1
|
Duan H, Gong M, Yuan G, Wang Z. Sex Hormone: A Potential Target at Treating Female Metabolic Dysfunction-Associated Steatotic Liver Disease? J Clin Exp Hepatol 2025; 15:102459. [PMID: 39722783 PMCID: PMC11667709 DOI: 10.1016/j.jceh.2024.102459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/13/2024] [Indexed: 12/28/2024] Open
Abstract
The global prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is rising due to rapid lifestyle changes. Although females may be less prone to MASLD than males, specific studies on MASLD in females should still be conducted. Previous research has shown that sex hormone levels are strongly linked to MASLD in females. By reviewing a large number of experimental and clinical studies, we summarized the pathophysiological mechanisms of estrogen, androgen, sex hormone-binding globulin, follicle-stimulating hormone, and prolactin involved in the development of MASLD. We also analyzed the role of these hormones in female MASLD patients with polycystic ovarian syndrome or menopause, and explored the potential of targeting sex hormones for the treatment of MASLD. We hope this will provide a reference for further exploration of mechanisms and treatments for female MASLD from the perspective of sex hormones.
Collapse
Affiliation(s)
- Huiyan Duan
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minmin Gong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Yuan
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Liu B, Shao T, Xiao D, Yang S, Lin W, Sun L, Zhang W, Luo M, Zhao J, Yang L, Bai S, Deng D, Wang C, Wang S, Zhang R, Liu Z, An L. Aqueous extract of Cornus officinalis alleviate NAFLD via protecting hepatocytes proliferation through regulation of the tricarboxylic acid cycle. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119330. [PMID: 39778783 DOI: 10.1016/j.jep.2025.119330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/02/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cornus officinalis (CO) has been widely used as Chinese herbal medicine and has a good clinical efficacy in liver disease. In particular, it has a significant therapeutic effect on metabolic liver disease. However, systematic pharmacological studies on its hepatoprotective effect on non-alcoholic fatty liver disease (NAFLD) are lacking. AIM OF THE STUDY We investigated the impact of Cornus officinalis extract (COE) on two mouse models of NAFLD, screened the potential mechanisms of action by using metabolomics assays, and explored the protective effects on hepatocyte proliferation by regulating glutamate metabolism and tricarboxylic acid (TCA) cycle. METHODS The main components of COE were identified by high performance liquid chromatograph (HPLC). Male C57BL/6J mice were subjected to construct carbon tetrachloride (CCl4) or methionine choline deficient (MCD) induced NAFLD mice. Liver function and lipid biochemical indicators were detected using commercial assay kits. Masson staining, Western blot, and immunohistochemistry analyses were used for assessing hepatic injury and fibrosis. LC-MS non-targeted analysis was performed using the 1290 Ultra-High Performance Liquid Chromatograph System and the 6540 Q-TOF Mass Spectrometry. Palmitic acid (PA) induced L-02 cell model was established. The mediators in glutamate metabolism and TCA cycle were assessed by assay kits. RESULTS In vivo experiments validated that COE significantly improved liver function in NAFLD mice, reduced lipid accumulation, and alleviated pathological damage and liver fibrosis. The non-targeted metabolomics analysis combined with Ingenuity Pathway Analysis (IPA) located glutamate metabolism and the downstream TCA cycle as potential mechanisms of COE, which was further confirmed in NAFLD model mice and PA-induced L-02 cells. Finally, we confirmed that COE could promote mitochondrial energy supply by remodeling the homeostasis of the TCA cycle, thereby enhancing hepatocyte proliferation. CONCLUSIONS This study demonstrated that COE could significantly improve CCl4 or MCD-induced NAFLD by promoting hepatocyte proliferation. These results highlighted the potential of COE as leads for the development of innovative treatments for NAFLD.
Collapse
Affiliation(s)
- Binjie Liu
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ting Shao
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Dandan Xiao
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Chinese Medicine Guangdong Laboratory, Hengqin, Guangdong, China
| | - Shujie Yang
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Chinese Medicine Guangdong Laboratory, Hengqin, Guangdong, China
| | - Weijie Lin
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Lizhu Sun
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Weiqin Zhang
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Meiqing Luo
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jinlan Zhao
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Lei Yang
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shasha Bai
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Chinese Medicine Guangdong Laboratory, Hengqin, Guangdong, China
| | - Di Deng
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Chinese Medicine Guangdong Laboratory, Hengqin, Guangdong, China
| | - Caiyan Wang
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Chinese Medicine Guangdong Laboratory, Hengqin, Guangdong, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou, Guangdong, China
| | - Shaogui Wang
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Rong Zhang
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Chinese Medicine Guangdong Laboratory, Hengqin, Guangdong, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou, Guangdong, China.
| | - Zhongqiu Liu
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Chinese Medicine Guangdong Laboratory, Hengqin, Guangdong, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou, Guangdong, China.
| | - Lin An
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Chinese Medicine Guangdong Laboratory, Hengqin, Guangdong, China.
| |
Collapse
|
3
|
Misceo D, Mocciaro G, D'Amore S, Vacca M. Diverting hepatic lipid fluxes with lifestyles revision and pharmacological interventions as a strategy to tackle steatotic liver disease (SLD) and hepatocellular carcinoma (HCC). Nutr Metab (Lond) 2024; 21:112. [PMID: 39716321 DOI: 10.1186/s12986-024-00871-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/13/2024] [Indexed: 12/25/2024] Open
Abstract
Steatotic liver disease (SLD) and Hepatocellular Carcinoma (HCC) are characterised by a substantial rewiring of lipid fluxes caused by systemic metabolic unbalances and/or disrupted intracellular metabolic pathways. SLD is a direct consequence of the interaction between genetic predisposition and a chronic positive energy balance affecting whole-body energy homeostasis and the function of metabolically-competent organs. In this review, we discuss how the impairment of the cross-talk between peripheral organs and the liver stalls glucose and lipid metabolism, leading to unbalances in hepatic lipid fluxes that promote hepatic fat accumulation. We also describe how prolonged metabolic stress builds up toxic lipid species in the liver, and how lipotoxicity and metabolic disturbances drive disease progression by promoting a chronic activation of wound healing, leading to fibrosis and HCC. Last, we provide a critical overview of current state of the art (pre-clinical and clinical evidence) regarding mechanisms of action and therapeutic efficacy of candidate SLD treatment options, and their potential to interfere with SLD/HCC pathophysiology by diverting lipids away from the liver therefore improving metabolic health.
Collapse
Affiliation(s)
- Davide Misceo
- Department of Interdisciplinary Medicine, Clinica Medica "C. Frugoni", "Aldo Moro" University of Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Gabriele Mocciaro
- Roger Williams Institute of Liver Studies, Foundation for Liver Research, London, SE5 9NT, UK
| | - Simona D'Amore
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Clinica Medica "G. Baccelli", "Aldo Moro" University of Bari, 70124, Bari, Italy.
| | - Michele Vacca
- Department of Interdisciplinary Medicine, Clinica Medica "C. Frugoni", "Aldo Moro" University of Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy.
- Roger Williams Institute of Liver Studies, Foundation for Liver Research, London, SE5 9NT, UK.
| |
Collapse
|
4
|
Qian L, Zhu Y, Deng C, Liang Z, Chen J, Chen Y, Wang X, Liu Y, Tian Y, Yang Y. Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family in physiological and pathophysiological process and diseases. Signal Transduct Target Ther 2024; 9:50. [PMID: 38424050 PMCID: PMC10904817 DOI: 10.1038/s41392-024-01756-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family (PGC-1s), consisting of three members encompassing PGC-1α, PGC-1β, and PGC-1-related coactivator (PRC), was discovered more than a quarter-century ago. PGC-1s are essential coordinators of many vital cellular events, including mitochondrial functions, oxidative stress, endoplasmic reticulum homeostasis, and inflammation. Accumulating evidence has shown that PGC-1s are implicated in many diseases, such as cancers, cardiac diseases and cardiovascular diseases, neurological disorders, kidney diseases, motor system diseases, and metabolic disorders. Examining the upstream modulators and co-activated partners of PGC-1s and identifying critical biological events modulated by downstream effectors of PGC-1s contribute to the presentation of the elaborate network of PGC-1s. Furthermore, discussing the correlation between PGC-1s and diseases as well as summarizing the therapy targeting PGC-1s helps make individualized and precise intervention methods. In this review, we summarize basic knowledge regarding the PGC-1s family as well as the molecular regulatory network, discuss the physio-pathological roles of PGC-1s in human diseases, review the application of PGC-1s, including the diagnostic and prognostic value of PGC-1s and several therapies in pre-clinical studies, and suggest several directions for future investigations. This review presents the immense potential of targeting PGC-1s in the treatment of diseases and hopefully facilitates the promotion of PGC-1s as new therapeutic targets.
Collapse
Affiliation(s)
- Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Yanli Zhu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Chao Deng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Zhenxing Liang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East, Zhengzhou, 450052, China
| | - Junmin Chen
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Ying Chen
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Xue Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Yanqing Liu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Ye Tian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Yang Yang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China.
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| |
Collapse
|
5
|
Liu G, Li Y, Liao N, Shang X, Xu F, Yin D, Shao D, Jiang C, Shi J. Energy metabolic mechanisms for high altitude sickness: Downregulation of glycolysis and upregulation of the lactic acid/amino acid-pyruvate-TCA pathways and fatty acid oxidation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 894:164998. [PMID: 37353011 DOI: 10.1016/j.scitotenv.2023.164998] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/25/2023]
Abstract
Hypobaric hypoxia is often associated with the plateau environment and can lead to altitude sickness or death. The underlying cause is a lack of oxygen, which limits energy metabolism and leads to a compensatory stress response. Although glycolysis is commonly accepted as the primary energy source during clinical hypoxia, our preliminary experiments suggest that hypobaric hypoxia may depress glycolysis. To provide a more comprehensive understanding of energy metabolism under short-term hypobaric hypoxia, we exposed mice to a simulated altitude of 5000 m for 6 or 12 h. After the exposure, we collected blood and liver tissues to quantify the substrates, enzymes, and metabolites involved in glycolysis, lactic acid metabolism, the tricarboxylic acid cycle (TCA), and fatty acid β-oxidation. We also performed transcriptome and enzymatic activity analyses of the liver. Our results show that 6 h of hypoxic exposure significantly increased blood glucose, decreased lactic acid and triglyceride concentrations, and altered liver enzyme activities of mice exposed to hypoxia. The key enzymes in the glycolytic, TCA, and fatty acid β-oxidation pathways were primarily affected. Specifically, the activities of key glycolytic enzymes, such as glucokinase, decreased significantly, while the activities of enzymes in the TCA cycle, such as isocitrate dehydrogenase, increased significantly. Lactate dehydrogenase, pyruvate carboxylase, and alanine aminotransferase were upregulated. These changes were partially restored when the exposure time was extended to 12 h, except for further downregulation of phosphofructokinase and glucokinase. This study demonstrates that acute high altitude hypoxia upregulated the lactic acid/amino acid-pyruvate-TCA pathways and fatty acid oxidation, but downregulated glycolysis in the liver of mice. The results obtained in this study provide a theoretical framework for understanding the mechanisms underlying the pathogenesis of high-altitude sickness in humans. Additionally, these findings have potential implications for the development of prevention and treatment strategies for altitude sickness.
Collapse
Affiliation(s)
- Guanwen Liu
- School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China.
| | - Yinghui Li
- School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China
| | - Ning Liao
- School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China.
| | - Xinzhe Shang
- School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China
| | - Fengqin Xu
- School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China
| | - Dachuan Yin
- School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China.
| | - Dongyan Shao
- School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China.
| | - Chunmei Jiang
- School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China.
| | - Junling Shi
- School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China.
| |
Collapse
|
6
|
Valenzuela-Vallejo L, Mantzoros CS. Time to transition from a negative nomenclature describing what NAFLD is not, to a novel, pathophysiology-based, umbrella classification of fatty liver disease (FLD). Metabolism 2022; 134:155246. [PMID: 35780909 DOI: 10.1016/j.metabol.2022.155246] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 12/14/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a definition of a prevalent condition that has been given a name describing what the disease is not, mainly due to gaps in the physiopathological understanding of NAFLD when the name was given to it. NAFLD still remains an unmet clinical need to a large extent due to the heterogenicity of the disease and the lack of a more accurate physiology-based classification. In essence, fatty liver disease (FLD) has a multifactorial etiology, including metabolic abnormalities, environmental influences, genetic disorders, and/or their overlap which makes it difficult to diagnose, design appropriate trials for it and treat this disease. Therefore, we propose herein that as our knowledge about this disease continues to grow exponentially, it is time to consider ending this unspecific, negative and broad classification of NAFLD, and turn it into a positive and targeted one describing what the disease is and not what it is not. Thus, we propose the novel FLD "Mantzoros classification". This innovative classification proposes to classify the heterogeneous causes of FLD under one umbrella and eventually lead to a better nomenclature and classification system reflecting pathophysiology. This in turn could lead to both better clinical trials and more personalized care. An additional aim is to generate a dialogue among the experts in this field to eventually reach the right nomenclature for an appropriate disease classification that would facilitate our understanding, approach, diagnosis, and management of this epidemic of FLD. Overall, a novel classification, based on phenotypic manifestations, leading risk factors and probable causes of FLD, could help our understanding and clinically would be accurately defining and differentiating the disease, leading to a more accurate design and execution of clinical trials. This would in turn lead to tangible benefits for all patients suffering from FLD through targeted and more effective personalized treatments.
