1
|
Zhang C, Sun G, Jin H, Wei Y, Zheng S, Wang X, Zhao X, Zhang D, Jia J. Double-negative T cells in combination with ursodeoxycholic acid ameliorates immune-mediated cholangitis in mice. BMC Med 2025; 23:209. [PMID: 40189495 PMCID: PMC11974204 DOI: 10.1186/s12916-025-04043-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 03/27/2025] [Indexed: 04/09/2025] Open
Abstract
BACKGROUND Primary biliary cholangitis (PBC) is a liver-specific autoimmune disease. Treatment of PBC with ursodeoxycholic acid (UDCA) is not sufficient to prevent disease progression. Our previous study revealed that the number of hepatic double-negative T cells (DNT), which are unique regulatory T cells, was reduced in PBC patients. However, whether replenishment of DNT can prevent the progression of PBC remains unclear. METHODS DnTGFβRII (Tg) mice and 2OA-BSA-immunized mice received DNT alone or in combination with oral UDCA. After 6-12 weeks of treatment, these mice were assessed for serological changes, liver pathological manifestations and intrahepatic immune responses. RESULTS Adoptive transfer of DNT alone significantly decreased serum levels of alanine transaminase (ALT), aspartate transaminase (AST), antimitochondrial antibody M2 (AMA-M2) and immunoglobulin M (IgM) in both Tg and 2OA-BSA-immunized PBC mouse models. In addition, DNT exhibited a strong killing effect on liver T cells and strong inhibition of their proliferation, but did not significantly improve the histology of PBC liver. However, combination therapy with DNT and oral UDCA predominantly ameliorated liver inflammation and significantly inhibited hepatic T and B cells. In vitro further study revealed that UDCA up-regulated the proliferation of DNT, increased the expression of the functional molecule perforin, and reduced the expression of NKG2A and endothelial cell protein C receptor (EPCR) through the farnesoid X receptor (FXR)/JNK signaling pathway in both mice and human DNT. CONCLUSIONS A single transfer of DNT ameliorated PBC in mice, while combination therapy of DNT with oral UDCA displayed a better efficacy, with stronger inhibition of hepatic T and B cells. This study highlights the potential application of DNT-based combination therapy for PBC, especially for UDCA non-responders.
Collapse
Affiliation(s)
- Chunpan Zhang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Disease, Beijing, 100050, China
| | - Guangyong Sun
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 South Gongti Road, Beijing, 100020, China
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Hua Jin
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 South Gongti Road, Beijing, 100020, China
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yunxiong Wei
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 South Gongti Road, Beijing, 100020, China
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Shimeng Zheng
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 South Gongti Road, Beijing, 100020, China
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xiyu Wang
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 South Gongti Road, Beijing, 100020, China
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xinyan Zhao
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Disease, Beijing, 100050, China
| | - Dong Zhang
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 South Gongti Road, Beijing, 100020, China.
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
- Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing, 100069, China.
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
- State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
- National Clinical Research Center for Digestive Disease, Beijing, 100050, China.
| |
Collapse
|
2
|
Gao XY, Jin Y, Zhao J, Zhang YL, Wang HW, Zhou BH. Th17-Related Cytokines Involved in Fluoride-Induced Cecal and Rectal Barrier Damage of Ovariectomized Rats. Biol Trace Elem Res 2022:10.1007/s12011-022-03519-6. [PMID: 36538210 DOI: 10.1007/s12011-022-03519-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
To investigate fluoride (F)-induced intestine barrier damage and the role of estrogen deficiency in this progress, a rat model of estrogen deficiency was established through bilateral surgical removal of ovaries. The F exposure model was then continued by adding sodium fluoride (0, 25, 50, and 100 mg/L, calculated on a fluorine ion basis) to drinking water for 90 days. Afterward, intestinal mucosal structure, barrier function, and inflammatory cytokines were evaluated. The results showed that excessive F decreased the developmental parameters (crypt depth) of the cecum and rectum and inhibited the proliferation capacity of the intestinal epithelia, which are more obvious in the state of estrogen deficiency. The distribution of goblet cells and glycoproteins in the intestinal mucosa decreased with the increase in F concentration, and estrogen deficiency led to a further decline, especially in the rectum. Using the immunofluorescence method, the study showed that excessive F caused interleukin-17A (IL-17A) significantly decrease in the cecum and increase in the rectum. Meanwhile, F treatment remarkably upregulated the expression of intestinal IL-1β, IL-23, and IL-22, while the level of IL-6 was downregulated. In addition, estrogen deficiency increased IL-1β, IL-6, IL-23, and IL-22, but decreased IL-17A expression in the cecum and rectum. Collectively, F exposure damaged intestinal morphological structure, inhibited epithelial cell proliferation and mucus barrier function, and resulted in the disturbance of T helper (Th) 17 cell-related cytokines expression. Estrogen deficiency may further aggravate F-induced damage to the cecum and rectum.
Collapse
Affiliation(s)
- Xiao-Ying Gao
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Ye Jin
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Jing Zhao
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Yu-Ling Zhang
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Hong-Wei Wang
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Bian-Hua Zhou
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China.
| |
Collapse
|
3
|
Lonnemann N, Hosseini S, Ohm M, Geffers R, Hiller K, Dinarello CA, Korte M. IL-37 expression reduces acute and chronic neuroinflammation and rescues cognitive impairment in an Alzheimer's disease mouse model. eLife 2022; 11:75889. [PMID: 36040311 PMCID: PMC9481244 DOI: 10.7554/elife.75889] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
The anti-inflammatory cytokine interleukin-37 (IL-37) belongs to the IL-1 family but is not expressed in mice. We used a human IL-37 (hIL-37tg) expressing mouse, which has been subjected to various models of local and systemic inflammation as well as immunological challenges. Previous studies reveal an immunomodulatory role of IL-37, which can be characterized as an important suppressor of innate immunity. Here, we examined the functions of IL-37 in the central nervous system and explored the effects of IL-37 on neuronal architecture and function, microglial phenotype, cytokine production and behavior after inflammatory challenge by intraperitoneal LPS-injection. In wild-type mice, decreased spine density, activated microglial phenotype and impaired long-term potentiation (LTP) were observed after LPS injection, whereas hIL-37tg mice showed no impairment. In addition, we crossed the hIL-37tg mouse with an animal model of Alzheimer’s disease (APP/PS1) to investigate the anti-inflammatory properties of IL-37 under chronic neuroinflammatory conditions. Our results show that expression of IL-37 is able to limit inflammation in the brain after acute inflammatory events and prevent loss of cognitive abilities in a mouse model of AD.
Collapse
Affiliation(s)
- Niklas Lonnemann
- Department of Cellular Neurobiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Shirin Hosseini
- Department of Cellular Neurobiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Melanie Ohm
- Department of Cellular Neurobiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Robert Geffers
- Genome Analytics Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Karsten Hiller
- Braunschweig Integrated Centre of Systems Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Charles A Dinarello
- Department of Medicine, University of Colorado Health, Aurora, United States
| | - Martin Korte
- Department of Cellular Neurobiology, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
4
|
The Proinflammatory Cytokines IL-18, IL-21, and IFN-γ Differentially Regulate Liver Inflammation and Anti-Mitochondrial Antibody Level in a Murine Model of Primary Biliary Cholangitis. J Immunol Res 2022; 2022:7111445. [PMID: 35300072 PMCID: PMC8922149 DOI: 10.1155/2022/7111445] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/31/2021] [Accepted: 01/06/2022] [Indexed: 11/18/2022] Open
Abstract
Primary biliary cholangitis (PBC) is a cholestatic liver disease primarily featured by autoimmune-mediated damage of intrahepatic small- and medium-sized bile ducts. Elevated serum proinflammatory cytokines, serum anti-mitochondrial antibodies (AMAs), liver inflammation, and fibrosis are also hallmarks of PBC disease. However, whether the elevated proinflammatory cytokines play a role in autoimmune cholangitis remains unknown. Herein, we utilized the p40-/-IL-2Rα-/- PBC mouse model to investigate the roles of proinflammatory cytokines IL-18, IL-21, and IFN-γ in the onset and progression of PBC. IL-18-/-, IFN-γ-/-, and IL-21-/- mice were crossed with p40-/-IL-2Ra+/- mice, respectively, to produce corresponding cytokine-deficient PBC models. Autoantibody level, liver inflammation, and bile duct injury were analyzed. We found that livers from p40-/-IL-2Rα-/- mice exhibit similar transcriptomic characters of PBC patients. In p40-/-IL-2Rα-/- mice, deletion of IL-18 has no remarkable effect on disease progression, while deletion of IL-21 indicates that it is necessary for AMA production but independent of liver inflammation and cholangitis. IFN-γ is responsible for both AMA production and liver inflammation in our model. Our results demonstrate that different proinflammatory cytokines can regulate different effector functions in PBC pathogenesis and need to be considered in PBC treatment.
Collapse
|
5
|
Liu SP, Bian ZH, Zhao ZB, Wang J, Zhang W, Leung PSC, Li L, Lian ZX. Animal Models of Autoimmune Liver Diseases: a Comprehensive Review. Clin Rev Allergy Immunol 2020; 58:252-271. [PMID: 32076943 DOI: 10.1007/s12016-020-08778-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Autoimmune liver diseases (AILDs) are potentially life-threatening chronic liver diseases which include autoimmune hepatitis, primary biliary cholangitis, primary sclerosing cholangitis, and recently characterized IgG4-related sclerosing cholangitis. They are caused by immune attack on hepatocytes or bile ducts, with different mechanisms and clinical manifestations. The etiologies of AILDs include a susceptible genetic background, environment insults, infections, and changes of commensal microbiota, but remain complicated. Understanding of the underlying mechanisms of AILDs is mandatory for early diagnosis and intervention, which is of great importance for better prognosis. Thus, animal models are developed to mimic the pathogenesis, find biomarkers for early diagnosis, and for therapeutic attempts of AILDs. However, no animal models can fully recapitulate features of certain AILD, especially the late stages of diseases. Certain limitations include different living condition, cell composition, and time frame of disease development and resolution. Moreover, there is no IgG4 in rodents which exists in human. Nevertheless, the understanding and therapy of AILDs have been greatly advanced by the development and mechanistic investigation of animal models. This review will provide a comprehensive overview of traditional and new animal models that recapitulate different features and etiologies of distinct AILDs.
