1
|
Bangru S, Chen J, Baker N, Das D, Chembazhi UV, Derham JM, Chorghade S, Arif W, Alencastro F, Duncan AW, Carstens RP, Kalsotra A. ESRP2-microRNA-122 axis promotes the postnatal onset of liver polyploidization and maturation. Genes Dev 2025; 39:325-347. [PMID: 39794125 PMCID: PMC11874994 DOI: 10.1101/gad.352129.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/17/2024] [Indexed: 01/13/2025]
Abstract
Hepatocyte polyploidy and maturity are critical to acquiring specialized liver functions. Multiple intracellular and extracellular factors influence ploidy, but how they cooperate temporally to steer liver polyploidization and maturation or how post-transcriptional mechanisms integrate into these paradigms is unknown. Here, we identified an important regulatory hierarchy in which postnatal activation of epithelial splicing regulatory protein 2 (ESRP2) stimulates processing of liver-specific microRNA (miR-122) to facilitate polyploidization, maturation, and functional competence of hepatocytes. By determining transcriptome-wide protein-RNA interactions in vivo and integrating them with single-cell and bulk hepatocyte RNA-seq data sets, we delineated an ESRP2-driven RNA processing program that drives sequential replacement of fetal-to-adult transcript isoforms. Specifically, ESRP2 binds the primary miR-122 host gene transcript to promote its processing/biogenesis. Combining constitutive and inducible ESRP2 gain- and loss-of-function mouse models with miR-122 rescue experiments, we demonstrated that timed activation of ESRP2 augments the miR-122-driven program of cytokinesis failure, ensuring the proper onset and extent of hepatocyte polyploidization.
Collapse
Affiliation(s)
- Sushant Bangru
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jackie Chen
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Nicholas Baker
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute of Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Diptatanu Das
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Chan Zuckerberg Biohub, Chicago, Illinois 60642, USA
| | - Ullas V Chembazhi
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jessica M Derham
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Chan Zuckerberg Biohub, Chicago, Illinois 60642, USA
| | - Sandip Chorghade
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Waqar Arif
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Frances Alencastro
- Department of Pathology, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Andrew W Duncan
- Department of Pathology, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Russ P Carstens
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA;
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute of Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Chan Zuckerberg Biohub, Chicago, Illinois 60642, USA
| |
Collapse
|
2
|
Ghnim ZS, Mahdi MS, Ballal S, Chahar M, Verma R, Al-Nuaimi AMA, Kumar MR, Al-Hussein RKA, Adil M, Jawad MJ. The role of kinesin superfamily proteins in hepatocellular carcinoma. Med Oncol 2024; 41:271. [PMID: 39400594 DOI: 10.1007/s12032-024-02497-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/04/2024] [Indexed: 10/15/2024]
Abstract
The most prevalent form of primary liver cancer, hepatocellular carcinoma (HCC) poses a significant global health challenge due to its limited therapeutic options. Researchers are currently focused on the complex molecular landscape that governs the initiation and progression of HCC in order to identify new avenues for diagnosis, prognosis, and treatment. In the context of HCC, the Kinesin Superfamily Proteins (KIFs) have become critical regulators of cellular processes, prompting a growing interest in their function among the diverse array of molecular actors implicated in cancer. The KIFs, a family of microtubule-based molecular motors, are renowned for their essential roles in the dynamics of mitotic spindles and intracellular transport. Beyond their well-established functions in normal cellular physiology, emerging evidence indicates that dysregulation of KIFs significantly contributes to the pathogenesis of HCC. Novel therapeutic targets and diagnostic markers are revealed through the unique opportunity to comprehend the complex interplay between KIFs and the molecular events that drive HCC.
Collapse
Affiliation(s)
| | | | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India.
| | - Mamata Chahar
- Department of Chemistry, NIMS Institute of Engineering & Technology, NIMS University, Jaipur, Rajasthan, India
| | - Rajni Verma
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Amritsar, Punjab, 140307, India
| | | | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, 531162, India
| | | | - Mohaned Adil
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | | |
Collapse
|
3
|
Li M, Gao X, Su Y, Shan S, Qian W, Zhang Z, Zhu D. FOXM1 transcriptional regulation. Biol Cell 2024; 116:e2400012. [PMID: 38963053 DOI: 10.1111/boc.202400012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 07/05/2024]
Abstract
FOXM1 is a key transcriptional regulator involved in various biological processes in mammals, including carbohydrate and lipid metabolism, aging, immune regulation, development, and disease. Early studies have shown that FOXM1 acts as an oncogene by regulating cell proliferation, cell cycle, migration, metastasis, and apoptosis, as well as genes related to diagnosis, treatment, chemotherapy resistance, and prognosis. Researchers are increasingly focusing on FOXM1 functions in tumor microenvironment, epigenetics, and immune infiltration. However, researchers have not comprehensively described FOXM1's involvement in tumor microenvironment shaping, epigenetics, and immune cell infiltration. Here we review the role of FOXM1 in the formation and development of malignant tumors, and we will provide a comprehensive summary of the role of FOXM1 in transcriptional regulation, interacting proteins, tumor microenvironment, epigenetics, and immune infiltration, and suggest areas for further research.
Collapse
Affiliation(s)
- Mengxi Li
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
| | - Xuzheng Gao
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
| | - Yanting Su
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
| | - Shigang Shan
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
| | - Wenbin Qian
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
| | - Zhenwang Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
| | - Dan Zhu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
| |
Collapse
|
4
|
Bangru S, Chen J, Baker N, Das D, Chembazhi UV, Derham JM, Chorghade S, Arif W, Alencastro F, Duncan AW, Carstens RP, Kalsotra A. ESRP2-microRNA-122 axis directs the postnatal onset of liver polyploidization and maturation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.06.602336. [PMID: 39026848 PMCID: PMC11257421 DOI: 10.1101/2024.07.06.602336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Hepatocyte polyploidy and maturity are critical to acquiring specialized liver functions. Multiple intra- and extracellular factors influence ploidy, but how they cooperate temporally to steer liver polyploidization and maturation or how post-transcriptional mechanisms integrate into these paradigms is unknown. Here, we identified an important regulatory hierarchy in which postnatal activation of Epithelial-Splicing-Regulatory-Protein-2 (ESRP2) stimulates biogenesis of liver-specific microRNA (miR-122), thereby facilitating polyploidization, maturation, and functional competence of hepatocytes. By determining transcriptome-wide protein-RNA interactions in vivo and integrating them with single-cell and bulk hepatocyte RNA-seq datasets, we delineate an ESRP2-driven RNA processing program that drives sequential replacement of fetal-to-adult transcript isoforms. Specifically, ESRP2 binds the primary miR-122 host gene transcript to promote its processing/biogenesis. Combining constitutive and inducible ESRP2 gain- and loss-of-function mice models with miR-122 rescue experiments, we demonstrate that timed activation of ESRP2 augments miR-122-driven program of cytokinesis failure, ensuring proper onset and extent of hepatocyte polyploidization.
Collapse
|
5
|
Hill RJ, Bona N, Smink J, Webb HK, Crisp A, Garaycoechea JI, Crossan GP. p53 regulates diverse tissue-specific outcomes to endogenous DNA damage in mice. Nat Commun 2024; 15:2518. [PMID: 38514641 PMCID: PMC10957910 DOI: 10.1038/s41467-024-46844-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 03/08/2024] [Indexed: 03/23/2024] Open
Abstract
DNA repair deficiency can lead to segmental phenotypes in humans and mice, in which certain tissues lose homeostasis while others remain seemingly unaffected. This may be due to different tissues facing varying levels of damage or having different reliance on specific DNA repair pathways. However, we find that the cellular response to DNA damage determines different tissue-specific outcomes. Here, we use a mouse model of the human XPF-ERCC1 progeroid syndrome (XFE) caused by loss of DNA repair. We find that p53, a central regulator of the cellular response to DNA damage, regulates tissue dysfunction in Ercc1-/- mice in different ways. We show that ablation of p53 rescues the loss of hematopoietic stem cells, and has no effect on kidney, germ cell or brain dysfunction, but exacerbates liver pathology and polyploidisation. Mechanistically, we find that p53 ablation led to the loss of cell-cycle regulation in the liver, with reduced p21 expression. Eventually, p16/Cdkn2a expression is induced, serving as a fail-safe brake to proliferation in the absence of the p53-p21 axis. Taken together, our data show that distinct and tissue-specific functions of p53, in response to DNA damage, play a crucial role in regulating tissue-specific phenotypes.
Collapse
Affiliation(s)
- Ross J Hill
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, UK
| | - Nazareno Bona
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, UK
| | - Job Smink
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, the Netherlands
| | - Hannah K Webb
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, UK
| | - Alastair Crisp
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, UK
| | - Juan I Garaycoechea
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, the Netherlands.
| | - Gerry P Crossan
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, UK.
| |
Collapse
|
6
|
Voigt E, Quelle DE. FOXM1, MEK, and CDK4/6: New Targets for Malignant Peripheral Nerve Sheath Tumor Therapy. Int J Mol Sci 2023; 24:13596. [PMID: 37686402 PMCID: PMC10487994 DOI: 10.3390/ijms241713596] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are deadly sarcomas, which desperately need effective therapies. Half of all MPNSTs arise in patients with neurofibromatosis type I (NF1), a common inherited disease. NF1 patients can develop benign lesions called plexiform neurofibromas (PNFs), often in adolescence, and over time, some PNFs, but not all, will transform into MPNSTs. A deeper understanding of the molecular and genetic alterations driving PNF-MPNST transformation will guide development of more targeted and effective treatments for these patients. This review focuses on an oncogenic transcription factor, FOXM1, which is a powerful oncogene in other cancers but little studied in MPNSTs. Elevated expression of FOXM1 was seen in patient MPNSTs and correlated with poor survival, but otherwise, its role in the disease is unknown. We discuss what is known about FOXM1 in MPNSTs relative to other cancers and how FOXM1 may be regulated by and/or regulate the most commonly altered players in MPNSTs, particularly in the MEK and CDK4/6 kinase pathways. We conclude by considering FOXM1, MEK, and CDK4/6 as new, clinically relevant targets for MPNST therapy.
Collapse
Affiliation(s)
- Ellen Voigt
- Cancer Biology Graduate Program, University of Iowa, Iowa City, IA 52242, USA;
- Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Dawn E. Quelle
- Cancer Biology Graduate Program, University of Iowa, Iowa City, IA 52242, USA;
- Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
7
|
Sanz-Gómez N, González-Álvarez M, De Las Rivas J, de Cárcer G. Whole-Genome Doubling as a source of cancer: how, when, where, and why? Front Cell Dev Biol 2023; 11:1209136. [PMID: 37342233 PMCID: PMC10277508 DOI: 10.3389/fcell.2023.1209136] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/24/2023] [Indexed: 06/22/2023] Open
Abstract
Chromosome instability is a well-known hallmark of cancer, leading to increased genetic plasticity of tumoral cells, which favors cancer aggressiveness, and poor prognosis. One of the main sources of chromosomal instability are events that lead to a Whole-Genome Duplication (WGD) and the subsequently generated cell polyploidy. In recent years, several studies showed that WGD occurs at the early stages of cell transformation, which allows cells to later become aneuploid, thus leading to cancer progression. On the other hand, other studies convey that polyploidy plays a tumor suppressor role, by inducing cell cycle arrest, cell senescence, apoptosis, and even prompting cell differentiation, depending on the tissue cell type. There is still a gap in understanding how cells that underwent WGD can overcome the deleterious effect on cell fitness and evolve to become tumoral. Some laboratories in the chromosomal instability field recently explored this paradox, finding biomarkers that modulate polyploid cells to become oncogenic. This review brings a historical view of how WGD and polyploidy impact cell fitness and cancer progression, and bring together the last studies that describe the genes helping cells to adapt to polyploidy.