Collapse
Affiliation(s)
- Laura Valenzuela-Vallejo
- Department of Medicine, Beth-Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Christos S Mantzoros
- Department of Medicine, Beth-Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States; Department of Medicine, Boston VA Healthcare System, Boston, MA 02130, United States.
| |
Collapse
|
7
|
Lin H, Wang L, Liu Z, Long K, Kong M, Ye D, Chen X, Wang K, Wu KKL, Fan M, Song E, Wang C, Hoo RLC, Hui X, Hallenborg P, Piao H, Xu A, Cheng KKY. Hepatic MDM2 Causes Metabolic Associated Fatty Liver Disease by Blocking Triglyceride-VLDL Secretion via ApoB Degradation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200742. [PMID: 35524581 PMCID: PMC9284139 DOI: 10.1002/advs.202200742] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/15/2022] [Indexed: 05/06/2023]
Abstract
Dysfunctional triglyceride-very low-density lipoprotein (TG-VLDL) metabolism is linked to metabolic-associated fatty liver disease (MAFLD); however, the underlying cause remains unclear. The study shows that hepatic E3 ubiquitin ligase murine double minute 2 (MDM2) controls MAFLD by blocking TG-VLDL secretion. A remarkable upregulation of MDM2 is observed in the livers of human and mouse models with different levels of severity of MAFLD. Hepatocyte-specific deletion of MDM2 protects against high-fat high-cholesterol diet-induced hepatic steatosis and inflammation, accompanied by a significant elevation in TG-VLDL secretion. As an E3 ubiquitin ligase, MDM2 targets apolipoprotein B (ApoB) for proteasomal degradation through direct protein-protein interaction, which leads to reduced TG-VLDL secretion in hepatocytes. Pharmacological blockage of the MDM2-ApoB interaction alleviates dietary-induced hepatic steatohepatitis and fibrosis by inducing hepatic ApoB expression and subsequent TG-VLDL secretion. The effect of MDM2 on VLDL metabolism is p53-independent. Collectively, these findings suggest that MDM2 acts as a negative regulator of hepatic ApoB levels and TG-VLDL secretion in MAFLD. Inhibition of the MDM2-ApoB interaction may represent a potential therapeutic approach for MAFLD treatment.
Collapse
Affiliation(s)
- Huige Lin
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
| | - Lin Wang
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
- The State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongPokfulamHong Kong
- Department of MedicineThe University of Hong KongPokfulamHong Kong
| | - Zhuohao Liu
- The State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongPokfulamHong Kong
- Department of MedicineThe University of Hong KongPokfulamHong Kong
- Department of NeurosurgeryShenzhen HospitalSouthern Medical UniversityShenzhen518000P. R. China
| | - Kekao Long
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
| | - Mengjie Kong
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
| | - Dewei Ye
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of EducationGuangdong Pharmaceutical UniversityGuangzhou510000P. R. China
| | - Xi Chen
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
| | - Kai Wang
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
| | - Kelvin KL Wu
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
| | - Mengqi Fan
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of EducationGuangdong Pharmaceutical UniversityGuangzhou510000P. R. China
| | - Erfei Song
- Department of Metabolic and Bariatric SurgeryThe First Affiliated Hospital of Jinan UniversityGuangzhou510000P. R. China
| | - Cunchuan Wang
- Department of Metabolic and Bariatric SurgeryThe First Affiliated Hospital of Jinan UniversityGuangzhou510000P. R. China
| | - Ruby LC Hoo
- The State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongPokfulamHong Kong
- Department of Pharmacology and PharmacyThe University of Hong KongPokfulamHong Kong
| | - Xiaoyan Hui
- The State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongPokfulamHong Kong
- Department of MedicineThe University of Hong KongPokfulamHong Kong
| | - Philip Hallenborg
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkSouthern Denmark5230Denmark
| | - Hailong Piao
- Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116000P. R. China
| | - Aimin Xu
- The State Key Laboratory of Pharmaceutical BiotechnologyThe University of Hong KongPokfulamHong Kong
- Department of MedicineThe University of Hong KongPokfulamHong Kong
- Department of Pharmacology and PharmacyThe University of Hong KongPokfulamHong Kong
| | - Kenneth KY Cheng
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong
| |
Collapse
|
8
|
Lee GR, Lee HI, Kim N, Lee J, Kwon M, Kang YH, Song HJ, Yeo CY, Jeong W. Dynein light chain LC8 alleviates nonalcoholic steatohepatitis by inhibiting NF-κB signaling and reducing oxidative stress. J Cell Physiol 2022; 237:3554-3564. [PMID: 35696549 DOI: 10.1002/jcp.30811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/12/2022] [Accepted: 05/26/2022] [Indexed: 11/09/2022]
Abstract
Nonalcoholic steatohepatitis (NASH) is a liver disease characterized by fat accumulation and chronic inflammation in the liver. Dynein light chain of 8 kDa (LC8) was identified previously as an inhibitor of nuclear factor kappa B (NF-κB), a key regulator of inflammation, however, its role in NASH remains unknown. In this study, we investigated whether LC8 can alleviate NASH using a mouse model of methionine and choline-deficient (MCD) diet-induced NASH and examined the underlying mechanism. LC8 transgenic (Tg) mice showed lower hepatic steatosis and less progression of NASH, including hepatic inflammation and fibrosis, compared to wild-type (WT) mice after consuming an MCD diet. The hepatic expression of lipogenic genes was lower, while that of lipolytic genes was greater in LC8 Tg mice than WT mice, which might be associated with resistance of LC8 Tg mice to hepatic steatosis. Consumption of an MCD diet caused oxidative stress, IκBα phosphorylation, and subsequent p65 liberation from IκBα and nuclear translocation, resulting in induction of proinflammatory cytokines and chemokines. However, these effects of MCD diet were reduced by LC8 overexpression. Collectively, these results suggest that LC8 alleviates MCD diet-induced NASH by inhibiting NF-κB through binding to IκBα to interfere with IκBα phosphorylation and by reducing oxidative stress via scavenging reactive oxygen species. Thus, boosting intracellular LC8 could be a potential therapeutic strategy for patients with NASH.
Collapse
Affiliation(s)
- Gong-Rak Lee
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Hye In Lee
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Narae Kim
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Jiae Lee
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Minjeong Kwon
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Ye Hee Kang
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Hyeong Ju Song
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Chang-Yeol Yeo
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| | - Woojin Jeong
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Korea
| |
Collapse
|
9
|
Morán-Costoya A, Proenza AM, Gianotti M, Lladó I, Valle A. Sex Differences in Nonalcoholic Fatty Liver Disease: Estrogen Influence on the Liver-Adipose Tissue Crosstalk. Antioxid Redox Signal 2021; 35:753-774. [PMID: 33736456 DOI: 10.1089/ars.2021.0044] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: Nonalcoholic fatty liver disease (NAFLD) is a hepatic and systemic disorder with a complex multifactorial pathogenesis. Owing to the rising incidence of obesity and diabetes mellitus, the prevalence of NAFLD and its impact on global health care are expected to increase in the future. Differences in NAFLD exist between males and females, and among females depending on their reproductive status. Clinical and preclinical data show that females in the fertile age are more protected against NAFLD, and studies in postmenopausal women and ovariectomized animal models support a protective role for estrogens. Recent Advances: An efficient crosstalk between the liver and adipose tissue is necessary to regulate lipid and glucose metabolism, protecting the liver from steatosis and insulin resistance contributing to NALFD. New advances in the knowledge of sexual dimorphism in liver and adipose tissue are providing interesting clues about the sex differences in NAFLD pathogenesis that could inspire new therapeutic strategies. Critical Issues: Sex hormones influence key master regulators of lipid metabolism and oxidative stress in liver and adipose tissue. All these sex-biased metabolic adjustments shape the crosstalk between liver and adipose tissue, contributing to the higher protection of females to NAFLD. Future Directions: The development of novel drugs based on the protective action of estrogens, but without its feminizing or undesired side effects, might provide new therapeutic strategies for the management of NAFLD. Antioxid. Redox Signal. 35, 753-774.
Collapse
Affiliation(s)
- Andrea Morán-Costoya
- Energy Metabolism and Nutrition Group, Department of Fundamental Biology and Health Sciences, Research Institute of Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Ana M Proenza
- Energy Metabolism and Nutrition Group, Department of Fundamental Biology and Health Sciences, Research Institute of Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.,Center for Biomedical Research in the Pathophysiology of Obesity and Nutrition Network, Carlos III Health Institute, Madrid, Spain
| | - Magdalena Gianotti
- Energy Metabolism and Nutrition Group, Department of Fundamental Biology and Health Sciences, Research Institute of Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.,Center for Biomedical Research in the Pathophysiology of Obesity and Nutrition Network, Carlos III Health Institute, Madrid, Spain
| | - Isabel Lladó
- Energy Metabolism and Nutrition Group, Department of Fundamental Biology and Health Sciences, Research Institute of Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.,Center for Biomedical Research in the Pathophysiology of Obesity and Nutrition Network, Carlos III Health Institute, Madrid, Spain
| | - Adamo Valle
- Energy Metabolism and Nutrition Group, Department of Fundamental Biology and Health Sciences, Research Institute of Health Sciences (IUNICS), University of the Balearic Islands, Palma, Spain.,Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.,Center for Biomedical Research in the Pathophysiology of Obesity and Nutrition Network, Carlos III Health Institute, Madrid, Spain
| |
Collapse
|
10
|
Longo M, Meroni M, Paolini E, Macchi C, Dongiovanni P. Mitochondrial dynamics and nonalcoholic fatty liver disease (NAFLD): new perspectives for a fairy-tale ending? Metabolism 2021; 117:154708. [PMID: 33444607 DOI: 10.1016/j.metabol.2021.154708] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/12/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) includes a broad spectrum of liver dysfunctions and it is predicted to become the primary cause of liver failure and hepatocellular carcinoma. Mitochondria are highly dynamic organelles involved in multiple metabolic/bioenergetic pathways in the liver. Emerging evidence outlined that hepatic mitochondria adapt in number and functionality in response to external cues, as high caloric intake and obesity, by modulating mitochondrial biogenesis, and maladaptive mitochondrial response has been described from the early stages of NAFLD. Indeed, mitochondrial plasticity is lost in progressive NAFLD and these organelles may assume an aberrant phenotype to drive or contribute to hepatocarcinogenesis. Severe alimentary regimen and physical exercise represent the cornerstone for NAFLD care, although the low patients' compliance is urging towards the discovery of novel pharmacological treatments. Mitochondrial-targeted drugs aimed to recover mitochondrial lifecycle and to modulate oxidative stress are becoming attractive molecules to be potentially introduced for NAFLD management. Although the path guiding the switch from bench to bedside remains tortuous, the study of mitochondrial dynamics is providing intriguing perspectives for future NAFLD healthcare.
Collapse
Affiliation(s)
- Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, 20122 Milan, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milano, Italy
| | - Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, 20122 Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milano, Italy
| | - Erika Paolini
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, 20122 Milan, Italy; Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy
| | - Chiara Macchi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, 20122 Milan, Italy.
| |
Collapse
|
11
|
PGC-1s in the Spotlight with Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22073487. [PMID: 33800548 PMCID: PMC8036867 DOI: 10.3390/ijms22073487] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease is one of the most common neurodegenerative disorders worldwide, characterized by a progressive loss of dopaminergic neurons mainly localized in the substantia nigra pars compacta. In recent years, the detailed analyses of both genetic and idiopathic forms of the disease have led to a better understanding of the molecular and cellular pathways involved in PD, pointing to the centrality of mitochondrial dysfunctions in the pathogenic process. Failure of mitochondrial quality control is now considered a hallmark of the disease. The peroxisome proliferator-activated receptor gamma coactivator 1 (PGC-1) family acts as a master regulator of mitochondrial biogenesis. Therefore, keeping PGC-1 level in a proper range is fundamental to guarantee functional neurons. Here we review the major findings that tightly bond PD and PGC-1s, raising important points that might lead to future investigations.
