in Nrf2KO MEFs was associated with a decrease of Bcl-2 but not Bax levels, and with the release of the mitochondrial pro-apoptotic factors cytochrome c and AIF. Procaspase-9 and Apaf-1 were also increased in Nrf2KO MEFs but caspase-3 was not activated. Inhibition of XIAP increased death in Nrf2KO but not in wild-type MEFs. Mitochondrial ultrastructure was also altered in Nrf2KO MEFs. Our results support that Nrf2 deletion produces mitochondrial dysfunction associated with mitochondrial permeabilization, increasing basal apoptosis through a caspase-independent and AIF-dependent pathway.
Collapse
Affiliation(s)
- Julia Ariza
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Spain
| | - José A González-Reyes
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Spain
| | - Laura Jódar
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Spain
| | - Alberto Díaz-Ruiz
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - José Manuel Villalba
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Spain
| |
Collapse
|
15
|
Webster CRL, Anwer MS. Hydrophobic bile acid apoptosis is regulated by sphingosine-1-phosphate receptor 2 in rat hepatocytes and human hepatocellular carcinoma cells. Am J Physiol Gastrointest Liver Physiol 2016; 310:G865-73. [PMID: 26999807 PMCID: PMC4895872 DOI: 10.1152/ajpgi.00253.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 03/14/2016] [Indexed: 01/31/2023]
Abstract
The hepatotoxic bile acid glycochenodeoxycholate (GCDC) modulates hepatocyte cell death through activation of JNK, Akt, and Erk. The nonhepatotoxic bile acid taurocholate activates Akt and Erk through the sphingosine-1-phosphate receptor 2 (S1PR2). The role of the S1PR2 in GCDC-mediated apoptosis and kinase activation is unknown. Studies were done in rat hepatocytes, HUH7 cells, and HUH7 cells stably transfected with rat Ntcp (HUH7-Ntcp). Cells were treated with GCDC and apoptosis was monitored morphologically by Hoechst staining and biochemically by immunoblotting for the active cleaved fragment of caspase 3. Kinase activation was determined by immunoblotting with phospho-specific antibodies. JTE-013, an inhibitor of S1PR2, significantly attenuated morphological evidence of GCDC-induced apoptosis and prevented caspase 3 cleavage in rat hepatocytes and HUH7-Ntcp cells. In hepatocytes, JTE-013 mildly suppressed, augmented, and had no effect on GCDC-induced JNK, Akt, and Erk phosphorylation, respectively. Similar results were seen in HUH7-Ntcp cells except for mild suppression of JNK and Erk phosphorylation. Knockdown of S1PR2 in HUH7-Ntcp augmented Akt, inhibited JNK, and had no effect on Erk phosphorylation. GCDC failed to induce apoptosis or kinase activation in HUH7 cells. In conclusion, SIPR2 inhibition attenuates GCDC-induced apoptosis and inhibits and augments GCDC-induced JNK and Akt phosphorylation, respectively. In addition, GCDC must enter hepatocytes to mediate cell death or activate kinases. These results suggest that SIPR2 activation is proapoptotic in GCDC-induced cell death but that this effect is not due to direct ligation of the S1PR2 by the bile acid.
Collapse
Affiliation(s)
- Cynthia R L Webster
- Department of Clinical Science, Cummings School of Veterinary Medicine at Tufts University, Grafton, Massachusetts; and
| | - M Sawkat Anwer
- Department of Biomedical Science, Cummings School of Veterinary Medicine at Tufts University, Grafton, Massachusetts
| |
Collapse
|
16
|
Balance between short and long isoforms of cFLIP regulates Fas-mediated apoptosis in vivo. Proc Natl Acad Sci U S A 2016; 113:1606-11. [PMID: 26798068 DOI: 10.1073/pnas.1517562113] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
cFLIP, an inhibitor of apoptosis, is a crucial regulator of cellular death by apoptosis and necroptosis; its importance in development is exemplified by the embryonic lethality in cFLIP-deficient animals. A homolog of caspase 8 (CASP8), cFLIP exists in two main isoforms: cFLIPL (long) and cFLIPR (short). Although both splice variants regulate death receptor (DR)-induced apoptosis by CASP8, the specific role of each isoform is poorly understood. Here, we report a previously unidentified model of resistance to Fas receptor-mediated liver failure in the wild-derived MSM strain, compared with susceptibility in C57BL/6 (B6) mice. Linkage analysis in F2 intercross (B6 x MSM) progeny identified several MSM loci controlling resistance to Fas-mediated death, including the caspase 8- and FADD-like apoptosis regulator (Cflar) locus encoding cFLIP. Furthermore, we identified a 21-bp insertion in the 3' UTR of the fifth exon of Cflar in MSM that influences differential splicing of cFLIP mRNA. Intriguingly, we observed that MSM liver cells predominantly express the FLIPL variant, in contrast to B6 liver cells, which have higher levels of cFLIPR. In keeping with this finding, genome-wide RNA sequencing revealed a relative abundance of FLIPL transcripts in MSM hepatocytes whereas B6 liver cells had significantly more FLIPR mRNA. Importantly, we show that, in the MSM liver, CASP8 is present exclusively as its cleaved p43 product, bound to cFLIPL. Because of partial enzymatic activity of the heterodimer, it might prevent necroptosis. On the other hand, it prevents cleavage of CASP8 to p10/20 necessary for cleavage of caspase 3 and, thus, apoptosis induction. Therefore, MSM hepatocytes are predisposed for protection from DR-mediated cell death.
Collapse
|
17
|
Zhang F, Chen L, Jin H, Shao J, Wu L, Lu Y, Zheng S. Activation of Fas death receptor pathway and Bid in hepatocytes is involved in saikosaponin D induction of hepatotoxicity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 41:8-13. [PMID: 26645133 DOI: 10.1016/j.etap.2015.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/01/2015] [Accepted: 11/02/2015] [Indexed: 06/05/2023]
Abstract
Drug-induced liver injury can lead to acute liver failure. Saikosaponin D (SSD) is a major component isolated from the medicinal herb Bupleurum falcatum, which has been linked to hepatotoxicity. We previously reported that SSD disrupted PDGF-βR pathway leading to mitochondrial apoptosis in human LO2 hepatocytes. The present study was aimed at further exploring the underlying mechanisms in vitro and in vivo. We initially determined the concentration range of SSD at up to 2μM for subsequent apoptosis examinations. SSD significantly upregulated Fas expression, promoted caspase-8 cleavage and activated the pro-apoptotic protein Bid in LO2 cells. Moreover, SSD reduced the abundance of cytochrome c in mitochondria and increased the cleaved-caspase-3 in LO2 cells, but did not apparently affect PI3K/AKT, ERK and STAT3 pathways that are involved in cell fate regulation. Experiments in vivo showed that one-week treatment with SSD at 300 mg/kg significantly elevated the liver/body weight ratio and caused histological injury in mouse liver. Furthermore, SSD treatment induced massive hepatocyte apoptosis, and significantly downregulated Bcl-2 but upregulated Bax in mouse liver. Taken together, these results revealed a specific mechanism of activation of extrinsic apoptosis pathway and Bid by SSD, which was involved in SSD-induced mitochondrial apoptosis in hepatocytes and potential hepatotoxicity.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Li Chen
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Huanhuan Jin
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiangjuan Shao
- Department of Pharmacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Li Wu
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yin Lu
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shizhong Zheng
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
18
|
Maes M, Vinken M, Jaeschke H. Experimental models of hepatotoxicity related to acute liver failure. Toxicol Appl Pharmacol 2016; 290:86-97. [PMID: 26631581 PMCID: PMC4691574 DOI: 10.1016/j.taap.2015.11.016] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/19/2015] [Accepted: 11/24/2015] [Indexed: 12/13/2022]
Abstract
Acute liver failure can be the consequence of various etiologies, with most cases arising from drug-induced hepatotoxicity in Western countries. Despite advances in this field, the management of acute liver failure continues to be one of the most challenging problems in clinical medicine. The availability of adequate experimental models is of crucial importance to provide a better understanding of this condition and to allow identification of novel drug targets, testing the efficacy of new therapeutic interventions and acting as models for assessing mechanisms of toxicity. Experimental models of hepatotoxicity related to acute liver failure rely on surgical procedures, chemical exposure or viral infection. Each of these models has a number of strengths and weaknesses. This paper specifically reviews commonly used chemical in vivo and in vitro models of hepatotoxicity associated with acute liver failure.