Collapse
Affiliation(s)
- Shou-Pei Liu
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China.,Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Zhen-Hua Bian
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China.,Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, 510006, China.,School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Zhi-Bin Zhao
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China.,Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Jinjun Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Weici Zhang
- Division of Rheumatology/Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - Patrick S C Leung
- Division of Rheumatology/Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - Liang Li
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China. .,Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| | - Zhe-Xiong Lian
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China. .,Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
6
|
Terziroli Beretta-Piccoli B, Mieli-Vergani G, Vergani D, Vierling JM, Adams D, Alpini G, Banales JM, Beuers U, Björnsson E, Bowlus C, Carbone M, Chazouillères O, Dalekos G, De Gottardi A, Harada K, Hirschfield G, Invernizzi P, Jones D, Krawitt E, Lanzavecchia A, Lian ZX, Ma X, Manns M, Mavilio D, Quigley EM, Sallusto F, Shimoda S, Strazzabosco M, Swain M, Tanaka A, Trauner M, Tsuneyama K, Zigmond E, Gershwin ME. The challenges of primary biliary cholangitis: What is new and what needs to be done. J Autoimmun 2019; 105:102328. [PMID: 31548157 DOI: 10.1016/j.jaut.2019.102328] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023]
Abstract
Primary Biliary Cholangitis (PBC) is an uncommon, chronic, cholangiopathy of autoimmune origin and unknown etiology characterized by positive anti-mitochondrial autoantibodies (AMA), female preponderance and progression to cirrhosis if left untreated. The diagnosis is based on AMA- or PBC-specific anti-nuclear antibody (ANA)-positivity in the presence of a cholestatic biochemical profile, histologic confirmation being mandatory only in seronegative cases. First-line treatment is ursodeoxycholic acid (UDCA), which is effective in preventing disease progression in about two thirds of the patients. The only approved second-line treatment is obeticholic acid. This article summarizes the most relevant conclusions of a meeting held in Lugano, Switzerland, from September 23rd-25th 2018, gathering basic and clinical scientists with various background from around the world to discuss the latest advances in PBC research. The meeting was dedicated to Ian Mackay, pioneer in the field of autoimmune liver diseases. The role of liver histology needs to be reconsidered: liver pathology consistent with PBC in AMA-positive individuals without biochemical cholestasis is increasingly reported, raising the question as to whether biochemical cholestasis is a reliable disease marker for both clinical practice and trials. The urgent need for new biomarkers, including more accurate markers of cholestasis, was also widely discussed during the meeting. Moreover, new insights in interactions of bile acids with biliary epithelia in PBC provide solid evidence of a role for impaired epithelial protection against potentially toxic hydrophobic bile acids, raising the fundamental question as to whether this bile acid-induced epithelial damage is the cause or the consequence of the autoimmune attack to the biliary epithelium. Strategies are needed to identify difficult-to-treat patients at an early disease stage, when new therapeutic approaches targeting immunologic pathways, in addition to bile acid-based therapies, may be effective. In conclusion, using interdisciplinary approaches, groundbreaking advances can be expected before long in respect to our understanding of the etiopathogenesis of PBC, with the ultimate aim of improving its treatment.
Collapse
Affiliation(s)
- Benedetta Terziroli Beretta-Piccoli
- Epatocentro Ticino, Lugano, Switzerland; Institute of Liver Studies, MowatLabs, King's College Hospital, London, UK; European Reference Network ERN RARE-LIVER.
| | - Giorgina Mieli-Vergani
- Paediatric Liver, GI and Nutrition Centre, MowatLabs, King's College Hospital, London, UK
| | - Diego Vergani
- Institute of Liver Studies, MowatLabs, King's College Hospital, London, UK
| | - John M Vierling
- Division of Abdominal Transplantation and Section of Gastroenterology and Hepatology, Departments of Medicine and Surgery, Baylor College of Medicine, Houston, TX, USA
| | - David Adams
- Birmingham NIHR Biomedical Research Centre, Institute of Immunology and Immunotherapy, College of Medical and Dental SciencesMedical School, University of Birmingham, Birmingham, UK
| | - Gianfranco Alpini
- Indiana Center for Liver Research, Richard L. Roudebush VA Medical Center and Indiana University, Indianapolis, IN, USA
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), CIBERehd, Ikerbasque, San Sebastián, Spain
| | - Ulrich Beuers
- European Reference Network ERN RARE-LIVER; Department of Gastroenterology & Hepatology and Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Einar Björnsson
- Division of Gastroenterology and Hepatology, Landspitali the National University Hospital of Iceland, Reykjavík, Iceland
| | - Christopher Bowlus
- Division of Gastroenterology and Hepatology, University of California at Davis School of Medicine, Davis, CA, USA
| | - Marco Carbone
- Division Gastroenterology and Center for Autoimmune Liver Diseases, University of Milan-Bicocca School of Medicine, Monza, Italy
| | - Olivier Chazouillères
- European Reference Network ERN RARE-LIVER; Service d'Hépatologie, Hôpital Saint-Antoine, Paris, France
| | - George Dalekos
- Institute of Internal Medicine and Hepatology, Department of Medicine and Research, Laboratory of Internal Medicine, School of Medicine, University of Thessaly, Larissa, Greece
| | - Andrea De Gottardi
- European Reference Network ERN RARE-LIVER; Epatocentro Ticino & Division of Gastroenterology and Hepatology Ente Ospedaliero Cantonale and Università della Svizzera Italiana, Lugano, Switzerland
| | - Kenichi Harada
- Department of Human Pathology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Gideon Hirschfield
- Toronto Centre for Liver Disease, University Health Network and University of Toronto, Toronto, Canada
| | - Pietro Invernizzi
- European Reference Network ERN RARE-LIVER; Division Gastroenterology and Center for Autoimmune Liver Diseases, University of Milan-Bicocca School of Medicine, Monza, Italy
| | - David Jones
- Institute of Cellular Medicine and NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle upon Tyne, UK
| | - Edward Krawitt
- Department of Medicine, University of Vermont, Burlington, VT, USA
| | | | - Zhe-Xiong Lian
- Institutes for Life Sciences, South China University of Technology, Higher Education Mega Center, Guangzhou, China
| | - Xiong Ma
- Shanghai Institute of Digestive Disease, Renji Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Michael Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy; Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Italy
| | - Eamon Mm Quigley
- Lynda K. and David M. Underwood Center for Digestive Disorders, Houston Methodist Hospital and Weill Cornell Medical College, Houston, TX, USA
| | - Federica Sallusto
- Institute for Research in Biomedicine (IRB), Bellinzona, Switzerland
| | - Shinji Shimoda
- Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Mario Strazzabosco
- Liver Center, Department of Medicine, Yale University, New Haven, CT, USA
| | - Mark Swain
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Atsushi Tanaka
- Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Ehud Zigmond
- Research Center for Digestive Tract and Liver Diseases, Tel-Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, California, USA.
| |
Collapse
|
7
|
Ma HD, Zhao ZB, Ma WT, Liu QZ, Gao CY, Li L, Wang J, Tsuneyama K, Liu B, Zhang W, Zhou Y, Gershwin ME, Lian ZX. Gut microbiota translocation promotes autoimmune cholangitis. J Autoimmun 2018; 95:47-57. [PMID: 30340822 PMCID: PMC6290354 DOI: 10.1016/j.jaut.2018.09.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/17/2018] [Accepted: 09/23/2018] [Indexed: 02/07/2023]
Abstract
Gut microbiota and bacterial translocation have been implicated as significant contributors to mucosal immune responses and tolerance; alteration of microbial molecules, termed pathogen-associated molecular patterns (PAMP) and bacterial translocation are associated with immune pathology. However, the mechanisms by which dysregulated gut microbiota promotes autoimmunity is unclear. We have taken advantage of a well-characterized murine model of primary biliary cholangitis, dnTGFβRII mice, and an additional unique construct, toll-like receptor 2 (TLR2)-deficient dnTGFβRII mice coined dnTGFβRIITLR2-/- mice to investigate the influences of gut microbiota on autoimmune cholangitis. Firstly, we report that dnTGFβRII mice manifest altered composition of gut microbiota and that alteration of this gut microbiota by administration of antibiotics significantly alleviates T-cell-mediated infiltration and bile duct damage. Second, toll-like receptor 2 (TLR2)-deficient dnTGFβRII mice demonstrate significant exacerbation of autoimmune cholangitis when their epithelial barrier integrity was disrupted. Further, TLR2-deficiency mediates downregulated expression of tight junction-associated protein ZO-1 leading to increased gut permeability and bacterial translocation from gut to liver; use of antibiotics reduces microbiota translocation to liver and also decreases biliary pathology. In conclusion, our data demonstrates the important role of gut microbiota and bacterial translocation in the pathogenesis of murine autoimmune cholangitis.