Collapse
|
12
|
Azzu V, Vacca M, Kamzolas I, Hall Z, Leslie J, Carobbio S, Virtue S, Davies SE, Lukasik A, Dale M, Bohlooly-Y M, Acharjee A, Lindén D, Bidault G, Petsalaki E, Griffin JL, Oakley F, Allison MED, Vidal-Puig A. Suppression of insulin-induced gene 1 (INSIG1) function promotes hepatic lipid remodelling and restrains NASH progression. Mol Metab 2021; 48:101210. [PMID: 33722690 PMCID: PMC8094910 DOI: 10.1016/j.molmet.2021.101210] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/19/2021] [Accepted: 03/06/2021] [Indexed: 01/22/2023] Open
Abstract
Objective Non-alcoholic fatty liver disease (NAFLD) is a silent pandemic associated with obesity and the metabolic syndrome, and also increases cardiovascular- and cirrhosis-related morbidity and mortality. A complete understanding of adaptive compensatory metabolic programmes that modulate non-alcoholic steatohepatitis (NASH) progression is lacking. Methods and results Transcriptomic analysis of liver biopsies in patients with NASH revealed that NASH progression is associated with rewiring of metabolic pathways, including upregulation of de novo lipid/cholesterol synthesis and fatty acid remodelling. The modulation of these metabolic programmes was achieved by activating sterol regulatory element-binding protein (SREBP) transcriptional networks; however, it is still debated whether, in the context of NASH, activation of SREBPs acts as a pathogenic driver of lipotoxicity, or rather promotes the biosynthesis of protective lipids that buffer excessive lipid accumulation, preventing inflammation and fibrosis. To elucidate the pathophysiological role of SCAP/SREBP in NASH and wound-healing response, we used an Insig1 deficient (with hyper-efficient SREBPs) murine model challenged with a NASH-inducing diet. Despite enhanced lipid and cholesterol biosynthesis, Insig1 KO mice had similar systemic metabolism and insulin sensitivity to Het/WT littermates. Moreover, activating SREBPs resulted in remodelling the lipidome, decreased hepatocellular damage, and improved wound-healing responses. Conclusions Our study provides actionable knowledge about the pathways and mechanisms involved in NAFLD pathogenesis, which may prove useful for developing new therapeutic strategies. Our results also suggest that the SCAP/SREBP/INSIG1 trio governs transcriptional programmes aimed at protecting the liver from lipotoxic insults in NASH. Human NASH biopsies’ transcriptomics analysis features metabolic pathway rewiring. SCAP/SREBP/INSIG1 modulation promotes lipid/cholesterol synthesis/remodelling in NASH. Loss of Insig1 promotes lipid remodelling, preventing hepatic lipotoxicity in NASH. Loss of Insig1 improves liver damage and wound healing and restrains NASH progression.
Collapse
Affiliation(s)
- Vian Azzu
- Wellcome Trust/MRC Institute of Metabolic Science, Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Liver Unit, Cambridge NIHR Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Department of Gastroenterology and Hepatology, Norfolk and Norwich University Hospitals, Norwich, UK
| | - Michele Vacca
- Wellcome Trust/MRC Institute of Metabolic Science, Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK; Clinica Medica Cesare Frugoni, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Ioannis Kamzolas
- Wellcome Trust/MRC Institute of Metabolic Science, Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
| | - Zoe Hall
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK; Biomolecular Medicine, Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Jack Leslie
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, 5 Newcastle University, Newcastle upon Tyne, UK
| | - Stefania Carobbio
- Wellcome Trust/MRC Institute of Metabolic Science, Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Samuel Virtue
- Wellcome Trust/MRC Institute of Metabolic Science, Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Susan E Davies
- Department of Pathology, Cambridge University Hospitals, Cambridge, UK
| | - Agnes Lukasik
- Wellcome Trust/MRC Institute of Metabolic Science, Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Martin Dale
- Wellcome Trust/MRC Institute of Metabolic Science, Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Mohammad Bohlooly-Y
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Animesh Acharjee
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK; College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Centre for Computational Biology, University of Birmingham, UK
| | - Daniel Lindén
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; Division of Endocrinology, Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Guillaume Bidault
- Wellcome Trust/MRC Institute of Metabolic Science, Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Evangelia Petsalaki
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
| | - Julian L Griffin
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK; Biomolecular Medicine, Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Fiona Oakley
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, 5 Newcastle University, Newcastle upon Tyne, UK
| | - Michael E D Allison
- Liver Unit, Cambridge NIHR Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| | - Antonio Vidal-Puig
- Wellcome Trust/MRC Institute of Metabolic Science, Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Wellcome Trust Sanger Institute, Hinxton, UK; Cambridge University Nanjing Centre of Technology and Innovation, Jiangbei, Nanjing, China.
| |
Collapse
|
13
|
Increased risk of acute liver failure by pain killer drugs in NAFLD: Focus on nuclear receptors and their coactivators. Dig Liver Dis 2021; 53:26-34. [PMID: 32546444 DOI: 10.1016/j.dld.2020.05.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/05/2020] [Accepted: 05/18/2020] [Indexed: 02/08/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a global condition characterized by an accumulation of lipids in the hepatocytes. NAFLD ranges from simple steatosis, a reversible and relatively benign condition, to fibrosis with non-alcoholic steatohepatitis (NASH), potentially leading to cirrhosis and hepatocarcinoma. NAFLD can increase the susceptibility to severe liver injury with eventual acute liver failure induced by specific hepatotoxic drugs, including acetaminophen (APAP), which is commonly used as analgesic and antipyretic. Although several animal models have been used to clarify the predisposing role of hepatic steatosis to APAP intoxication, the exact mechanism is still not clear. Here, we shed a light into the association between NAFLD and APAP toxicity by examining the peculiar role of nuclear receptor peroxisome proliferator-activated receptor α (PPARα) and coactivator peroxisome proliferator-activated receptor gamma coactivator 1-β (PGC-1β) in driving fatty acid metabolism, inflammation and mitochondria redox balance. The knowledge of the mechanism that exposes patients with NAFLD to higher risk of acute liver failure by pain killer drug is the first step to eventually claim for a reduction of the maximal diurnal dose of APAP for subjects with liver steatosis.
Collapse
|
14
|
Wan X, Zhu X, Wang H, Feng Y, Zhou W, Liu P, Shen W, Zhang L, Liu L, Li T, Diao D, Yang F, Zhao Q, Chen L, Ren J, Yan S, Li J, Yu C, Ju Z. PGC1α protects against hepatic steatosis and insulin resistance via enhancing IL10-mediated anti-inflammatory response. FASEB J 2020; 34:10751-10761. [PMID: 32633848 DOI: 10.1096/fj.201902476r] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 05/20/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023]
Abstract
Inflammatory responses are pivotal incidences in hepatic metabolic derangements. However, the underlying mechanism remains elusive. The present study aimed to evaluate the role of peroxisome proliferator-activated receptor-gamma, coactivator 1 alpha (PGC1α) in IL10-mediated anti-inflammatory response, and its role in hepatic steatosis and insulin resistance. Hepatocyte-specific PGC1α knock-in (LivPGC1α) mice and the control mice were fed high-fat diet (HFD) for 8 weeks. IL-10 neutralizing antibody was injected into the liver of PGC1α mice. A variety of biological and histological approaches were applied to assess hepatic function. We demonstrated that hepatic PGC1α expression was significantly reduced in mice fed HFD. LivPGC1α livers exhibited enhanced gene expressions involving mitochondrial function, and favored an accelerated lipid metabolism upon HFD. Meanwhile, LivPGC1α mice revealed improved hepatic steatosis and insulin resistance. Mechanistically, PGC1α bound and activated the promotor region of IL-10, thereby attenuating inflammatory response in the liver. Administration of IL10 neutralizing antibody to LivPGC1α mice abolished PGC1α-mediated anti-inflammatory effects in mice. Further, IL-10 neutralizing antibody intervention aggravated hepatic steatosis and insulin resistance in LivPGC1α mice. Taken together, our data indicated that hepatic-specific overexpression of PGC1α exerts a beneficial role in the regulation of hepatic steatosis and insulin resistance via enhancing IL10-mediated anti-inflammatory response. Pharmacological activation of PGC1α-IL10 axis may be promising for the treatment of fatty liver diseases.
Collapse
Affiliation(s)
- Xingyong Wan
- Department of Gastroenterology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xudong Zhu
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Hu Wang
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Ye Feng
- Department of Gastroenterology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weihua Zhou
- Department of Gastroenterology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Pathology, Sanmen People's Hospital, Taizhou, China
| | - Peihao Liu
- Department of Gastroenterology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weiyan Shen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Lingling Zhang
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Leiming Liu
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Tangliang Li
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Daojun Diao
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Fan Yang
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Qi Zhao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Li Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jian Ren
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Sheng Yan
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Li
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Chaohui Yu
- Department of Gastroenterology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhenyu Ju
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
15
|
Azzu V, Vacca M, Virtue S, Allison M, Vidal-Puig A. Adipose Tissue-Liver Cross Talk in the Control of Whole-Body Metabolism: Implications in Nonalcoholic Fatty Liver Disease. Gastroenterology 2020; 158:1899-1912. [PMID: 32061598 DOI: 10.1053/j.gastro.2019.12.054] [Citation(s) in RCA: 220] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/20/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023]
Abstract
Adipose tissue and the liver play significant roles in the regulation of whole-body energy homeostasis, but they have not evolved to cope with the continuous, chronic, nutrient surplus seen in obesity. In this review, we detail how prolonged metabolic stress leads to adipose tissue dysfunction, inflammation, and adipokine release that results in increased lipid flux to the liver. Overall, the upshot of hepatic fat accumulation alongside an insulin-resistant state is that hepatic lipid enzymatic pathways are modulated and overwhelmed, resulting in the selective buildup of toxic lipid species, which worsens the pro-inflammatory and pro-fibrotic shift observed in nonalcoholic steatohepatitis.
Collapse
Affiliation(s)
- Vian Azzu
- Wellcome Trust-Medical Research Council Institute of Metabolic Science-Metabolic Research Laboratories, Addenbrooke's Hospital; The Liver Unit, Department of Medicine, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge Biomedical Campus, Hills Road, Cambridge.
| | - Michele Vacca
- Wellcome Trust-Medical Research Council Institute of Metabolic Science-Metabolic Research Laboratories, Addenbrooke's Hospital
| | - Samuel Virtue
- Wellcome Trust-Medical Research Council Institute of Metabolic Science-Metabolic Research Laboratories, Addenbrooke's Hospital
| | - Michael Allison
- The Liver Unit, Department of Medicine, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge Biomedical Campus, Hills Road, Cambridge
| | - Antonio Vidal-Puig
- Wellcome Trust-Medical Research Council Institute of Metabolic Science-Metabolic Research Laboratories, Addenbrooke's Hospital; Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
16
|
Piccinin E, Arconzo M, Graziano G, Vacca M, Peres C, Bellafante E, Villani G, Moschetta A. Hepatic microRNA Expression by PGC-1α and PGC-1β in the Mouse. Int J Mol Sci 2019; 20:ijms20225735. [PMID: 31731670 PMCID: PMC6888418 DOI: 10.3390/ijms20225735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023] Open
Abstract
The fine-tuning of liver metabolism is essential to maintain the whole-body homeostasis and to prevent the onset of diseases. The peroxisome proliferator-activated receptor-γ coactivators (PGC-1s) are transcriptional key players of liver metabolism, able to regulate mitochondrial function, gluconeogenesis and lipid metabolism. Their activity is accurately modulated by post-translational modifications. Here, we showed that specific PGC-1s expression can lead to the upregulation of different microRNAs widely implicated in liver physiology and diseases development and progression, thus offering a new layer of complexity in the control of hepatic metabolism.
Collapse
Affiliation(s)
- Elena Piccinin
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy or
| | - Maria Arconzo
- INBB, National Institute for Biostuctures and Biosystems, 00136 Rome, Italy; (M.A.); (G.G.); (C.P.)
| | - Giusi Graziano
- INBB, National Institute for Biostuctures and Biosystems, 00136 Rome, Italy; (M.A.); (G.G.); (C.P.)
| | - Michele Vacca
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK;
| | - Claudia Peres
- INBB, National Institute for Biostuctures and Biosystems, 00136 Rome, Italy; (M.A.); (G.G.); (C.P.)
| | - Elena Bellafante
- Fondazione Mario Negri Sud, Santa Maria Imbaro, 66030 Chieti, Italy;
| | - Gaetano Villani
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, “Aldo Moro” University of Bari, 70124 Bari, Italy;
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy or
- INBB, National Institute for Biostuctures and Biosystems, 00136 Rome, Italy; (M.A.); (G.G.); (C.P.)
- Correspondence: or ; Tel.: +39-080-559-3262
| |
Collapse
|
17
|
PGC-1β Induces Susceptibility To Acetaminophen-Driven Acute Liver Failure. Sci Rep 2019; 9:16821. [PMID: 31727907 PMCID: PMC6856160 DOI: 10.1038/s41598-019-53015-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/24/2019] [Indexed: 01/07/2023] Open
Abstract
Acetaminophen (APAP) is a worldwide commonly used painkiller drug. However, high doses of APAP can lead to acute hepatic failure and, in some cases, death. Previous studies indicated that different factors, including life-style and metabolic diseases, could predispose to the risk of APAP-induced liver failure. However, the molecular process that could favor APAP hepatotoxicity remains understood. Here, we reported that a short-term high fat-enriched diet worsens APAP-induced liver damage, by promoting liver accumulation of lipids that induces the activation of peroxisome proliferator-activated receptor gamma coactivator 1-beta (PGC-1β). Therefore, we challenged mice with hepatic-specific PGC-1β overexpression on a chow diet with a subtoxic dose of APAP and we found that PGC-1β overexpression renders the liver more sensitive to APAP damage, mainly due to intense oxidative stress, finally ending up with liver necrosis and mice death. Overall, our results indicated that during high fat feeding, PGC-1β adversely influences the ability of the liver to overcome APAP toxicity by orchestrating different metabolic pathways that finally lead to fatal outcome.