Collapse
Affiliation(s)
- Michaël Maes
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, United States
| |
Collapse
|
19
|
Drasdo D, Bode J, Dahmen U, Dirsch O, Dooley S, Gebhardt R, Ghallab A, Godoy P, Häussinger D, Hammad S, Hoehme S, Holzhütter HG, Klingmüller U, Kuepfer L, Timmer J, Zerial M, Hengstler JG. The virtual liver: state of the art and future perspectives. Arch Toxicol 2015; 88:2071-5. [PMID: 25331938 DOI: 10.1007/s00204-014-1384-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Dirk Drasdo
- Institut National de Recherche en Informatique et en Automatique (INRIA), Domaine de Voluceau - Rocquencourt, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lutz A, Sanwald J, Thomas M, Feuer R, Sawodny O, Ederer M, Borner C, Humar M, Merfort I. Interleukin-1β enhances FasL-induced caspase-3/-7 activity without increasing apoptosis in primary mouse hepatocytes. PLoS One 2014; 9:e115603. [PMID: 25551609 PMCID: PMC4281199 DOI: 10.1371/journal.pone.0115603] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 12/01/2014] [Indexed: 11/18/2022] Open
Abstract
Sustained inflammation may increase the susceptibility of hepatocytes to apoptotic cell death and therefore exacerbate liver damage. Here we report that the pro-inflammatory cytokine IL-1β sensitizes primary murine hepatocytes to Fas ligand (FasL)-induced caspase-3/-7 activity. This process was dependent on JNK1/2 and the BH3-only proteins Bim and Bid. Mathematical modeling revealed that incubation of hepatocytes with IL-1β depleted the anti-apoptotic Bcl-2 protein pool and thus shifted hepatocytes to mitochondrial type II apoptosis following Fas activation. As a consequence, IL-1β and FasL treatment enhanced cytochrome c release. Surprisingly, despite increased caspase-3/-7 activation, FasL-induced cell death was reduced by IL-1β pre-treatment. This protective effect was independent of JNK1/2, Bim or Bid. Furthermore, elevated caspase-3/-7 activity upon IL-1β and FasL treatment did not result in enhanced PARP cleavage. The protective effect of IL-1β was seen after 3 h of pre-incubation, indicating an anti-apoptotic transcriptional response. Indeed, NF-κB DNA binding was increased in response to IL-1β plus FasL and gene-expression profiling of NF-κB regulated genes revealed a transcriptional and translational upregulation of the caspase-8 inhibitor A20. A mathematical model was developed to explain the contradictious occurrence of both increased caspase-3/-7 activity and elevated cell viability by including a heterogeneous distribution of Bcl-2 proteins and variations in Fas signaling resulting in different subpopulations of hepatocytes.
Collapse
Affiliation(s)
- Anna Lutz
- Department of Pharmaceutical Biology and Biotechnology, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Julia Sanwald
- Institute for System Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Maria Thomas
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Ronny Feuer
- Institute for System Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Oliver Sawodny
- Institute for System Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Michael Ederer
- Institute for System Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, Albert Ludwigs University Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Albert Ludwigs University Freiburg, Freiburg, Germany
- Bioss – Centre for Biological Signaling Studies, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Matjaz Humar
- Department of Pharmaceutical Biology and Biotechnology, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Irmgard Merfort
- Department of Pharmaceutical Biology and Biotechnology, Albert Ludwigs University Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Albert Ludwigs University Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
21
|
Buck LD, Inman SW, Rusyn I, Griffith LG. Co-regulation of primary mouse hepatocyte viability and function by oxygen and matrix. Biotechnol Bioeng 2014; 111:1018-27. [PMID: 24222008 PMCID: PMC4110975 DOI: 10.1002/bit.25152] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 09/18/2013] [Accepted: 11/06/2013] [Indexed: 01/02/2023]
Abstract
Although oxygen and extracellular matrix cues both influence differentiation state and metabolic function of primary rat and human hepatocytes, relatively little is known about how these factors together regulate behaviors of primary mouse hepatocytes in culture. To determine the effects of pericellular oxygen tension on hepatocellular function, we employed two methods of altering oxygen concentration in the local cellular microenvironment of cells cultured in the presence or absence of an extracellular matrix (Matrigel) supplement. By systematically altering medium depth and gas phase oxygen tension, we created multiple oxygen regimes (hypoxic, normoxic, and hyperoxic) and measured the local oxygen concentrations in the pericellular environment using custom-designed oxygen microprobes. From these measurements of oxygen concentrations, we derived values of oxygen consumption rates under a spectrum of environmental contexts, thus providing the first reported estimates of these values for primary mouse hepatocytes. Oxygen tension and matrix microenvironment were found to synergistically regulate hepatocellular survival and function as assessed using quantitative image analysis for cells stained with vital dyes, and assessment of secretion of albumin. Hepatocellular viability was affected only at strongly hypoxic conditions. Surprisingly, albumin secretion rates were greatest at a moderately supra-physiological oxygen concentration, and this effect was mitigated at still greater supra-physiological concentrations. Matrigel enhanced the effects of oxygen on retention of function. This study underscores the importance of carefully controlling cell density, medium depth, and gas phase oxygen, as the effects of these parameters on local pericellular oxygen tension and subsequent hepatocellular function are profound.
Collapse
Affiliation(s)
- Lorenna D. Buck
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA
| | - S. Walker Inman
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA
| | - Ivan Rusyn
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC, USA
| | - Linda G. Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA
| |
Collapse
|
22
|
El Maadidi S, Faletti L, Berg B, Wenzl C, Wieland K, Chen ZJ, Maurer U, Borner C. A novel mitochondrial MAVS/Caspase-8 platform links RNA virus-induced innate antiviral signaling to Bax/Bak-independent apoptosis. THE JOURNAL OF IMMUNOLOGY 2014; 192:1171-83. [PMID: 24391214 DOI: 10.4049/jimmunol.1300842] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Semliki Forest virus (SFV) requires RNA replication and Bax/Bak for efficient apoptosis induction. However, cells lacking Bax/Bak continue to die in a caspase-dependent manner. In this study, we show in both mouse and human cells that this Bax/Bak-independent pathway involves dsRNA-induced innate immune signaling via mitochondrial antiviral signaling (MAVS) and caspase-8. Bax/Bak-deficient or Bcl-2- or Bcl-xL-overexpressing cells lacking MAVS or caspase-8 expression are resistant to SFV-induced apoptosis. The signaling pathway triggered by SFV does neither involve death receptors nor the classical MAVS effectors TNFR-associated factor-2, IRF-3/7, or IFN-β but the physical interaction of MAVS with caspase-8 on mitochondria in a FADD-independent manner. Consistently, caspase-8 and -3 activation are reduced in MAVS-deficient cells. Thus, after RNA virus infection MAVS does not only elicit a type I antiviral response but also recruits caspase-8 to mitochondria to mediate caspase-3 activation and apoptosis in a Bax/Bak-independent manner.
Collapse
Affiliation(s)
- Souhayla El Maadidi
- Institute of Molecular Medicine and Cell Research, Albert Ludwigs University Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Because of its unique function and anatomical location, the liver is exposed to a multitude of toxins and xenobiotics, including medications and alcohol, as well as to infection by hepatotropic viruses, and therefore, is highly susceptible to tissue injury. Cell death in the liver occurs mainly by apoptosis or necrosis, with apoptosis also being the physiologic route to eliminate damaged or infected cells and to maintain tissue homeostasis. Liver cells, especially hepatocytes and cholangiocytes, are particularly susceptible to death receptor-mediated apoptosis, given the ubiquitous expression of the death receptors in the organ. In a quite unique way, death receptor-induced apoptosis in these cells is mediated by both mitochondrial and lysosomal permeabilization. Signaling between the endoplasmic reticulum and the mitochondria promotes hepatocyte apoptosis in response to excessive free fatty acid generation during the metabolic syndrome. These cell death pathways are partially regulated by microRNAs. Necrosis in the liver is generally associated with acute injury (i.e., ischemia/reperfusion injury) and has been long considered an unregulated process. Recently, a new form of "programmed" necrosis (named necroptosis) has been described: the role of necroptosis in the liver has yet to be explored. However, the minimal expression of a key player in this process in the liver suggests this form of cell death may be uncommon in liver diseases. Because apoptosis is a key feature of so many diseases of the liver, therapeutic modulation of liver cell death holds promise. An updated overview of these concepts is given in this article.