Collapse
MESH Headings
- Ampicillin/pharmacology
- Animals
- Anti-Bacterial Agents/pharmacology
- Autoimmune Diseases/drug therapy
- Autoimmune Diseases/microbiology
- Autoimmune Diseases/pathology
- Bacterial Translocation/drug effects
- Bacterial Translocation/immunology
- Bile Ducts/drug effects
- Bile Ducts/immunology
- Bile Ducts/microbiology
- Bile Ducts/pathology
- Colon/drug effects
- Colon/immunology
- Colon/microbiology
- Colon/pathology
- Feces/microbiology
- Female
- Gastrointestinal Microbiome/drug effects
- Gastrointestinal Microbiome/immunology
- Gene Expression Regulation
- Immunity, Mucosal/drug effects
- Liver/drug effects
- Liver/immunology
- Liver/microbiology
- Liver/pathology
- Liver Cirrhosis, Biliary/drug therapy
- Liver Cirrhosis, Biliary/immunology
- Liver Cirrhosis, Biliary/microbiology
- Liver Cirrhosis, Biliary/pathology
- Metronidazole/pharmacology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neomycin/pharmacology
- Receptor, Transforming Growth Factor-beta Type II/deficiency
- Receptor, Transforming Growth Factor-beta Type II/genetics
- Receptor, Transforming Growth Factor-beta Type II/immunology
- Signal Transduction
- Toll-Like Receptor 2/deficiency
- Toll-Like Receptor 2/genetics
- Toll-Like Receptor 2/immunology
- Zonula Occludens-1 Protein/genetics
- Zonula Occludens-1 Protein/immunology
Collapse
Affiliation(s)
- Hong-Di Ma
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China; Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, 510006, China; Liver Immunology Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhi-Bin Zhao
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China; Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, 510006, China; Liver Immunology Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Wen-Tao Ma
- Liver Immunology Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Qing-Zhi Liu
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China; Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, 510006, China; Liver Immunology Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Cai-Yue Gao
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China; Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, 510006, China; Liver Immunology Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Liang Li
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China; Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, 510006, China; Liver Immunology Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Jinjun Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu Province, China
| | - Koichi Tsuneyama
- Department of Molecular and Environmental Pathology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Bin Liu
- Department of Rheumatology and Immunology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Weici Zhang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, CA, USA
| | - Yongjian Zhou
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China.
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, CA, USA
| | - Zhe-Xiong Lian
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China; Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, 510006, China; Liver Immunology Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
8
|
Tanaka A, Leung PSC, Gershwin ME. Evolution of our understanding of PBC. Best Pract Res Clin Gastroenterol 2018; 34-35:3-9. [PMID: 30343708 DOI: 10.1016/j.bpg.2018.05.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/10/2018] [Indexed: 01/31/2023]
Abstract
The discovery of mitochondrial autoantigens recognized by antimitochondrial antibodies (AMAs) in 1987 marked the dawn of a new era in primary biliary cholangitis (PBC) research. Since then, there has been substantial progress in our understanding of PBC partly bestowed by the development of innovative technologies in molecular biology, immunology, and genetics. Here, we review this evolutionary progress in understanding PBC. We now recognize that the epitopes of AMAs, CD4+, and CD8+ T cells are all mapped to the same region of the inner lipoyl domain of pyruvate dehydrogenase complex E2 subunit (PDC-E2), and that intrahepatic biliary epithelial cells (BECs) are exclusively targeted in PBC. BECs express PDC-E2 on apotopes in an immunologically intact form during apoptosis, but not other epithelial cells, which could explain the tissue specificity of PBC. In addition, genetic factors, environmental triggers, and epigenetic modifications play crucial roles in the development of PBC. Intact lipoylated PDC-E2, presumably after modification with xenobiotics such as 2-octynamide or 2-nonyamide that are abundantly present in the environment, is endocytosed by antigen-presenting cells and are presented to CD4+ or CD8+ T cells. An immune complex consisting of PDC-E2 and anti-PDC-E2 autoantibodies cross-present autoantigens in a more efficient manner. Finally, an adenylate uridine-rich element (ARE) Del -/- mouse model has been established, which presents a disease modeling human PBC, including female dominance as one of its most important features, and can be used to dissect the immunopathology of PBC. Expanding our knowledge of the pathology from a very early stage of the disease will provide the key to cure PBC.
Collapse
Affiliation(s)
- Atsushi Tanaka
- Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan.
| | - Patrick S C Leung
- Division of Rheumatology Allergy and Clinical Immunology, University of California School of Medicine, Davis, CA, USA.
| | - M Eric Gershwin
- Division of Rheumatology Allergy and Clinical Immunology, University of California School of Medicine, Davis, CA, USA.
| |
Collapse
|
9
|
Ray JL, Kopec AK, Joshi N, Cline-Fedewa H, Lash LH, Williams KJ, Leung PS, Gershwin ME, Luyendyk JP. Trichloroethylene Exposure Reduces Liver Injury in a Mouse Model of Primary Biliary Cholangitis. Toxicol Sci 2018; 156:428-437. [PMID: 28115651 DOI: 10.1093/toxsci/kfw264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Trichloroethylene (TCE) is a persistent environmental contaminant proposed to contribute to autoimmune disease. Experimental studies in lupus-prone MRL+/+ mice have suggested that TCE exposure can trigger autoimmune hepatitis. The vast majority of studies examining the connection between TCE and autoimmunity utilize this model, and the impact of TCE exposure in other established models of autoimmune liver disease is not known. We tested the hypothesis that TCE exposure exacerbates experimental hepatic autoimmunity in dominant negative transforming growth factor beta receptor type II (dnTGFBRII) mice, which develop serological and histological features resembling human primary biliary cholangitis. Female 8-week-old wild-type and dnTGFBRII mice were exposed to TCE (0.5 mg/ml) or vehicle (1% ethoxylated castor oil) in the drinking water for 12 or 22 weeks. Liver histopathology in 20- and 30-week-old wild-type mice was unremarkable irrespective of treatment. Mild portal inflammation was observed in vehicle-exposed 20-week-old dnTGFBRII mice and was not exacerbated by TCE exposure. Vehicle-exposed 30-week-old dnTGFBRII mice developed anti-mitochondrial antibodies, marked hepatic inflammation with necrosis, and hepatic accumulation of both B and T lymphocytes. To our surprise, TCE exposure dramatically reduced hepatic parenchymal inflammation and injury in 30-week-old dnTGFBRII mice, reflected by changes in hepatic proinflammatory gene expression, serum chemistry, and histopathology. Interestingly, TCE did not affect hepatic B cell accumulation or induction of the anti-inflammatory cytokine IL10. These data indicate that TCE exposure reduces autoimmune liver injury in female dnTGFBRII mice and suggests that the precise effect of environmental chemicals in autoimmunity depends on the experimental model.
Collapse
Affiliation(s)
- Jessica L Ray
- Department of Pathobiology and Diagnostic Investigation
| | - Anna K Kopec
- Department of Pathobiology and Diagnostic Investigation.,Institute for Integrative Toxicology
| | - Nikita Joshi
- Department of Pathobiology and Diagnostic Investigation.,Institute for Integrative Toxicology.,Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | | | - Lawrence H Lash
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan
| | | | - Patrick S Leung
- Department of Internal Medicine Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis School of Medicine, Davis, California
| | - M Eric Gershwin
- Department of Internal Medicine Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis School of Medicine, Davis, California
| | - James P Luyendyk
- Department of Pathobiology and Diagnostic Investigation.,Institute for Integrative Toxicology.,Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
10
|
Tanakaa A, Leung PS, Young HA, Gershwin ME. Toward solving the etiological mystery of primary biliary cholangitis. Hepatol Commun 2017; 1:275-287. [PMID: 29057387 PMCID: PMC5646686 DOI: 10.1002/hep4.1044] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Primary biliary cholangitis (PBC) is considered a model autoimmune disease due to its signature anti‐mitochondrial antibody (AMA) autoantibody, female predominance, and relatively specific portal infiltration and cholestasis. The identification and cloning of the major mitochondrial autoantigens recognized by AMA have served as an immunologic platform to identify the earliest events involved in loss of tolerance. Despite the relatively high concordance rate in identical twins, genome‐wide association studies have not proven clinically useful and have led to suggestions of epigenetic events. To understand the natural history and etiology of PBC, several murine models have been developed, including spontaneous models, models induced by chemical xenobiotic immunization, and by “designer” mice with altered interferon metabolism. Herein, we describe five such models, including 1) NOD.c3c4 mice, 2) dominant negative form of transforming growth factor receptor type II mice, 3) interleukin‐2R α−/− mice, 4) adenylate‐uridylate‐rich element Del−/− mice, and 5) 2‐octynoic acid‐conjugated bovine serum albumin immunized mice. Individually there is no perfect murine model, but collectively the models point to loss of tolerance to PDC‐E2, the major mitochondrial autoantigen, as the earliest event that occurs before clinical disease is manifest. Although there is no direct association of AMA titer and PBC disease progression, it is noteworthy that the triad of PBC monocytes, biliary apotopes, and AMA leads to an intense proinflammatory cytokine burst. Further, the recurrence of PBC after liver transplantation indicates that, due to major histocompatibility complex restriction, disease activity must include not only adaptive immunity but also innate immune mechanisms. We postulate that successful treatment of PBC may require a personalized approach with therapies designed for different stages of disease. (Hepatology Communications 2017;1:275–287)
Collapse
Affiliation(s)
- Atsushi Tanakaa
- Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Patrick Sc Leung
- Division of Rheumatology Allergy and Clinical Immunology, University of California School of Medicine, Davis, CA, USA
| | - Howard A Young
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD, USA
| | - M Eric Gershwin
- Division of Rheumatology Allergy and Clinical Immunology, University of California School of Medicine, Davis, CA, USA
| |
Collapse
|
11
|
Richter C, Herrero San Juan M, Weigmann B, Bergis D, Dauber K, Muders MH, Baretton GB, Pfeilschifter JM, Bonig H, Brenner S, Radeke HH. Defective IL-23/IL-17 Axis Protects p47phox-/- Mice from Colon Cancer. Front Immunol 2017; 8:44. [PMID: 28191009 PMCID: PMC5271172 DOI: 10.3389/fimmu.2017.00044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/11/2017] [Indexed: 12/14/2022] Open
Abstract
In the colon, a sophisticated balance between immune reaction and tolerance is absolutely required. Dysfunction may lead to pathologic phenotypes ranging from chronic inflammatory processes to cancer development. Two prominent modulators of colon inflammation are represented by the closely related cytokines interleukin (IL)-12 and IL-23, which initiate adaptive Th1 and Th17 immune responses, respectively. In this study, we investigated the impact of the NADPH oxidase protein p47phox, which negatively regulates IL-12 in dendritic cells, on colon cancer development in a colitis-associated colon cancer model. Initially, we found that IL-12−/− mice developed less severe colitis but are highly susceptible to colon cancer. By contrast, p47phox−/− mice showed lower tumor scores and fewer high grade tumors than wild-type (WT) littermates. Treatment with toll-like receptor 9 ligand CpG2216 significantly enhanced colitis in p47phox−/− mice, whereas tumor growth was simultaneously reduced. In tumor tissue of p47phox−/− mice, the IL-23/IL-17 axis was crucially hampered. IL-23p19 protein expression in tumor tissue correlated with tumor stage. Reconstitution of WT mice with IL-23p19−/− bone marrow protected these mice from colon cancer, whereas transplantation of WT hematopoiesis into IL-23p19−/− mice increased the susceptibility to tumor growth. Our study strengthens the divergent role of IL-12 and IL-23 in colon cancer development. With the characterization of p47phox as a novel modulator of both cytokines our investigation introduces a promising new target for antitumor strategies.