Collapse
|
18
|
Yang D, Wan Y. Molecular determinants for the polarization of macrophage and osteoclast. Semin Immunopathol 2019; 41:551-563. [PMID: 31506868 PMCID: PMC6815265 DOI: 10.1007/s00281-019-00754-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/29/2019] [Indexed: 12/31/2022]
Abstract
Emerging evidence suggest that macrophage and osteoclast are two competing differentiation outcomes from myeloid progenitors. In this review, we summarize recent advances in the understanding of the molecular mechanisms controlling the polarization of macrophage and osteoclast. These include nuclear receptors/transcription factors such as peroxisome proliferator-activated receptor γ (PPARγ) and estrogen-related receptor α (ERRα), their transcription cofactor PPARγ coactivator 1-β (PGC-1β), metabolic factors such as mitochondrial complex I (CI) component NADH:ubiquinone oxidoreductase iron-sulfur protein 4 (Ndufs4), as well as transmembrane receptors such as very-low-density-lipoprotein receptor (VLDLR). These molecular rheostats promote osteoclast differentiation but suppress proinflammatory macrophage activation and inflammation, by acting lineage-intrinsically, systemically or cross generation. These findings provide new insights to the understanding of the interactions between innate immunity and bone remodeling, advancing the field of osteoimmunology.
Collapse
Affiliation(s)
- Dengbao Yang
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yihong Wan
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
19
|
Zhang T, Duan J, Zhang L, Li Z, Steer CJ, Yan G, Song G. LXRα Promotes Hepatosteatosis in Part Through Activation of MicroRNA-378 Transcription and Inhibition of Ppargc1β Expression. Hepatology 2019; 69:1488-1503. [PMID: 30281809 PMCID: PMC6519356 DOI: 10.1002/hep.30301] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a major risk factor of many end-stage liver diseases. Alterations in microRNA expression have been reported in patients with NAFLD. However, the transcriptional mechanism(s) of dysregulated microRNAs under the state of NAFLD is poorly described, and microRNAs that regulate the pathogenesis of NAFLD synergistically with their regulators remain unknown. Here we report that microRNA-378 expression is significantly increased in fatty livers of mice and patients with NAFLD. Although microRNA-378 locates within the intron of Ppargc1β (peroxisome proliferator-activated receptor γ coactivator 1-beta), there was a significant uncoupling of Ppargc1β mRNA and microRNA-378 levels in both sources of fatty livers. Further studies identified a full-length primary transcript of microRNA-378. LXRα (liver X receptor alpha) functioned as a transcription activator of microRNA-378 and a repressor of Ppargc1β transcription. It is known that miR-378 is an inhibitor of fatty acid oxidation (FAO) and the function of Ppargc1β is opposite to that of miR-378. GW3965 treatment (LXRα agonist) of murine hepatocytes and mice increased microRNA-378 and reduced Ppargc1β, which subsequently impaired FAO and aggravated hepatosteatosis. In contrast, additional treatment of miR-378 inhibitor or Ppargc1β, which knocked down increased miR-378 or recovered expression of Ppargc1β, offset the effects of GW3965. Liver-specific ablation of Lxrα led to decreased miR-378 and increased Ppargc1β, which subsequently improved FAO and reduced hepatosteatosis. Conclusion: Our findings indicated that miR-378 possesses its own transcription machinery, which challenges the well-established dogma that miR-378 transcription is controlled by the promoter of Ppargc1β. LXRα selectively activates transcription of miR-378 and inhibits expression of Ppargc1β, which synergistically impairs FAO. In addition to lipogenesis, impaired FAO by miR-378 in part contributes to LXRα-induced hepatosteatosis.
Collapse
Affiliation(s)
- Tianpeng Zhang
- Department of MedicineUniversity of Minnesota Medical SchoolMinneapolisMinnesota
| | - Jiangyan Duan
- School of Life ScienceShanxi Normal UniversityLinfen CityChina
| | - Lei Zhang
- Department of Emergency SurgeryUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Zhuoyu Li
- Institute of BiotechnologyShanxi UniversityTaiyuanChina
| | - Clifford J. Steer
- Department of MedicineUniversity of Minnesota Medical SchoolMinneapolisMinnesota
- Department of Genetics, Cell Biology and DevelopmentUniversity of MinnesotaMinneapolisMinnesota
| | - Guiqin Yan
- School of Life ScienceShanxi Normal UniversityLinfen CityChina
| | - Guisheng Song
- Department of MedicineUniversity of Minnesota Medical SchoolMinneapolisMinnesota
- School of Life ScienceShanxi Normal UniversityLinfen CityChina
- Institute of BiotechnologyShanxi UniversityTaiyuanChina
| |
Collapse
|
20
|
Handa P, Thomas S, Morgan-Stevenson V, Maliken BD, Gochanour E, Boukhar S, Yeh MM, Kowdley KV. Iron alters macrophage polarization status and leads to steatohepatitis and fibrogenesis. J Leukoc Biol 2019; 105:1015-1026. [PMID: 30835899 DOI: 10.1002/jlb.3a0318-108r] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 01/21/2019] [Accepted: 02/14/2019] [Indexed: 12/12/2022] Open
Abstract
We have previously demonstrated that iron overload in hepatic reticuloendothelial system cells (RES) is associated with severe nonalcoholic steatohepatitis (NASH) and advanced fibrosis in patients with nonalcoholic fatty liver disease (NAFLD). Recruited myeloid-derived macrophages have gained a pivotal position as drivers of NASH progression and fibrosis. In this study, we used bone marrow-derived macrophages (BMDM) from C57Bl6 mice as surrogates for recruited macrophages and examined the effect of iron on macrophage polarization. Treatment with iron (ferric ammonium citrate, FAC) led to increased expression levels of M1 markers: CCL2, CD14, iNOS, IL-1β, IL-6, and TNF-α; it also increased protein levels of CD68, TNF-α, IL-1β, and IL-6 by flow cytometry. This effect could be reversed by desferrioxamine, an iron chelator. Furthermore, iron loading of macrophages in the presence of IL-4 led to the down-regulation of M2 markers: arginase-1, Mgl-1, and M2-specific transcriptional regulator, KLF4. Iron loading of macrophages with IL-4 also resulted in reduced phosphorylation of STAT6, another transcriptional regulator of M2 activation. Dietary iron overload of C57Bl6 mice led to hepatic macrophage M1 activation. Iron overload also stimulated hepatic fibrogenesis. Histologic analysis revealed that iron overload resulted in steatohepatitis. Furthermore, NAFLD patients with hepatic RES iron deposition had increased hepatic gene expression levels of M1 markers, IL-6, IL-1β, and CD40 and reduced gene expression of an M2 marker, TGM2, relative to patients with hepatocellular iron deposition pattern. We conclude that iron disrupts the balance between M1/M2 macrophage polarization and leads to macrophage-driven inflammation and fibrogenesis in NAFLD.
Collapse
Affiliation(s)
- Priya Handa
- Organ Care Research and Liver Care Network, Seattle, Washington, USA
| | - Sunil Thomas
- University of Washington, School of Medicine, Seattle, Washington, USA
| | | | - Bryan D Maliken
- University of Cincinnati College of Medicine, Medical Scientist Training Program, Cincinnati, Ohio, USA
| | - Eric Gochanour
- Organ Care Research and Liver Care Network, Seattle, Washington, USA
| | - Sarag Boukhar
- University of Washington, School of Medicine, Seattle, Washington, USA
| | - Matthew M Yeh
- University of Washington, School of Medicine, Seattle, Washington, USA
| | - Kris V Kowdley
- Organ Care Research and Liver Care Network, Seattle, Washington, USA
| |
Collapse
|
21
|
Metabolic aspects in NAFLD, NASH and hepatocellular carcinoma: the role of PGC1 coactivators. Nat Rev Gastroenterol Hepatol 2019; 16:160-174. [PMID: 30518830 DOI: 10.1038/s41575-018-0089-3] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alterations of hepatic metabolism are critical to the development of liver disease. The peroxisome proliferator-activated receptor-γ coactivators (PGC1s) are able to orchestrate, on a transcriptional level, different aspects of liver metabolism, such as mitochondrial oxidative phosphorylation, gluconeogenesis and fatty acid synthesis. As modifications affecting both mitochondrial and lipid metabolism contribute to the initiation and/or progression of liver steatosis, nonalcoholic fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC), a link between disrupted PGC1 pathways and onset of these pathological conditions has been postulated. However, despite the large quantity of studies, the scenario is still not completely understood, and some issues remain controversial. Here, we discuss the roles of PGC1s in healthy liver and explore their contribution to the pathogenesis and future therapy of NASH and HCC.
Collapse
|
22
|
Li M, Hao Z, Wanlong Z, Zhengkun W. Seasonal variations of adipose tissue in Tupaia belangeri (Mammalia: Scandentia: Tupaiidae). THE EUROPEAN ZOOLOGICAL JOURNAL 2019. [DOI: 10.1080/24750263.2019.1572798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- M. Li
- Key Laboratory of Adaptive Evolution and Ecological Conservation on Plants and Animals in Southwest Mountain Ecosystem of Yunnan Higher Education Institutes, School of Life Sciences, Yunnan Normal University, Kunming, People’s Republic of China
| | - Z. Hao
- Key Laboratory of Adaptive Evolution and Ecological Conservation on Plants and Animals in Southwest Mountain Ecosystem of Yunnan Higher Education Institutes, School of Life Sciences, Yunnan Normal University, Kunming, People’s Republic of China
| | - Z. Wanlong
- Key Laboratory of Adaptive Evolution and Ecological Conservation on Plants and Animals in Southwest Mountain Ecosystem of Yunnan Higher Education Institutes, School of Life Sciences, Yunnan Normal University, Kunming, People’s Republic of China
| | - W. Zhengkun
- Key Laboratory of Adaptive Evolution and Ecological Conservation on Plants and Animals in Southwest Mountain Ecosystem of Yunnan Higher Education Institutes, School of Life Sciences, Yunnan Normal University, Kunming, People’s Republic of China
| |
Collapse
|
23
|
del Carmen Baez M, Tarán M, Moya M, de la Paz Scribano Parada M. Oxidative Stress in Metabolic Syndrome: Experimental Model of Biomarkers. MODULATION OF OXIDATIVE STRESS IN HEART DISEASE 2019:313-338. [DOI: 10.1007/978-981-13-8946-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
24
|
Balampanis K, Chasapi A, Kourea E, Tanoglidi A, Hatziagelaki E, Lambadiari V, Dimitriadis G, Lambrou GI, Kalfarentzos F, Melachrinou M, Sotiropoulou-Bonikou G. Inter-tissue expression patterns of the key metabolic biomarker PGC-1α in severely obese individuals: Implication in obesity-induced disease. Hellenic J Cardiol 2018; 60:282-293. [PMID: 30138744 DOI: 10.1016/j.hjc.2018.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/29/2018] [Accepted: 08/03/2018] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE PGC-1α is already known as a significant regulator of mitochondrial biogenesis, oxidative phosphorylation and fatty acid metabolism. Our study focuses on the role of PGC1α in morbid obesity, in five different tissues, collected from 50 severely obese patients during planned bariatric surgery. METHODS The investigated tissues included subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), skeletal muscle (SM), extramyocellular adipose tissue (EMAT) and liver. PGC1α expression was investigated with immunohistochemistry and evaluated with microscopy. RESULTS Our findings highlighted significant positive inter-tissue correlations regarding PGC-1α expression between several tissue pairs (VAT-SAT, VAT-SM, VAT-EMAT, SAT-SM, SAT-EMAT, SM-EMAT). Moreover, we found significant negative correlations between PGC1α expression in VAT with CD68 expression in skeletal muscle and EMAT, implying a possible protective role of PGC1α against obesity-induced inflammation. CONCLUSION Unmasking the inter-tissue communication networks regarding PGC-1α expression in morbid obesity, will give more insight into its significant role in obesity-induced diseases. PGC1α could potentially represent a future preventive and therapeutic target against obesity-induced disease, probably through enhancing mitochondrial biogenesis and metabolism.