Collapse
Affiliation(s)
- Natalia Sanz-Gómez
- Cell Cycle and Cancer Biomarkers Laboratory, Cancer Biology Department, Instituto de Investigaciones Biomédicas “Alberto Sols“. (IIBM) CSIC-UAM, Madrid, Spain
| | - María González-Álvarez
- Cell Cycle and Cancer Biomarkers Laboratory, Cancer Biology Department, Instituto de Investigaciones Biomédicas “Alberto Sols“. (IIBM) CSIC-UAM, Madrid, Spain
| | - Javier De Las Rivas
- Bioinformatics and Functional Genomics Group, Cancer Research Center (CiC-IBMCC), Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca (USAL), Salamanca, Spain
| | - Guillermo de Cárcer
- Cell Cycle and Cancer Biomarkers Laboratory, Cancer Biology Department, Instituto de Investigaciones Biomédicas “Alberto Sols“. (IIBM) CSIC-UAM, Madrid, Spain
| |
Collapse
|
8
|
Zhang Z, Li M, Sun T, Zhang Z, Liu C. FOXM1: Functional Roles of FOXM1 in Non-Malignant Diseases. Biomolecules 2023; 13:biom13050857. [PMID: 37238726 DOI: 10.3390/biom13050857] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Forkhead box (FOX) proteins are a wing-like helix family of transcription factors in the DNA-binding region. By mediating the activation and inhibition of transcription and interactions with all kinds of transcriptional co-regulators (MuvB complexes, STAT3, β-catenin, etc.), they play significant roles in carbohydrate and fat metabolism, biological aging and immune regulation, development, and diseases in mammals. Recent studies have focused on translating these essential findings into clinical applications in order to improve quality of life, investigating areas such as diabetes, inflammation, and pulmonary fibrosis, and increase human lifespan. Early studies have shown that forkhead box M1 (FOXM1) functions as a key gene in pathological processes in multiple diseases by regulating genes related to proliferation, the cell cycle, migration, and apoptosis and genes related to diagnosis, therapy, and injury repair. Although FOXM1 has long been studied in relation to human diseases, its role needs to be elaborated on. FOXM1 expression is involved in the development or repair of multiple diseases, including pulmonary fibrosis, pneumonia, diabetes, liver injury repair, adrenal lesions, vascular diseases, brain diseases, arthritis, myasthenia gravis, and psoriasis. The complex mechanisms involve multiple signaling pathways, such as WNT/β-catenin, STAT3/FOXM1/GLUT1, c-Myc/FOXM1, FOXM1/SIRT4/NF-κB, and FOXM1/SEMA3C/NRP2/Hedgehog. This paper reviews the key roles and functions of FOXM1 in kidney, vascular, lung, brain, bone, heart, skin, and blood vessel diseases to elucidate the role of FOXM1 in the development and progression of human non-malignant diseases and makes suggestions for further research.
Collapse
Affiliation(s)
- Zhenwang Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Mengxi Li
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Tian Sun
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Zhengrong Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Chao Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
9
|
Moore XTR, Gheghiani L, Fu Z. The Role of Polo-Like Kinase 1 in Regulating the Forkhead Box Family Transcription Factors. Cells 2023; 12:cells12091344. [PMID: 37174744 PMCID: PMC10177174 DOI: 10.3390/cells12091344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Polo-like kinase 1 (PLK1) is a serine/threonine kinase with more than 600 phosphorylation substrates through which it regulates many biological processes, including mitosis, apoptosis, metabolism, RNA processing, vesicle transport, and G2 DNA-damage checkpoint recovery, among others. Among the many PLK1 targets are members of the FOX family of transcription factors (FOX TFs), including FOXM1, FOXO1, FOXO3, and FOXK1. FOXM1 and FOXK1 have critical oncogenic roles in cancer through their antagonism of apoptotic signals and their promotion of cell proliferation, metastasis, angiogenesis, and therapeutic resistance. In contrast, FOXO1 and FOXO3 have been identified to have broad functions in maintaining cellular homeostasis. In this review, we discuss PLK1-mediated regulation of FOX TFs, highlighting the effects of PLK1 on the activity and stability of these proteins. In addition, we review the prognostic and clinical significance of these proteins in human cancers and, more importantly, the different approaches that have been used to disrupt PLK1 and FOX TF-mediated signaling networks. Furthermore, we discuss the therapeutic potential of targeting PLK1-regulated FOX TFs in human cancers.
Collapse
Affiliation(s)
- Xavier T R Moore
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Lilia Gheghiani
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Zheng Fu
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| |
Collapse
|
10
|
Wang J, Huang X, Zheng D, Li Q, Mei M, Bao S. PRMT5 determines the pattern of polyploidization and prevents liver from cirrhosis and carcinogenesis. J Genet Genomics 2023; 50:87-98. [PMID: 35500745 DOI: 10.1016/j.jgg.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 11/25/2022]
Abstract
Human hepatocellular carcinoma (HCC) occurs almost exclusively in cirrhotic livers. Here, we report that hepatic loss of protein arginine methyltransferase 5 (PRMT5) in mice is sufficient to cause cirrhosis and HCC in a clinically relevant way. Furthermore, pathological polyploidization induced by hepatic loss of PRMT5 promotes liver cirrhosis and hepatic tumorigenesis in aged liver. The loss of PRMT5 leads to hyper-accumulation of P21 and endoreplication-dependent formation of pathological mono-nuclear polyploid hepatocytes. PRMT5 and symmetric dimethylation at histone H4 arginine 3 (H4R3me2s) directly associate with chromatin of P21 to suppress its transcription. More importantly, loss of P21 rescues the pathological mono-nuclear polyploidy and prevents PRMT5-deficiency-induced liver cirrhosis and HCC. Thus, our results indicate that PRMT5-mediated symmetric dimethylation at histone H4 arginine 3 (H4R3me2s) is crucial for preventing pathological polyploidization, liver cirrhosis and tumorigenesis in mouse liver.
Collapse
Affiliation(s)
- Jincheng Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xiang Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daoshan Zheng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiuling Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Mei Mei
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shilai Bao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
Chen J, Yang P, Li S, Feng Y. Increased FOXM1 Expression was Associated with the Prognosis and the Recruitment of Neutrophils in Endometrial Cancer. J Immunol Res 2023; 2023:5437526. [PMID: 37159818 PMCID: PMC10163965 DOI: 10.1155/2023/5437526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/27/2022] [Accepted: 04/05/2023] [Indexed: 05/11/2023] Open
Abstract
Background Although the biological functions of Forkhead box protein M1 (FOXM1) were explored in a variety of cancer, to date, however, little attention has been paid to the situation of FOXM1 in EC endometrial cancer (EC). Method Bioinformatics analysis, including GEPIA, TIMER, cBioPortal, LinkedOmics, and STRING were used to analyze the FOXM1 gene expression, genetic alteration, and immune cell infiltration in EC. IHC staining, qPCR, cell viability, and migration assay were applied to identify the functions of FOXM1 in EC. Results FOXM1 was highly expressed in EC tissues and closely correlated with the prognosis of EC patients. FOXM1 knockdown inhibited EC cell proliferation and invasion as well as migration. FOXM1 genetic alteration was verified in EC patients. Coexpression network of FOXM1 indicated that it had roles in the EC cell cycle and the infiltration of immune cells in EC. Furthermore, bioinformatic and immunohistochemical analysis indicated that FOXM1 induced the increased CD276 expression and also enhanced the neutrophil recruitment in EC. Conclusion Our present study discovered a novel role of FOXM1 in EC, suggesting FOXM1 could be treated as a potential prognostic biomarker and immunotherapeutic target in EC diagnosis and treatment.
Collapse
Affiliation(s)
- Jing Chen
- Department of Obstetrics and Gynecology, The Sixth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Pusheng Yang
- Department of Obstetrics and Gynecology, Shanghai Key Laboratory of Gynecology Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shaojing Li
- Department of Obstetrics and Gynecology, Shanghai Fengxian District Central Hospital, Shanghai, China
| | - Yichen Feng
- Department of Obstetrics and Gynecology, Shanghai Fengxian District Central Hospital, Shanghai, China
- Baoshan Branch, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Liver regeneration after partial hepatectomy is improved in the absence of aryl hydrocarbon receptor. Sci Rep 2022; 12:15446. [PMID: 36104446 PMCID: PMC9474532 DOI: 10.1038/s41598-022-19733-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/02/2022] [Indexed: 11/19/2022] Open
Abstract
The liver is among the few organs having the ability to self-regenerate in response to a severe damage compromising its functionality. The Aryl hydrocarbon receptor (Ahr) is a transcription factor relevant for the detoxification of xenobiotics but also largely important for liver development and homeostasis. Hence, liver cell differentiation is developmentally modulated by Ahr through the controlled expression of pluripotency and stemness-inducing genes. Here, 2/3 partial hepatectomy (PH) was used as a clinically relevant approach to induce liver regeneration in Ahr-expressing (Ahr+/+) and Ahr-null (Ahr−/−) mice. Ahr expression and activity were early induced after 2/3 PH to be gradually downmodulated latter during regeneration. Ahr−/− mice triggered liver regeneration much faster than AhR+/+ animals, although both reached full regeneration at the latest times. At initial stages after PHx, earlier regenerating Ahr−/− livers had upregulation of cell proliferation markers and increased activation of signalling pathways related to stemness such as Hippo-YAP and Wnt/β-catenin, concomitantly with the induction of pro-inflammatory cytokines TNFa, IL6 and p65. These phenotypes, together with the improved metabolic adaptation of Ahr−/− mice after PHx and their induced sustained cell proliferation, could likely result from the expansion of undifferentiated stem cells residing in the liver expressing OCT4, SOX2, KLF4 and NANOG. We propose that Ahr needs to be induced early during regeneration to fine-tune liver regrowth to physiological values. Since Ahr deficiency did not result in liver overgrowth, its transient pharmacological inhibition could serve to improve liver regeneration in hepatectomized and transplanted patients and in those exposed to damaging liver toxins and carcinogens.
Collapse
|
13
|
Ma M, Hua S, Min X, Wang L, Li J, Wu P, Liang H, Zhang B, Chen X, Xiang S. p53 positively regulates the proliferation of hepatic progenitor cells promoted by laminin-521. Signal Transduct Target Ther 2022; 7:290. [PMID: 36042225 PMCID: PMC9427945 DOI: 10.1038/s41392-022-01107-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/16/2022] [Accepted: 07/04/2022] [Indexed: 01/20/2023] Open
Abstract
Hepatic progenitor cells (HPCs) hold tremendous potential for liver regeneration, but their well-known limitation of proliferation hampers their broader use. There is evidence that laminin is required for the proliferation of HPCs, but the laminin isoform that plays the dominant role and the key intracellular downstream targets that mediate the regulation of HPC proliferation have yet to be determined. Here we showed that p53 expression increased gradually and reached maximal levels around 8 days when laminin α4, α5, β2, β1, and γ1 subunit levels also reached a maximum during HPC activation and expansion. Laminin-521 (LN-521) promoted greater proliferation of HPCs than do laminin, matrigel or other laminin isoforms. Inactivation of p53 by PFT-α or Ad-p53V143A inhibited the promotion of proliferation by LN-521. Further complementary MRI and bioluminescence imaging analysis showed that p53 inactivation decreased the proliferation of transplanted HPCs in vivo. p53 was activated by LN-521 through the Integrin α6β1/FAK-Src-Paxillin/Akt axis. Activated p53 was involved in the nuclear translocation of CDK4 and inactivation of Rb by inducing p27Kip1. Taken together, this study identifies LN-521 as an ideal candidate substrate for HPC culture and uncovers an unexpected positive role for p53 in regulating proliferation of HPCs, which makes it a potential target for HPC-based regenerative medicine.