Collapse
Affiliation(s)
- Maria Eugenia Guicciardi
- 1Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | |
Collapse
|
24
|
Primary hepatocytes and their cultures in liver apoptosis research. Arch Toxicol 2013; 88:199-212. [PMID: 24013573 DOI: 10.1007/s00204-013-1123-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/29/2013] [Indexed: 01/18/2023]
Abstract
Apoptosis not only plays a key role in physiological demise of defunct hepatocytes, but is also associated with a plethora of acute and chronic liver diseases as well as with hepatotoxicity. The present paper focuses on the modelling of this mode of programmed cell death in primary hepatocyte cultures. Particular attention is paid to the activation of spontaneous apoptosis during the isolation of hepatocytes from the liver, its progressive manifestation upon the subsequent establishment of cell cultures and simultaneously to strategies to counteract this deleterious process. In addition, currently applied approaches to experimentally induce controlled apoptosis in this in vitro setting for mechanistic research purposes and thereby its detection using relevant biomarkers are reviewed.
Collapse
|
25
|
Godoy P, Hewitt NJ, Albrecht U, Andersen ME, Ansari N, Bhattacharya S, Bode JG, Bolleyn J, Borner C, Böttger J, Braeuning A, Budinsky RA, Burkhardt B, Cameron NR, Camussi G, Cho CS, Choi YJ, Craig Rowlands J, Dahmen U, Damm G, Dirsch O, Donato MT, Dong J, Dooley S, Drasdo D, Eakins R, Ferreira KS, Fonsato V, Fraczek J, Gebhardt R, Gibson A, Glanemann M, Goldring CEP, Gómez-Lechón MJ, Groothuis GMM, Gustavsson L, Guyot C, Hallifax D, Hammad S, Hayward A, Häussinger D, Hellerbrand C, Hewitt P, Hoehme S, Holzhütter HG, Houston JB, Hrach J, Ito K, Jaeschke H, Keitel V, Kelm JM, Kevin Park B, Kordes C, Kullak-Ublick GA, LeCluyse EL, Lu P, Luebke-Wheeler J, Lutz A, Maltman DJ, Matz-Soja M, McMullen P, Merfort I, Messner S, Meyer C, Mwinyi J, Naisbitt DJ, Nussler AK, Olinga P, Pampaloni F, Pi J, Pluta L, Przyborski SA, Ramachandran A, Rogiers V, Rowe C, Schelcher C, Schmich K, Schwarz M, Singh B, Stelzer EHK, Stieger B, Stöber R, Sugiyama Y, Tetta C, Thasler WE, Vanhaecke T, Vinken M, Weiss TS, Widera A, Woods CG, Xu JJ, Yarborough KM, Hengstler JG. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol 2013; 87:1315-1530. [PMID: 23974980 PMCID: PMC3753504 DOI: 10.1007/s00204-013-1078-5] [Citation(s) in RCA: 965] [Impact Index Per Article: 80.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/06/2013] [Indexed: 12/15/2022]
Abstract
This review encompasses the most important advances in liver functions and hepatotoxicity and analyzes which mechanisms can be studied in vitro. In a complex architecture of nested, zonated lobules, the liver consists of approximately 80 % hepatocytes and 20 % non-parenchymal cells, the latter being involved in a secondary phase that may dramatically aggravate the initial damage. Hepatotoxicity, as well as hepatic metabolism, is controlled by a set of nuclear receptors (including PXR, CAR, HNF-4α, FXR, LXR, SHP, VDR and PPAR) and signaling pathways. When isolating liver cells, some pathways are activated, e.g., the RAS/MEK/ERK pathway, whereas others are silenced (e.g. HNF-4α), resulting in up- and downregulation of hundreds of genes. An understanding of these changes is crucial for a correct interpretation of in vitro data. The possibilities and limitations of the most useful liver in vitro systems are summarized, including three-dimensional culture techniques, co-cultures with non-parenchymal cells, hepatospheres, precision cut liver slices and the isolated perfused liver. Also discussed is how closely hepatoma, stem cell and iPS cell-derived hepatocyte-like-cells resemble real hepatocytes. Finally, a summary is given of the state of the art of liver in vitro and mathematical modeling systems that are currently used in the pharmaceutical industry with an emphasis on drug metabolism, prediction of clearance, drug interaction, transporter studies and hepatotoxicity. One key message is that despite our enthusiasm for in vitro systems, we must never lose sight of the in vivo situation. Although hepatocytes have been isolated for decades, the hunt for relevant alternative systems has only just begun.
Collapse
Affiliation(s)
- Patricio Godoy
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | | | - Ute Albrecht
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Melvin E. Andersen
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Nariman Ansari
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Sudin Bhattacharya
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Johannes Georg Bode
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Jennifer Bolleyn
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Jan Böttger
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Albert Braeuning
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Robert A. Budinsky
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI USA
| | - Britta Burkhardt
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Neil R. Cameron
- Department of Chemistry, Durham University, Durham, DH1 3LE UK
| | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - Yun-Jaie Choi
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - J. Craig Rowlands
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI USA
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General Visceral, and Vascular Surgery, Friedrich-Schiller-University Jena, 07745 Jena, Germany
| | - Georg Damm
- Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Olaf Dirsch
- Institute of Pathology, Friedrich-Schiller-University Jena, 07745 Jena, Germany
| | - María Teresa Donato
- Unidad de Hepatología Experimental, IIS Hospital La Fe Avda Campanar 21, 46009 Valencia, Spain
- CIBERehd, Fondo de Investigaciones Sanitarias, Barcelona, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Jian Dong
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Steven Dooley
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Dirk Drasdo
- Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, 04107 Leipzig, Germany
- INRIA (French National Institute for Research in Computer Science and Control), Domaine de Voluceau-Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, France
- UPMC University of Paris 06, CNRS UMR 7598, Laboratoire Jacques-Louis Lions, 4, pl. Jussieu, 75252 Paris cedex 05, France
| | - Rowena Eakins
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Karine Sá Ferreira
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
- GRK 1104 From Cells to Organs, Molecular Mechanisms of Organogenesis, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Valentina Fonsato
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy
| | - Joanna Fraczek
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Rolf Gebhardt
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Andrew Gibson
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Matthias Glanemann
- Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Chris E. P. Goldring
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - María José Gómez-Lechón
- Unidad de Hepatología Experimental, IIS Hospital La Fe Avda Campanar 21, 46009 Valencia, Spain
- CIBERehd, Fondo de Investigaciones Sanitarias, Barcelona, Spain
| | - Geny M. M. Groothuis
- Department of Pharmacy, Pharmacokinetics Toxicology and Targeting, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Lena Gustavsson
- Department of Laboratory Medicine (Malmö), Center for Molecular Pathology, Lund University, Jan Waldenströms gata 59, 205 02 Malmö, Sweden
| | - Christelle Guyot
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - David Hallifax
- Centre for Applied Pharmacokinetic Research (CAPKR), School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | - Seddik Hammad
- Department of Forensic Medicine and Veterinary Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Adam Hayward
- Biological and Biomedical Sciences, Durham University, Durham, DH13LE UK
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Claus Hellerbrand
- Department of Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany
| | | | - Stefan Hoehme
- Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, 04107 Leipzig, Germany
| | - Hermann-Georg Holzhütter
- Institut für Biochemie Abteilung Mathematische Systembiochemie, Universitätsmedizin Berlin (Charité), Charitéplatz 1, 10117 Berlin, Germany
| | - J. Brian Houston
- Centre for Applied Pharmacokinetic Research (CAPKR), School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | | | - Kiyomi Ito
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, 202-8585 Japan
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Verena Keitel
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | | | - B. Kevin Park
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Claus Kordes
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Gerd A. Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Edward L. LeCluyse
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Peng Lu
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | | | - Anna Lutz
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Daniel J. Maltman
- Reinnervate Limited, NETPark Incubator, Thomas Wright Way, Sedgefield, TS21 3FD UK
| | - Madlen Matz-Soja
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Patrick McMullen
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Irmgard Merfort
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | | | - Christoph Meyer
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jessica Mwinyi
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Dean J. Naisbitt
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Andreas K. Nussler
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Peter Olinga
- Division of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Francesco Pampaloni
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Jingbo Pi