Collapse
Affiliation(s)
- Konstantinos Balampanis
- Department of Pathology, Medical School, University of Patras, 26500 Patras, Greece; Second Department of Internal Medicine, Research Unit and Diabetes Center, Attikon University Hospital, National and Kapodistrian University of Athens, Medical School, Rimini 1, Haidari, 12462 Athens, Greece.
| | - Athina Chasapi
- Department of Pathology, Medical School, University of Patras, 26500 Patras, Greece.
| | - Eleni Kourea
- Department of Pathology, Medical School, University of Patras, 26500 Patras, Greece.
| | - Anna Tanoglidi
- Department of Clinical Pathology, Akademiska University, Uppsala, Sweden.
| | - Erifili Hatziagelaki
- Second Department of Internal Medicine, Research Unit and Diabetes Center, Attikon University Hospital, National and Kapodistrian University of Athens, Medical School, Rimini 1, Haidari, 12462 Athens, Greece.
| | - Vaia Lambadiari
- Second Department of Internal Medicine, Research Unit and Diabetes Center, Attikon University Hospital, National and Kapodistrian University of Athens, Medical School, Rimini 1, Haidari, 12462 Athens, Greece.
| | - George Dimitriadis
- Second Department of Internal Medicine, Research Unit and Diabetes Center, Attikon University Hospital, National and Kapodistrian University of Athens, Medical School, Rimini 1, Haidari, 12462 Athens, Greece.
| | - George I Lambrou
- First Department of Pediatrics, Choremeio Research Laboratory, National and Kapodistrian University of Athens, Medical School, Thivon & Levadeias 8, Goudi, 11527 Athens, Greece.
| | - Fotios Kalfarentzos
- Department of Surgery, Medical School, University of Patras, 26500 Patras, Greece.
| | - Maria Melachrinou
- Department of Pathology, Medical School, University of Patras, 26500 Patras, Greece.
| | | |
Collapse
|
25
|
Piccinin E, Peres C, Bellafante E, Ducheix S, Pinto C, Villani G, Moschetta A. Hepatic peroxisome proliferator-activated receptor γ coactivator 1β drives mitochondrial and anabolic signatures that contribute to hepatocellular carcinoma progression in mice. Hepatology 2018; 67:884-898. [PMID: 28857232 DOI: 10.1002/hep.29484] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/24/2017] [Accepted: 08/28/2017] [Indexed: 01/09/2023]
Abstract
UNLABELLED The peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1β (PGC-1 β) is a master regulator of mitochondrial biogenesis and oxidative metabolism as well as of antioxidant defense. Specifically, in the liver, PGC-1β also promotes de novo lipogenesis, thus sustaining cellular anabolic processes. Given the relevant pathogenic role of mitochondrial and fatty acid metabolism in hepatocarcinoma (HCC), here we pointed to PGC-1β as a putative novel transcriptional player in the development and progression of HCC. For this purpose, we generated both hepatic-specific PGC-1β-overexpressing (LivPGC-1β) and PGC-1β knockout (LivPGC-1βKO) mice, and we challenged them with both chemical and genetic models of hepatic carcinogenesis. Our results demonstrate a pivotal role of PGC-1β in driving liver tumor development. Indeed, whereas mice overexpressing PGC-1β show greater tumor susceptibility, PGC-1β knockout mice are protected from carcinogenesis. High levels of PGC-1β are able to boost reactive oxygen species (ROS) scavenger expression, therefore limiting the detrimental ROS accumulation and, consequently, apoptosis. Moreover, it supports tumor anabolism, enhancing the expression of genes involved in fatty acid and triglyceride synthesis. Accordingly, the specific hepatic ablation of PGC-1β promotes the accumulation of ROS-driven macromolecule damage, finally limiting tumor growth. CONCLUSION The present data elect hepatic PGC-1β as a transcriptional gatekeeper of mitochondrial function and redox status in HCC, orchestrating different metabolic programs that allow tumor progression. (Hepatology 2018;67:884-898).
Collapse
Affiliation(s)
- Elena Piccinin
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, Bari, Italy.,INBB, National Institute for Biostuctures and Biosystems, Rome, Italy
| | - Claudia Peres
- INBB, National Institute for Biostuctures and Biosystems, Rome, Italy
| | | | - Simon Ducheix
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, Bari, Italy.,INBB, National Institute for Biostuctures and Biosystems, Rome, Italy
| | - Claudio Pinto
- Fondazione Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| | - Gaetano Villani
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, "Aldo Moro" University of Bari, Bari, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, Bari, Italy.,National Cancer Center, IRCCS "Giovanni Paolo II", 70124, Bari, Italy
| |
Collapse
|
26
|
Abstract
Triglyceride molecules represent the major form of storage and transport of fatty acids within cells and in the plasma. The liver is the central organ for fatty acid metabolism. Fatty acids accrue in liver by hepatocellular uptake from the plasma and by de novo biosynthesis. Fatty acids are eliminated by oxidation within the cell or by secretion into the plasma within triglyceride-rich very low-density lipoproteins. Notwithstanding high fluxes through these pathways, under normal circumstances the liver stores only small amounts of fatty acids as triglycerides. In the setting of overnutrition and obesity, hepatic fatty acid metabolism is altered, commonly leading to the accumulation of triglycerides within hepatocytes, and to a clinical condition known as nonalcoholic fatty liver disease (NAFLD). In this review, we describe the current understanding of fatty acid and triglyceride metabolism in the liver and its regulation in health and disease, identifying potential directions for future research. Advances in understanding the molecular mechanisms underlying the hepatic fat accumulation are critical to the development of targeted therapies for NAFLD. © 2018 American Physiological Society. Compr Physiol 8:1-22, 2018.
Collapse
Affiliation(s)
- Michele Alves-Bezerra
- Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, USA
| | - David E Cohen
- Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, USA
| |
Collapse
|
27
|
Jiang XP, Ai WB, Wan LY, Zhang YQ, Wu JF. The roles of microRNA families in hepatic fibrosis. Cell Biosci 2017; 7:34. [PMID: 28680559 PMCID: PMC5496266 DOI: 10.1186/s13578-017-0161-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/26/2017] [Indexed: 12/17/2022] Open
Abstract
When hepatocytes are damaged severely, a variety of signaling pathways will be triggered by inflammatory factors and cytokines involving in the process of hepatic fibrosis. The microRNA (miRNA) family consists of several miRNAs which have the potential for synergistic regulation of these signaling pathways. However, it is poor to understand the roles of miRNA family as a whole in hepatic fibrosis. Increasing studies have suggested several miRNA families are related with activation of hepatic stellate cells and hepatic fibrosis through cooperatively regulating certain signaling pathways. During the process of hepatic fibrosis, miR-29 family primarily induces cell apoptosis by modulating phosphatidylinositol 3-kinase/AKT signaling pathway and regulates extracellular matrix accumulation. miR-34 family promotes the progression of hepatic fibrosis by inducing activation of hepatic stellate cells, while miR-378 family suppresses the process in Glis dependent manner. miR-15 family mainly promotes cell proliferation and induces apoptosis. The miR-199 family and miR-200 family are responsible for extracellular matrix deposition and the release of pro-fibrotic cytokines. These miRNA family members play pro-fibrotic or anti-fibrotic roles by targeting genes collectively or respectively which involve in hepatic fibrosis related signaling pathways and hepatic stellate cell activation. Thus, good understandings of molecular mechanisms which are based on miRNA families may provide new ideas for the molecular targeted therapy of hepatic fibrosis in the future.
Collapse
Affiliation(s)
- Xue-Ping Jiang
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, 8 Daxue Road, Xiling District, Yichang, 443002 China
| | - Wen-Bing Ai
- The Yiling Hospital of Yichang, 31 Donghu Road, Yi Ling District, Yichang, 443100 Hubei China
| | - Lin-Yan Wan
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, 8 Daxue Road, Xiling District, Yichang, 443002 China.,The RenMin Hospital, China Three Gorges University, 31 Huti Subdistrict, Xi Ling District, Yichang, 443000 Hubei China
| | - Yan-Qiong Zhang
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, 8 Daxue Road, Xiling District, Yichang, 443002 China
| | - Jiang-Feng Wu
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, 8 Daxue Road, Xiling District, Yichang, 443002 China
| |
Collapse
|
28
|
Hall Z, Bond NJ, Ashmore T, Sanders F, Ament Z, Wang X, Murray AJ, Bellafante E, Virtue S, Vidal‐Puig A, Allison M, Davies SE, Koulman A, Vacca M, Griffin JL. Lipid zonation and phospholipid remodeling in nonalcoholic fatty liver disease. Hepatology 2017; 65:1165-1180. [PMID: 27863448 PMCID: PMC5396354 DOI: 10.1002/hep.28953] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 11/11/2016] [Indexed: 12/19/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) can progress from simple steatosis (i.e., nonalcoholic fatty liver [NAFL]) to nonalcoholic steatohepatitis (NASH), cirrhosis, and cancer. Currently, the driver for this progression is not fully understood; in particular, it is not known how NAFLD and its early progression affects the distribution of lipids in the liver, producing lipotoxicity and inflammation. In this study, we used dietary and genetic mouse models of NAFL and NASH and translated the results to humans by correlating the spatial distribution of lipids in liver tissue with disease progression using advanced mass spectrometry imaging technology. We identified several lipids with distinct zonal distributions in control and NAFL samples and observed partial to complete loss of lipid zonation in NASH. In addition, we found increased hepatic expression of genes associated with remodeling the phospholipid membrane, release of arachidonic acid (AA) from the membrane, and production of eicosanoid species that promote inflammation and cell injury. The results of our immunohistochemistry analyses suggest that the zonal location of remodeling enzyme LPCAT2 plays a role in the change in spatial distribution for AA-containing lipids. This results in a cycle of AA-enrichment in pericentral hepatocytes, membrane release of AA, and generation of proinflammatory eicosanoids and may account for increased oxidative damage in pericentral regions in NASH. CONCLUSION NAFLD is associated not only with lipid enrichment, but also with zonal changes of specific lipids and their associated metabolic pathways. This may play a role in the heterogeneous development of NAFLD. (Hepatology 2017;65:1165-1180).
Collapse
Affiliation(s)
- Zoe Hall
- Department of Biochemistry and Cambridge Systems Biology CentreUniversity of CambridgeCambridgeUnited Kingdom
- MRC Human Nutrition ResearchCambridgeUnited Kingdom
| | | | - Tom Ashmore
- Department of Biochemistry and Cambridge Systems Biology CentreUniversity of CambridgeCambridgeUnited Kingdom
| | | | | | - Xinzhu Wang
- Department of Biochemistry and Cambridge Systems Biology CentreUniversity of CambridgeCambridgeUnited Kingdom
| | - Andrew J. Murray
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | | | - Sam Virtue
- Metabolic Research Laboratories, Wellcome Trust‐MRC Institute of Metabolic Science, Addenbrooke's HospitalUniversity of CambridgeCambridgeUnited Kingdom
| | - Antonio Vidal‐Puig
- Metabolic Research Laboratories, Wellcome Trust‐MRC Institute of Metabolic Science, Addenbrooke's HospitalUniversity of CambridgeCambridgeUnited Kingdom
| | - Michael Allison
- Liver Unit, Department of MedicineCambridge University Hospitals NHS Foundation TrustCambridgeUnited Kingdom
| | - Susan E. Davies
- Department of HistopathologyCambridge University Hospitals NHS Foundation TrustCambridgeUnited Kingdom
| | | | - Michele Vacca
- Department of Biochemistry and Cambridge Systems Biology CentreUniversity of CambridgeCambridgeUnited Kingdom
- MRC Human Nutrition ResearchCambridgeUnited Kingdom
- Metabolic Research Laboratories, Wellcome Trust‐MRC Institute of Metabolic Science, Addenbrooke's HospitalUniversity of CambridgeCambridgeUnited Kingdom
| | - Julian L. Griffin
- Department of Biochemistry and Cambridge Systems Biology CentreUniversity of CambridgeCambridgeUnited Kingdom
- MRC Human Nutrition ResearchCambridgeUnited Kingdom
| |
Collapse
|
29
|
Galmés-Pascual BM, Nadal-Casellas A, Bauza-Thorbrügge M, Sbert-Roig M, García-Palmer FJ, Proenza AM, Gianotti M, Lladó I. 17β-estradiol improves hepatic mitochondrial biogenesis and function through PGC1B. J Endocrinol 2017; 232:297-308. [PMID: 27885055 DOI: 10.1530/joe-16-0350] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/24/2016] [Indexed: 11/08/2022]
Abstract
Sexual dimorphism in mitochondrial biogenesis and function has been described in many rat tissues, with females showing larger and more functional mitochondria. The family of the peroxisome proliferator-activated receptor gamma coactivator 1 (PGC1) plays a central role in the regulatory network governing mitochondrial biogenesis and function, but little is known about the different contribution of hepatic PGC1A and PGC1B in these processes. The aim of this study was to elucidate the role of 17β-estradiol (E2) in mitochondrial biogenesis and function in liver and assess the contribution of both hepatic PGC1A and PGC1B as mediators of these effects. In ovariectomized (OVX) rats (half of which were treated with E2) estrogen deficiency led to impaired mitochondrial biogenesis and function, increased oxidative stress, and defective lipid metabolism, but was counteracted by E2 treatment. In HepG2 hepatocytes, the role of E2 in enhancing mitochondrial biogenesis and function was confirmed. These effects were unaffected by the knockdown of PGC1A, but were impaired when PGC1B expression was knocked down by specific siRNA. Our results reveal a widespread protective role of E2 in hepatocytes, which is explained by enhanced mitochondrial content and oxidative capacity, lower hepatic lipid accumulation, and a reduction of oxidative stress. We also suggest a novel hepatic protective role of PGC1B as a modulator of E2 effects on mitochondrial biogenesis and function supporting activation of PGC1B as a therapeutic target for hepatic mitochondrial disorders.