Collapse
Affiliation(s)
- Mingyang Ma
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuyao Hua
- Department of Clinical Nutrition, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiangde Min
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Wang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Li
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan, China
| | - Ping Wu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Disease, Wuhan, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Disease, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.,Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Hubei Key Laboratory of Hepato-Pancreato-Biliary Disease, Wuhan, China. .,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China. .,Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, China. .,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| | - Shuai Xiang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Hubei Key Laboratory of Hepato-Pancreato-Biliary Disease, Wuhan, China.
| |
Collapse
|
14
|
Sladky VC, Akbari H, Tapias-Gomez D, Evans LT, Drown CG, Strong MA, LoMastro GM, Larman T, Holland AJ. Centriole signaling restricts hepatocyte ploidy to maintain liver integrity. Genes Dev 2022; 36:gad.349727.122. [PMID: 35981754 PMCID: PMC9480857 DOI: 10.1101/gad.349727.122] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/27/2022] [Indexed: 01/03/2023]
Abstract
Hepatocyte polyploidization is a tightly controlled process that is initiated at weaning and increases with age. The proliferation of polyploid hepatocytes in vivo is restricted by the PIDDosome-P53 axis, but how this pathway is triggered remains unclear. Given that increased hepatocyte ploidy protects against malignant transformation, the evolutionary driver that sets the upper limit for hepatocyte ploidy remains unknown. Here we show that hepatocytes accumulate centrioles during cycles of polyploidization in vivo. The presence of excess mature centrioles containing ANKRD26 was required to activate the PIDDosome in polyploid cells. As a result, mice lacking centrioles in the liver or ANKRD26 exhibited increased hepatocyte ploidy. Under normal homeostatic conditions, this increase in liver ploidy did not impact organ function. However, in response to chronic liver injury, blocking centriole-mediated ploidy control leads to a massive increase in hepatocyte polyploidization, severe liver damage, and impaired liver function. These results show that hyperpolyploidization sensitizes the liver to injury, posing a trade-off for the cancer-protective effect of increased hepatocyte ploidy. Our results may have important implications for unscheduled polyploidization that frequently occurs in human patients with chronic liver disease.
Collapse
Affiliation(s)
- Valentina C Sladky
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Hanan Akbari
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Daniel Tapias-Gomez
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Lauren T Evans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Chelsea G Drown
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Margaret A Strong
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Gina M LoMastro
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Tatianna Larman
- Divison of Gastrointestinal and Liver Pathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
15
|
Singh K, Rustagi Y, Abouhashem AS, Tabasum S, Verma P, Hernandez E, Pal D, Khona DK, Mohanty SK, Kumar M, Srivastava R, Guda PR, Verma SS, Mahajan S, Killian JA, Walker LA, Ghatak S, Mathew-Steiner SS, Wanczyk K, Liu S, Wan J, Yan P, Bundschuh R, Khanna S, Gordillo GM, Murphy MP, Roy S, Sen CK. Genome-wide DNA hypermethylation opposes healing in chronic wound patients by impairing epithelial-to-mesenchymal transition. J Clin Invest 2022; 132:157279. [PMID: 35819852 PMCID: PMC9433101 DOI: 10.1172/jci157279] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 07/07/2022] [Indexed: 12/15/2022] Open
Abstract
An extreme chronic wound tissue microenvironment causes epigenetic gene silencing. An unbiased whole-genome methylome was studied in the wound-edge tissue of patients with chronic wounds. A total of 4,689 differentially methylated regions (DMRs) were identified in chronic wound-edge skin compared with unwounded human skin. Hypermethylation was more frequently observed (3,661 DMRs) in the chronic wound-edge tissue compared with hypomethylation (1,028 DMRs). Twenty-six hypermethylated DMRs were involved in epithelial-mesenchymal transition (EMT). Bisulfite sequencing validated hypermethylation of a predicted specific upstream regulator TP53. RNA-Seq analysis was performed to qualify findings from methylome analysis. Analysis of the downregulated genes identified the TP53 signaling pathway as being significantly silenced. Direct comparison of hypermethylation and downregulated genes identified 4 genes, ADAM17, NOTCH, TWIST1, and SMURF1, that functionally represent the EMT pathway. Single-cell RNA-Seq studies revealed that these effects on gene expression were limited to the keratinocyte cell compartment. Experimental murine studies established that tissue ischemia potently induces wound-edge gene methylation and that 5′-azacytidine, inhibitor of methylation, improved wound closure. To specifically address the significance of TP53 methylation, keratinocyte-specific editing of TP53 methylation at the wound edge was achieved by a tissue nanotransfection-based CRISPR/dCas9 approach. This work identified that reversal of methylation-dependent keratinocyte gene silencing represents a productive therapeutic strategy to improve wound closure.
Collapse
Affiliation(s)
- Kanhaiya Singh
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Yashika Rustagi
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Ahmed S Abouhashem
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Saba Tabasum
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Priyanka Verma
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Edward Hernandez
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Durba Pal
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Ropar, India
| | - Dolly K Khona
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Sujit K Mohanty
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Manishekhar Kumar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Rajneesh Srivastava
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Poornachander R Guda
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Sumit S Verma
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Sanskruti Mahajan
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Jackson A Killian
- Department of Physics, Ohio State University, Columbus, United States of America
| | - Logan A Walker
- Department of Physics, Ohio State University, Columbus, United States of America
| | - Subhadip Ghatak
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Shomita S Mathew-Steiner
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Kristen Wanczyk
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Sheng Liu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, United States of America
| | - Jun Wan
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, United States of America
| | - Pearlly Yan
- Comprehensive Cancer Center, Ohio State University, Columbus, United States of America
| | - Ralf Bundschuh
- Department of Physics, Ohio State University, Columbus, United States of America
| | - Savita Khanna
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Gayle M Gordillo
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Michael P Murphy
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Sashwati Roy
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Chandan K Sen
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| |
Collapse
|
16
|
FoxO3 restricts liver regeneration by suppressing the proliferation of hepatocytes. NPJ Regen Med 2022; 7:33. [PMID: 35750775 PMCID: PMC9232540 DOI: 10.1038/s41536-022-00227-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/20/2022] [Indexed: 12/05/2022] Open
Abstract
Upon injury, the liver is capable of substantial regeneration from the original tissue until an appropriate functional size. The underlying mechanisms controlling the liver regeneration processes are not well elucidated. Previous studies have proposed that the transcription factor FoxO3 is involved in various liver diseases, but its exact role in the regulation of liver regeneration remains largely unclear. To directly test the detailed role of FoxO3 in liver regeneration, both a constitutive Albumin-Cre driver line and adeno-associated virus serotype 8 (AAV8)-Tbg-Cre (AAV-Cre)-injected adult FoxO3fl/fl mice were subjected to 70% partial hepatectomy (PH). Our data demonstrate that FoxO3 deletion accelerates liver regeneration primarily by limiting polyploidization and promoting the proliferation of hepatocytes during liver regeneration. RNA-seq analysis indicates that FoxO3 deficiency greatly alters the expression of gene sets associated with cell proliferation and apoptosis during liver regeneration. Chromatin immunoprecipitation-PCR (ChIP-PCR) and luciferase reporter assays reveal that FoxO3 promotes the expression of Nox4 but suppresses the expression of Nr4a1 in hepatocytes. AAV8 virus-mediated overexpression of Nox4 and knockdown of Nr4a1 significantly suppressed hepatocyte proliferation and liver regeneration in FoxO3-deficient mice. We demonstrate that FoxO3 negatively controls hepatocyte proliferation through Nox4 upregulation and Nr4a1 downregulation, thereby ensuring appropriate functional regeneration of the liver. Our findings provide novel mechanistic insight into the therapeutic mechanisms of FoxO3 in liver damage and repair.
Collapse
|
17
|
Rejano-Gordillo C, Ordiales-Talavero A, Nacarino-Palma A, Merino JM, González-Rico FJ, Fernández-Salguero PM. Aryl Hydrocarbon Receptor: From Homeostasis to Tumor Progression. Front Cell Dev Biol 2022; 10:884004. [PMID: 35465323 PMCID: PMC9022225 DOI: 10.3389/fcell.2022.884004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/15/2022] [Indexed: 12/19/2022] Open
Abstract
Transcription factor aryl hydrocarbon receptor (AHR) has emerged as one of the main regulators involved both in different homeostatic cell functions and tumor progression. Being a member of the family of basic-helix-loop-helix (bHLH) transcriptional regulators, this intracellular receptor has become a key member in differentiation, pluripotency, chromatin dynamics and cell reprogramming processes, with plenty of new targets identified in the last decade. Besides this role in tissue homeostasis, one enthralling feature of AHR is its capacity of acting as an oncogene or tumor suppressor depending on the specific organ, tissue and cell type. Together with its well-known modulation of cell adhesion and migration in a cell-type specific manner in epithelial-mesenchymal transition (EMT), this duality has also contributed to the arise of its clinical interest, highlighting a new potential as therapeutic tool, diagnosis and prognosis marker. Therefore, a deregulation of AHR-controlled pathways may have a causal role in contributing to physiological and homeostatic failures, tumor progression and dissemination. With that firmly in mind, this review will address the remarkable capability of AHR to exert a different function influenced by the phenotype of the target cell and its potential consequences.
Collapse
Affiliation(s)
- Claudia Rejano-Gordillo
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Ana Ordiales-Talavero
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Ana Nacarino-Palma
- Chronic Diseases Research Centre (CEDOC), Rua Do Instituto Bacteriológico, Lisboa, Portugal
| | - Jaime M. Merino
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Francisco J. González-Rico
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
- *Correspondence: Francisco J. González-Rico, ; Pedro M. Fernández-Salguero,
| | - Pedro M. Fernández-Salguero
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
- *Correspondence: Francisco J. González-Rico, ; Pedro M. Fernández-Salguero,
| |
Collapse
|
18
|
Humpton TJ, Hall H, Kiourtis C, Nixon C, Clark W, Hedley A, Shaw R, Bird TG, Blyth K, Vousden KH. p53-mediated redox control promotes liver regeneration and maintains liver function in response to CCl 4. Cell Death Differ 2022; 29:514-526. [PMID: 34628485 PMCID: PMC8901761 DOI: 10.1038/s41418-021-00871-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 08/26/2021] [Accepted: 09/07/2021] [Indexed: 11/09/2022] Open
Abstract
The p53 transcription factor coordinates wide-ranging responses to stress that contribute to its function as a tumour suppressor. The responses to p53 induction are complex and range from mediating the elimination of stressed or damaged cells to promoting survival and repair. These activities of p53 can modulate tumour development but may also play a role in pathological responses to stress such as tissue damage and repair. Using a p53 reporter mouse, we have previously detected strong induction of p53 activity in the liver of mice treated with the hepatotoxin carbon tetrachloride (CCl4). Here, we show that p53 functions to support repair and recovery from CCl4-mediated liver damage, control reactive oxygen species (ROS) and limit the development of hepatocellular carcinoma (HCC), in part through the activation of a detoxification cytochrome P450, CYP2A5 (CYP2A6 in humans). Our work demonstrates an important role for p53-mediated redox control in facilitating the hepatic regenerative response after damage and identifies CYP2A5/CYP2A6 as a mediator of this pathway with potential prognostic utility in human HCC.
Collapse
Affiliation(s)
- Timothy J Humpton
- The Francis Crick Institute, London, NW1 1AT, UK.
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK.
| | - Holly Hall
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Christos Kiourtis
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Colin Nixon
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - William Clark
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Ann Hedley
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Robin Shaw
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Thomas G Bird
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | | |
Collapse
|
19
|
Urabe M, Hikita H, Saito Y, Kudo S, Fukumoto K, Mizutani N, Myojin Y, Doi A, Sato K, Sakane S, Makino Y, Kodama T, Sakamori R, Tatsumi T, Takehara T. Activation of p53 After Irradiation Impairs the Regenerative Capacity of the Mouse Liver. Hepatol Commun 2022; 6:411-422. [PMID: 34585534 PMCID: PMC8793995 DOI: 10.1002/hep4.1815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 06/22/2021] [Accepted: 08/17/2021] [Indexed: 01/18/2023] Open
Abstract
Radiation therapy is one of the treatment methods for hepatocellular carcinoma. However, radiation tolerance of the liver is low, and the detailed effect of radiation on liver regeneration has not been clarified. C57BL/6J mice or hepatocyte-specific p53 knockout (KO) mice (albumin [Alb]-Cre Trp53flox/flox ) were irradiated with a single fraction of 10 Gy localized to the upper abdomen. We performed 70% partial hepatectomy (PHx) 24 hours after irradiation. Liver regeneration was assessed by proliferation cell nuclear antigen (PCNA)- and Ki-67-positive hepatocyte ratios and liver-to-body weight ratio after PHx. To establish a fibrosis model, CCl4 was orally administered for 8 weeks. The murine hepatocyte cell line BNL CL.2 (CL2) was irradiated with 10 Gy. Irradiation activated p53, induced downstream p21 in the liver, and delayed liver regeneration after PHx. While PHx increased hepatocyte growth factor (HGF) levels and activated Met with or without irradiation in the regenerative liver, it activated Akt and extracellular kinase 1 and 2 (Erk 1/2) less in irradiated mice than in nonirradiated mice. In CL2 cells cultured with HGF, irradiation suppressed cell growth by decreasing phosphorylated Akt and Erk 1/2 levels, which was abolished by small interfering RNA-mediated p53 knockdown but not by p21 knockdown. Hepatocyte-specific knockout of p53 in mice abolished the irradiation-induced suppression of both liver regeneration and Akt and Erk 1/2 activation after PHx. In the fibrotic mouse model, the survival rate after PHx of irradiated p53 KO mice was higher than that of wild-type mice. Conclusion: p53 but not p21 is involved in the impaired regenerative ability of the irradiated liver.