Collapse
Affiliation(s)
- Cornelia Richter
- Department of Pediatrics, University Clinic 'Carl Gustav Carus' Dresden, Dresden, Germany; pharmazentrum frankfurt/ZAFES, Goethe University, Frankfurt, Germany
| | | | - Benno Weigmann
- I. Medical Clinic, University of Erlangen-Nuremberg , Erlangen , Germany
| | - Dominik Bergis
- pharmazentrum frankfurt/ZAFES, Goethe University, Frankfurt, Germany; Department of Internal Medicine 1, Goethe University, Frankfurt, Germany
| | - Katrin Dauber
- Bristol-Myers Squibb GmbH & Co. KGaA , Munich , Germany
| | - Michael H Muders
- Department of Pathology, University Clinic 'Carl Gustav Carus' Dresden , Dresden , Germany
| | - Gustavo B Baretton
- Department of Pathology, University Clinic 'Carl Gustav Carus' Dresden , Dresden , Germany
| | | | - Halvard Bonig
- German Red Cross Blood Service, Institute for Transfusion Medicine and Immunohematology, Goethe University, Frankfurt, Germany; Department of Medicine/Hematology, University of Washington, Seattle, WA, USA
| | - Sebastian Brenner
- Department of Pediatrics, University Clinic 'Carl Gustav Carus' Dresden , Dresden , Germany
| | | |
Collapse
|
12
|
Yang GX, Sun Y, Tsuneyama K, Zhang W, Leung PSC, He XS, Ansari AA, Bowlus C, Ridgway WM, Gershwin ME. Endogenous interleukin-22 protects against inflammatory bowel disease but not autoimmune cholangitis in dominant negative form of transforming growth factor beta receptor type II mice. Clin Exp Immunol 2016; 185:154-64. [PMID: 27148790 PMCID: PMC4955007 DOI: 10.1111/cei.12806] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 12/30/2022] Open
Abstract
During chronic inflammation, interleukin (IL)-22 expression is up-regulated in both CD4 and CD8 T cells, exerting a protective role in infections. However, in autoimmunity, IL-22 appears to have either a protective or a pathogenic role in a variety of murine models of autoimmunity and, by extrapolation, in humans. It is not clear whether IL-22 itself mediates inflammation or is a by-product of inflammation. We have taken advantage of the dominant negative form of transforming growth factor beta receptor type II (dnTGF-βRII) mice that develop both inflammatory bowel disease and autoimmune cholangitis and studied the role and the biological function of IL-22 by generating IL-22(-/-) dnTGF-βRII mice. Our data suggest that the influence of IL-22 on autoimmunity is determined in part by the local microenvironment. In particular, IL-22 deficiency exacerbates tissue injury in inflammatory bowel disease, but has no influence on either the hepatocytes or cholangiocytes in the same model. These data take on particular significance in the previously defined effects of IL-17A, IL-12p40 and IL-23p19 deficiency and emphasize that, in colitis, there is a dominant role of IL-23/T helper type 17 (Th17) signalling. Furthermore, the levels of IL-22 are IL-23-dependent. The use of cytokine therapy in patients with autoimmune disease has significant potential, but must take into account the overlapping and often promiscuous effects that can theoretically exacerbate inflammation.
Collapse
Affiliation(s)
- G-X Yang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | - Y Sun
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
- Diagnostic and Treatment Center for Non-Infectious Liver Diseases, 302nd Military Hospital, Beijing, China
| | - K Tsuneyama
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
- Department of Diagnostic Pathology, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan
| | - W Zhang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | - P S C Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | - X-S He
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | - A A Ansari
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - C Bowlus
- Division of Gastroenterology and Hepatology, University of California at Davis School of Medicine, Sacramento, CA, USA
| | - W M Ridgway
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - M E Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
| |
Collapse
|
13
|
Extrahepatic malignancies in primary biliary cirrhosis: a comparative study at two European centers. Clin Rev Allergy Immunol 2016; 48:254-62. [PMID: 25205363 DOI: 10.1007/s12016-014-8446-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Limited information and divergent results are available on the prevalence/incidence, survival, and risk factors for developing extrahepatic malignancies (EMs) in primary biliary cirrhosis (PBC). The aim of the study was to analyze the epidemiology and survival rates for EM in PBC patients. The study was conducted on two series of patients followed up at two European centers (361 in Padova, Italy, and 397 in Barcelona, Spain) for a mean 7.7 ± 7 and 12.2 ± 7 years, respectively. The cancer incidence was compared with the standardized incidence ratios (SIRs) calculated using the Cancer Registry of the Veneto Region (Italy) and the Cancer Registry of Tarragona (Spain). Seventy-two patients developed EM. The prevalence of cases was similar in Padova (9.7 %) and Barcelona (9.4 %). The overall cancer incidence was similar to the expected incidence for the general population in the same geographical area (SIR = 1.2), and so was the crude EM rate (855.01 vs 652.86 per 100,000 patient-years, respectively, RR = 1.3). Logistic regression analysis showed that advanced histological stage and extrahepatic autoimmune diseases were significantly associated with the onset of EM. Survival was similar for PBC patients with and without EM (p = n.s.), and actual survival was similar to the one predicted by the Mayo model. The incidence of EM in PBC patients was found similar in Italy and Spain and no different from that of the general population. Advanced histological stage and extrahepatic autoimmune disease were risk factors significantly associated with EM developing in PBC. The onset of cancer in PBC patients does not influence the natural history of their liver disease.
Collapse
|
14
|
Floreani A, Franceschet I, Cazzagon N, Spinazzè A, Buja A, Furlan P, Baldo V, Gershwin ME. Extrahepatic autoimmune conditions associated with primary biliary cirrhosis. Clin Rev Allergy Immunol 2016; 48:192-7. [PMID: 24809534 DOI: 10.1007/s12016-014-8427-x] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There is a paucity of information on extrahepatic autoimmune (EHA) conditions associated with primary biliary cirrhosis (PBC) and on the impact of EHA conditions on PBC patients' survival. Our goal was to assess the association between PBC and other autoimmune diseases and the impact of EHA conditions on the natural history of PBC. We took advantage of 361 consecutive PBC patients enrolled between 1975 and 2012 (22 males, 339 females; mean follow-up 8 ± 6.9 years). Any associated EHA conditions, PBC histological stage at diagnosis, biochemical data, physiological history, and extrahepatic malignancies developing during the follow-up were recorded. Survival was analyzed by means of Kaplan-Meier curves. Importantly, 221 patients (61.2 %) had at least one EHA conditions: 45 patients (20.4 %) had Hashimoto thyroiditis; 7 (3.2 %) had Graves' thyroiditis; 65 (29.4 %) had Raynaud's phenomenon; 124 (56.1 %) had Sjogren's syndrome; 8 (3.6 %) had systemic lupus erythematosus; 22 (9.9 %) had scleroderma; 22 (9.9 %) had rheumatoid arthritis; 18 (8.1 %) had cutaneous autoimmune diseases; 8 (3.6 %) had vasculitis; 5 (1.4 %) had celiac disease; and 25 (13.1 %) had other EHA conditions. The proportion of patients with associated EHA conditions enrolled during representative periods (1975-1980, 1981-1990, 1991-2000, 2001-2010, 2011-2012) remained stable. No differences emerged between patients with versus without EHA conditions in terms of mean age at PBC diagnosis, antimitochondrial antibody (AMA), or antinuclear antibody (ANA) positivity, histological stage at diagnosis, smoking habits, alcohol consumption, or BMI >25. Multiple logistic regression analysis showed that only female gender was significantly associated with positivity for EHA conditions (OR 4.8; 95 % CI 1.6-13.7, p = 0.004). The mean survival after the diagnosis of PBC was much the same in patients with and without EHA conditions. In conclusion, EHA conditions are often associated with PBC, especially in female patients, but they do not reduce patient survival.
Collapse
Affiliation(s)
- Annarosa Floreani
- Department of Surgery, Oncology and Gastroenterology-DiSCOG, University of Padova, Via Giustiniani, 2, 35128, Padova, Italy,
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Sun Y, Haapanen K, Li B, Zhang W, Van de Water J, Gershwin ME. Women and primary biliary cirrhosis. Clin Rev Allergy Immunol 2016; 48:285-300. [PMID: 25241227 DOI: 10.1007/s12016-014-8449-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Primary biliary cirrhosis occurs more frequently in women, and previous studies indicated that the average age of primary biliary cirrhosis (PBC) onset makes pregnancy in PBC patients uncommon. However, more recently, improved diagnostic testing has enabled detection of PBC in younger women, including those of childbearing age. This has led investigators to become increasingly interested in the relationship between the ontogeny of PBC and pregnancy. Published cases indicate that the typical age for pregnant women to be diagnosed with PBC is in the early 30s, and that during gestation, pruritus and jaundice are the most common symptoms. During gestation, susceptible women may experience onset of PBC resulting from the drastic changes in female hormones; this would include not only the mitochondrial damage due to accumulation of bile acids but also changes in the immune response during the different stages of pregnancy that might play an important role in the breakdown of self-tolerance. The mechanisms underlying the potential relationship between PBC and pregnancy warrant further investigation. For women first diagnosed with PBC during gestation, or those for whom first appearance of a flare up occurs during and postpartum, investigation of the immune response throughout gestation could provide new avenues for immunologic therapeutic intervention and the discovery of new treatment strategies for PBC.