Collapse
Affiliation(s)
- Bel M Galmés-Pascual
- Departament de Biologia Fonamental i Ciències de la SalutGrup Metabolisme Energètic i Nutrició, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Illes Balears, Spain
- Institut d'Investigació Sanitària de Palma (IdISPa)Hospital Universitari Son Espases, Palma de Mallorca, Illes Balears, Spain
| | - Antonia Nadal-Casellas
- Departament de Biologia Fonamental i Ciències de la SalutGrup Metabolisme Energètic i Nutrició, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Illes Balears, Spain
| | - Marco Bauza-Thorbrügge
- Departament de Biologia Fonamental i Ciències de la SalutGrup Metabolisme Energètic i Nutrició, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Illes Balears, Spain
- Institut d'Investigació Sanitària de Palma (IdISPa)Hospital Universitari Son Espases, Palma de Mallorca, Illes Balears, Spain
| | - Miquel Sbert-Roig
- Departament de Biologia Fonamental i Ciències de la SalutGrup Metabolisme Energètic i Nutrició, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Illes Balears, Spain
- Institut d'Investigació Sanitària de Palma (IdISPa)Hospital Universitari Son Espases, Palma de Mallorca, Illes Balears, Spain
| | - Francisco J García-Palmer
- Departament de Biologia Fonamental i Ciències de la SalutGrup Metabolisme Energètic i Nutrició, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Illes Balears, Spain
- Institut d'Investigació Sanitària de Palma (IdISPa)Hospital Universitari Son Espases, Palma de Mallorca, Illes Balears, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBERobn, CB06/03/0043)Instituto de Salud Carlos III, Madrid, Spain
| | - Ana M Proenza
- Departament de Biologia Fonamental i Ciències de la SalutGrup Metabolisme Energètic i Nutrició, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Illes Balears, Spain
- Institut d'Investigació Sanitària de Palma (IdISPa)Hospital Universitari Son Espases, Palma de Mallorca, Illes Balears, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBERobn, CB06/03/0043)Instituto de Salud Carlos III, Madrid, Spain
| | - Magdalena Gianotti
- Departament de Biologia Fonamental i Ciències de la SalutGrup Metabolisme Energètic i Nutrició, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Illes Balears, Spain
- Institut d'Investigació Sanitària de Palma (IdISPa)Hospital Universitari Son Espases, Palma de Mallorca, Illes Balears, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBERobn, CB06/03/0043)Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel Lladó
- Departament de Biologia Fonamental i Ciències de la SalutGrup Metabolisme Energètic i Nutrició, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, Illes Balears, Spain
- Institut d'Investigació Sanitària de Palma (IdISPa)Hospital Universitari Son Espases, Palma de Mallorca, Illes Balears, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBERobn, CB06/03/0043)Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
30
|
Besse-Patin A, Léveillé M, Oropeza D, Nguyen BN, Prat A, Estall JL. Estrogen Signals Through Peroxisome Proliferator-Activated Receptor-γ Coactivator 1α to Reduce Oxidative Damage Associated With Diet-Induced Fatty Liver Disease. Gastroenterology 2017; 152:243-256. [PMID: 27658772 DOI: 10.1053/j.gastro.2016.09.017] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS Inefficient fatty acid oxidation in mitochondria and increased oxidative damage are features of non-alcoholic fatty liver disease (NAFLD). In rodent models and patients with NAFLD, hepatic expression of peroxisome proliferator-activated receptor-γ (PPARG) coactivator 1α (PPARGC1A or PGC1A) is inversely correlated with liver fat and disease severity. A common polymorphism in this gene (rs8192678, encoding Gly482Ser) has been associated with NAFLD. We investigated whether reduced expression of PGC1A contributes to development of NAFLD using mouse models, primary hepatocytes, and human cell lines. METHODS HepG2 cells were transfected with variants of PPARGC1A and protein and messenger RNA levels were measured. Mice with liver-specific hemizygous or homozygous disruption of Ppargc1a (Ppargc1af/+Alb-cre+/0 and Ppargc1af/f Alb-cre+/0 mice, respectively) were fed regular chow (control) or a high-fat diet supplemented with 30% d-fructose in drinking water (obesogenic diet) for 25-33 weeks. Liver tissues were analyzed by histology and by immunoblotting. Primary hepatocytes were analyzed for insulin signaling, reactive oxygen species, and estrogen response. Luciferase reporter expression was measured in transfected H2.35 cells expressing an estrogen receptor reporter gene, estrogen receptor 1, and/or PGC1A/B. RESULTS The serine 482 variant of the human PGC1A protein had a shorter half-life than the glycine 482 variant when expressed in HepG2 cells. Liver tissues from mice with liver-specific hemizygous disruption of Ppargc1a placed on an obesogenic diet expressed increased markers of inflammation and fibrosis and decreased levels of antioxidant enzymes compared with the Ppargc1a+/+ on the same diet. Oxidative damage was observed in livers from Ppargc1af/+Alb-cre+/0 mice of each sex, in a cell-autonomous manner, but was greater in livers from the female mice. Expression of PGC1A in H2.35 cells coactivated estrogen receptor 1 and was required for estrogen-dependent expression of genes that encode antioxidant proteins. These findings could account for the increased liver damage observed in female Ppargc1af/+Alb-cre+/0 mice; while, compensatory increases in PPARG coactivator 1β could prevent oxidative damage associated with complete loss of PGC1A expression in Ppargc1af/fAlb-cre+/0 female mice. CONCLUSIONS In mice, loss of estrogen signaling contributes to oxidative damage caused by low levels of PGC1A in liver, exacerbating steatohepatitis associated with diets high in fructose and fat.
Collapse
Affiliation(s)
- Aurèle Besse-Patin
- Institut de Recherches Cliniques de Montreal, Montreal, Québec, Canada; Department of Medicine, University of Montreal, Montreal, Québec, Canada
| | - Mélissa Léveillé
- Institut de Recherches Cliniques de Montreal, Montreal, Québec, Canada; Department of Medicine, University of Montreal, Montreal, Québec, Canada
| | - Daniel Oropeza
- Institut de Recherches Cliniques de Montreal, Montreal, Québec, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Québec, Canada
| | - Bich N Nguyen
- Department of Pathology and Cell Biology, University of Montreal, Montreal, Québec, Canada; University of Montreal Health Network, Montreal, Québec, Canada
| | - Annik Prat
- Laboratory of Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montreal, Montreal, Québec, Canada
| | - Jennifer L Estall
- Institut de Recherches Cliniques de Montreal, Montreal, Québec, Canada; Department of Medicine, University of Montreal, Montreal, Québec, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Québec, Canada.
| |
Collapse
|
31
|
Ducheix S, Vegliante MC, Villani G, Napoli N, Sabbà C, Moschetta A. Is hepatic lipogenesis fundamental for NAFLD/NASH? A focus on the nuclear receptor coactivator PGC-1β. Cell Mol Life Sci 2016; 73:3809-22. [PMID: 27522544 PMCID: PMC11108573 DOI: 10.1007/s00018-016-2331-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 08/04/2016] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver diseases are the hepatic manifestation of metabolic syndrome. According to the classical pattern of NAFLD progression, de novo fatty acid synthesis has been incriminated in NAFLD progression. However, this hypothesis has been challenged by the re-evaluation of NAFLD development mechanisms together with the description of the role of lipogenic genes in NAFLD and with the recent observation that PGC-1β, a nuclear receptor/transcription factor coactivator involved in the transcriptional regulation of lipogenesis, displays protective effects against NAFLD/NASH progression. In this review, we focus on the implication of lipogenesis and triglycerides synthesis on the development of non-alcoholic fatty liver diseases and discuss the involvement of these pathways in the protective role of PGC-1β toward these hepatic manifestations.
Collapse
Affiliation(s)
- Simon Ducheix
- Clinica Medica "Cesare Frugoni", Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
- IRCCS Istituto Tumori "Giovanni Paolo II", Viale O. Flacco 65, 70124, Bari, Italy
| | - Maria Carmela Vegliante
- Clinica Medica "Cesare Frugoni", Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Gaetano Villani
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Nicola Napoli
- Clinica Medica "Cesare Frugoni", Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Carlo Sabbà
- Clinica Medica "Cesare Frugoni", Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Antonio Moschetta
- Clinica Medica "Cesare Frugoni", Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy.
- IRCCS Istituto Tumori "Giovanni Paolo II", Viale O. Flacco 65, 70124, Bari, Italy.
| |
Collapse
|
32
|
Amrutkar M, Chursa U, Kern M, Nuñez-Durán E, Ståhlman M, Sütt S, Borén J, Johansson BR, Marschall HU, Blüher M, Mahlapuu M. STK25 is a critical determinant in nonalcoholic steatohepatitis. FASEB J 2016; 30:3628-3643. [PMID: 27421788 DOI: 10.1096/fj.201600562r] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/05/2016] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, and 10-20% of patients with NAFLD progress to nonalcoholic steatohepatitis (NASH) with a high risk of cirrhosis, liver failure, and hepatocellular carcinoma. Despite its high medical importance, the molecular mechanisms controlling progression from simple liver steatosis to NASH remain elusive. We recently identified serine/threonine protein kinase (STK)25 as a critical regulator of ectopic lipid deposition, systemic glucose, and insulin homeostasis. To elucidate the role of STK25 in the development of NASH, we challenged Stk25-knockout and transgenic mice with a methionine and choline-deficient (MCD) diet. We show that Stk25-/- mice are protected against MCD-diet-induced NASH, as evidenced by repressed liver steatosis, oxidative damage, inflammation, and fibrosis, whereas Stk25 transgenic mice developed a more severe NASH phenotype, compared with corresponding wild-type littermates. Consistently, NASH features were suppressed in STK25-deficient human hepatocytes cultured in MCD medium, and reciprocally enhanced in STK25-overexpressing cells. We also found a significant positive correlation in human liver biopsies between STK25 expression and NASH development. The study provides evidence for multiple roles of STK25 in NASH pathogenesis and future investigations to address the potential therapeutic relevance of pharmacological STK25 inhibitors in prevention and treatment of NASH are warranted.-Amrutkar, M., Chursa, U., Kern, M., Nuñez-Durán, E., Ståhlman, M., Sütt, S., Borén, J., Johansson, B. R., Marschall, H.-U., Blüher, M., Mahlapuu, M. STK25 is a critical determinant in nonalcoholic steatohepatitis.
Collapse
Affiliation(s)
| | | | - Matthias Kern
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | | | - Marcus Ståhlman
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska University Hospital, and
| | - Silva Sütt
- Lundberg Laboratory for Diabetes Research and
| | - Jan Borén
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska University Hospital, and
| | - Bengt R Johansson
- Institute of Biomedicine, Electron Microscopy Unit, University of Gothenburg, Gothenburg, Sweden
| | - Hanns-Ulrich Marschall
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska University Hospital, and
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | | |
Collapse
|
33
|
Lei S, Sun RZ, Wang D, Gong MZ, Su XP, Yi F, Peng ZW. Increased Hepatic Fatty Acids Uptake and Oxidation by LRPPRC-Driven Oxidative Phosphorylation Reduces Blood Lipid Levels. Front Physiol 2016; 7:270. [PMID: 27462273 PMCID: PMC4941416 DOI: 10.3389/fphys.2016.00270] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 06/16/2016] [Indexed: 12/14/2022] Open
Abstract
Hyperlipidemia is one of the major risk factors of atherosclerosis and other cardiovascular diseases. This study aimed to investigate the impact of leucine rich pentatricopeptide repeat containing protein (LRPPRC)-driven hepatic oxidative phoshorylation on blood lipid levels. The hepatic LRPPRC level was modulated by liver-specific transgenic or adeno-associated virus 8 carried shRNA targeting Lrpprc (aav-shLrpprc). Mice were fed with a high fat diet to induce obesity. Gene expression was analyzed by quantitative real-time PCR and / or western blot. The hepatic ATP level, hepatic and serum lipids contents, and mitochondria oxidative phosphorylation (OxPhos) complex activities were measured using specific assay kits. The uptake and oxidation of fatty acid by hepatocytes were assessed using (14)C-palmitate. LRPPRC regulated the expression of genes encoded by mitochondrial genome but not those by nuclear genome involved in mitochondria biogenesis, OxPhos, and lipid metabolism. Increased OxPhos in liver mediated by LRPPRC resulted in the increase of hepatic ATP level. Lrpprc promoted palmitate uptake and oxidation by hypatocytes. The hepatic and serum triglyceride and total cholesterol levels were inversely associated with the hepatic LRPPRC level. These data demonstrated that LRPPRC-driven hepatic OxPhos could promote fatty acids uptake and oxidation by hepatocytes and reduce both hepatic and circulating triglyceride and cholesterol levels.