Collapse
Affiliation(s)
- Makiko Urabe
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineOsakaJapan
| | - Hayato Hikita
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineOsakaJapan
| | - Yoshinobu Saito
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineOsakaJapan
- Department of MedicineColumbia UniversityNew YorkNYUSA
| | - Shinnosuke Kudo
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineOsakaJapan
| | - Kenji Fukumoto
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineOsakaJapan
| | - Naoki Mizutani
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineOsakaJapan
| | - Yuta Myojin
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineOsakaJapan
| | - Akira Doi
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineOsakaJapan
| | - Katsuhiko Sato
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineOsakaJapan
| | - Sadatsugu Sakane
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineOsakaJapan
| | - Yuki Makino
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineOsakaJapan
| | - Takahiro Kodama
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineOsakaJapan
| | - Ryotaro Sakamori
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineOsakaJapan
| | - Tomohide Tatsumi
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineOsakaJapan
| | - Tetsuo Takehara
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineOsakaJapan
| |
Collapse
|
20
|
Wang N, Hao F, Shi Y, Wang J. The Controversial Role of Polyploidy in Hepatocellular Carcinoma. Onco Targets Ther 2021; 14:5335-5344. [PMID: 34866913 PMCID: PMC8636953 DOI: 10.2147/ott.s340435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/16/2021] [Indexed: 12/21/2022] Open
Abstract
Polyploidy, a physiological phenomenon in which cells contain more than two sets of homologous chromosomes, commonly exists in plants, fish, and amphibians but is rare in mammals. In humans, polyploid cells are detected commonly in specific organs or tissues including the heart, marrow, and liver. As the largest solid organ in the body, the liver is responsible for a myriad of functions, most of which are closely related to polyploid hepatocytes. It has been confirmed that polyploid hepatocytes are related to liver regeneration, homeostasis, terminal differentiation, and aging. Polyploid hepatocytes accumulate during the aging process as well as in chronically injured livers. The relationship between polyploid hepatocytes and hepatocellular carcinoma, the endpoint of most chronic liver diseases, is not yet fully understood. Recently, accumulated evidence has revealed that polyploid involves in the process of tumorigenesis and development. The study of the correlation and relationship between polyploidy hepatocytes and the development of hepatocellular carcinoma can potentially promote the prevention, early diagnosis, and treatment of hepatocellular carcinoma. In this review, we conclude the potential mechanisms of polyploid hepatocytes formation, focusing on the specific biological significance of polyploid hepatocytes. In addition, we examine recent discoveries that have begun to clarify the relevance between polyploid hepatocytes and hepatocellular carcinoma and discuss recent excellent findings that reveal the role of polyploid hepatocytes as resisters of hepatocellular carcinoma or as promoters of hepatocarcinogenesis.
Collapse
Affiliation(s)
- Nan Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Fengjie Hao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yan Shi
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Junqing Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
21
|
Sladky VC, Eichin F, Reiberger T, Villunger A. Polyploidy control in hepatic health and disease. J Hepatol 2021; 75:1177-1191. [PMID: 34228992 DOI: 10.1016/j.jhep.2021.06.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/25/2021] [Accepted: 06/15/2021] [Indexed: 12/24/2022]
Abstract
A balanced increase in DNA content (ploidy) is observed in some human cell types, including bone-resorbing osteoclasts, platelet-producing megakaryocytes, cardiomyocytes or hepatocytes. The impact of increased hepatocyte ploidy on normal physiology and diverse liver pathologies is still poorly understood. Recent findings suggest swift genetic adaptation to hepatotoxic stress and the protection from malignant transformation as beneficial effects. Herein, we discuss the molecular mechanisms regulating hepatocyte polyploidisation and its implication for different liver diseases and hepatocellular carcinoma. We report on centrosomes' role in limiting polyploidy by activating the p53 signalling network (via the PIDDosome multiprotein complex) and we discuss the role of this pathway in liver disease. Increased hepatocyte ploidy is a hallmark of hepatic inflammation and may play a protective role against liver cancer. Our evolving understanding of hepatocyte ploidy is discussed from the perspective of its potential clinical application for risk stratification, prognosis, and novel therapeutic strategies in liver disease and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Valentina C Sladky
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Felix Eichin
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), 1090 Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Andreas Villunger
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), 1090 Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria.
| |
Collapse
|
22
|
Bailey EC, Kobielski S, Park J, Losick VP. Polyploidy in Tissue Repair and Regeneration. Cold Spring Harb Perspect Biol 2021; 13:a040881. [PMID: 34187807 PMCID: PMC8485745 DOI: 10.1101/cshperspect.a040881] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Polyploidy is defined as a cell with three or more whole genome sets and enables cell growth across the kingdoms of life. Studies in model organisms have revealed that polyploid cell growth can be required for optimal tissue repair and regeneration. In mammals, polyploid cell growth contributes to repair of many tissues, including the liver, heart, kidney, bladder, and eye, and similar strategies have been identified in Drosophila and zebrafish tissues. This review discusses the heterogeneity and versatility of polyploidy in tissue repair and regeneration. Polyploidy has been shown to restore tissue mass and maintain organ size as well as protect against oncogenic insults and genotoxic stress. Polyploid cells can also serve as a reservoir for new diploid cells in regeneration. The numerous mechanisms to generate polyploid cells provide an unlimited resource for tissues to exploit to undergo repair or regeneration.
Collapse
Affiliation(s)
- Erin C Bailey
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Sara Kobielski
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - John Park
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Vicki P Losick
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| |
Collapse
|
23
|
Chronowski C, Akhanov V, Chan D, Catic A, Finegold M, Sahin E. Fructose Causes Liver Damage, Polyploidy, and Dysplasia in the Setting of Short Telomeres and p53 Loss. Metabolites 2021; 11:metabo11060394. [PMID: 34204343 PMCID: PMC8234056 DOI: 10.3390/metabo11060394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 01/01/2023] Open
Abstract
Studies in humans and model systems have established an important role of short telomeres in predisposing to liver fibrosis through pathways that are incompletely understood. Recent studies have shown that telomere dysfunction impairs cellular metabolism, but whether and how these metabolic alterations contribute to liver fibrosis is not well understood. Here, we investigated whether short telomeres change the hepatic response to metabolic stress induced by fructose, a sugar that is highly implicated in non-alcoholic fatty liver disease. We find that telomere shortening in telomerase knockout mice (TKO) imparts a pronounced susceptibility to fructose as reflected in the activation of p53, increased apoptosis, and senescence, despite lower hepatic fat accumulation in TKO mice compared to wild type mice with long telomeres. The decreased fat accumulation in TKO is mediated by p53 and deletion of p53 normalizes hepatic fat content but also causes polyploidy, polynuclearization, dysplasia, cell death, and liver damage. Together, these studies suggest that liver tissue with short telomers are highly susceptible to fructose and respond with p53 activation and liver damage that is further exacerbated when p53 is lost resulting in dysplastic changes.
Collapse
Affiliation(s)
- Christopher Chronowski
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; (C.C.); (V.A.); (A.C.)
| | - Viktor Akhanov
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; (C.C.); (V.A.); (A.C.)
| | - Doug Chan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Andre Catic
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; (C.C.); (V.A.); (A.C.)
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Milton Finegold
- Department of Pathology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Ergün Sahin
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; (C.C.); (V.A.); (A.C.)
- Department of Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-713-798-6685; Fax: +1-713-798-4146
| |
Collapse
|
24
|
Koufaris C, Kirmizis A. Identification of NAA40 as a Potential Prognostic Marker for Aggressive Liver Cancer Subtypes. Front Oncol 2021; 11:691950. [PMID: 34150665 PMCID: PMC8208081 DOI: 10.3389/fonc.2021.691950] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/17/2021] [Indexed: 11/30/2022] Open
Abstract
Liver hepatocellular carcinoma (LIHC) is a leading cause of cancer-related mortality. In this study we initially interrogated the Cancer Genome Atlas (TCGA) dataset to determine the implication of N-terminal acetyltransferases (NATs), a family of enzymes that modify the N-terminus of the majority of eukaryotic proteins, in LIHC. This examination unveiled NAA40 as the NAT family member with the most prominent upregulation and significant disease prognosis for this cancer. Focusing on this enzyme, which selectively targets histone proteins, we show that its upregulation occurs from early stages of LIHC and is not specifically correlated with any established risk factors such as viral infection, obesity or alcoholic disease. Notably, in silico analysis of TCGA and other LIHC datasets found that expression of this epigenetic enzyme is associated with high proliferating, poorly differentiating and more aggressive LIHC subtypes. In particular, NAA40 upregulation was preferentially linked to mutational or non-mutational P53 functional inactivation. Accordingly, we observed that high NAA40 expression was associated with worse survival specifically in liver cancer patients with inactivated P53. These findings define NAA40 as a NAT with potentially oncogenic functions in LIHC and uncover its prognostic value for aggressive LIHC subtypes.
Collapse
|
25
|
Pettinato AM, Yoo D, VanOudenhove J, Chen YS, Cohn R, Ladha FA, Yang X, Thakar K, Romano R, Legere N, Meredith E, Robson P, Regnier M, Cotney JL, Murry CE, Hinson JT. Sarcomere function activates a p53-dependent DNA damage response that promotes polyploidization and limits in vivo cell engraftment. Cell Rep 2021; 35:109088. [PMID: 33951429 PMCID: PMC8161465 DOI: 10.1016/j.celrep.2021.109088] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 03/11/2021] [Accepted: 04/14/2021] [Indexed: 12/21/2022] Open
Abstract
Human cardiac regeneration is limited by low cardiomyocyte replicative rates and progressive polyploidization by unclear mechanisms. To study this process, we engineer a human cardiomyocyte model to track replication and polyploidization using fluorescently tagged cyclin B1 and cardiac troponin T. Using time-lapse imaging, in vitro cardiomyocyte replication patterns recapitulate the progressive mononuclear polyploidization and replicative arrest observed in vivo. Single-cell transcriptomics and chromatin state analyses reveal that polyploidization is preceded by sarcomere assembly, enhanced oxidative metabolism, a DNA damage response, and p53 activation. CRISPR knockout screening reveals p53 as a driver of cell-cycle arrest and polyploidization. Inhibiting sarcomere function, or scavenging ROS, inhibits cell-cycle arrest and polyploidization. Finally, we show that cardiomyocyte engraftment in infarcted rat hearts is enhanced 4-fold by the increased proliferation of troponin-knockout cardiomyocytes. Thus, the sarcomere inhibits cell division through a DNA damage response that can be targeted to improve cardiomyocyte replacement strategies.
