1
|
Ye J, Shi R, Wu X, Fan H, Zhao Y, Hu X, Wang L, Bo X, Li D, Ge Y, Wang D, Xia B, Zhao Z, Xiao C, Zhao B, Wang Y, Liu X. Stevioside mitigates metabolic dysregulation in offspring induced by maternal high-fat diet: the role of gut microbiota-driven thermogenesis. Gut Microbes 2025; 17:2452241. [PMID: 39838262 DOI: 10.1080/19490976.2025.2452241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/08/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025] Open
Abstract
Maternal obesity poses a significant threat to the metabolic profiles of offspring. Microorganisms acquired from the mother early in life critically affect the host's metabolic functions. Natural non-nutritive sweeteners, particularly stevioside (STV), play a crucial role in reducing obesity and affecting gut microbiota composition. Based on this, we hypothesized that maternal STV supplementation could improve the health of mothers and offspring by altering their gut microbiota. Our study found that maternal STV supplementation reduced obesity during pregnancy, decreased abnormal lipid accumulation in offspring mice caused by maternal obesity, and modified the gut microbiota of both dams and offspring, notably increasing the abundance of Lactobacillus apodemi (L. apodemi). Co-housing and fecal microbiota transplant experiments confirmed that gut microbiota mediated the effects of STV on metabolic disorders. Furthermore, treatment with L. apodemi alone replicated the beneficial effects of STV, which were associated with increased thermogenesis. In summary, maternal STV supplementation could alleviate lipid metabolic disorders in offspring by enhancing L. apodemi levels and promoting thermogenic activity, potentially involving changes in bile acid metabolism pathways.
Collapse
Affiliation(s)
- Jin Ye
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
- Institute of Biology, Gansu Academy of Sciences, Lanzhou, China
| | - Renjie Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Xiaoning Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Hua Fan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yapei Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xinyun Hu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Lulu Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiaowei Bo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Dongning Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yunshu Ge
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Danna Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Bing Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Zhenting Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Chunxia Xiao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Beita Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
2
|
Zhao M, Han X, Fan H, Liang C, Wang H, Zhang X, Zhao S, Guo C, Liu Z, Zhang T. Metabolic Dysfunction-Associated Steatotic Liver Disease Increases the Risk of Severe Infection: A Population-Based Cohort Study. Liver Int 2025; 45:e16136. [PMID: 39422294 DOI: 10.1111/liv.16136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/19/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND AND AIMS Metabolic dysfunction-associated steatotic liver disease (MASLD) is linked to various intrahepatic and extrahepatic diseases, but its association with severe infectious disease remains to be investigated. METHODS We analysed data from the Shanghai Suburban Adult Cohort and Biobank, encompassing participants enrolled in 2016 and 2017 with available abdominal ultrasonography data, and followed them up until December 2022 (median follow-up = 5.71 years). We categorised the participants into the MASLD group and those without steatotic liver disease (non-SLD). Multivariable-adjusted Cox regression was used to estimate hazard ratios (HR) for severe infections in patients with MASLD compared to the non-SLD group. Cumulative incidences were calculated while accounting for competing risks (non-infection-related deaths). Mediation analyses were performed to explore the roles of cardiometabolic risk factors in the association between MASLD and severe infections. RESULTS Among the 33 072 eligible participants (mean age 56.37 years; 38.20% male), 11 908 (36.01%) were diagnosed with MASLD at baseline. Severe infections occurred in 912 (7.66%) MASLD patients and 1258 (5.94%) non-SLD. The rate of severe infections per 1000 person-years was higher in MASLD patients (13.58) than in comparators (10.48) (fully adjusted HR 1.18, 95% CI 1.07-1.30). The most frequent infections in MASLD were respiratory (7.25/1000 person-years) and urinary tract infections (2.61/1000 person-years). The 5-year cumulative incidence of severe infections was 6.79% (95% CI 6.36-7.26) in MASLD and 5.08% (95% CI 4.79-5.38) in comparators. Cardiometabolic risk factors, including waist circumference, triglycerides and HbA1C, partially mediate the association between MASLD and severe infections. CONCLUSIONS Patients with MASLD were at significantly higher risk of incident severe infections compared to the non-SLD group. Future studies are needed to elucidate the mechanisms linking MASLD to severe infections.