Collapse
Affiliation(s)
- Ying Sun
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Suite 6510, Davis, CA, 95616, USA
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
Primary biliary cirrhosis (PBC) is characterized histologically by the presence of chronic non-suppurative destructive cholangitis of the small interlobular bile duct, leading to chronic progressive cholestasis. Most PBC patients are asymptomatic and have a reasonable prognosis, but a few develop esophageal varices or jaundice, rapidly leading to liver failure within a short period. As multiple factors appear to be involved in the onset of PBC, its clinical course may be complicated. Therefore, the use of an animal model would be valuable for clarifying the pathogenesis of PBC. Here, we review recent data of selected PBC models, particularly spontaneous models, xenobiotic immunized models, and infection-triggered models. There are a number of spontaneous models: the NOD.c3c4, dominant-negative TGF-β receptor II, IL-2Rα-/-, Scurfy, and Ae2a,b-/- mice. These animal models manifest distinct clinical and immunological features similar, but also often different, from those of human PBC. It is clear that a combination of genetic predisposition, environmental factors, and immunological dysfunction contribute to the pathogenesis of PBC. The diverse clinical course and complexity of the immunological mechanisms of PBC cannot be fully recapitulated solely any single animal model. The challenge remains to develop a progressive PBC disease model that exhibits fibrosis, and ultimately hepatic failure.
Collapse
|
17
|
Yang JB, Wang YH, Yang W, Lu FT, Ma HD, Zhao ZB, Jia YJ, Tang W, Tsuneyama K, Ridgway WM, Gershwin ME, Lian ZX. Successful treatment of murine autoimmune cholangitis by parabiosis: Implications for hematopoietic therapy. J Autoimmun 2015; 66:108-17. [PMID: 26432598 DOI: 10.1016/j.jaut.2015.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 09/10/2015] [Accepted: 09/14/2015] [Indexed: 01/26/2023]
Abstract
There is a significant unmet need in the treatment of primary biliary cirrhosis (PBC) despite significant data on the effector pathways that lead to biliary duct damage. We focused attention on a murine model of PBC, the dominant negative transforming growth factor β receptor II (Tg) mice. To further define the pathways that lead to biliary pathology in these mice, we developed Tg mice deleted of CD4 cells (CD4(-/-)Tg). Interestingly, these mice developed more severe cholangitis than control Tg mice. These mice, which lack CD4 cells, manifested increased levels of IFN-γ produced by effector CD8 cells. It appears that increased cholangitis is due to the absence of CD4 Treg cells. Based on these data, we parabiosed CD4(-/-)Tg mice with established disease at 8-9 weeks of age with C57BL/6 control mice. Such parabiotic "twins" had a significant reduction in autoimmune cholangitis, even though they had established pathology at the time of surgery. We prepared mixed bone marrow chimera mice constructed from CD4(-/-)Tg and CD8(-/-) mice and not only was cholangitis improved, but a decrease in terminally differentiated CD8(+) T effector cells in the presence of wild type CD4 cells was noted. In conclusion, "correcting" the CD4 T cell subset, even in the presence of pathogenic CD8 T cells, is effective in treating autoimmune cholangitis.
Collapse
Affiliation(s)
- Jing-Bo Yang
- Liver Immunology Laboratory, Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Yin-Hu Wang
- Liver Immunology Laboratory, Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Wei Yang
- Liver Immunology Laboratory, Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Fang-Ting Lu
- Liver Immunology Laboratory, Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Hong-Di Ma
- Liver Immunology Laboratory, Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Zhi-Bin Zhao
- Liver Immunology Laboratory, Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Yan-Jie Jia
- Liver Immunology Laboratory, Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Wei Tang
- Liver Immunology Laboratory, Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Koichi Tsuneyama
- Department of Diagnostic Pathology, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama 930-0194, Japan.
| | - William M Ridgway
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati, Cincinnati, OH 45220, USA.
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, CA 95616, USA.
| | - Zhe-Xiong Lian
- Liver Immunology Laboratory, Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China; Innovation Center for Cell Signaling Network, Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, China.
| |
Collapse
|
18
|
El-Bassat H, AboAli L, El Yamany S, Al Shenawy H, Al Din RA, Taha A. Interleukin-23p19 expression in patients with ulcerative colitis and its relation to disease severity. ADVANCES IN DIGESTIVE MEDICINE 2015. [DOI: 10.1016/j.aidm.2015.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Tanaka H, Yang GX, Tomiyama T, Tsuneyama K, Zhang W, Leung PSC, Coppel RL, Joh T, Nadler SG, Ansari AA, Bowlus C, Gershwin ME. Immunological potential of cytotoxic T lymphocyte antigen 4 immunoglobulin in murine autoimmune cholangitis. Clin Exp Immunol 2015; 180:371-82. [PMID: 25581259 DOI: 10.1111/cei.12581] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2015] [Indexed: 12/13/2022] Open
Abstract
Cytotoxic T lymphocyte antigen 4 (CTLA-4) immunoglobulin (Ig) is an important regulator of T cell activation and a fusion protein directed at CD80 and CD86; it blocks co-stimulatory signalling and T cell activation. We have taken advantage of a murine model of human primary biliary cirrhosis (PBC), mice expressing a transforming growth factor (TGF)-β receptor II dominant negative (dnTGF-βRII) transgene to address the potential therapeutic efficacy of CTLA-4 Ig. To mimic patients with PBC at different stages or duration of disease, we treated mice with either CTLA-4 Ig or control IgG three times weekly from 3 to 12 or 24 weeks of age, or from 12 to 24 weeks of age. CTLA-4 Ig treatment from 3 weeks of age significantly reduced liver inflammation to 12 weeks of age. Treatment initiated at 12 weeks of age also ameliorated the autoimmune cholangitis at 24 weeks of age. However, in mice treated at 3 weeks of age, suppression of liver inflammation was not sustained and colitis was aggravated when treatment was extended to 24 weeks of age. Our data indicate that, in dnTGF-βRII mice, CTLA-4 Ig treatment has short-term beneficial effects on autoimmune cholangitis, but the effect varies according to duration of treatment and the time in which therapy was initiated. Further dissection of the events that lead to the reduction in therapeutic effectiveness of CTLA-4 Ig will be critical to determining whether such efforts can be applied to human PBC.
Collapse
Affiliation(s)
- H Tanaka
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA.,Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - G-X Yang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | - T Tomiyama
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA.,Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, Osaka, Japan
| | - K Tsuneyama
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA.,Department of Diagnostic Pathology, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan
| | - W Zhang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | - P S C Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | - R L Coppel
- Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - T Joh
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - S G Nadler
- Department of Immunology, Bristol Myers Squibb, Princeton, NJ, USA
| | - A A Ansari
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - C Bowlus
- Division of Gastroenterology and Hepatology, University of California at Davis School of Medicine, Sacramento, CA, USA
| | - M E Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
| |
Collapse
|
20
|
Dai X, Chen X, Chen Q, Shi L, Liang H, Zhou Z, Liu Q, Pang W, Hou D, Wang C, Zen K, Yuan Y, Zhang CY, Xia L. MicroRNA-193a-3p Reduces Intestinal Inflammation in Response to Microbiota via Down-regulation of Colonic PepT1. J Biol Chem 2015; 290:16099-115. [PMID: 25931122 DOI: 10.1074/jbc.m115.659318] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Indexed: 12/12/2022] Open
Abstract
Intestinal inflammation is characterized by epithelial disruption, leading to the loss of barrier function, recruitment of immune cells, and host immune responses to gut microbiota. PepT1, a di/tripeptide transporter that uptakes bacterial products, is up-regulated in inflamed colon tissue, which implies its role in bacterium-associated intestinal inflammation. Although microRNA (miRNA)-mediated gene regulation has been found to be involved in various processes of inflammatory bowel disease (IBD), the biological function of miRNAs in the pathogenesis of IBD remains to be explored. In this study we detected miRNA expression patterns in colon tissues during colitis and investigated the mechanism underlying the regulation of colonic PepT1 by miRNAs. We observed an inverse correlation between PepT1 and miR-193a-3p in inflamed colon tissues with active ulcerative colitis, and we further demonstrated that miR-193a-3p reduced PepT1 expression and activity as a target gene and subsequently suppressed the NF-κB pathway. Intracolonic delivery of miR-193a-3p significantly ameliorated dextran sodium sulfate-induced colitis, whereas the overexpression of colonic PepT1 via PepT1 3'-untranslated region mutant lentivirus vector abolished the anti-inflammatory effect of miR-193a-3p. Furthermore, antibiotic treatment eliminated the difference in the dextran sodium sulfate-induced inflammation between the presence and absence of miR-193a-3p. These findings suggest that miR-193a-3p regulation of PepT1 mediates the uptake of bacterial products and is a potent mechanism during the colonic inflammation process. Overall, we believe miR-193a-3p may be a potent regulator of colonic PepT1 for maintaining intestinal homeostasis.