Collapse
Affiliation(s)
- Anthony M Pettinato
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT 06030, USA
| | - Dasom Yoo
- Department of Bioengineering, University of Washington, Seattle, WA 98109, USA
| | | | - Yu-Sheng Chen
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Rachel Cohn
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Feria A Ladha
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT 06030, USA
| | - Xiulan Yang
- Center for Cardiovascular Biology and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Ketan Thakar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Robert Romano
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Nicolas Legere
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Emily Meredith
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Paul Robson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA 98109, USA
| | - Justin L Cotney
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT 06030, USA
| | - Charles E Murry
- Department of Bioengineering, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Department of Pathology, University of Washington, Seattle, WA 98109, USA; Department of Medicine/Cardiology, University of Washington, Seattle, WA 98109, USA
| | - J Travis Hinson
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT 06030, USA; The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA.
| |
Collapse
|
26
|
Chembazhi UV, Bangru S, Hernaez M, Kalsotra A. Cellular plasticity balances the metabolic and proliferation dynamics of a regenerating liver. Genome Res 2021; 31:576-591. [PMID: 33649154 DOI: 10.1101/2020.05.29.124263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 02/02/2021] [Indexed: 05/24/2023]
Abstract
The adult liver has an exceptional ability to regenerate, but how it maintains its specialized functions during regeneration is unclear. Here, we used partial hepatectomy (PHx) in tandem with single-cell transcriptomics to track cellular transitions and heterogeneities of ∼22,000 liver cells through the initiation, progression, and termination phases of mouse liver regeneration. Our results uncovered that, following PHx, a subset of hepatocytes transiently reactivates an early-postnatal-like gene expression program to proliferate, while a distinct population of metabolically hyperactive cells appears to compensate for any temporary deficits in liver function. Cumulative EdU labeling and immunostaining of metabolic, portal, and central vein-specific markers revealed that hepatocyte proliferation after PHx initiates in the midlobular region before proceeding toward the periportal and pericentral areas. We further demonstrate that portal and central vein proximal hepatocytes retain their metabolically active state to preserve essential liver functions while midlobular cells proliferate nearby. Through combined analysis of gene regulatory networks and cell-cell interaction maps, we found that regenerating hepatocytes redeploy key developmental regulons, which are guided by extensive ligand-receptor-mediated signaling events between hepatocytes and nonparenchymal cells. Altogether, our study offers a detailed blueprint of the intercellular crosstalk and cellular reprogramming that balances the metabolic and proliferative requirements of a regenerating liver.
Collapse
Affiliation(s)
- Ullas V Chembazhi
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, USA
| | - Sushant Bangru
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, USA
- Cancer Center@Illinois, University of Illinois, Urbana, Illinois 61801, USA
| | - Mikel Hernaez
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, USA
- Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, 31008 Navarra, Spain
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, USA
- Cancer Center@Illinois, University of Illinois, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, USA
| |
Collapse
|
27
|
Narkar A, Johnson BA, Bharne P, Zhu J, Padmanaban V, Biswas D, Fraser A, Iglesias PA, Ewald AJ, Li R. On the role of p53 in the cellular response to aneuploidy. Cell Rep 2021; 34:108892. [PMID: 33761356 PMCID: PMC8051136 DOI: 10.1016/j.celrep.2021.108892] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/09/2020] [Accepted: 03/02/2021] [Indexed: 01/01/2023] Open
Abstract
Most solid tumors are aneuploid, and p53 has been implicated as the guardian of the euploid genome. Previous experiments using human cell lines showed that aneuploidy induction leads to p53 accumulation and p21-mediated G1 cell cycle arrest. We find that adherent 2-dimensional (2D) cultures of human immortalized or cancer cell lines activate p53 upon aneuploidy induction, whereas suspension cultures of a human lymphoid cell line undergo a p53-independent cell cycle arrest. Surprisingly, 3D human and mouse organotypic cultures from neural, intestinal, or mammary epithelial tissues do not activate p53 or arrest in G1 following aneuploidy induction. p53-deficient colon organoids have increased aneuploidy and frequent lagging chromosomes and multipolar spindles during mitosis. These data suggest that p53 may not act as a universal surveillance factor restricting the proliferation of aneuploid cells but instead helps directly or indirectly ensure faithful chromosome transmission likely by preventing polyploidization and influencing spindle mechanics.
Collapse
Affiliation(s)
- Akshay Narkar
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Blake A Johnson
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Pandurang Bharne
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Jin Zhu
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Veena Padmanaban
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Debojyoti Biswas
- Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Andrew Fraser
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Pablo A Iglesias
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Andrew J Ewald
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Rong Li
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, Singapore 117411, Singapore.
| |
Collapse
|
28
|
Chembazhi UV, Bangru S, Hernaez M, Kalsotra A. Cellular plasticity balances the metabolic and proliferation dynamics of a regenerating liver. Genome Res 2021; 31:576-591. [PMID: 33649154 PMCID: PMC8015853 DOI: 10.1101/gr.267013.120] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 02/02/2021] [Indexed: 02/06/2023]
Abstract
The adult liver has an exceptional ability to regenerate, but how it maintains its specialized functions during regeneration is unclear. Here, we used partial hepatectomy (PHx) in tandem with single-cell transcriptomics to track cellular transitions and heterogeneities of ∼22,000 liver cells through the initiation, progression, and termination phases of mouse liver regeneration. Our results uncovered that, following PHx, a subset of hepatocytes transiently reactivates an early-postnatal-like gene expression program to proliferate, while a distinct population of metabolically hyperactive cells appears to compensate for any temporary deficits in liver function. Cumulative EdU labeling and immunostaining of metabolic, portal, and central vein-specific markers revealed that hepatocyte proliferation after PHx initiates in the midlobular region before proceeding toward the periportal and pericentral areas. We further demonstrate that portal and central vein proximal hepatocytes retain their metabolically active state to preserve essential liver functions while midlobular cells proliferate nearby. Through combined analysis of gene regulatory networks and cell-cell interaction maps, we found that regenerating hepatocytes redeploy key developmental regulons, which are guided by extensive ligand-receptor-mediated signaling events between hepatocytes and nonparenchymal cells. Altogether, our study offers a detailed blueprint of the intercellular crosstalk and cellular reprogramming that balances the metabolic and proliferative requirements of a regenerating liver.
Collapse
Affiliation(s)
- Ullas V Chembazhi
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, USA
| | - Sushant Bangru
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, USA.,Cancer Center@Illinois, University of Illinois, Urbana, Illinois 61801, USA
| | - Mikel Hernaez
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, USA.,Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, 31008 Navarra, Spain
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, USA.,Cancer Center@Illinois, University of Illinois, Urbana, Illinois 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, USA
| |
Collapse
|
29
|
Wilkinson PD, Duncan AW. Differential Roles for Diploid and Polyploid Hepatocytes in Acute and Chronic Liver Injury. Semin Liver Dis 2021; 41:42-49. [PMID: 33764484 PMCID: PMC8056861 DOI: 10.1055/s-0040-1719175] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatocytes are the primary functional cells of the liver that perform essential roles in homeostasis, regeneration, and injury. Most mammalian somatic cells are diploid and contain pairs of each chromosome, but there are also polyploid cells containing additional sets of chromosomes. Hepatocytes are among the best described polyploid cells, with polyploids comprising more than 25 and 90% of the hepatocyte population in humans and mice, respectively. Cellular and molecular mechanisms that regulate hepatic polyploidy have been uncovered, and in recent years, diploid and polyploid hepatocytes have been shown to perform specialized functions. Diploid hepatocytes accelerate liver regeneration induced by resection and may accelerate compensatory regeneration after acute injury. Polyploid hepatocytes protect the liver from tumor initiation in hepatocellular carcinoma and promote adaptation to tyrosinemia-induced chronic injury. This review describes how ploidy variations influence cellular activity and presents a model for context-specific functions for diploid and polyploid hepatocytes.
Collapse
Affiliation(s)
- Patrick D Wilkinson
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Andrew W Duncan
- Department of Pathology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
30
|
Cancer cells employ an evolutionarily conserved polyploidization program to resist therapy. Semin Cancer Biol 2020; 81:145-159. [PMID: 33276091 DOI: 10.1016/j.semcancer.2020.11.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022]
Abstract
Unusually large cancer cells with abnormal nuclei have been documented in the cancer literature since 1858. For more than 100 years, they have been generally disregarded as irreversibly senescent or dying cells, too morphologically misshapen and chromatin too disorganized to be functional. Cell enlargement, accompanied by whole genome doubling or more, is observed across organisms, often associated with mitigation strategies against environmental change, severe stress, or the lack of nutrients. Our comparison of the mechanisms for polyploidization in other organisms and non-transformed tissues suggest that cancer cells draw from a conserved program for their survival, utilizing whole genome doubling and pausing proliferation to survive stress. These polyaneuploid cancer cells (PACCs) are the source of therapeutic resistance, responsible for cancer recurrence and, ultimately, cancer lethality.
Collapse
|
31
|
Shattuck-Brandt RL, Chen SC, Murray E, Johnson CA, Crandall H, O'Neal JF, Al-Rohil RN, Nebhan CA, Bharti V, Dahlman KB, Ayers GD, Yan C, Kelley MC, Kauffmann RM, Hooks M, Grau A, Johnson DB, Vilgelm AE, Richmond A. Metastatic Melanoma Patient-Derived Xenografts Respond to MDM2 Inhibition as a Single Agent or in Combination with BRAF/MEK Inhibition. Clin Cancer Res 2020; 26:3803-3818. [PMID: 32234759 PMCID: PMC7367743 DOI: 10.1158/1078-0432.ccr-19-1895] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 02/21/2020] [Accepted: 03/27/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Over 60% of patients with melanoma respond to immune checkpoint inhibitor (ICI) therapy, but many subsequently progress on these therapies. Second-line targeted therapy is based on BRAF mutation status, but no available agents are available for NRAS, NF1, CDKN2A, PTEN, and TP53 mutations. Over 70% of melanoma tumors have activation of the MAPK pathway due to BRAF or NRAS mutations, while loss or mutation of CDKN2A occurs in approximately 40% of melanomas, resulting in unregulated MDM2-mediated ubiquitination and degradation of p53. Here, we investigated the therapeutic efficacy of over-riding MDM2-mediated degradation of p53 in melanoma with an MDM2 inhibitor that interrupts MDM2 ubiquitination of p53, treating tumor-bearing mice with the MDM2 inhibitor alone or combined with MAPK-targeted therapy. EXPERIMENTAL DESIGN To characterize the ability of the MDM2 antagonist, KRT-232, to inhibit tumor growth, we established patient-derived xenografts (PDX) from 15 patients with melanoma. Mice were treated with KRT-232 or a combination with BRAF and/or MEK inhibitors. Tumor growth, gene mutation status, as well as protein and protein-phosphoprotein changes, were analyzed. RESULTS One-hundred percent of the 15 PDX tumors exhibited significant growth inhibition either in response to KRT-232 alone or in combination with BRAF and/or MEK inhibitors. Only BRAFV600WT tumors responded to KRT-232 treatment alone while BRAFV600E/M PDXs exhibited a synergistic response to the combination of KRT-232 and BRAF/MEK inhibitors. CONCLUSIONS KRT-232 is an effective therapy for the treatment of either BRAFWT or PAN WT (BRAFWT, NRASWT) TP53WT melanomas. In combination with BRAF and/or MEK inhibitors, KRT-232 may be an effective treatment strategy for BRAFV600-mutant tumors.
Collapse
Affiliation(s)
- Rebecca L Shattuck-Brandt
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Sheau-Chiann Chen
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Emily Murray
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Christopher Andrew Johnson
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Holly Crandall
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jamye F O'Neal
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Rami Nayef Al-Rohil
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina
| | - Caroline A Nebhan
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Vijaya Bharti
- Division of Surgical Oncology and Endocrine Surgery, Department of Pathology, Ohio State University, Columbus, Ohio
| | - Kimberly B Dahlman
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Gregory D Ayers
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Chi Yan
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Mark C Kelley
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Rondi M Kauffmann
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mary Hooks
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ana Grau
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Douglas B Johnson
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Anna E Vilgelm
- Division of Surgical Oncology and Endocrine Surgery, Department of Pathology, Ohio State University, Columbus, Ohio
| | - Ann Richmond
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee.
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee
| |
Collapse
|
32
|
Abstract
Polyploidy (or whole-genome duplication) is the condition of having more than two basic sets of chromosomes. Polyploidization is well tolerated in many species and can lead to specific biological functions. In mammals, programmed polyploidization takes place during development in certain tissues, such as the heart and placenta, and is considered a feature of differentiation. However, unscheduled polyploidization can cause genomic instability and has been observed in pathological conditions, such as cancer. Polyploidy of the liver parenchyma was first described more than 100 years ago. The liver is one of the few mammalian organs that display changes in polyploidy during homeostasis, regeneration and in response to damage. In the human liver, approximately 30% of hepatocytes are polyploid. The polyploidy of hepatocytes results from both nuclear polyploidy (an increase in the amount of DNA per nucleus) and cellular polyploidy (an increase in the number of nuclei per cell). In this Review, we discuss the regulation of polyploidy in liver development and pathophysiology. We also provide an overview of current knowledge about the mechanisms of hepatocyte polyploidization, its biological importance and the fate of polyploid hepatocytes during liver tumorigenesis.