Collapse
Affiliation(s)
- Shi Lei
- College of Biological and Pharmaceutical Sciences, China Three Gorges UniversityYichang, China
| | - Run-zhu Sun
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical UniversityXi'an, China
| | - Di Wang
- Department of Laboratory Medicine, Huashan Hospital North, Shanghai Medical School, Fudan UniversityShanghai, China
| | - Mei-zhen Gong
- College of Biological and Pharmaceutical Sciences, China Three Gorges UniversityYichang, China
| | - Xiang-ping Su
- College of Biological and Pharmaceutical Sciences, China Three Gorges UniversityYichang, China
| | - Fei Yi
- College of Biological and Pharmaceutical Sciences, China Three Gorges UniversityYichang, China
| | - Zheng-wu Peng
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical UniversityXi'an, China
| |
Collapse
|
34
|
Hyun J, Wang S, Kim J, Rao KM, Park SY, Chung I, Ha CS, Kim SW, Yun YH, Jung Y. MicroRNA-378 limits activation of hepatic stellate cells and liver fibrosis by suppressing Gli3 expression. Nat Commun 2016; 7:10993. [PMID: 27001906 PMCID: PMC4804167 DOI: 10.1038/ncomms10993] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 02/09/2016] [Indexed: 12/14/2022] Open
Abstract
Hedgehog (Hh) signalling regulates hepatic fibrogenesis. MicroRNAs (miRNAs) mediate various cellular processes; however, their role in liver fibrosis is unclear. Here we investigate regulation of miRNAs in chronically damaged fibrotic liver. MiRNA profiling shows that expression of miR-378 family members (miR-378a-3p, miR-378b and miR-378d) declines in carbon tetrachloride (CCl4)-treated compared with corn-oil-treated mice. Overexpression of miR-378a-3p, directly targeting Gli3 in activated hepatic stellate cells (HSCs), reduces expression of Gli3 and profibrotic genes but induces gfap, the inactivation marker of HSCs, in CCl4-treated liver. Smo blocks transcriptional expression of miR-378a-3p by activating the p65 subunit of nuclear factor-κB (NF-κB). The hepatic level of miR-378a-3p is inversely correlated with the expression of Gli3 in tumour and non-tumour tissues in human hepatocellular carcinoma. Our results demonstrate that miR-378a-3p suppresses activation of HSCs by targeting Gli3 and its expression is regulated by Smo-dependent NF-κB signalling, suggesting miR-378a-3p has therapeutic potential for liver fibrosis.
Collapse
Affiliation(s)
- Jeongeun Hyun
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan 46241, Korea
| | - Sihyung Wang
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan 46241, Korea
| | - Jieun Kim
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan 46241, Korea
| | - Kummara Madhusudana Rao
- Department of Polymer Science and Engineering, College of Engineering, Pusan National University, Pusan, 46241, Korea
| | - Soo Yong Park
- Department of Polymer Science and Engineering, College of Engineering, Pusan National University, Pusan, 46241, Korea
| | - Ildoo Chung
- Department of Polymer Science and Engineering, College of Engineering, Pusan National University, Pusan, 46241, Korea
| | - Chang-Sik Ha
- Department of Polymer Science and Engineering, College of Engineering, Pusan National University, Pusan, 46241, Korea
| | - Sang-Woo Kim
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan 46241, Korea
- Department of Biological Sciences, College of Natural Science, Pusan National University, 63-2 Pusandaehak-ro, Kumjeong-gu, Pusan 46241, Korea
| | - Yang H. Yun
- Department of Biomedical Engineering, College of Engineering, The University of Akron, Akron, Ohio 44685-0302, USA
| | - Youngmi Jung
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan 46241, Korea
- Department of Biological Sciences, College of Natural Science, Pusan National University, 63-2 Pusandaehak-ro, Kumjeong-gu, Pusan 46241, Korea
| |
Collapse
|
35
|
Chen H, Liu Y, Li D, Song J, Xia M. PGC-1β suppresses saturated fatty acid-induced macrophage inflammation by inhibiting TAK1 activation. IUBMB Life 2016; 68:145-55. [DOI: 10.1002/iub.1470] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/17/2015] [Indexed: 01/22/2023]
Affiliation(s)
- Hongen Chen
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food; Nutrition and Health, Sun Yat-Sen University (Northern Campus); Guangzhou Guangdong Province China
- Department of Nutrition, School of Public Health; Sun Yat-Sen University (Northern Campus); Guangzhou Guangdong Province China
| | - Yan Liu
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food; Nutrition and Health, Sun Yat-Sen University (Northern Campus); Guangzhou Guangdong Province China
- Department of Nutrition, School of Public Health; Sun Yat-Sen University (Northern Campus); Guangzhou Guangdong Province China
| | - Di Li
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food; Nutrition and Health, Sun Yat-Sen University (Northern Campus); Guangzhou Guangdong Province China
- Department of Nutrition, School of Public Health; Sun Yat-Sen University (Northern Campus); Guangzhou Guangdong Province China
| | - Jiayi Song
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food; Nutrition and Health, Sun Yat-Sen University (Northern Campus); Guangzhou Guangdong Province China
- Department of Nutrition, School of Public Health; Sun Yat-Sen University (Northern Campus); Guangzhou Guangdong Province China
| | - Min Xia
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food; Nutrition and Health, Sun Yat-Sen University (Northern Campus); Guangzhou Guangdong Province China
- Department of Nutrition, School of Public Health; Sun Yat-Sen University (Northern Campus); Guangzhou Guangdong Province China
| |
Collapse
|
36
|
Abstract
Associated with the obesity epidemic, non-alcoholic fatty liver disease (NAFLD) has become the leading liver disease in North America. Approximately 30 % of patients with NAFLD may develop non-alcoholic steatohepatitis (NASH) that can lead to cirrhosis and hepatocellular carcinoma (HCC). Frequently animal models are used to help identify underlying factors contributing to NAFLD including insulin resistance, dysregulated lipid metabolism and mitochondrial stress. However, studying the inflammatory, progressive nature of NASH in the context of obesity has proven to be a challenge in mice. Although the development of effective treatment strategies for NAFLD and NASH is gaining momentum, the field is hindered by a lack of a concise animal model that reflects the development of liver disease during obesity and the metabolic syndrome. Therefore, selecting an animal model to study NAFLD or NASH must be done carefully to ensure the optimal application. The most widely used animal models have been reviewed highlighting their advantages and disadvantages to studying NAFLD and NASH specifically in the context of obesity.
Collapse
|
37
|
Trinchese G, Cavaliere G, Canani RB, Matamoros S, Bergamo P, De Filippo C, Aceto S, Gaita M, Cerino P, Negri R, Greco L, Cani PD, Mollica MP. Human, donkey and cow milk differently affects energy efficiency and inflammatory state by modulating mitochondrial function and gut microbiota. J Nutr Biochem 2015; 26:1136-46. [PMID: 26118693 DOI: 10.1016/j.jnutbio.2015.05.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 05/07/2015] [Accepted: 05/07/2015] [Indexed: 02/07/2023]
Abstract
Different nutritional components are able, by modulating mitochondrial function and gut microbiota composition, to influence body composition, metabolic homeostasis and inflammatory state. In this study, we aimed to evaluate the effects produced by the supplementation of different milks on energy balance, inflammatory state, oxidative stress and antioxidant/detoxifying enzyme activities and to investigate the role of the mitochondrial efficiency and the gut microbiota in the regulation of metabolic functions in an animal model. We compared the intake of human milk, gold standard for infant nutrition, with equicaloric supplementation of donkey milk, the best substitute for newborns due to its nutritional properties, and cow milk, the primary marketed product. The results showed a hypolipidemic effect produced by donkey and human milk intake in parallel with enhanced mitochondrial activity/proton leakage. Reduced mitochondrial energy efficiency and proinflammatory signals (tumor necrosis factor α, interleukin-1 and lipopolysaccharide levels) were associated with a significant increase of antioxidants (total thiols) and detoxifying enzyme activities (glutathione-S-transferase, NADH quinone oxidoreductase) in donkey- and human milk-treated animals. The beneficial effects were attributable, at least in part, to the activation of the nuclear factor erythroid-2-related factor-2 pathway. Moreover, the metabolic benefits induced by human and donkey milk may be related to the modulation of gut microbiota. In fact, milk treatments uniquely affected the proportions of bacterial phyla and genera, and we hypothesized that the increased concentration of fecal butyrate in human and donkey milk-treated rats was related to the improved lipid and glucose metabolism and detoxifying activities.
Collapse
Affiliation(s)
- Giovanna Trinchese
- Department of Biology, University of Naples "Federico II", Napoli, Italy
| | - Gina Cavaliere
- Department of Biology, University of Naples "Federico II", Napoli, Italy
| | - Roberto Berni Canani
- Department of Translational Medical Sciences, European Laboratory for Food Induced Diseases, Napoli, Italy
| | - Sebastien Matamoros
- Université catholique de Louvain, Louvain Drug Research Institute, WELBIO (Walloon Excellence in Life sciences and BIOtechnology), Metabolism and Nutrition research group, Brussels, Belgium
| | - Paolo Bergamo
- Institute of Food Sciences, National Research Council, Avellino, Italy
| | - Chiara De Filippo
- Department of Biology, University of Naples "Federico II", Napoli, Italy
| | - Serena Aceto
- Department of Biology, University of Naples "Federico II", Napoli, Italy
| | - Marcello Gaita
- Department of Biology, University of Naples "Federico II", Napoli, Italy
| | - Pellegrino Cerino
- Department of Biology, University of Naples "Federico II", Napoli, Italy
| | - Rossella Negri
- Department of Translational Medical Sciences, European Laboratory for Food Induced Diseases, Napoli, Italy
| | - Luigi Greco
- Department of Translational Medical Sciences, European Laboratory for Food Induced Diseases, Napoli, Italy
| | - Patrice D Cani
- Université catholique de Louvain, Louvain Drug Research Institute, WELBIO (Walloon Excellence in Life sciences and BIOtechnology), Metabolism and Nutrition research group, Brussels, Belgium
| | - Maria Pina Mollica
- Department of Biology, University of Naples "Federico II", Napoli, Italy.
| |
Collapse
|
38
|
Akie TE, Liu L, Nam M, Lei S, Cooper MP. OXPHOS-Mediated Induction of NAD+ Promotes Complete Oxidation of Fatty Acids and Interdicts Non-Alcoholic Fatty Liver Disease. PLoS One 2015; 10:e0125617. [PMID: 25933096 PMCID: PMC4416931 DOI: 10.1371/journal.pone.0125617] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 03/24/2015] [Indexed: 12/21/2022] Open
Abstract
OXPHOS is believed to play an important role in non-alcoholic fatty liver disease (NAFLD), however, precise mechanisms whereby OXPHOS influences lipid homeostasis are incompletely understood. We previously reported that ectopic expression of LRPPRC, a protein that increases cristae density and OXPHOS, promoted fatty acid oxidation in cultured primary hepatocytes. To determine the biological significance of that observation and define underlying mechanisms, we have ectopically expressed LRPPRC in mouse liver in the setting of NAFLD. Interestingly, ectopic expression of LRPPRC in mouse liver completely interdicted NAFLD, including inflammation. Consistent with mitigation of NAFLD, two markers of hepatic insulin resistance—ROS and PKCε activity—were both modestly reduced. As reported by others, improvement of NAFLD was associated with improved whole-body insulin sensitivity. Regarding hepatic lipid homeostasis, the ratio of NAD+ to NADH was dramatically increased in mouse liver replete with LRPPRC. Pharmacological activators and inhibitors of the cellular respiration respectively increased and decreased the [NAD+]/[NADH] ratio, indicating respiration-mediated control of the [NAD+]/[NADH] ratio. Supporting a prominent role for NAD+, increasing the concentration of NAD+ stimulated complete oxidation of fatty acids. Importantly, NAD+ rescued impaired fatty acid oxidation in hepatocytes deficient for either OXPHOS or SIRT3. These data are consistent with a model whereby augmented hepatic OXPHOS increases NAD+, which in turn promotes complete oxidation of fatty acids and protects against NAFLD.