Collapse
Affiliation(s)
- Xin Dai
- From the Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, 197 Ruijin Second Road, Shanghai 200025, China and
| | - Xi Chen
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| | - Qun Chen
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| | - Lei Shi
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| | - Hongwei Liang
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| | - Zhen Zhou
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| | - Qian Liu
- From the Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, 197 Ruijin Second Road, Shanghai 200025, China and
| | - Wenjing Pang
- From the Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, 197 Ruijin Second Road, Shanghai 200025, China and
| | - Dongxia Hou
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| | - Cheng Wang
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| | - Ke Zen
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| | - Yaozong Yuan
- From the Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, 197 Ruijin Second Road, Shanghai 200025, China and
| | - Chen-Yu Zhang
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| | - Lu Xia
- From the Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, 197 Ruijin Second Road, Shanghai 200025, China and
| |
Collapse
|
21
|
Tanaka H, Zhang W, Yang GX, Ando Y, Tomiyama T, Tsuneyama K, Leung P, Coppel RL, Ansari AA, Lian ZX, Ridgway WM, Joh T, Gershwin ME. Successful immunotherapy of autoimmune cholangitis by adoptive transfer of forkhead box protein 3(+) regulatory T cells. Clin Exp Immunol 2014; 178:253-61. [PMID: 25041369 DOI: 10.1111/cei.12415] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2014] [Indexed: 01/01/2023] Open
Abstract
Treatment of primary biliary cirrhosis (PBC) has lagged behind that of other autoimmune diseases. In this study we have addressed the potential utility of immunotherapy using regulatory T cells (Treg ) to treat murine autoimmune cholangitis. In particular, we have taken advantage of our ability to produce portal inflammation and bile duct cell loss by transfer of CD8(+) T cells from the dominant negative form of transforming growth factor beta receptor type II (dnTGF-βRII) mice to recombination-activating gene (Rag)1(-/-) recipients. We then used this robust established adoptive transfer system and co-transferred CD8(+) T cells from dnTGF-βRII mice with either C57BL/6 or dnTGF-βRII forkhead box protein 3 (FoxP3(+) ) T cells. Recipient mice were monitored for histology, including portal inflammation and intralobular biliary cell damage, and also included a study of the phenotypical changes in recipient lymphoid populations and local and systemic cytokine production. Importantly, we report herein that adoptive transfer of Treg from C57BL/6 but not dnTGF-βRII mice significantly reduced the pathology of autoimmune cholangitis, including decreased portal inflammation and bile duct damage as well as down-regulation of the secondary inflammatory response. Further, to define the mechanism of action that explains the differential ability of C57BL/6 Treg versus dnTGF-βRII Treg on the ability to down-regulate autoimmune cholangitis, we noted significant differential expression of glycoprotein A repetitions predominant (GARP), CD73, CD101 and CD103 and a functionally significant increase in interleukin (IL)-10 in Treg from C57BL/6 compared to dnTGF-βRII mice. Our data reflect the therapeutic potential of wild-type CD4(+) FoxP3(+) Treg in reducing the excessive T cell responses of autoimmune cholangitis, which has significance for the potential immunotherapy of PBC.
Collapse
Affiliation(s)
- H Tanaka
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA; Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Quiniou C, Domínguez-Punaro M, Cloutier F, Erfani A, Ennaciri J, Sivanesan D, Sanchez M, Chognard G, Hou X, Rivera JC, Beauchamp C, Charron G, Vilquin M, Kuchroo V, Michnick S, Rioux JD, Lesage S, Chemtob S. Specific targeting of the IL-23 receptor, using a novel small peptide noncompetitive antagonist, decreases the inflammatory response. Am J Physiol Regul Integr Comp Physiol 2014; 307:R1216-30. [DOI: 10.1152/ajpregu.00540.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
IL-23 is part of the IL-12 family of cytokines and is composed of the p19 subunit specific to IL-23 and the p40 subunit shared with IL-12. IL-23 specifically contributes to the inflammatory process of multiple chronic inflammatory autoimmune disorders, including psoriasis, multiple sclerosis, inflammatory bowel disease, and rheumatoid arthritis. So far, one antibody targeting the shared p40 subunit of IL-12 and IL-23, Ustekinumab, is approved clinically to treat psoriasis. However, there are no treatments inhibiting specifically the IL-23 proinflammatory response. We have developed small IL-23R-specific antagonists by designing all D-peptides arising from flexible regions of IL-23R. Of these peptides, we selected 2305 (teeeqqly), since in addition to its soluble properties, it inhibited IL-23-induced STAT3 phosphorylation in spleen cells. Peptide 2305 specifically binds to IL-23R/IL-12Rβ1-expressing HEK-293 cells and not to cells devoid of the receptor. Peptide 2305 showed functional selectivity by modulating IL-23-induced gene expression in IL-23R/IL-12Rβ1-expressing cells and in Jurkat cells; 2305 does not inhibit IL-12-induced cytokine expression in IL-12Rβ-IL-12Rβ2-HEK-293 cells. Finally, compared with anti-p40 treatment, 2305 effectively and selectively inhibits IL-23-induced inflammation in three in vivo mouse models: IL-23-induced ear inflammation, anti-CD40-induced systemic inflammatory response, and collagen-induced arthritis. We, hereby, describe the discovery and characterization of a potent IL-23R small-peptide modulator, 2305 (teeeqqly), that is effective in vivo. 2305 may be more convenient, less cumbersome, less costly, and most importantly, more specific than current biologics for the treatment of inflammatory conditions, and conceivably complement the actual therapies for these chronic and debilitating inflammatory diseases.
Collapse
Affiliation(s)
- Christiane Quiniou
- Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Centre, Montréal, Canada
| | | | - Frank Cloutier
- Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Centre, Montréal, Canada
| | - Atefeh Erfani
- Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Centre, Montréal, Canada
| | - Jamila Ennaciri
- Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Centre, Montréal, Canada
| | - Durgajini Sivanesan
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Mélanie Sanchez
- Department of Biochemistry, Université de Montréal, Montréal, Canada
| | - Gaëlle Chognard
- Maisonneuve-Rosemont Hospital, Research Center, Montreal, Canada
- Department of Microbiology and Immunology, Université de Montréal, Montréal, Canada
| | - Xin Hou
- Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Centre, Montréal, Canada
| | | | | | | | - Marie Vilquin
- Maisonneuve-Rosemont Hospital, Research Center, Montreal, Canada
| | - Vijay Kuchroo
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Stephen Michnick
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - John D. Rioux
- Montreal Heart Institute, Montréal, Canada
- Department of Medicine, Université de Montréal, Montréal, Canada
| | - Sylvie Lesage
- Maisonneuve-Rosemont Hospital, Research Center, Montreal, Canada
- Department of Microbiology and Immunology, Université de Montréal, Montréal, Canada
| | - Sylvain Chemtob
- Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Centre, Montréal, Canada
| |
Collapse
|
23
|
Shu SA, Wang J, Tao MH, Leung PSC. Gene Therapy for Autoimmune Disease. Clin Rev Allergy Immunol 2014; 49:163-76. [DOI: 10.1007/s12016-014-8451-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Yang W, Yao Y, Yang YQ, Lu FT, Li L, Wang YH, Nakajima T, Tsuneyama K, Ridgway WM, Gershwin ME, Lian ZX. Differential modulation by IL-17A of Cholangitis versus Colitis in IL-2Rα deleted mice. PLoS One 2014; 9:e105351. [PMID: 25133396 PMCID: PMC4136813 DOI: 10.1371/journal.pone.0105351] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 07/21/2014] [Indexed: 12/20/2022] Open
Abstract
IFN-γ is a signature Th1 cell associated cytokine critical for the inflammatory response in autoimmunity with both pro-inflammatory and potentially protective functions. IL-17A is the hallmark of T helper 17 (Th17) cell subsets, produced by γδT, CD8+ T, NK and NKT cells. We have taken advantage of our colony of IL-2Rα-/- mice that spontaneously develop both autoimmune cholangitis and inflammatory bowel disease. In this model CD8+ T cells mediate biliary ductular damage, whereas CD4+ T cells mediate induction of colon-specific autoimmunity. Importantly, IL-2Rα-/- mice have high levels of interferon γ (IFN-γ), and interleukin-17A (IL-17A). We produced unique double deletions of mice that were either IL-17A-/-IL-2Rα-/- or IFN-γ-/-IL-2Rα-/- to specifically address the precise role of these two cytokines in the natural history of autoimmune cholangitis and colitis. Of note, deletion of IL-17A in IL-2Rα-/- mice led to more severe liver inflammation, but ameliorated colitis. In contrast, there were no significant changes in the immunopathology of double knock-out IFN-γ-/- IL-2Rα-/- mice, compared to single knock-out IL-2Rα-/- mice with respect to cholangitis or colitis. Furthermore, there was a significant increase in pathogenetic CD8+ T cells in the liver of IL-17A-/-IL-2Rα-/- mice. Our data suggest that while IL-17A plays a protective role in autoimmune cholangitis, it has a pro-inflammatory role in inflammatory bowel disease. These data take on particular significance in the potential use of anti-IL-17A therapy in humans with primary biliary cirrhosis.