Collapse
Affiliation(s)
- Ming Zhao
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Shanghai, China
| | - Xinyu Han
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Shanghai, China
| | - Hong Fan
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Shanghai, China
| | - Chenyu Liang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Shanghai, China
| | - Haili Wang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Shanghai, China
| | - Xin Zhang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Shanghai, China
| | - Shuzhen Zhao
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Shanghai, China
| | - Chengnan Guo
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Shanghai, China
| | - Zhenqiu Liu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Tiejun Zhang
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
- Yiwu Research Institute, Fudan University, Yiwu, China
| |
Collapse
|
3
|
Leca BM, Lagojda L, Kite C, Karteris E, Kassi E, Randeva HS, Kyrou I. Maternal obesity and metabolic (dysfunction) associated fatty liver disease in pregnancy: a comprehensive narrative review. Expert Rev Endocrinol Metab 2024; 19:335-348. [PMID: 38860684 DOI: 10.1080/17446651.2024.2365791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
INTRODUCTION Obesity and metabolic-associated fatty liver disease (MAFLD) during pregnancy constitute significant problems for routine antenatal care, with increasing prevalence globally. Similar to obesity, MAFLD is associated with a higher risk for maternal complications (e.g. pre-eclampsia and gestational diabetes) and long-term adverse health outcomes for the offspring. However, MAFLD during pregnancy is often under-recognized, with limited management/treatment options. AREAS COVERED PubMed/MEDLINE, EMBASE, and Scopus were searched based on a search strategy for obesity and/or MAFLD in pregnancy to identify relevant papers up to 2024. This review summarizes the pertinent evidence on the relationship between maternal obesity and MAFLD during pregnancy. Key mechanisms implicated in the underlying pathophysiology linking obesity and MAFLD during pregnancy (e.g. insulin resistance and dysregulated adipokine secretion) are highlighted. Moreover, a diagnostic approach for MAFLD diagnosis during pregnancy and its complications are presented. Finally, promising relevant areas for future research are covered. EXPERT OPINION Research progress regarding maternal obesity, MAFLD, and their impact on maternal and fetal/offspring health is expected to improve the relevant diagnostic methods and lead to novel treatments. Thus, routine practice could apply more personalized management strategies, incorporating individualized algorithms with genetic and/or multi-biomarker profiling to guide prevention, early diagnosis, and treatment.