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Linda Pluta
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Stefan A. Przyborski
- Reinnervate Limited, NETPark Incubator, Thomas Wright Way, Sedgefield, TS21 3FD UK
- Biological and Biomedical Sciences, Durham University, Durham, DH13LE UK
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Vera Rogiers
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Cliff Rowe
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Celine Schelcher
- Department of Surgery, Liver Regeneration, Core Facility, Human in Vitro Models of the Liver, Ludwig Maximilians University of Munich, Munich, Germany
| | - Kathrin Schmich
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Michael Schwarz
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Bijay Singh
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - Ernst H. K. Stelzer
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Regina Stöber
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, Yokohama Biopharmaceutical R&D Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Ciro Tetta
- Fresenius Medical Care, Bad Homburg, Germany
| | - Wolfgang E. Thasler
- Department of Surgery, Ludwig-Maximilians-University of Munich Hospital Grosshadern, Munich, Germany
| | - Tamara Vanhaecke
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Mathieu Vinken
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Thomas S. Weiss
- Department of Pediatrics and Juvenile Medicine, University of Regensburg Hospital, Regensburg, Germany
| | - Agata Widera
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | - Courtney G. Woods
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | | | | | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| |
Collapse
|
26
|
Echeverry N, Bachmann D, Ke F, Strasser A, Simon HU, Kaufmann T. Intracellular localization of the BCL-2 family member BOK and functional implications. Cell Death Differ 2013; 20:785-99. [PMID: 23429263 PMCID: PMC3647236 DOI: 10.1038/cdd.2013.10] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 12/22/2012] [Accepted: 01/11/2013] [Indexed: 12/21/2022] Open
Abstract
The pro-apoptotic BCL-2 family member BOK is widely expressed and resembles the multi-BH domain proteins BAX and BAK based on its amino acid sequence. The genomic region encoding BOK was reported to be frequently deleted in human cancer and it has therefore been hypothesized that BOK functions as a tumor suppressor. However, little is known about the molecular functions of BOK. We show that enforced expression of BOK activates the intrinsic (mitochondrial) apoptotic pathway in BAX/BAK-proficient cells but fails to kill cells lacking both BAX and BAK or sensitize them to cytotoxic insults. Interestingly, major portions of endogenous BOK are localized to and partially inserted into the membranes of the Golgi apparatus as well as the endoplasmic reticulum (ER) and associated membranes. The C-terminal transmembrane domain of BOK thereby constitutes a 'tail-anchor' specific for targeting to the Golgi and ER. Overexpression of full-length BOK causes early fragmentation of ER and Golgi compartments. A role for BOK on the Golgi apparatus and the ER is supported by an abnormal response of Bok-deficient cells to the Golgi/ER stressor brefeldin A. Based on these results, we propose that major functions of BOK are exerted at the Golgi and ER membranes and that BOK induces apoptosis in a manner dependent on BAX and BAK.
Collapse
Affiliation(s)
- N Echeverry
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - D Bachmann
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - F Ke
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - A Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - H U Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - T Kaufmann
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| |
Collapse
|
27
|
Bhattacharya S, Gachhui R, Sil PC. The prophylactic role of D-saccharic acid-1,4-lactone against hyperglycemia-induced hepatic apoptosis via inhibition of both extrinsic and intrinsic pathways in diabetic rats. Food Funct 2013; 4:283-296. [PMID: 23138840 DOI: 10.1039/c2fo30145h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Sustained hyperglycemia and increased oxidative stress play major roles in the development of secondary complications in diabetes including liver injury. Dietary supplement of antioxidants is effective in preventing oxidative stress mediated tissue damage in diabetic pathophysiology. D-Saccharic acid 1,4-lactone (DSL), a derivative of D-glucaric acid, is present in many dietary plants and is known for its detoxifying and antioxidant properties. Our early investigation showed that DSL can ameliorate alloxan (ALX) induced diabetes mellitus and oxidative stress in rats by inhibiting pancreatic β-cell apoptosis. In the present study we investigated the protective role of DSL against hepatic dysfunction in ALX induced diabetic rats. ALX exposure elevated the blood glucose, serum ALP and ALT levels, the production of reactive oxygen species (ROS), and disturbed the intra-cellular antioxidant machineries. Oral administration of DSL restored all these alterations close to normal. By investigating the mechanism of its protective activity, we observed that DSL prevented hyperglycemia induced hepatic apoptosis by inhibiting both extrinsic and intrinsic pathways. Results showed that in the liver tissue, diabetes promoted a significant increase of TNF-α/TNF-R1 and led to the activation of caspase-8 and t-Bid. In addition, ALX exposure reciprocally regulated Bcl-2 family protein expression, disturbed mitochondrial membrane potential, and subsequently released cytochrome c from mitochondria to cytosol. As a consequence, a significant increase in caspase-3 expression was observed in the liver of diabetic animals. However, treatment of diabetic rats with DSL counteracted these changes, making it a promising approach in lessening diabetes mediated tissue damage.
Collapse
|
28
|
Zinkel SS, Yin XM, Gross A. Rejuvenating Bi(d)ology. Oncogene 2012; 32:3213-3219. [PMID: 23069655 DOI: 10.1038/onc.2012.454] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 08/14/2012] [Accepted: 08/14/2012] [Indexed: 12/25/2022]
Abstract
The BH3-only Bid protein is a critical sentinel of cellular stress in the liver and the hematopoietic system. Bid's initial 'claim to fame' came from its ability-as a caspase-truncated product-to trigger the mitochondrial apoptotic program following death receptor activation. Today we know that Bid can response to multiple types of proteases, which are activated under different conditions such as T-cell activation, ischemical reperfusion injury and lysosomal injury. Activation of the mitochondrial apoptotic program by Bid-via its recently identified receptor mitochondrial carrier homolog 2-involves multiple mechanisms, including release of cytochrome c and second mitochondria-derived activator of caspase (Smac), alteration of mitochondrial cristae organization, generation of reactive oxygen species and engagement of the permeability transition pore. Bid is also emerging-in its full-length form-as a pivotal sentinel of DNA damage in the bone marrow regulated by the ataxia telangiectasia mutated (ATM)/ataxia telangiectasia and Rad3-related (ATR) kinases. The ATM/ATR-Bid pathway is critically involved in preserving the quiescence and survival of hematopoietic stem cells both in the absence and presence of external stress, and a large part of this review will be dedicated to recent advances in this area of research.
Collapse
Affiliation(s)
- S S Zinkel
- Departments of Medicine, Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - X M Yin
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A Gross
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
29
|
Ferreira KS, Kreutz C, Macnelly S, Neubert K, Haber A, Bogyo M, Timmer J, Borner C. Caspase-3 feeds back on caspase-8, Bid and XIAP in type I Fas signaling in primary mouse hepatocytes. Apoptosis 2012; 17:503-15. [PMID: 22246639 DOI: 10.1007/s10495-011-0691-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The TNF-R1 like receptor Fas is highly expressed on the plasma membrane of hepatocytes and plays an essential role in liver homeostasis. We recently showed that in collagen-cultured primary mouse hepatocytes, Fas stimulation triggers apoptosis via the so-called type I extrinsic signaling pathway. Central to this pathway is the direct caspase-8-mediated cleavage and activation of caspase-3 as compared to the type II pathway which first requires caspase-8-mediated Bid cleavage to trigger mitochondrial cytochrome c release for caspase-3 activation. Mathematical modeling can be used to understand complex signaling systems such as crosstalks and feedback or feedforward loops. A previously published model predicted a positive feedback loop between active caspases-3 and -8 in both type I and type II FasL signaling in lymphocytes and Hela cells, respectively. Here we experimentally tested this hypothesis in our hepatocytic type I Fas signaling pathway by using wild-type and XIAP-deficient primary hepatocytes and two recently characterized, selective caspase-3/-7 inhibitors (AB06 and AB13). Caspase-3/-7 activity assays and quantitative western blotting confirmed that fully processed, active p17 caspase-3 feeds back on caspase-8 by cleaving its partially processed p43 form into the fully processed p18 species. Our data do not discriminate if p18 positively or negatively influences FasL-induced apoptosis or is responsible for non-apoptotic aspects of FasL signaling. However, we found that caspase-3 also feeds back on Bid and degrades its own inhibitor XIAP, both events that may enhance caspase-3 activity and apoptosis. Thus, potent, selective caspase-3 inhibitors are useful tools to understand complex signaling circuitries in apoptosis.