Collapse
Affiliation(s)
- Thomas E. Akie
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States of America
| | - Lijun Liu
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States of America
| | - Minwoo Nam
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States of America
| | - Shi Lei
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States of America
| | - Marcus P. Cooper
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States of America
- * E-mail:
| |
Collapse
|
39
|
Besseiche A, Riveline JP, Gautier JF, Bréant B, Blondeau B. Metabolic roles of PGC-1α and its implications for type 2 diabetes. DIABETES & METABOLISM 2015; 41:347-57. [PMID: 25753246 DOI: 10.1016/j.diabet.2015.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/07/2015] [Accepted: 02/01/2015] [Indexed: 12/25/2022]
Abstract
PGC-1α is a transcriptional coactivator expressed in brown adipose tissue, liver, pancreas, kidney, skeletal and cardiac muscles, and the brain. This review presents data illustrating how PGC-1α regulates metabolic adaptations and participates in the aetiology of type 2 diabetes (T2D). Studies in mice have shown that increased PGC-1α expression may be beneficial or deleterious, depending on the tissue: in adipose tissue, it promotes thermogenesis and thus protects against energy overload, such as seen in diabetes and obesity; in muscle, PGC-1α induces a change of phenotype towards oxidative metabolism. In contrast, its role is clearly deleterious in the liver and pancreas, where it induces hepatic glucose production and inhibits insulin secretion, changes that promote diabetes. Previous studies by our group have also demonstrated the role of PGC-1α in the fetal origins of T2D. Overexpression of PGC-1α in β cells during fetal life in mice is sufficient to induce β-cell dysfunction in adults, leading to glucose intolerance. PGC-1α also is associated with glucocorticoid receptors in repressing expression of Pdx1, a key β-cell transcription factor. In conclusion, PGC-1α participates in the onset of diabetes through regulation of major metabolic tissues. Yet, it may not represent a useful target for therapeutic strategies against diabetes as it exerts both beneficial and deleterious actions on glucose homoeostasis, and because PGC-1α modulation is involved in neurodegenerative diseases. However, its role in cellular adaptation shows that greater comprehension of PGC-1α actions is needed.
Collapse
Affiliation(s)
- A Besseiche
- Inserm, UMR-S 1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Université Pierre-et-Marie-Curie - Paris 6, UMR-S 1138, 75006 Paris, France; Université Paris Descartes, UMR-S 1138, 75006 Paris, France
| | - J-P Riveline
- Inserm, UMR-S 1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Université Pierre-et-Marie-Curie - Paris 6, UMR-S 1138, 75006 Paris, France; Université Paris Descartes, UMR-S 1138, 75006 Paris, France; University Center of Diabetes and Complications in Lariboisière hospital, Université Paris-Diderot Paris-7, Public Assistance-Paris Hospitals, 75010 Paris, France
| | - J-F Gautier
- Inserm, UMR-S 1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Université Pierre-et-Marie-Curie - Paris 6, UMR-S 1138, 75006 Paris, France; Université Paris Descartes, UMR-S 1138, 75006 Paris, France; University Center of Diabetes and Complications in Lariboisière hospital, Université Paris-Diderot Paris-7, Public Assistance-Paris Hospitals, 75010 Paris, France
| | - B Bréant
- Inserm, UMR-S 1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Université Pierre-et-Marie-Curie - Paris 6, UMR-S 1138, 75006 Paris, France; Université Paris Descartes, UMR-S 1138, 75006 Paris, France
| | - B Blondeau
- Inserm, UMR-S 1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Université Pierre-et-Marie-Curie - Paris 6, UMR-S 1138, 75006 Paris, France; Université Paris Descartes, UMR-S 1138, 75006 Paris, France.
| |
Collapse
|
40
|
Abstract
The liver is an essential metabolic organ, and its metabolic function is controlled by insulin and other metabolic hormones. Glucose is converted into pyruvate through glycolysis in the cytoplasm, and pyruvate is subsequently oxidized in the mitochondria to generate ATP through the TCA cycle and oxidative phosphorylation. In the fed state, glycolytic products are used to synthesize fatty acids through de novo lipogenesis. Long-chain fatty acids are incorporated into triacylglycerol, phospholipids, and/or cholesterol esters in hepatocytes. These complex lipids are stored in lipid droplets and membrane structures, or secreted into the circulation as very low-density lipoprotein particles. In the fasted state, the liver secretes glucose through both glycogenolysis and gluconeogenesis. During pronged fasting, hepatic gluconeogenesis is the primary source for endogenous glucose production. Fasting also promotes lipolysis in adipose tissue, resulting in release of nonesterified fatty acids which are converted into ketone bodies in hepatic mitochondria though β-oxidation and ketogenesis. Ketone bodies provide a metabolic fuel for extrahepatic tissues. Liver energy metabolism is tightly regulated by neuronal and hormonal signals. The sympathetic system stimulates, whereas the parasympathetic system suppresses, hepatic gluconeogenesis. Insulin stimulates glycolysis and lipogenesis but suppresses gluconeogenesis, and glucagon counteracts insulin action. Numerous transcription factors and coactivators, including CREB, FOXO1, ChREBP, SREBP, PGC-1α, and CRTC2, control the expression of the enzymes which catalyze key steps of metabolic pathways, thus controlling liver energy metabolism. Aberrant energy metabolism in the liver promotes insulin resistance, diabetes, and nonalcoholic fatty liver diseases.
Collapse
Affiliation(s)
- Liangyou Rui
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
41
|
Nassir F, Ibdah JA. Role of mitochondria in nonalcoholic fatty liver disease. Int J Mol Sci 2014; 15:8713-42. [PMID: 24837835 PMCID: PMC4057755 DOI: 10.3390/ijms15058713] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/04/2014] [Accepted: 05/07/2014] [Indexed: 12/15/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) affects about 30% of the general population in the United States and includes a spectrum of disease that includes simple steatosis, non-alcoholic steatohepatitis (NASH), fibrosis and cirrhosis. Significant insight has been gained into our understanding of the pathogenesis of NALFD; however the key metabolic aberrations underlying lipid accumulation in hepatocytes and the progression of NAFLD remain to be elucidated. Accumulating and emerging evidence indicate that hepatic mitochondria play a critical role in the development and pathogenesis of steatosis and NAFLD. Here, we review studies that document a link between the pathogenesis of NAFLD and hepatic mitochondrial dysfunction with particular focus on new insights into the role of impaired fatty acid oxidation, the transcription factor peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), and sirtuins in development and progression of NAFLD.
Collapse
Affiliation(s)
- Fatiha Nassir
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Missouri, Columbia, MO 65212, USA.
| | - Jamal A Ibdah
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
42
|
Mollica MP, Trinchese G, Cavaliere G, De Filippo C, Cocca E, Gaita M, Della-Gatta A, Marano A, Mazzarella G, Bergamo P. c9,t11-Conjugated linoleic acid ameliorates steatosis by modulating mitochondrial uncoupling and Nrf2 pathway. J Lipid Res 2014; 55:837-849. [PMID: 24634500 PMCID: PMC3995462 DOI: 10.1194/jlr.m044032] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 03/14/2014] [Indexed: 12/30/2022] Open
Abstract
Oxidative stress, hepatic steatosis, and mitochondrial dysfunction are key pathophysiological features of nonalcoholic fatty liver disease. A conjugated linoleic acid (CLA) mixture of cis9,trans11 (9,11-CLA) and trans10,cis12 (10,12-CLA) isomers enhanced the antioxidant/detoxifying mechanism via the activation of nuclear factor E2-related factor-2 (Nrf2) and improved mitochondrial function, but less is known about the actions of specific isomers. The differential ability of individual CLA isomers to modulate these pathways was explored in Wistar rats fed for 4 weeks with a lard-based high-fat diet (L) or with control diet (CD), and, within each dietary treatment, two subgroups were daily administered with 9,11-CLA or 10,12-CLA (30 mg/day). The 9,11-CLA, but not 10,12-CLA, supplementation to CD rats improves the GSH/GSSG ratio in the liver, mitochondrial functions, and Nrf2 activity. Histological examination reveals a reduction of steatosis in L-fed rats supplemented with both CLA isomers, but 9,11-CLA downregulated plasma concentrations of proinflammatory markers, mitochondrial dysfunction, and oxidative stress markers in liver more efficiently than in 10,12-CLA treatment. The present study demonstrates the higher protective effect of 9,11-CLA against diet-induced pro-oxidant and proinflammatory signs and suggests that these effects are determined, at least in part, by its ability to activate the Nrf2 pathway and to improve the mitochondrial functioning and biogenesis.
Collapse
Affiliation(s)
- Maria Pina Mollica
- Dipartimento delle Scienze Biologiche, Università degli Studi di Napoli “Federico II,” Napoli, Italy
| | - Giovanna Trinchese
- Dipartimento delle Scienze Biologiche, Università degli Studi di Napoli “Federico II,” Napoli, Italy
| | - Gina Cavaliere
- Dipartimento delle Scienze Biologiche, Università degli Studi di Napoli “Federico II,” Napoli, Italy
| | - Chiara De Filippo
- Dipartimento delle Scienze Biologiche, Università degli Studi di Napoli “Federico II,” Napoli, Italy
| | - Ennio Cocca
- Institute of Biosciences and BioResources, National Research Council (CNR-IBBR), Napoli, Italy
| | - Marcello Gaita
- Dipartimento delle Scienze Biologiche, Università degli Studi di Napoli “Federico II,” Napoli, Italy
| | - Antonio Della-Gatta
- Dipartimento delle Scienze Biologiche, Università degli Studi di Napoli “Federico II,” Napoli, Italy
| | - Angela Marano
- Institute of Food Sciences, National Research Council (CNR-ISA), Avellino, Italy
| | - Giuseppe Mazzarella
- Institute of Food Sciences, National Research Council (CNR-ISA), Avellino, Italy
| | - Paolo Bergamo
- Institute of Food Sciences, National Research Council (CNR-ISA), Avellino, Italy
| |
Collapse
|
43
|
Abstract
Type II diabetes and its complications are a tremendous health burden throughout the world. Our understanding of the changes that lead to glucose imbalance and insulin resistance and ultimately diabetes remain incompletely understood. Many signaling and transcriptional pathways have been identified as being important to maintain normal glucose balance, including that of the peroxisome proliferator activated receptor gamma coactivator (PGC-1) family. This family of transcriptional coactivators strongly regulates mitochondrial and metabolic biology in numerous organs. The use of genetic models of PGC-1s, including both tissue-specific overexpression and knock-out models, has helped to reveal the specific roles that these coactivators play in each tissue. This review will thus focus on the PGC-1s and recently developed genetic rodent models that have highlighted the importance of these molecules in maintaining normal glucose homeostasis.
Collapse
Affiliation(s)
- Glenn C. Rowe
- Cardiovascular Institute and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston MA 02215, USA
| | - Zolt Arany
- Cardiovascular Institute and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston MA 02215, USA
| |
Collapse
|
44
|
Qian H, Shi J, Fan TT, Lv J, Chen SW, Song CY, Zheng ZW, Xie WF, Chen YX. Sophocarpine attenuates liver fibrosis by inhibiting the TLR4 signaling pathway in rats. World J Gastroenterol 2014; 20:1822-1832. [PMID: 24587659 PMCID: PMC3930980 DOI: 10.3748/wjg.v20.i7.1822] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 11/13/2013] [Accepted: 11/30/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the effect of sophocarpine on experimental liver fibrosis and the potential mechanism involved.
METHODS: Sophocarpine was injected intraperitoneally in two distinct rat hepatic fibrosis models induced either by dimethylnitrosamine or bile duct ligation. Masson’s trichrome staining, Sirius red staining and hepatic hydroxyproline level were used for collagen determination. Primary hepatic stellate cells (HSCs) were isolated and treated with different concentrations of sophocarpine. Real-time reverse transcription-polymerase chain reaction was used to detect the mRNA levels of fibrotic markers and cytokines. The expression of pathway proteins was measured by Western blot. The Cell Counting Kit-8 test was used to detect the proliferation rate of activated HSCs treated with a gradient concentration of sophocarpine.
RESULTS: Sophocarpine decreased serum levels of aminotransferases and total bilirubin in rats under chronic insult. Moreover, administration of sophocarpine suppressed extracellular matrix deposition and prevented the development of hepatic fibrosis. Furthermore, sophocarpine inhibited the expression of α-smooth muscle actin (SMA), interleukin (IL)-6, transforming growth factor-β1 (TGF-β1), Toll-like receptor 4 (TLR4), and extracellular-related kinase (ERK) in rats. Sophocarpine also down-regulated the mRNA expression of α-SMA, collagen I, collagen III, TGF-β1, IL-6, tumor necrosis factor-α and monocyte chemoattractant protein-1, and decreased protein levels of TLR4, p-ERK, p-JNK, p-P38 and p-IKK in vitro after Lipopolysaccharide induction. In addition, sophocarpine inhibited the proliferation of HSCs accompanied by a decrease in the expression of Cyclin D1. The protein level of proliferating cell nuclear antigen was decreased in activated HSCs following a gradient concentration of sophocarpine.
CONCLUSION: Sophocarpine can alleviate liver fibrosis mainly by inhibiting the TLR4 pathway. Sophocarpine may be a potential chemotherapeutic agent for chronic liver diseases.
Collapse
|