Collapse
Affiliation(s)
- Wei Yang
- Liver Immunology Laboratory, Institute of Immunology and CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Yuan Yao
- Liver Immunology Laboratory, Institute of Immunology and CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Yan-Qing Yang
- Liver Immunology Laboratory, Institute of Immunology and CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Fang-Ting Lu
- Liver Immunology Laboratory, Institute of Immunology and CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Liang Li
- Liver Immunology Laboratory, Institute of Immunology and CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Yin-Hu Wang
- Liver Immunology Laboratory, Institute of Immunology and CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Takahiko Nakajima
- Department of Diagnostic Pathology, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan
| | - Koichi Tsuneyama
- Department of Diagnostic Pathology, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan
| | - William M. Ridgway
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati, Cincinnati, OH, United States of America
| | - M. Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, CA, United States of America
- * E-mail: (Z-XL); (MEG)
| | - Zhe-Xiong Lian
- Liver Immunology Laboratory, Institute of Immunology and CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
- Innovation Center for Cell Biology, Hefei National Laboratory for Physical Sciences at Microscale, Hefei, China
- * E-mail: (Z-XL); (MEG)
| |
Collapse
|
25
|
Yang CY, Ma X, Tsuneyama K, Huang S, Takahashi T, Chalasani NP, Bowlus CL, Yang GX, Leung PS, Ansari AA, Wu L, Coppel R, Gershwin ME. IL-12/Th1 and IL-23/Th17 biliary microenvironment in primary biliary cirrhosis: implications for therapy. Hepatology 2014; 59:1944-53. [PMID: 24375552 PMCID: PMC3999171 DOI: 10.1002/hep.26979] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/12/2013] [Indexed: 12/12/2022]
Abstract
UNLABELLED The interleukin (IL)-12/IL-23-mediated Th1/Th17 signaling pathway has been associated with the etiopathogenesis of primary biliary cirrhosis (PBC). To address the cytokine microenvironment specifically in the liver, we examined the localized expression of cytokine subunits and their corresponding receptors using previously optimized immunohistochemistry with an extensive panel of antibodies directed at IL-12p70, IL-12p35, interferon-gamma (IFN-γ), IL-12RB2, IL-23p40, IL-23p19, IL-17, and IL-23R using liver from PBC (n = 51) and non-PBC (n = 80) control liver disease patients. Multiple portal tracts in each patient were blindly evaluated and individually scored. We report herein that although IL-12/Th1 and IL-23/Th17 staining was detected in all of the liver sections, they were primarily localized around the damaged interlobular bile ducts in PBC. Most important, Th17 skewing was prominent in advanced PBC patients with intensive secretion of IL-23p19 by inflamed hepatocytes around IL-23R, IL-12RB2, and IFN-γ expressing degenerated cholangiocytes. Our novel finding on the direct association of Th17 skewing and disease severity illustrates the significance of the IL-23/Th17 pathway in the perpetuation of IL-12/Th1-mediated immunopathology in PBC. Furthermore, localized IL-23p19 production by hepatocytes may enhance profibrotic Th17 signaling and proinflammatory IFN-γ production that contribute to PBC pathology. CONCLUSION Our data emphasize the pathogenic relevance of IL-12/Th1 and IL-23/Th17 in the evolution of PBC. Of significance, however, the shift from a Th1 to a Th17 imbalance at advanced stages of the disease suggests the necessity to consider modulation of the IL-23/Th17 pathway as a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Chen-Yen Yang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, USA
| | - Xiong Ma
- Department of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Koichi Tsuneyama
- Department of Diagnostic Pathology, Graduate School of Medical and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Shanshan Huang
- Department of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | | | - Naga P. Chalasani
- Division of Gastroenterology and Hepatology, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Christopher L. Bowlus
- Division of Gastroenterology and Hepatology, University of California, Davis, CA, USA
| | - Guo-Xiang Yang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, USA
| | - Patrick S.C. Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, USA
| | - Aftab A. Ansari
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Linda Wu
- Department of Immunology, Janssen R&D, Spring House, PA, USA
| | - Ross Coppel
- Departments of Microbiology and Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - M. Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, USA
| |
Collapse
|
26
|
Yao Y, Yang W, Yang YQ, Ma HD, Lu FT, Li L, Tao YY, Tsuneyama K, Zhang W, Friedman S, Gershwin ME, Lian ZX. Distinct from its canonical effects, deletion of IL-12p40 induces cholangitis and fibrosis in interleukin-2Rα(-/-) mice. J Autoimmun 2014; 51:99-108. [PMID: 24651036 DOI: 10.1016/j.jaut.2014.02.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 02/21/2014] [Accepted: 02/23/2014] [Indexed: 12/24/2022]
Abstract
The IL-12 family modulates T cell mediated autoimmune diseases and GWAS in PBC have suggested a critical role of IL-12 and its subunits in modulating portal inflammation. We have taken advantage of an aggressive model of portal inflammation and colitis in IL-2Rα(-/-) mice to study the specific role of IL-12 and, in particular, the immunobiology of p40(-/-)IL-2Rα(-/-) mice. Colonies of IL-2Rα(+/-), IL-2Rα(-/-) and p40(-/-)IL-2Rα(-/-) mice were studied for the natural history of immunopathology in liver and colon using histology and immunohistochemistry. Further, to focus on mechanisms, liver, spleen and mesenteric lymph node flow cytometry was employed to identify specific phenotypes; cytokine analysis on inflammatory cell populations was compared between groups. Finally, Real-Time PCR was used to focus on the genes involved in hepatic fibrosis. Surprisingly, p40(-/-)IL-2Rα(-/-) mice manifest more severe portal inflammation and bile duct damage, including signs of portal hypertension and liver fibrosis, but a significant reduction in colitis. Indeed, p40(-/-)IL-2Rα(-/-) mice reveal a profound hepatic CD8(+) T cell infiltrate, whose major component are effector memory cells as well as enhanced hepatic Th1 but reduced Th17 responses. These observations were confirmed by Real-Time PCR analysis of fibrosis-related genes in the liver. Distinct from its canonical effects, IL-12p40 plays a critical role in autoimmune cholangitis, including hepatic fibrosis. These data take on striking significance for any proposed human trials that modulate the IL-12p40 pathway in human PBC.
Collapse
Affiliation(s)
- Yuan Yao
- Liver Immunology Laboratory, Institute of Immunology and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Wei Yang
- Liver Immunology Laboratory, Institute of Immunology and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Yan-Qing Yang
- Liver Immunology Laboratory, Institute of Immunology and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Hong-Di Ma
- Liver Immunology Laboratory, Institute of Immunology and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Fang-Ting Lu
- Liver Immunology Laboratory, Institute of Immunology and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Liang Li
- Liver Immunology Laboratory, Institute of Immunology and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Yan-Yan Tao
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Koichi Tsuneyama
- Department of Diagnostic Pathology, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama 930-0194, Japan
| | - Weici Zhang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, CA 95616, USA
| | - Scott Friedman
- Division of Liver Diseases, Mount Sinai Medical Center, New York, NY 10029, USA
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, CA 95616, USA
| | - Zhe-Xiong Lian
- Liver Immunology Laboratory, Institute of Immunology and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China; Innovation Center for Cell Biology, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
27
|
Carbone M, Lleo A, Sandford RN, Invernizzi P. Implications of genome-wide association studies in novel therapeutics in primary biliary cirrhosis. Eur J Immunol 2014; 44:945-54. [PMID: 24481870 DOI: 10.1002/eji.201344270] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/07/2014] [Accepted: 01/27/2014] [Indexed: 12/11/2022]
Abstract
Genome-wide association studies (GWAS) have revolutionized the search for genetic influences on complex disorders, such as primary biliary cirrhosis (PBC). Recent GWAS have identified many disease-associated genetic variants. These, overall, highlighted the remarkable contribution of key immunological pathways in PBC that may be involved in the initial mechanisms of loss of tolerance and the subsequent inflammatory response and chronic bile duct damage. Results from GWAS have the potential to be translated in biological knowledge and, hopefully, clinical application. There are a number of immune pathways highlighted in GWAS that may have therapeutic implications in PBC and in other autoimmune diseases, such as the anti-interleukin-12/interleukin-23, nuclear factor-kb, tumor necrosis factor, phosphatidylinositol signaling and hedgehog signaling pathways. Further areas in which GWAS findings are leading to clinical applications either in PBC or in other autoimmune conditions, include disease classification, risk prediction and drug development. In this review we outline the possible next steps that may help accelerate progress from genetic studies to the biological knowledge that would guide the development of predictive, preventive, or therapeutic measures in PBC.
Collapse
Affiliation(s)
- Marco Carbone
- Division of Gastroenterology and Hepatology, Department of Medicine, Addenbrooke's Hospital, Cambridge, UK; Academic Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | | | | | | |
Collapse
|
28
|
Invernizzi P, Gershwin ME. New therapeutics in primary biliary cirrhosis: will there ever be light? Liver Int 2014; 34:167-70. [PMID: 24393247 DOI: 10.1111/liv.12354] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 10/03/2013] [Indexed: 12/24/2022]
Affiliation(s)
- Pietro Invernizzi
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, MI, Italy; Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | | |
Collapse
|
29
|
Abstract
Primary biliary cirrhosis (PBC) is a chronic liver disease characterized by the immune mediated destruction of small intrahepatic bile duct epithelial cells leading to cholestasis and cirrhosis. The autoimmune basis of PBC is supported by the highly specific anti-mitochondrial antibodies (AMAs) and autoreactive T cells, the former being the basis for diagnosis in the vast majority of cases. Although a rare disease, the incidence rates of PBC have been increasing, possibly due to increased testing and diagnosis as opposed to a true increase in disease incidence. Presently, most cases are asymptomatic and only suspected based upon routine liver tests. Those with symptoms typically complain of pruritus and fatigue. The diagnosis of PBC is based on the presence of at least 2 of 3 key criteria including a persistently elevated serum alkaline phosphatase, the presence of serum AMAs, and liver histology consistent with PBC. Anti-nuclear antibodies specific to PBC are useful in cases in which AMAs are not detected and may indicate a more aggressive course. Ursodeoxycholic acid is the only proven therapy for PBC and in most cases can delay or prevent disease progression. However, a subgroup of patients does not adequately respond to ursodeoxycholic acid and for whom new therapies are needed.