Collapse
Affiliation(s)
- Karine Sá Ferreira
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Vogel S, Raulf N, Bregenhorn S, Biniossek ML, Maurer U, Czabotar P, Borner C. Cytosolic Bax: does it require binding proteins to keep its pro-apoptotic activity in check? J Biol Chem 2012; 287:9112-27. [PMID: 22277657 DOI: 10.1074/jbc.m111.248906] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bax is kept inactive in the cytosol by refolding its C-terminal transmembrane domain into the hydrophobic binding pocket. Although energetic calculations predicted this conformation to be stable, numerous Bax binding proteins were reported and suggested to further stabilize inactive Bax. Unfortunately, most of them have not been validated in a physiological context on the endogenous level. Here we use gel filtration analysis of the cytosol of primary and established cells to show that endogenous, inactive Bax runs 20-30 kDa higher than recombinant Bax, suggesting Bax dimerization or the binding of a small protein. Dimerization was excluded by a lack of interaction of differentially tagged Bax proteins and by comparing the sizes of dimerized recombinant Bax with cytosolic Bax on blue native gels. Surprisingly, when analyzing cytosolic Bax complexes by high sensitivity mass spectrometry after anti-Bax immunoprecipitation or consecutive purification by gel filtration and blue native gel electrophoresis, we detected only one protein, called p23 hsp90 co-chaperone, which consistently and specifically co-purified with Bax. However, this protein could not be validated as a crucial inhibitory Bax binding partner as its over- or underexpression did not show any apoptosis defects. By contrast, cytosolic Bax exhibits a slight molecular mass shift on SDS-PAGE as compared with recombinant Bax, which suggests a posttranslational modification and/or a structural difference between the two proteins. We propose that in most healthy cells, cytosolic endogenous Bax is a monomeric protein that does not necessarily need a binding partner to keep its pro-apoptotic activity in check.
Collapse
Affiliation(s)
- Sandra Vogel
- Institute of Molecular Medicine and Cell Research, Center for Biochemistry and Molecular Cell Research, Albert Ludwigs University, Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
31
|
Rizza SA, Challagundla KB, Natesampillai S, Bren GD, Sykora J, Walczak H, Badley AD. TRAIL dependent fratricidal killing of gp120 primed hepatocytes by HCV core expressing hepatocytes. PLoS One 2011; 6:e27171. [PMID: 22110611 PMCID: PMC3215710 DOI: 10.1371/journal.pone.0027171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 10/11/2011] [Indexed: 02/07/2023] Open
Abstract
The mechanism by which HIV and HCV cooperatively accelerate hepatocyte damage is not clearly understood; however, each virus affects the TRAIL: TRAIL-receptor system. We, therefore, questioned whether the independent effects of HCV and HIV combine to synergistically result in TRAIL dependent hepatocyte killing. We describe that Huh7 hepatocytes treated with HIV gp120 results in both increase TRAIL-R2 expression and an acquired sensitivity to TRAIL mediated killing. Moreover HCV infection and HCV core expression alone in Huh7 cells upregulates TRAIL. Co-incubation of HIV gp120 primed hepatocytes with HCV core expressing hepatocytes results in the selective death of the HIV gp120 primed hepatocytes that is selectively blocked by TRAIL-R2-Fc fusion protein. Liver biopsies from HIV mono-infected patients have increased TRAIL-R2; biopsies from HCV infected patients have increased TRAIL, while co-infected liver biopsies have increased PARP cleavage within hepatocytes indicating enhanced apoptosis. These findings suggest a pathogenic model to understand why HIV/HCV co-infection accelerates liver injury.
Collapse
Affiliation(s)
- Stacey A. Rizza
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Kishore B. Challagundla
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Sekar Natesampillai
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Gary D. Bren
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Jaromir Sykora
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Henning Walczak
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Andrew D. Badley
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
32
|
Schlatter R, Philippi N, Wangorsch G, Pick R, Sawodny O, Borner C, Timmer J, Ederer M, Dandekar T. Integration of Boolean models exemplified on hepatocyte signal transduction. Brief Bioinform 2011; 13:365-76. [PMID: 22016404 DOI: 10.1093/bib/bbr065] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The number of mathematical models for biological pathways is rapidly growing. In particular, Boolean modelling proved to be suited to describe large cellular signalling networks. Systems biology is at the threshold to holistic understanding of comprehensive networks. In order to reach this goal, connection and integration of existing models of parts of cellular networks into more comprehensive network models is necessary. We discuss model combination approaches for Boolean models. Boolean modelling is qualitative rather than quantitative and does not require detailed kinetic information. We show that these models are useful precursors for large-scale quantitative models and that they are comparatively easy to combine. We propose modelling standards for Boolean models as a prerequisite for smooth model integration. Using these standards, we demonstrate the coupling of two logical models on two different examples concerning cellular interactions in the liver. In the first example, we show the integration of two Boolean models of two cell types in order to describe their interaction. In the second example, we demonstrate the combination of two models describing different parts of the network of a single cell type. Combination of partial models into comprehensive network models will take systems biology to the next level of understanding. The combination of logical models facilitated by modelling standards is a valuable example for the next step towards this goal.
Collapse
Affiliation(s)
- Rebekka Schlatter
- Institute for System Dynamics, University of Stuttgart, Stuttgart, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Nakagawa H, Hirata Y, Takeda K, Hayakawa Y, Sato T, Kinoshita H, Sakamoto K, Nakata W, Hikiba Y, Omata M, Yoshida H, Koike K, Ichijo H, Maeda S. Apoptosis signal-regulating kinase 1 inhibits hepatocarcinogenesis by controlling the tumor-suppressing function of stress-activated mitogen-activated protein kinase. Hepatology 2011; 54:185-95. [PMID: 21488081 DOI: 10.1002/hep.24357] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
UNLABELLED The stress-activated mitogen-activated protein kinases (MAPKs), c-Jun NH2-terminal kinase (JNK), and p38 have been implicated in hepatocarcinogenesis. Although the many interrelated functions of JNK and p38 are precisely regulated by upstream signaling molecules, little is known about upstream regulators. We investigated the role of apoptosis signal-regulating kinase 1 (ASK1), a major player in the regulation of JNK and p38 activities, in hepatocarcinogenesis using a mouse hepatocellular carcinoma (HCC) model. ASK1-deficient (ASK1(-/-) ) and wildtype (WT) mice were treated with diethylnitrosamine on postnatal day 14. Strikingly, after 7 months, approximately three times as many tumors developed in ASK1(-/-) mice as in WT mice. Although JNK and p38 activation were attenuated in ASK1(-/-) HCCs relative to WT HCCs, cell proliferation was comparable in HCCs from both types of mice. On the other hand, both cancer cell apoptosis and hyperphosphorylation of BimEL, a proapoptotic Bcl-2 family member, were suppressed in the ASK1(-/-) HCCs. ASK1(-/-) mice showed remarkable resistance to Fas-induced hepatocyte apoptosis in vivo, probably because of attenuated JNK-mediated BimEL phosphorylation and mitochondrial apoptotic pathway activation. The reintroduction of ASK1 to ASK1(-/-) mouse liver using an adenoviral vector restored Fas-induced hepatocyte death and phosphorylation of JNK and BimEL. Similar findings were obtained in tumor necrosis factor alpha-induced hepatocyte apoptosis. Furthermore, ASK1 was involved in DNA damage-induced p21 up-regulation through a p38 pathway. CONCLUSION ASK1 is involved in death receptor-mediated apoptosis and DNA-damage response by way of stress-activated MAPK in the liver, and thus acts as a tumor suppressor in hepatocarcinogenesis. This study provides new insight into the regulation of stress- activated MAPK signaling in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Hayato Nakagawa
- Department of Gastroenterology, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hikita H, Takehara T, Kodama T, Shimizu S, Shigekawa M, Hosui A, Miyagi T, Tatsumi T, Ishida H, Li W, Kanto T, Hiramatsu N, Shimizu S, Tsujimoto Y, Hayashi N. Delayed-onset caspase-dependent massive hepatocyte apoptosis upon Fas activation in Bak/Bax-deficient mice. Hepatology 2011; 54:240-51. [PMID: 21425311 DOI: 10.1002/hep.24305] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 03/09/2011] [Indexed: 01/16/2023]
Abstract
UNLABELLED The proapoptotic Bcl-2 family proteins Bak and Bax serve as an essential gateway to the mitochondrial pathway of apoptosis. When activated by BH3-only proteins, Bak/Bax triggers mitochondrial outer membrane permeabilization leading to release of cytochrome c followed by activation of initiator and then effector caspases to dismantle the cells. Hepatocytes are generally considered to be type II cells because, upon Fas stimulation, they are reported to require the BH3-only protein Bid to undergo apoptosis. However, the significance of Bak and Bax in the liver is unclear. To address this issue, we generated hepatocyte-specific Bak/Bax double knockout mice and administered Jo2 agonistic anti-Fas antibody or recombinant Fas ligand to them. Fas-induced rapid fulminant hepatocyte apoptosis was partially ameliorated in Bak knockout mice but not in Bax knockout mice, and was completely abolished in double knockout mice 3 hours after Jo2 injection. Importantly, at 6 hours, double knockout mice displayed severe liver injury associated with repression of XIAP, activation of caspase-3/7 and oligonucleosomal DNA breaks in the liver, without evidence of mitochondrial disruption or cytochrome c-dependent caspase-9 activation. This liver injury was not ameliorated in a cyclophilin D knockout background nor by administration of necrostatin-1, but was completely inhibited by administration of a caspase inhibitor after Bid cleavage. CONCLUSION Whereas either Bak or Bax is critically required for rapid execution of Fas-mediated massive apoptosis in the liver, delayed onset of mitochondria-independent, caspase-dependent apoptosis develops even in the absence of both. The present study unveils an extrinsic pathway of apoptosis, like that in type I cells, which serves as a backup system even in type II cells.