Collapse
|
33
|
Caldez MJ, Bjorklund M, Kaldis P. Cell cycle regulation in NAFLD: when imbalanced metabolism limits cell division. Hepatol Int 2020; 14:463-474. [PMID: 32578019 PMCID: PMC7366567 DOI: 10.1007/s12072-020-10066-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/06/2020] [Indexed: 12/12/2022]
Abstract
Cell division is essential for organismal growth and tissue homeostasis. It is exceptionally significant in tissues chronically exposed to intrinsic and external damage, like the liver. After decades of studying the regulation of cell cycle by extracellular signals, there are still gaps in our knowledge on how these two interact with metabolic pathways in vivo. Studying the cross-talk of these pathways has direct clinical implications as defects in cell division, signaling pathways, and metabolic homeostasis are frequently observed in liver diseases. In this review, we will focus on recent reports which describe various functions of cell cycle regulators in hepatic homeostasis. We will describe the interplay between the cell cycle and metabolism during liver regeneration after acute and chronic damage. We will focus our attention on non-alcoholic fatty liver disease, especially non-alcoholic steatohepatitis. The global incidence of non-alcoholic fatty liver disease is increasing exponentially. Therefore, understanding the interplay between cell cycle regulators and metabolism may lead to the discovery of novel therapeutic targets amenable to intervention.
Collapse
Affiliation(s)
- Matias J Caldez
- WPI Immunology Frontiers Research Centre, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Mikael Bjorklund
- Zhejiang University-University of Edinburgh (ZJU-UoE) Institute and 2nd Affiliated Hospital, Zhejiang University School of Medicine, 718 East Haizhou Rd., Haining, 314400, Zhejiang, People's Republic of China
| | - Philipp Kaldis
- Department of Clinical Sciences, Clinical Research Centre (CRC), Lund University, Box 50332, 202 13, Malmö, Sweden.
| |
Collapse
|
34
|
Fast and efficient generation of knock-in human organoids using homology-independent CRISPR-Cas9 precision genome editing. Nat Cell Biol 2020; 22:321-331. [PMID: 32123335 DOI: 10.1038/s41556-020-0472-5] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 01/20/2020] [Indexed: 12/17/2022]
Abstract
CRISPR-Cas9 technology has revolutionized genome editing and is applicable to the organoid field. However, precise integration of exogenous DNA sequences into human organoids is lacking robust knock-in approaches. Here, we describe CRISPR-Cas9-mediated homology-independent organoid transgenesis (CRISPR-HOT), which enables efficient generation of knock-in human organoids representing different tissues. CRISPR-HOT avoids extensive cloning and outperforms homology directed repair (HDR) in achieving precise integration of exogenous DNA sequences into desired loci, without the necessity to inactivate TP53 in untransformed cells, which was previously used to increase HDR-mediated knock-in. CRISPR-HOT was used to fluorescently tag and visualize subcellular structural molecules and to generate reporter lines for rare intestinal cell types. A double reporter-in which the mitotic spindle was labelled by endogenously tagged tubulin and the cell membrane by endogenously tagged E-cadherin-uncovered modes of human hepatocyte division. Combining tubulin tagging with TP53 knock-out revealed that TP53 is involved in controlling hepatocyte ploidy and mitotic spindle fidelity. CRISPR-HOT simplifies genome editing in human organoids.
Collapse
|
35
|
E2F-Family Members Engage the PIDDosome to Limit Hepatocyte Ploidy in Liver Development and Regeneration. Dev Cell 2020; 52:335-349.e7. [PMID: 31983631 DOI: 10.1016/j.devcel.2019.12.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/27/2019] [Accepted: 12/24/2019] [Indexed: 01/12/2023]
Abstract
E2F transcription factors control the cytokinesis machinery and thereby ploidy in hepatocytes. If or how these proteins limit proliferation of polyploid cells with extra centrosomes remains unknown. Here, we show that the PIDDosome, a signaling platform essential for caspase-2-activation, limits hepatocyte ploidy and is instructed by the E2F network to control p53 in the developing as well as regenerating liver. Casp2 and Pidd1 act as direct transcriptional targets of E2F1 and its antagonists, E2F7 and E2F8, that together co-regulate PIDDosome expression during juvenile liver growth and regeneration. Of note, whereas hepatocyte aneuploidy correlates with the basal ploidy state, the degree of aneuploidy itself is not limited by PIDDosome-dependent p53 activation. Finally, we provide evidence that the same signaling network is engaged to control ploidy in the human liver after resection. Our study defines the PIDDosome as a primary target to manipulate hepatocyte ploidy and proliferation rates in the regenerating liver.
Collapse
|
36
|
Cheng KC, Wang CJ, Chang YC, Hung TW, Lai CJ, Kuo CW, Huang HP. Mulberry fruits extracts induce apoptosis and autophagy of liver cancer cell and prevent hepatocarcinogenesis in vivo. J Food Drug Anal 2020; 28:84-93. [DOI: 10.1016/j.jfda.2019.06.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/15/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022] Open
|
37
|
Richards DY, Winn SR, Dudley S, Nygaard S, Mighell TL, Grompe M, Harding CO. AAV-Mediated CRISPR/Cas9 Gene Editing in Murine Phenylketonuria. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 17:234-245. [PMID: 31970201 PMCID: PMC6962637 DOI: 10.1016/j.omtm.2019.12.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022]
Abstract
Phenylketonuria (PKU) due to recessively inherited phenylalanine hydroxylase (PAH) deficiency results in hyperphenylalaninemia, which is toxic to the central nervous system. Restriction of dietary phenylalanine intake remains the standard of PKU care and prevents the major neurologic manifestations of the disease, yet shortcomings of dietary therapy remain, including poor adherence to a difficult and unpalatable diet, an increased incidence of neuropsychiatric illness, and imperfect neurocognitive outcomes. Gene therapy for PKU is a promising novel approach to promote lifelong neurological protection while allowing unrestricted dietary phenylalanine intake. In this study, liver-tropic recombinant AAV2/8 vectors were used to deliver CRISPR/Cas9 machinery and facilitate correction of the Pah enu2 allele by homologous recombination. Additionally, a non-homologous end joining (NHEJ) inhibitor, vanillin, was co-administered with the viral drug to promote homology-directed repair (HDR) with the AAV-provided repair template. This combinatorial drug administration allowed for lifelong, permanent correction of the Pah enu2 allele in a portion of treated hepatocytes of mice with PKU, yielding partial restoration of liver PAH activity, substantial reduction of blood phenylalanine, and prevention of maternal PKU effects during breeding. This work reveals that CRISPR/Cas9 gene editing is a promising tool for permanent PKU gene editing.
Collapse
Affiliation(s)
- Daelyn Y Richards
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Shelley R Winn
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Sandra Dudley
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Sean Nygaard
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Taylor L Mighell
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Markus Grompe
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Cary O Harding
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA.,Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
38
|
Broughton KM, Khieu T, Nguyen N, Rosa M, Mohsin S, Quijada P, Wang BJ, Echeagaray OH, Kubli DA, Kim T, Firouzi F, Monsanto MM, Gude NA, Adamson RM, Dembitsky WP, Davis ME, Sussman MA. Cardiac interstitial tetraploid cells can escape replicative senescence in rodents but not large mammals. Commun Biol 2019; 2:205. [PMID: 31231694 PMCID: PMC6565746 DOI: 10.1038/s42003-019-0453-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/02/2019] [Indexed: 12/26/2022] Open
Abstract
Cardiomyocyte ploidy has been described but remains obscure in cardiac interstitial cells. Ploidy of c-kit+ cardiac interstitial cells was assessed using confocal, karyotypic, and flow cytometric technique. Notable differences were found between rodent (rat, mouse) c-kit+ cardiac interstitial cells possessing mononuclear tetraploid (4n) content, compared to large mammals (human, swine) with mononuclear diploid (2n) content. In-situ analysis, confirmed with fresh isolates, revealed diploid content in human c-kit+ cardiac interstitial cells and a mixture of diploid and tetraploid content in mouse. Downregulation of the p53 signaling pathway provides evidence why rodent, but not human, c-kit+ cardiac interstitial cells escape replicative senescence. Single cell transcriptional profiling reveals distinctions between diploid versus tetraploid populations in mouse c-kit+ cardiac interstitial cells, alluding to functional divergences. Collectively, these data reveal notable species-specific biological differences in c-kit+ cardiac interstitial cells, which could account for challenges in extrapolation of myocardial from preclinical studies to clinical trials.
Collapse
Affiliation(s)
- Kathleen M. Broughton
- San Diego State University Heart Institute and the Integrated Regenerative Research Institute, 5500 Campanile Drive, San Diego, CA 92182 USA
| | - Tiffany Khieu
- San Diego State University Heart Institute and the Integrated Regenerative Research Institute, 5500 Campanile Drive, San Diego, CA 92182 USA
| | - Nicky Nguyen
- San Diego State University Heart Institute and the Integrated Regenerative Research Institute, 5500 Campanile Drive, San Diego, CA 92182 USA
| | - Michael Rosa
- San Diego State University Heart Institute and the Integrated Regenerative Research Institute, 5500 Campanile Drive, San Diego, CA 92182 USA
| | - Sadia Mohsin
- Cardiovascular Research Center, Temple University, 3500 N. Broad St., Philadelphia, 19140 PA USA
| | - Pearl Quijada
- San Diego State University Heart Institute and the Integrated Regenerative Research Institute, 5500 Campanile Drive, San Diego, CA 92182 USA
| | - Bingyan J. Wang
- San Diego State University Heart Institute and the Integrated Regenerative Research Institute, 5500 Campanile Drive, San Diego, CA 92182 USA
| | - Oscar H. Echeagaray
- San Diego State University Heart Institute and the Integrated Regenerative Research Institute, 5500 Campanile Drive, San Diego, CA 92182 USA
| | - Dieter A. Kubli
- San Diego State University Heart Institute and the Integrated Regenerative Research Institute, 5500 Campanile Drive, San Diego, CA 92182 USA
| | - Taeyong Kim
- San Diego State University Heart Institute and the Integrated Regenerative Research Institute, 5500 Campanile Drive, San Diego, CA 92182 USA
| | - Fareheh Firouzi
- San Diego State University Heart Institute and the Integrated Regenerative Research Institute, 5500 Campanile Drive, San Diego, CA 92182 USA
| | - Megan M. Monsanto
- San Diego State University Heart Institute and the Integrated Regenerative Research Institute, 5500 Campanile Drive, San Diego, CA 92182 USA
| | - Natalie A. Gude
- San Diego State University Heart Institute and the Integrated Regenerative Research Institute, 5500 Campanile Drive, San Diego, CA 92182 USA
| | - Robert M. Adamson
- Division of Cardiology, Sharp Memorial Hospital, 8010 Frost St., San Diego, 92123 CA USA
| | - Walter P. Dembitsky
- Division of Cardiology, Sharp Memorial Hospital, 8010 Frost St., San Diego, 92123 CA USA
| | - Michael E. Davis
- Biomedical Engineering and Medicine, Emory University, 1760 Haygood Dr., Atlanta, 30322 GA USA
| | - Mark A. Sussman
- San Diego State University Heart Institute and the Integrated Regenerative Research Institute, 5500 Campanile Drive, San Diego, CA 92182 USA
| |
Collapse
|
39
|
Abstract
Polyploid cells contain more than two homologous sets of chromosomes. The original observations of liver polyploidy date back to the 1940s, but functional roles for polyploid cells are still unclear. Liver polyploidy may influence regeneration, stress response, and cancer, although little evidence has established direct causal links between polyploidy and these biological phenotypes. In this review, we will introduce broad concepts about polyploidy including its distribution in nature and how polyploids form in normal and pathological situations. Then we will examine recent discoveries that have begun to clarify functionality and disease relevance of liver polyploidy. Finally, we will discuss implications and future directions of research about polyploidy in the liver.