Collapse
Affiliation(s)
- Christopher L Bowlus
- Division of Gastroenterology and Hepatology, University of California Davis, United States; Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, United States.
| | - M Eric Gershwin
- Division of Gastroenterology and Hepatology, University of California Davis, United States; Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, United States
| |
Collapse
|
30
|
Kawata K, Tsuda M, Yang GX, Zhang W, Tanaka H, Tsuneyama K, Leung P, He XS, Knechtle S, Ansari AA, Coppel RL, Gershwin ME. Identification of potential cytokine pathways for therapeutic intervention in murine primary biliary cirrhosis. PLoS One 2013; 8:e74225. [PMID: 24040208 PMCID: PMC3769355 DOI: 10.1371/journal.pone.0074225] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/29/2013] [Indexed: 01/26/2023] Open
Abstract
Primary biliary cirrhosis (PBC) is considered a model autoimmune disease, with the most highly directed and specific autoantibody in both murine and human autoimmunity, the anti-mitochondrial autoantibody (AMA). However, therapeutic advances in this disease have lagged behind. Herein we have taken advantage of our unique model of murine PBC in which mice immunized with 2-octynoic acid coupled to BSA (2OA-BSA), a compound identified by quantitative structure activity relationships (QSAR) of human AMA binding, develop an intense inflammatory cholangitis with striking similarities to humans with PBC. In particular, we have constructed several unique gene-deleted mice, including mice deleted of IL-12p40, IL-12p35, IFN-γ, IL-23p19, IL-17A, IL-17F and IL-22, immunized these animals with 2OA-BSA and followed the natural history of immunopathology to identify key pathways that might provide clues for successful therapy. Our data indicate that whereas both IL-12/Th1 and IL-23/Th17 are involved in cholangitis, it is the IL-12/Th1 signaling pathway that elicits pathology. In fact, deletion of IFN-γ prevents disease and suppresses autoantibodies. Importantly, deletion of the Th17 cytokines IL-17A and IL-22, but not IL-17F, reduces biliary damage; IL-17A-knockout mice have reduced levels of anti-mitochondrial antibody. We further demonstrate that the production of IFN-γ is significantly decreased in the liver of IL-23p19(-/-), IL-17A(-/-) and IL-22(-/-) mice compared with controls. However, the ability of T cells to produce IFN-γ was not affected in Th17 cytokine-deficient mice. Our data indicate that a deficient Th17 pathway suppresses the accumulation of IFN-γ producing cells in liver during the early phase of cholangitis. In conclusion, whereas IFN-γ has a pivotal role in the early events involved in the pathogenesis of autoimmune cholangitis induced by 2OA-BSA, the IL-23/Th17 pathway potentiates the effects of IL-12/IFN-γ-mediated immunopathology.
Collapse
MESH Headings
- Animals
- Autoantibodies/biosynthesis
- Autoimmunity
- Cholangitis/chemically induced
- Cholangitis/genetics
- Cholangitis/immunology
- Cholangitis/pathology
- Disease Models, Animal
- Fatty Acids, Monounsaturated/chemistry
- Fatty Acids, Monounsaturated/immunology
- Gene Expression Regulation
- Humans
- Immunoconjugates/administration & dosage
- Immunoconjugates/immunology
- Interferon-gamma/deficiency
- Interferon-gamma/genetics
- Interferon-gamma/immunology
- Interleukin-12 Subunit p35/deficiency
- Interleukin-12 Subunit p35/genetics
- Interleukin-12 Subunit p35/immunology
- Interleukin-17/deficiency
- Interleukin-17/genetics
- Interleukin-17/immunology
- Interleukin-23 Subunit p19/deficiency
- Interleukin-23 Subunit p19/genetics
- Interleukin-23 Subunit p19/immunology
- Interleukins/deficiency
- Interleukins/genetics
- Interleukins/immunology
- Liver/immunology
- Liver/metabolism
- Liver/pathology
- Liver Cirrhosis, Biliary/chemically induced
- Liver Cirrhosis, Biliary/genetics
- Liver Cirrhosis, Biliary/immunology
- Liver Cirrhosis, Biliary/pathology
- Mice
- Mice, Knockout
- Mitochondria/immunology
- Serum Albumin, Bovine/chemistry
- Serum Albumin, Bovine/immunology
- Signal Transduction/immunology
- Th1-Th2 Balance
- Interleukin-22
Collapse
Affiliation(s)
- Kazuhito Kawata
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, California, United States of America
- Hepatology Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Masanobu Tsuda
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, California, United States of America
- Department of Emergency and Critical Care Medicine, Kansai Medical University, Osaka, Japan
| | - Guo-Xiang Yang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, California, United States of America
| | - Weici Zhang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, California, United States of America
| | - Hajime Tanaka
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, California, United States of America
| | - Koichi Tsuneyama
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, California, United States of America
- Department of Diagnostic Pathology, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan
| | - Patrick Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, California, United States of America
| | - Xiao-Song He
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, California, United States of America
| | - Stuart Knechtle
- Department of Surgery, The Emory Clinic and Hospital, Emory Transplant Center, Atlanta, Georgia, United States of America
| | - Aftab A. Ansari
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Ross L. Coppel
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - M. Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, California, United States of America
| |
Collapse
|
31
|
Kawata K, Yang GX, Ando Y, Tanaka H, Zhang W, Kobayashi Y, Tsuneyama K, Leung PS, Lian ZX, Ridgway WM, Ansari AA, He XS, Gershwin ME. Clonality, activated antigen-specific CD8(+) T cells, and development of autoimmune cholangitis in dnTGFβRII mice. Hepatology 2013; 58:1094-104. [PMID: 23532950 PMCID: PMC3716874 DOI: 10.1002/hep.26418] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 03/19/2013] [Indexed: 12/12/2022]
Abstract
UNLABELLED There are several murine models described with features similar to human primary biliary cirrhosis (PBC). Among these models, the one which has the closest serologic features to PBC is a mouse with a T-cell-restricted expression of the dominant negative transforming growth factor β receptor type II (dnTGFβRII). Our work has demonstrated that CD8(+) T cells from dnTGFβRII mice transfer autoimmune cholangitis to Rag1(-/-) recipients. However, it remained unclear whether the autoimmune cholangitis was secondary to an intrinsic function within CD8(+) T cells or due to the abnormal TGFβR environment within which CD8(+) T cells were generated. To address this mechanistic issue, we used our dnTGFβRII, OT-I/Rag1(-/-) , OT-II/Rag1(-/-) mice and in addition generated OT-I/dnTGFβRII/Rag1(-/-) , and OT-II/dnTGFβRII/Rag1(-/-) mice in which the entire T-cell repertoire was replaced with ovalbumin (OVA)-specific CD8(+) or CD4(+) T cells, respectively. Importantly, neither the parental OT-I/dnTGFβRII/Rag1(-/-) mice and/or OT-II/dnTGFβRII/Rag1(-/-) mice developed cholangitis. However, adoptive transfer demonstrated that only transfer of CD8(+) T cells from dnTGFβRII mice but not CD8(+) T cells from OT-I/Rag1(-/-) mice or from OT-I/dnTGFβRII/Rag1(-/-) mice transferred disease. These data were not secondary to an absence of CD4(+) T cell help since a combination of CD8(+) T cells from OT-I/dnTGFβRII/Rag1(-/-) and CD4(+) T cells from OT II/dnTGFβRII/Rag1(-/-) or CD8(+) T cells from OT-I/dnTGFβRII/Rag1(-/-) with CD4(+) T cells from OT-II/Rag1(-/-) mice failed to transfer disease. CONCLUSION Defective TGFβRII signaling, in addition to clonal CD8(+) T cells that target biliary cells, are required for induction of autoimmune cholangitis.
Collapse
Affiliation(s)
- Kazuhito Kawata
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Suite 6510, Davis, CA, 95616,Hepatology Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Shizuoka 431-3125, Japan
| | - Guo-Xiang Yang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Suite 6510, Davis, CA, 95616
| | - Yugo Ando
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Suite 6510, Davis, CA, 95616
| | - Hajime Tanaka
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Suite 6510, Davis, CA, 95616
| | - Weici Zhang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Suite 6510, Davis, CA, 95616
| | - Yoshimasa Kobayashi
- Hepatology Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Shizuoka 431-3125, Japan
| | - Koichi Tsuneyama
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Suite 6510, Davis, CA, 95616,Department of Diagnostic Pathology, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama 930-0194, Japan
| | - Patrick S.C. Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Suite 6510, Davis, CA, 95616
| | - Zhe-Xiong Lian
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Suite 6510, Davis, CA, 95616,Institute of Immunology and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - William M. Ridgway
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH, 455229
| | - Aftab A. Ansari
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, 30322
| | - Xiao-Song He
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Suite 6510, Davis, CA, 95616
| | - M. Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Suite 6510, Davis, CA, 95616
| |
Collapse
|
32
|
Ando Y, Yang GX, Kenny TP, Kawata K, Zhang W, Huang W, Leung PSC, Lian ZX, Okazaki K, Ansari AA, He XS, Invernizzi P, Ridgway WM, Lu Q, Gershwin ME. Overexpression of microRNA-21 is associated with elevated pro-inflammatory cytokines in dominant-negative TGF-β receptor type II mouse. J Autoimmun 2013; 41:111-9. [PMID: 23395552 DOI: 10.1016/j.jaut.2012.12.013] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/13/2012] [Accepted: 12/13/2012] [Indexed: 12/31/2022]
Abstract
Dominant-negative TGF-β receptor II (dnTGF-βRII) mice spontaneously develop an autoimmune cholangitis resembling human primary biliary cirrhosis (PBC). Interestingly, the dominant-negative TGF-β receptor is expressed by both CD4(+) and CD8(+) T cells and leads to greatly reduced (but not absent) TGF-β signaling resulting in T cell intrinsic cell mediated autoimmunity. However, the mechanisms of the T cell dysregulation remain unclear. Recently it has been shown that TGF-β signaling is intimately involved with miRNA biogenesis and control. Herein we show that lack of T cell TGF-β signaling leads to down regulation of T cell miRNAs but up-regulation of the key inflammatory miRNA 21. Furthermore, the expression of miR-21 from hepatic effector CD8(+) T cells is significantly higher than in the same subsets isolated from spleen and mesenteric lymph nodes of the dnTGF-βRII mice. Previous studies indicate that miR-21 increases the synthesis of IFN-γ and IL-17A by T cells and suppresses apoptosis via programmed cell death protein 4 (PDCD4). Data presented herein demonstrate that transfecting w.t. B6 T cell subsets with miR-21 resulted in up-regulation of the inflammatory cytokines TNF-α and IFN-γ, thus partly replicating the dnTGF-βRII T cell phenotype. In conclusion, these data suggest miR-21 plays a critical role in the production of pro-inflammatory cytokines in dnTGF-βRII mice, which could be a contributing factor for the development of the organ-specific autoimmune cholangitis and colitis in this murine model of human PBC.
Collapse
Affiliation(s)
- Yugo Ando
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, School of Medicine, Davis, CA 95616, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|