Collapse
Affiliation(s)
- Hayato Hikita
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Sato T, Kobune M, Murase K, Kado Y, Okamoto T, Tanaka S, Kikuchi S, Nagashima H, Kawano Y, Takada K, Iyama S, Miyanishi K, Sato Y, Takimoto R, Kato J. Iron chelator deferasirox rescued mice from Fas-induced fulminant hepatitis. Hepatol Res 2011; 41:660-7. [PMID: 21711425 DOI: 10.1111/j.1872-034x.2011.00821.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
AIM Fulminant hepatitis is a disease characterized by development of hepatic failure due to severe liver cell injury. Orthotopic liver transplantation is the therapy proven to improve patient survival; however, less burdensome and safer strategies are required. In a previous study, we showed that iron was intimately involved in hepatocyte apoptosis by demonstrating that spontaneous development of fulminant hepatitis in Long-Evans cinnamon rats was prevented by feeding an iron-deficient diet. Recently, a new iron chelator, deferasirox, has become widely available for the treatment of transfusional hemosiderosis. Deferasirox demonstrated good efficacy and improved compliance due to convenient, once-daily p.o. administration. Our aim was to investigate the efficacy of deferasirox as a therapeutic drug against fulminant hepatitis. METHODS Human primary hepatocytes undergoing Fas-stimulated apoptosis were challenged with deferoxamine (DFO) in vitro. In further in vivo experiments, we tested DFO in a mice model of fulminant hepatitis induced by Fas-stimulation. RESULTS The apoptosis-inducing activity of anti-Fas antibody on human primary hepatocytes was inhibited by the chelation of iron with DFO. DFO suppressed the Fas-induced production of reactive oxygen species (ROS) and the activation of caspase-3, both of which were also suppressed by antioxidant, N-acetyl-L-cystein. In the in vivo experiments, deferasirox effectively reduced hepatic iron concentrations and rescued mice from Fas-induced fulminant hepatitis. CONCLUSION These findings indicated that the iron chelation exerted a hepatoprotective effect by scavenging ROS upstream of caspase-3 and that iron chelation with deferasirox is a potential treatment for patients with fulminant hepatitis.
Collapse
Affiliation(s)
- Tsutomu Sato
- Fourth Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Schlatter R, Schmich K, Lutz A, Trefzger J, Sawodny O, Ederer M, Merfort I. Modeling the TNFα-induced apoptosis pathway in hepatocytes. PLoS One 2011; 6:e18646. [PMID: 21533085 PMCID: PMC3080376 DOI: 10.1371/journal.pone.0018646] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 03/14/2011] [Indexed: 12/21/2022] Open
Abstract
The proinflammatory cytokine TNFα fails to provoke cell death in isolated hepatocytes but has been implicated in hepatocyte apoptosis during liver diseases associated with chronic inflammation. Recently, we showed that TNFα is able to sensitize primary murine hepatocytes cultured on collagen to Fas ligand-induced apoptosis and presented a mathematical model of the sensitizing effect. Here, we analyze how TNFα induces apoptosis in combination with the transcriptional inhibitor actinomycin D (ActD). Accumulation of reactive oxygen species (ROS) in response to TNFR activation turns out to be critical for sustained activation of JNK which then triggers mitochondrial pathway-dependent apoptosis. In addition, the amount of JNK is strongly upregulated in a ROS-dependent way. In contrast to TNFα plus cycloheximide no cFLIP degradation is observed suggesting a different apoptosis pathway in which the Itch-mediated cFLIP degradation and predominantly caspase-8 activation is not involved. Time-resolved data of the respective pro- and antiapoptotic factors are obtained and subjected to mathematical modeling. On the basis of these data we developed a mathematical model which reproduces the complex interplay regulating the phosphorylation status of JNK and generation of ROS. This model was fully integrated with our model of TNFα/Fas ligand sensitizing as well as with a published NF-κB-model. The resulting comprehensive model delivers insight in the dynamical interplay between the TNFα and FasL pathways, NF-κB and ROS and gives an example for successful model integration.
Collapse
Affiliation(s)
- Rebekka Schlatter
- Institute for System Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Kathrin Schmich
- Department of Pharmaceutical Biology and Biotechnology, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Anna Lutz
- Department of Pharmaceutical Biology and Biotechnology, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Judith Trefzger
- Department of Pharmaceutical Biology and Biotechnology, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Oliver Sawodny
- Institute for System Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Michael Ederer
- Institute for System Dynamics, University of Stuttgart, Stuttgart, Germany
- * E-mail: (ME); (IM)
| | - Irmgard Merfort
- Department of Pharmaceutical Biology and Biotechnology, Albert Ludwigs University Freiburg, Freiburg, Germany
- * E-mail: (ME); (IM)
| |
Collapse
|
38
|
Moniaux N, Song H, Darnaud M, Garbin K, Gigou M, Mitchell C, Samuel D, Jamot L, Amouyal P, Amouyal G, Bréchot C, Faivre J. Human hepatocarcinoma-intestine-pancreas/pancreatitis-associated protein cures fas-induced acute liver failure in mice by attenuating free-radical damage in injured livers. Hepatology 2011; 53:618-27. [PMID: 21274882 DOI: 10.1002/hep.24087] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 11/09/2010] [Indexed: 12/24/2022]
Abstract
UNLABELLED Acute liver failure (ALF) is a rare syndrome with a difficult clinical management and a high mortality rate. During ALF, several molecular pathways governing oxidative stress and apoptosis are activated to induce massive tissue injury and suppress cell proliferation. There are few anti-ALF drug candidates, among which is the C-type lectin Reg3α, or human hepatocarcinoma-intestine-pancreas/pancreatitis-associated protein (HIP/PAP), which displayed promising properties for tissue regeneration and protection against cellular stress in transgenic mice. We report on substantial preclinical and clinical advances in the development of a recombinant (rc) full-length human HIP/PAP protein as an anti-ALF drug. The curative effects and mechanisms of action of rcHIP/PAP were investigated in murine Fas-induced ALF. Primary hepatocytes were cultured with cytotoxic doses of tumor necrosis factor α/actinomycin-D, transforming growth factor β, agonistic Fas antibody or hydrogen peroxide, and various concentrations of rcHIP/PAP. Cell viability, proliferation index, apoptosis, and oxidation were monitored. We found that rcHIP/PAP significantly improved survival in Fas-intoxicated mice in a dose-dependent and time-dependent manner, with optimum effects when it was injected at advanced stages of ALF. Primary hepatocytes were efficiently protected against multiple cell death signals by rcHIP/PAP. This survival benefit was linked to a depletion of oxidized biomolecules in injured liver cells due to a strong reactive oxygen species scavenging activity of rcHIP/PAP. Clinically, an escalating dose phase 1 trial demonstrated a good tolerability and pharmacokinetic profile of rcHIP/PAP in healthy subjects. CONCLUSION The rcHIP/PAP protein exhibited significant curative properties against ALF in mice. It is a free-radical scavenger that targets a broad spectrum of death effectors and favors liver regeneration. The good safety profile of rcHIP/PAP during a phase 1 trial encourages evaluation of its efficacy in patients with ALF.