Collapse
Affiliation(s)
- Shuyuan Zhang
- a Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine , University of Texas Southwestern Medical Center , Dallas , USA
| | - Yu-Hsuan Lin
- a Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine , University of Texas Southwestern Medical Center , Dallas , USA
| | - Branden Tarlow
- b Department of Internal Medicine , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Hao Zhu
- a Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine , University of Texas Southwestern Medical Center , Dallas , USA
| |
Collapse
|
40
|
Hu G, Yan Z, Zhang C, Cheng M, Yan Y, Wang Y, Deng L, Lu Q, Luo S. FOXM1 promotes hepatocellular carcinoma progression by regulating KIF4A expression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:188. [PMID: 31072351 PMCID: PMC6507024 DOI: 10.1186/s13046-019-1202-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/30/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Forkhead box M1 (FOXM1) is a proliferation-associated transcription factor of the forkhead box proteins superfamily, which includes four isoforms FOXM1a, b, c, and d. FOXM1 has been implicated in hepatocellular carcinoma (HCC) progression, but the underlying molecular mechanism remains elusive. In this study, we aim to clarify the molecular basis for FOXM1-mediated HCC progression. METHODS Bioinformatic analysis was used to explore the differentially expressed genes predicting HCC proliferation. The expression of FOXM1 and kinesin family member (KIF)4A was confirmed by western blotting and immunohistochemistry in HCC tissues. Kaplan-Meier survival analysis was conducted to analyze the clinical impact of FOXM1 and KIF4A on HCC. The effect of FOXM1 on the regulation of KIF4A expression was studied in cell biology experiments. The interaction between KIF4A and FOXM1 was analyzed by chromatin immunoprecipitation and luciferase experiments. A series of experiments was performed to explore the functions of FOXM1/KIF4A in HCC progression, such as cell proliferation, cell growth, cell viability, and cell cycle. A xenograft mouse model was used to explore the regulatory effect of FOXM1-KIF4A axis on HCC tumor growth. RESULTS FOXM1 and KIF4A were overexpressed in human primary HCC tissues compared to that in matched adjacent normal liver tissue and are significant risk factors for HCC recurrence and shorter survival. We found that KIF4A was dominantly regulated by FOXM1c among the four isoforms, and further identified KIF4A as a direct downstream target of FOXM1c. Inhibiting FOXM1 decreased KIF4A expression in HCC cells, whereas its overexpression had the opposite effect. FOXM1-induced HCC cell proliferation was dependent on elevated KIF4A expression as KIF4A knockdown abolished FOXM1-induced proliferation of HCC cells both in vitro and in vivo. CONCLUSION The FOXM1-KIF4A axis mediates human HCC progression and is a potential therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Guohui Hu
- Center for Experimental Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, 17 Yongwai Street, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Zhengwei Yan
- Center for Experimental Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, 17 Yongwai Street, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Cheng Zhang
- Center for Experimental Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, 17 Yongwai Street, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Minzhang Cheng
- Center for Experimental Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, 17 Yongwai Street, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Yehong Yan
- Department of General Surgery, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yiting Wang
- Center for Experimental Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, 17 Yongwai Street, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Libin Deng
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Quqin Lu
- Department of Epidemiology & Biostatistics, School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Shiwen Luo
- Center for Experimental Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China. .,Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, 17 Yongwai Street, Donghu District, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
41
|
Liao GB, Li XZ, Zeng S, Liu C, Yang SM, Yang L, Hu CJ, Bai JY. Regulation of the master regulator FOXM1 in cancer. Cell Commun Signal 2018; 16:57. [PMID: 30208972 PMCID: PMC6134757 DOI: 10.1186/s12964-018-0266-6] [Citation(s) in RCA: 283] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/21/2018] [Indexed: 02/07/2023] Open
Abstract
FOXM1 (forkhead box protein M1) is a critical proliferation-associated transcription factor that is widely spatiotemporally expressed during the cell cycle. It is closely involved with the processes of cell proliferation, self-renewal, and tumorigenesis. In most human cancers, FOXM1 is overexpressed, and this indicates a poor prognosis for cancer patients. FOXM1 maintains cancer hallmarks by regulating the expression of target genes at the transcriptional level. Due to its potential role as molecular target in cancer therapy, FOXM1 was named the Molecule of the Year in 2010. However, the mechanism of FOXM1 dysregulation remains indistinct. A comprehensive understanding of FOXM1 regulation will provide novel insight for cancer and other diseases in which FOXM1 plays a major role. Here, we summarize the transcriptional regulation, post-transcriptional regulation and post-translational modifications of FOXM1, which will provide extremely important implications for novel strategies targeting FOXM1.
Collapse
Affiliation(s)
- Guo-Bin Liao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037 China
| | - Xin-Zhe Li
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037 China
| | - Shuo Zeng
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037 China
| | - Cheng Liu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037 China
| | - Shi-Ming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037 China
| | - Li Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037 China
| | - Chang-Jiang Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037 China
| | - Jian-Ying Bai
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037 China
| |
Collapse
|
42
|
Luo P, Xu Z, Li G, Yan H, Zhu Y, Zhu H, Ma S, Yang B, He Q. HMGB1 represses the anti-cancer activity of sunitinib by governing TP53 autophagic degradation via its nucleus-to-cytoplasm transport. Autophagy 2018; 14:2155-2170. [PMID: 30205729 PMCID: PMC6984767 DOI: 10.1080/15548627.2018.1501134] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sunitinib, a multikinase inhibitor approved for a number of cancer indications has a low response rate. Identifying mechanisms of resistance could lead to rational combination regimens that could improve clinical outcomes. Here we report that resistance to sunitinib therapy was driven by autophagic degradation of TP53/p53. Deletion of ATG7 or ATG5 suppressed TP53 degradation, as did knockdown of SQSTM1/p62. Mechanistically, the transport of TP53 from the nucleus to the cytoplasm was essential for the sunitinib-induced autophagic degradation of TP53 and did not require TP53 nuclear export signals (NESs). Moreover, TP53 degradation was achieved by the transport of its nuclear binding target, HMGB1, which shifted TP53 from the nucleus to the cytoplasm. The inhibition of HMGB1 sensitized cancer cells to sunitinib. Importantly, sunitinib induced the degradation of all TP53 proteins, except for TP53 proteins with mutations in the interaction domain of TP53 with HMGB1 (amino acids 313 to 352). In conclusion, our data identify an alternative HMGB1-mediated TP53 protein turnover mechanism that participates in the resistance of sunitinib and suggest HMGB1 as a potential therapeutic target for improving clinical outcomes of sunitinib.
Collapse
Affiliation(s)
- Peihua Luo
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , China
| | - Zhifei Xu
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , China
| | - Guanqun Li
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , China
| | - Hao Yan
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , China
| | - Yi Zhu
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , China
| | - Hong Zhu
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , China
| | - Shenglin Ma
- b Department of Oncology , Hangzhou First People's Hospital, Nanjing Medical University , Hangzhou , China
| | - Bo Yang
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , China
| | - Qiaojun He
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , China
| |
Collapse
|
43
|
Moreno-Marín N, Merino JM, Alvarez-Barrientos A, Patel DP, Takahashi S, González-Sancho JM, Gandolfo P, Rios RM, Muñoz A, Gonzalez FJ, Fernández-Salguero PM. Aryl Hydrocarbon Receptor Promotes Liver Polyploidization and Inhibits PI3K, ERK, and Wnt/β-Catenin Signaling. iScience 2018; 4:44-63. [PMID: 30240752 PMCID: PMC6147018 DOI: 10.1016/j.isci.2018.05.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 04/25/2018] [Accepted: 05/09/2018] [Indexed: 01/02/2023] Open
Abstract
Aryl hydrocarbon receptor (AhR) deficiency alters tissue homeostasis. However, how AhR regulates organ maturation and differentiation remains mostly unknown. Liver differentiation entails a polyploidization process fundamental for cell growth, metabolism, and stress responses. Here, we report that AhR regulates polyploidization during the preweaning-to-adult mouse liver maturation. Preweaning AhR-null (AhR−/−) livers had smaller hepatocytes, hypercellularity, altered cell cycle regulation, and enhanced proliferation. Those phenotypes persisted in adult AhR−/− mice and correlated with compromised polyploidy, predominance of diploid hepatocytes, and enlarged centrosomes. Phosphatidylinositol-3-phosphate kinase (PI3K), extracellular signal-regulated kinase (ERK), and Wnt/β-catenin signaling remained upregulated from preweaning to adult AhR-null liver, likely increasing mammalian target of rapamycin (mTOR) activation. Metabolomics revealed the deregulation of mitochondrial oxidative phosphorylation intermediates succinate and fumarate in AhR−/− liver. Consistently, PI3K, ERK, and Wnt/β-catenin inhibition partially rescued polyploidy in AhR−/− mice. Thus, AhR may integrate survival, proliferation, and metabolism for liver polyploidization. Since tumor cells tend to be polyploid, AhR modulation could have therapeutic value in the liver. AhR is required for liver polyploidization during preweaning-to-adult transition INS-R/PI3K/AKT, ERK, Wnt/β-Cat and mTOR are downregulated during liver polyploidization Reduced polyploidy relates with enhanced mitochondrial metabolism in AhR-null liver Understanding how AhR modulates polyploidy may provide strategies against cancer
Collapse
Affiliation(s)
- Nuria Moreno-Marín
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Badajoz 06071, Spain
| | - Jaime M Merino
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Badajoz 06071, Spain
| | - Alberto Alvarez-Barrientos
- Servicio de Técnicas Aplicadas a las Biociencias (STAB), Universidad de Extremadura, Badajoz, Badajoz 06071, Spain
| | - Daxeshkumar P Patel
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shogo Takahashi
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - José M González-Sancho
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, and CIBER de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Pablo Gandolfo
- Cell Signaling Department, CABIMER-CSIC, Sevilla 41092, Spain
| | - Rosa M Rios
- Cell Signaling Department, CABIMER-CSIC, Sevilla 41092, Spain
| | - Alberto Muñoz
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, and CIBER de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pedro M Fernández-Salguero
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Badajoz 06071, Spain.
| |
Collapse
|
44
|
Patel V, Singh VP, Pinnamaneni JP, Sanagasetti D, Olive J, Mathison M, Cooney A, Flores ER, Crystal RG, Yang J, Rosengart TK. p63 Silencing induces reprogramming of cardiac fibroblasts into cardiomyocyte-like cells. J Thorac Cardiovasc Surg 2018; 156:556-565.e1. [PMID: 29716728 DOI: 10.1016/j.jtcvs.2018.03.162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Reprogramming of fibroblasts into induced cardiomyocytes represents a potential new therapy for heart failure. We hypothesized that inactivation of p63, a p53 gene family member, may help overcome human cell resistance to reprogramming. METHODS p63 Knockout (-/-) and knockdown murine embryonic fibroblasts (MEFs), p63-/- adult murine cardiac fibroblasts, and human cardiac fibroblasts were assessed for cardiomyocyte-specific feature changes, with or without treatment by the cardiac transcription factors Hand2-Myocardin (HM). RESULTS Flow cytometry revealed that a significantly greater number of p63-/- MEFs expressed the cardiac-specific marker cardiac troponin T (cTnT) in culture compared with wild-type (WT) cells (38% ± 11% vs 0.9% ± 0.9%, P < .05). HM treatment of p63-/- MEFs increased cTnT expression to 74% ± 3% of cells but did not induce cTnT expression in wild-type murine embryonic fibroblasts. shRNA-mediated p63 knockdown likewise yielded a 20-fold increase in cTnT microRNA expression compared with untreated MEFs. Adult murine cardiac fibroblasts demonstrated a 200-fold increase in cTnT gene expression after inducible p63 knockout and expressed sarcomeric α-actinin as well as cTnT. These p63-/- adult cardiac fibroblasts exhibited calcium transients and electrically stimulated contractions when co-cultured with neonatal rat cardiomyocytes and treated with HM. Increased expression of cTnT and other marker genes was also observed in p63 knockdown human cardiac fibroblasts procured from patients undergoing procedures for heart failure. CONCLUSIONS Downregulation of p63 facilitates direct cardiac cellular reprogramming and may help overcome the resistance of human cells to reprogramming.
Collapse
Affiliation(s)
- Vivekkumar Patel
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Vivek P Singh
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | | | - Deepthi Sanagasetti
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Jacqueline Olive
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Megumi Mathison
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Austin Cooney
- Department of Pediatrics, The University of Texas at Austin, Dell Medical School, Austin, Tex
| | - Elsa R Flores
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, Fla
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY
| | - Jianchang Yang
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Todd K Rosengart
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex.
| |
Collapse
|
45
|
Borude P, Bhushan B, Gunewardena S, Akakpo J, Jaeschke H, Apte U. Pleiotropic Role of p53 in Injury and Liver Regeneration after Acetaminophen Overdose. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1406-1418. [PMID: 29654721 DOI: 10.1016/j.ajpath.2018.03.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 03/08/2018] [Accepted: 03/23/2018] [Indexed: 12/13/2022]
Abstract
p53 is the major cellular gatekeeper involved in proliferation, cell death, migration, and homeostasis. The role of p53 in pathogenesis of drug-induced liver injury is unknown. We investigated the role of p53 in liver injury and regeneration after acetaminophen (APAP) overdose, the most common cause of acute liver failure in the Western world. Eight-week-old male wild-type (WT) and p53 knockout (p53KO) mice were treated with 300 mg/kg APAP, and the dynamics of liver injury and regeneration were studied over a time course of 0 to 96 hours. Deletion of p53 resulted in a threefold higher liver injury than in WT mice. Interestingly, despite higher liver injury, p53KO mice recovered similarly as the WT mice because of faster liver regeneration. Deletion of p53 did not affect APAP bioactivation and initiation of injury. Microarray analysis revealed that p53KO mice had disrupted metabolic homeostasis and induced inflammatory and proliferative signaling. p53KO mice showed prolonged steatosis correlating with prolonged liver injury. Initiation of liver regeneration in p53KO mice was delayed, but once initiated, cell cycle was significantly faster than WT mice because of sustained AKT, extracellular signal-regulated kinase, and mammalian target of rapamycin signaling. These studies show that p53 plays a pleotropic role after APAP overdose, where it prevents progression of liver injury by maintaining metabolic homeostasis and also regulates initiation of liver regeneration through proliferative signaling.
Collapse
Affiliation(s)
- Prachi Borude
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Bharat Bhushan
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Sumedha Gunewardena
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, Kansas
| | - Jephte Akakpo
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
46
|
Krstic J, Galhuber M, Schulz TJ, Schupp M, Prokesch A. p53 as a Dichotomous Regulator of Liver Disease: The Dose Makes the Medicine. Int J Mol Sci 2018; 19:E921. [PMID: 29558460 PMCID: PMC5877782 DOI: 10.3390/ijms19030921] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 02/07/2023] Open
Abstract
Lifestyle-related disorders, such as the metabolic syndrome, have become a primary risk factor for the development of liver pathologies that can progress from hepatic steatosis, hepatic insulin resistance, steatohepatitis, fibrosis and cirrhosis, to the most severe condition of hepatocellular carcinoma (HCC). While the prevalence of liver pathologies is steadily increasing in modern societies, there are currently no approved drugs other than chemotherapeutic intervention in late stage HCC. Hence, there is a pressing need to identify and investigate causative molecular pathways that can yield new therapeutic avenues. The transcription factor p53 is well established as a tumor suppressor and has recently been described as a central metabolic player both in physiological and pathological settings. Given that liver is a dynamic tissue with direct exposition to ingested nutrients, hepatic p53, by integrating cellular stress response, metabolism and cell cycle regulation, has emerged as an important regulator of liver homeostasis and dysfunction. The underlying evidence is reviewed herein, with a focus on clinical data and animal studies that highlight a direct influence of p53 activity on different stages of liver diseases. Based on current literature showing that activation of p53 signaling can either attenuate or fuel liver disease, we herein discuss the hypothesis that, while hyper-activation or loss of function can cause disease, moderate induction of hepatic p53 within physiological margins could be beneficial in the prevention and treatment of liver pathologies. Hence, stimuli that lead to a moderate and temporary p53 activation could present new therapeutic approaches through several entry points in the cascade from hepatic steatosis to HCC.
Collapse
Affiliation(s)
- Jelena Krstic
- Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Medical University of Graz, 8010 Graz, Austria.
| | - Markus Galhuber
- Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Medical University of Graz, 8010 Graz, Austria.
| | - Tim J Schulz
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition, Potsdam-Rehhbrücke, 14558 Nuthetal, Germany.
- German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany.
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany.
| | - Michael Schupp
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pharmacology, Center for Cardiovascular Research, 10117 Berlin, Germany.
| | - Andreas Prokesch
- Gottfried Schatz Research Center for Cell Signaling, Metabolism & Aging, Medical University of Graz, 8010 Graz, Austria.
- BioTechMed-Graz, 8010 Graz, Austria.
| |
Collapse
|
47
|
Sladky V, Schuler F, Fava LL, Villunger A. The resurrection of the PIDDosome - emerging roles in the DNA-damage response and centrosome surveillance. J Cell Sci 2018; 130:3779-3787. [PMID: 29142064 DOI: 10.1242/jcs.203448] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The PIDDosome is often used as the alias for a multi-protein complex that includes the p53-induced death domain protein 1 (PIDD1), the bipartite linker protein CRADD (also known as RAIDD) and the pro-form of an endopeptidase belonging to the caspase family, i.e. caspase-2. Yet, PIDD1 variants can also interact with a number of other proteins that include RIPK1 (also known as RIP1) and IKBKG (also known as NEMO), PCNA and RFC5, as well as nucleolar components such as NPM1 or NCL. This promiscuity in protein binding is facilitated mainly by autoprocessing of the full-length protein into various fragments that contain different structural domains. As a result, multiple responses can be mediated by protein complexes that contain a PIDD1 domain. This suggests that PIDD1 acts as an integrator for multiple types of stress that need instant attention. Examples are various types of DNA lesion but also the presence of extra centrosomes that can foster aneuploidy and, ultimately, promote DNA damage. Here, we review the role of PIDD1 in response to DNA damage and also highlight novel functions of PIDD1, such as in centrosome surveillance and scheduled polyploidisation as part of a cellular differentiation program during organogenesis.
Collapse
Affiliation(s)
- Valentina Sladky
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria
| | - Fabian Schuler
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria
| | - Luca L Fava
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria.,Center for Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Povo, Italy
| | - Andreas Villunger
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria
| |
Collapse
|
48
|
Zhang S, Zhou K, Luo X, Li L, Tu HC, Sehgal A, Nguyen LH, Zhang Y, Gopal P, Tarlow BD, Siegwart DJ, Zhu H. The Polyploid State Plays a Tumor-Suppressive Role in the Liver. Dev Cell 2018; 44:447-459.e5. [PMID: 29429824 DOI: 10.1016/j.devcel.2018.01.010] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 12/06/2017] [Accepted: 01/09/2018] [Indexed: 12/17/2022]
Abstract
Most cells in the liver are polyploid, but the functional role of polyploidy is unknown. Polyploidization occurs through cytokinesis failure and endoreduplication around the time of weaning. To interrogate polyploidy while avoiding irreversible manipulations of essential cell-cycle genes, we developed orthogonal mouse models to transiently and potently alter liver ploidy. Premature weaning, as well as knockdown of E2f8 or Anln, allowed us to toggle between diploid and polyploid states. While there was no detectable impact of ploidy alterations on liver function, metabolism, or regeneration, mice with more polyploid hepatocytes suppressed tumorigenesis and mice with more diploid hepatocytes accelerated tumorigenesis in mutagen- and high-fat-induced models. Mechanistically, the diploid state was more susceptible to Cas9-mediated tumor-suppressor loss but was similarly susceptible to MYC oncogene activation, indicating that polyploidy differentially protected the liver from distinct genomic aberrations. This suggests that polyploidy evolved in part to prevent malignant outcomes of liver injury.
Collapse
Affiliation(s)
- Shuyuan Zhang
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kejin Zhou
- Simmons Comprehensive Cancer Center, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xin Luo
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lin Li
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ho-Chou Tu
- Alnylam Pharmaceuticals, Cambridge, MA 02142, USA
| | | | - Liem H Nguyen
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yu Zhang
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Purva Gopal
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Branden D Tarlow
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daniel J Siegwart
- Simmons Comprehensive Cancer Center, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hao Zhu
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
49
|
Perazzoli MRA, Perondi CK, Baratto CM, Winter E, Creczynski-Pasa TB, Locatelli C. Gallic Acid and Dodecyl Gallate Prevents Carbon Tetrachloride-Induced Acute and Chronic Hepatotoxicity by Enhancing Hepatic Antioxidant Status and Increasing p53 Expression. Biol Pharm Bull 2017; 40:425-434. [PMID: 28381798 DOI: 10.1248/bpb.b16-00782] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gallic acid (3,4,5-trihydroxybenzoic acid, GA), a natural phenolic acid has been reported as a strong antioxidant. Therefore the present study was designed to evaluate the effects of GA and dodecyl gallate (DGA) against acute and chronic carbon tetrachloride (CCl4)-induced hepatotoxicity. For acute model, rats were orally treated with GA and DGA for 7 d prior to CCl4 by intraperitoneally (i.p.) injection. For the chronic model, rats were orally treated with GA or DGA and CCl4 i.p. twice a week for four weeks. In both acute and chronic models, the CCl4-treated groups showed significantly increase in serum hepatic enzyme activities and histopathologic alterations, as well as a disruption in antioxidative status. In contrast, the treatment with GA and DGA restored serum hepatic enzymes activities, improved histopathologic alterations, increased glutathione (GSH) and decreased lipid peroxidation levels. The activities of liver antioxidant enzymes were increased by GA and DGA only in acute model. The expression of p53 gene increased about 3.5 times after GA and DGA treatments, which could result in cell death of damaged hepatocytes preventing of a lifelong liver failure. Thus, these results suggest that GA and DGA has the potential to prevent liver damages as the case of fibrosis condition.
Collapse
|
50
|
Fava LL, Schuler F, Sladky V, Haschka MD, Soratroi C, Eiterer L, Demetz E, Weiss G, Geley S, Nigg EA, Villunger A. The PIDDosome activates p53 in response to supernumerary centrosomes. Genes Dev 2017; 31:34-45. [PMID: 28130345 PMCID: PMC5287111 DOI: 10.1101/gad.289728.116] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/15/2016] [Indexed: 01/13/2023]
Abstract
In this study, Fava et al. show that an increase in the number of mature centrosomes (the main microtubule-organizing centers in animal cells), generated by disrupting cytokinesis or forcing centrosome overduplication, triggers the activation of the PIDDosome multiprotein complex, leading to Caspase-2-mediated MDM2 cleavage, p53 stabilization, and p21-dependent cell cycle arrest. Centrosomes, the main microtubule-organizing centers in animal cells, are replicated exactly once during the cell division cycle to form the poles of the mitotic spindle. Supernumerary centrosomes can lead to aberrant cell division and have been causally linked to chromosomal instability and cancer. Here, we report that an increase in the number of mature centrosomes, generated by disrupting cytokinesis or forcing centrosome overduplication, triggers the activation of the PIDDosome multiprotein complex, leading to Caspase-2-mediated MDM2 cleavage, p53 stabilization, and p21-dependent cell cycle arrest. This pathway also restrains the extent of developmentally scheduled polyploidization by regulating p53 levels in hepatocytes during liver organogenesis. Taken together, the PIDDosome acts as a first barrier, engaging p53 to halt the proliferation of cells carrying more than one mature centrosome to maintain genome integrity.
Collapse
Affiliation(s)
- Luca L Fava
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Fabian Schuler
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Valentina Sladky
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Manuel D Haschka
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Claudia Soratroi
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Lisa Eiterer
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Egon Demetz
- Department of Internal Medicine VI, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Guenter Weiss
- Department of Internal Medicine VI, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Stephan Geley
- Division of Molecular Pathophysiology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Erich A Nigg
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Andreas Villunger
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria.,Tyrolean Cancer Research Institute, 6020 Innsbruck, Austria
| |
Collapse
|