Collapse
Affiliation(s)
- Nicolas Moniaux
- Institut National de la Santé et de la Recherche Médicale (INSERM), U785, Centre Hépatobiliaire, Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Schmich K, Schlatter R, Corazza N, Sá Ferreira K, Ederer M, Brunner T, Borner C, Merfort I. Tumor necrosis factor α sensitizes primary murine hepatocytes to Fas/CD95-induced apoptosis in a Bim- and Bid-dependent manner. Hepatology 2011; 53:282-92. [PMID: 20872776 DOI: 10.1002/hep.23987] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 09/08/2010] [Indexed: 01/06/2023]
Abstract
UNLABELLED Fas/CD95 is a critical mediator of cell death in many chronic and acute liver diseases and induces apoptosis in primary hepatocytes in vitro. In contrast, the proinflammatory cytokine tumor necrosis factor α (TNFα) fails to provoke cell death in isolated hepatocytes but has been implicated in hepatocyte apoptosis during liver diseases associated with chronic inflammation. Here we report that TNFα sensitizes primary murine hepatocytes cultured on collagen to Fas ligand (FasL)-induced apoptosis. This synergism is time-dependent and is specifically mediated by TNFα. Fas itself is essential for the sensitization, but neither Fas up-regulation nor endogenous FasL is responsible for this effect. Although FasL is shown to induce Bid-independent apoptosis in hepatocytes cultured on collagen, the sensitizing effect of TNFα is clearly dependent on Bid. Moreover, both c-Jun N-terminal kinase activation and Bim, another B cell lymphoma 2 homology domain 3 (BH3)-only protein, are crucial mediators of TNFα-induced apoptosis sensitization. Bim and Bid activate the mitochondrial amplification loop and induce cytochrome c release, a hallmark of type II apoptosis. The mechanism of TNFα-induced sensitization is supported by a mathematical model that correctly reproduces the biological findings. Finally, our results are physiologically relevant because TNFα also induces sensitivity to agonistic anti-Fas-induced liver damage. CONCLUSION Our data suggest that TNFα can cooperate with FasL to induce hepatocyte apoptosis by activating the BH3-only proteins Bim and Bid.
Collapse
Affiliation(s)
- Kathrin Schmich
- Department of Pharmaceutical Biology and Biotechnology, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The hepatocyte is especially vulnerable to injury due to its central role in xenobiotic metabolism including drugs and alcohol, participation in lipid and fatty acid metabolism, its unique role in the enterohepatic circulation of bile acids, the widespread prevalence of hepatotropic viruses, and its existence within a milieu of innate immune responding cells. Apoptosis and necrosis are the most widely recognized forms of hepatocyte cell death. The hepatocyte displays many unique features regarding cell death by apoptosis. It is quite susceptible to death receptor-mediated injury, and its death receptor signaling pathways involve the mitochondrial pathway for efficient cell killing. Also, death receptors can trigger lysosomal disruption in hepatocytes which further promote cell and tissue injury. Interestingly, hepatocytes are protected from cell death by only two anti-apoptotic proteins, Bcl-x(L) and Mcl-1, which have nonredundant functions. Endoplasmic reticulum stress or the unfolded protein response contributes to hepatocyte cell death during alterations of lipid and fatty acid metabolism. Finally, the current information implicating RIP kinases in necrosis provides an approach to more fully address this mode of cell death in hepatocyte injury. All of these processes contributing to hepatocyte injury are discussed in the context of potential therapeutic strategies.
Collapse
Affiliation(s)
- Harmeet Malhi
- Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
41
|
Different in vitro toxicities of structurally similar type I ribosome-inactivating proteins (RIPs). Toxicol In Vitro 2010; 24:1176-82. [DOI: 10.1016/j.tiv.2010.02.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 02/08/2010] [Accepted: 02/15/2010] [Indexed: 11/21/2022]
|
42
|
Lysosomal membrane permeabilization and cathepsin release is a Bax/Bak-dependent, amplifying event of apoptosis in fibroblasts and monocytes. Cell Death Differ 2010; 17:1167-78. [PMID: 20094062 DOI: 10.1038/cdd.2009.214] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Apoptotic stimuli have been shown to trigger lysosomal membrane permeability (LMP), leading to the release of cathepsins, which activate death signaling pathways in the cytosol. However, it is unknown whether this process is an initiating or amplifying event in apoptosis. In this study, we used fibroblasts and monocytes exposed to etoposide, ultraviolet light, FasL or deprived of interleukin-3 (IL-3) to show that LMP and the cytosolic release of cathepsins B, L and D consistently depends on Bax/Bak and components of the apoptosome. Neither Bax nor Bak resided on the lysosomes, indicating that lysosomes were not directly perforated by Bax/Bak but by effectors downstream of the apoptosome. Detailed kinetic analysis of cells lacking cathepsin B or L or treated with the cysteine protease inhibitor, E64d, revealed a delay in these cells in etoposide- and IL-3 deprivation-induced caspase-3 activation and apoptosis induction but not clonogenic survival, indicating that cathepsins amplify rather than initiate apoptosis.
Collapse
|
43
|
Abstract
The liver is a central regulator of glucose homeostasis and stores or releases glucose according to metabolic demands. In insulin resistant states or diabetes the dysregulation of hepatic glucose release contributes significantly to the pathophysiology of these conditions. Acute or chronic liver disease can aggravate insulin resistance and the physiological effects of insulin on hepatocytes are disturbed. Insulin resistance has also been recognized as an independent risk factor for the development of liver injury. In the healthy liver tissue homeostasis is achieved through cell turnover by apoptosis and dysregulation of the physiological process resulting in too much or too little cell death can have potentially devastating effects on liver tissue. The delineation of the signaling pathways that mediate apoptosis changed the paradigms of understanding of many liver diseases. These signaling events include cell surface based receptor-ligand systems and intracellular signaling pathways that are regulated through kinases on multiple levels. The dissection of these signaling pathways has shown that the regulators of apoptosis signaling events in hepatocytes can also modulate insulin signaling pathways and that mediators of insulin resistance in turn influence liver cell apoptosis. This review will summarize the potential crosstalk between apoptosis and insulin resistance signaling events and discuss the involved mediators.
Collapse
Affiliation(s)
- Jörn M Schattenberg
- I. Medizinsiche Klinik, University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany.
| | | |
Collapse
|
44
|
Schlatter R, Schmich K, Avalos Vizcarra I, Scheurich P, Sauter T, Borner C, Ederer M, Merfort I, Sawodny O. ON/OFF and beyond--a boolean model of apoptosis. PLoS Comput Biol 2009; 5:e1000595. [PMID: 20011108 PMCID: PMC2781112 DOI: 10.1371/journal.pcbi.1000595] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Accepted: 11/03/2009] [Indexed: 12/23/2022] Open
Abstract
Apoptosis is regulated by several signaling pathways which are extensively linked by crosstalks. Boolean or logical modeling has become a promising approach to capture the qualitative behavior of such complex networks. Here we built a large-scale literature-based Boolean model of the central intrinsic and extrinsic apoptosis pathways as well as pathways connected with them. The model responds to several external stimuli such as Fas ligand, TNF-α, UV-B irradiation, interleukin-1β and insulin. Timescales and multi-value node logic were used and turned out to be indispensable to reproduce the behavior of the apoptotic network. The coherence of the model was experimentally validated. Thereby an UV-B dose-effect is shown for the first time in mouse hepatocytes. Analysis of the model revealed a tight regulation emerging from high connectivity and spanning crosstalks and a particular importance of feedback loops. An unexpected feedback from Smac release to RIP could further increase complex II formation. The introduced Boolean model provides a comprehensive and coherent description of the apoptosis network behavior. It gives new insights into the complex interplay of pro- and antiapoptotic factors and can be easily expanded to other signaling pathways. Apoptosis is one of the most investigated topics in the life sciences, especially as this kind of programmed cell death has been linked to several diseases. The strong desire to understand the function and regulation of apoptosis is unfortunately confronted with its complexity and its high degree of cross linking within the cell. Therefore we apply the so-called logical or Boolean mathematical modeling approach to comprehensively describe the numerous interactions in the apoptotic network. Classical Boolean modeling assumes that a certain cellular signal is either present (on) or absent (off). We use extensions of classical Boolean models, namely timescale constants and multi-value nodes, which allow the model to emulate typical apoptotic features. The mathematical model describes for the first time the numerous relevant interactions and signals that control apoptosis in a single and coherent framework. The logical model of apoptosis provides valuable information about the topology of the network including feedback loops and crosstalk effects. Proper investigation of the mutual interactions between species points towards hubs in the network with outstanding relevance. These species are of special interest concerning experimental intervention as well as drug target search. The model we present here is easy to use and freely available.
Collapse
Affiliation(s)
- Rebekka Schlatter
- Institute for System Dynamics, University of Stuttgart, Stuttgart, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Affiliation(s)
- Jörn M Schattenberg
- I Department of Medicine, University Medical Center of the Johannes, Gutenberg University, Mainz, Germany
| | | |
Collapse
|
46
|
Schüngel S, Buitrago-Molina LE, Nalapareddy P, Lebofsky M, Manns MP, Jaeschke H, Gross A, Vogel A. The strength of the Fas ligand signal determines whether hepatocytes act as type 1 or type 2 cells in murine livers. Hepatology 2009; 50:1558-66. [PMID: 19711425 PMCID: PMC2905662 DOI: 10.1002/hep.23176] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
UNLABELLED The BH3-interacting domain death agonist Bid has been shown to be critical for Fas-induced hepatocellular apoptosis. Furthermore, some studies have suggested that phosphorylation of Bid may determine its apoptotic function and may act as a switch to nonapoptotic functions. The aim of this study was to evaluate the role of Bid and phosphorylated Bid for Fas ligand (FasL)-induced apoptosis in murine livers. The monoclonal antibody Jo2 and a hexameric form of sFasL (MegaFasL) were used to induce apoptosis in wild-type, Bid-deficient (Bid(-/-)), Bid transgenic mice expressing a nonphosphorable form of Bid and Fas receptor-deficient lpr mice. Apoptosis sensitivity was determined in healthy mice and in mice following bile duct ligation, partial hepatectomy, or suramin pretreatment. As previously reported, loss of Bid protects mice against Jo2-induced liver failure. Remarkably however, Bid(-/-) mice are highly sensitive to MegaFasL-induced apoptosis. MegaFasL-treated Bid(-/-) mice showed a typical type I cell signaling behavior with activation of caspase-3 without Bax translocation to the mitochondria and no cytochrome C/Smac release into the cytosol. In contrast to previous in vitro findings, phosphorylation of Bid does not affect the sensitivity of hepatocytes to Fas receptor-mediated apoptosis in vivo. CONCLUSION Our data suggest that Bid mainly amplifies a weak death receptor signal in quiescent and nonquiescent hepatocytes rendering the liver more sensitive to FasL-induced apoptosis. Thus, depending on the efficacy of Fas receptor activation, hepatocytes and nonparenchymal cells can either behave as type I or type II cells.
Collapse
Affiliation(s)
- Sven Schüngel
- Clinic of Hepatology, Gastroenterology and Endocrinology, Medical School Hannover, Hannover, Germany
| | | | - Padmavathi Nalapareddy
- Clinic of Hepatology, Gastroenterology and Endocrinology, Medical School Hannover, Hannover, Germany
| | - Margitta Lebofsky
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Michael P. Manns
- Clinic of Hepatology, Gastroenterology and Endocrinology, Medical School Hannover, Hannover, Germany
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Atan Gross
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Arndt Vogel
- Clinic of Hepatology, Gastroenterology and Endocrinology, Medical School Hannover, Hannover, Germany
| |
Collapse
|
47
|
Varfolomeev E, Alicke B, Elliott JM, Zobel K, West K, Wong H, Scheer JM, Ashkenazi A, Gould SE, Fairbrother WJ, Vucic D. X chromosome-linked inhibitor of apoptosis regulates cell death induction by proapoptotic receptor agonists. J Biol Chem 2009; 284:34553-60. [PMID: 19854829 DOI: 10.1074/jbc.m109.040139] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proapoptotic receptor agonists cause cellular demise through the activation of the extrinsic and intrinsic apoptotic pathways. Inhibitor of apoptosis (IAP) proteins block apoptosis induced by diverse stimuli. Here, we demonstrate that IAP antagonists in combination with Fas ligand (FasL) or the death receptor 5 (DR5) agonist antibody synergistically stimulate death in cancer cells and inhibit tumor growth. Single-agent activity of IAP antagonists relies on tumor necrosis factor-alpha signaling. By contrast, blockade of tumor necrosis factor-alpha does not affect the synergistic activity of IAP antagonists with FasL or DR5 agonist antibody. In most cancer cells, proapoptotic receptor agonist-induced cell death depends on amplifying the apoptotic signal via caspase-8-mediated activation of Bid and subsequent activation of the caspase-9-dependent mitochondrial apoptotic pathway. In the investigated cancer cell lines, induction of apoptosis by FasL or DR5 agonist antibody can be inhibited by knockdown of Bid. However, knockdown of X chromosome-linked IAP (XIAP) or antagonism of XIAP allows FasL or DR5 agonist antibody to induce activation of effector caspases efficiently without the need for mitochondrial amplification of the apoptotic signal and thus rescues the effect of Bid knockdown in these cells.
Collapse
Affiliation(s)
- Eugene Varfolomeev
- Department of Protein Engineering, Genentech, Inc., South San Francisco, California 94080, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Philippi N, Walter D, Schlatter R, Ferreira K, Ederer M, Sawodny O, Timmer J, Borner C, Dandekar T. Modeling system states in liver cells: survival, apoptosis and their modifications in response to viral infection. BMC SYSTEMS BIOLOGY 2009; 3:97. [PMID: 19772631 PMCID: PMC2760522 DOI: 10.1186/1752-0509-3-97] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 09/22/2009] [Indexed: 01/06/2023]
Abstract
BACKGROUND The decision pro- or contra apoptosis is complex, involves a number of different inputs, and is central for the homeostasis of an individual cell as well as for the maintenance and regeneration of the complete organism. RESULTS This study centers on Fas ligand (FasL)-mediated apoptosis, and a complex and internally strongly linked network is assembled around the central FasL-mediated apoptosis cascade. Different bioinformatical techniques are employed and different crosstalk possibilities including the integrin pathway are considered. This network is translated into a Boolean network (74 nodes, 108 edges). System stability is dynamically sampled and investigated using the software SQUAD. Testing a number of alternative crosstalk possibilities and networks we find that there are four stable system states, two states comprising cell survival and two states describing apoptosis by the intrinsic and the extrinsic pathways, respectively. The model is validated by comparing it to experimental data from kinetics of cytochrome c release and caspase activation in wildtype and Bid knockout cells grown on different substrates. Pathophysiological modifications such as input from cytomegalovirus proteins M36 and M45 again produces output behavior that well agrees with experimental data. CONCLUSION A network model for apoptosis and crosstalk in hepatocytes shows four different system states and reproduces a number of different conditions around apoptosis including effects of different growth substrates and viral infections. It produces semi-quantitative predictions on the activity of individual nodes, agreeing with experimental data. The model (SBML format) and all data are available for further predictions and development.
Collapse
Affiliation(s)
- Nicole Philippi
- Dept of bioinformatics, Biocenter, Am Hubland, University of Würzburg, Würzburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|