Collapse
Affiliation(s)
- Bianca M Leca
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Lukasz Lagojda
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
- Clinical Evidence-Based Information Service (CEBIS), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Chris Kite
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
- School of Health and Society, Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton, UK
- Centre for Sport, Exercise and Life Sciences, Research Institute for Health & Wellbeing, Coventry University, Coventry, UK
- Chester Medical School, University of Chester, Shrewsbury, UK
| | - Emmanouil Karteris
- College of Health, Medicine and Life Sciences, Division of Biosciences, Brunel University London, Uxbridge, UK
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Endocrine Unit, 1st Department of Propaedeutic Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Harpal S Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
- Warwick Medical School, University of Warwick, Coventry, UK
- Centre for Sport, Exercise and Life Sciences, Research Institute for Health & Wellbeing, Coventry University, Coventry, UK
- Institute of Cardiometabolic Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
- Warwick Medical School, University of Warwick, Coventry, UK
- Centre for Sport, Exercise and Life Sciences, Research Institute for Health & Wellbeing, Coventry University, Coventry, UK
- Institute of Cardiometabolic Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham, UK
- College of Health, Psychology and Social Care, University of Derby, Derby, UK
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
4
|
Sugino KY, Janssen RC, McMahan RH, Zimmerman C, Friedman JE, Jonscher KR. Vertical Transfer of Maternal Gut Microbes to Offspring of Western Diet-Fed Dams Drives Reduced Levels of Tryptophan Metabolites and Postnatal Innate Immune Response. Nutrients 2024; 16:1808. [PMID: 38931163 PMCID: PMC11206590 DOI: 10.3390/nu16121808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Maternal obesity and/or Western diet (WD) is associated with an increased risk of metabolic dysfunction-associated steatotic liver disease (MASLD) in offspring, driven, in part, by the dysregulation of the early life microbiome. Here, using a mouse model of WD-induced maternal obesity, we demonstrate that exposure to a disordered microbiome from WD-fed dams suppressed circulating levels of endogenous ligands of the aryl hydrocarbon receptor (AHR; indole, indole-3-acetate) and TMAO (a product of AHR-mediated transcription), as well as hepatic expression of Il10 (an AHR target), in offspring at 3 weeks of age. This signature was recapitulated by fecal microbial transfer from WD-fed pregnant dams to chow-fed germ-free (GF) lactating dams following parturition and was associated with a reduced abundance of Lactobacillus in GF offspring. Further, the expression of Il10 was downregulated in liver myeloid cells and in LPS-stimulated bone marrow-derived macrophages (BMDM) in adult offspring, suggestive of a hypo-responsive, or tolerant, innate immune response. BMDMs from adult mice lacking AHR in macrophages exhibited a similar tolerogenic response, including diminished expression of Il10. Overall, our study shows that exposure to maternal WD alters microbial metabolites in the offspring that affect AHR signaling, potentially contributing to innate immune hypo-responsiveness and progression of MASLD, highlighting the impact of early life gut dysbiosis on offspring metabolism. Further investigations are warranted to elucidate the complex interplay between maternal diet, gut microbial function, and the development of neonatal innate immune tolerance and potential therapeutic interventions targeting these pathways.
Collapse
Affiliation(s)
- Kameron Y. Sugino
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.Y.S.); (R.C.J.); (J.E.F.)
| | - Rachel C. Janssen
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.Y.S.); (R.C.J.); (J.E.F.)
| | - Rachel H. McMahan
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Chelsea Zimmerman
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Jacob E. Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.Y.S.); (R.C.J.); (J.E.F.)
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Karen R. Jonscher
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.Y.S.); (R.C.J.); (J.E.F.)
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
5
|
Nelson BN, Friedman JE. Developmental Programming of the Fetal Immune System by Maternal Western-Style Diet: Mechanisms and Implications for Disease Pathways in the Offspring. Int J Mol Sci 2024; 25:5951. [PMID: 38892139 PMCID: PMC11172957 DOI: 10.3390/ijms25115951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Maternal obesity and over/undernutrition can have a long-lasting impact on offspring health during critical periods in the first 1000 days of life. Children born to mothers with obesity have reduced immune responses to stimuli which increase susceptibility to infections. Recently, maternal western-style diets (WSDs), high in fat and simple sugars, have been associated with skewing neonatal immune cell development, and recent evidence suggests that dysregulation of innate immunity in early life has long-term consequences on metabolic diseases and behavioral disorders in later life. Several factors contribute to abnormal innate immune tolerance or trained immunity, including changes in gut microbiota, metabolites, and epigenetic modifications. Critical knowledge gaps remain regarding the mechanisms whereby these factors impact fetal and postnatal immune cell development, especially in precursor stem cells in bone marrow and fetal liver. Components of the maternal microbiota that are transferred from mothers consuming a WSD to their offspring are understudied and identifying cause and effect on neonatal innate and adaptive immune development needs to be refined. Tools including single-cell RNA-sequencing, epigenetic analysis, and spatial location of specific immune cells in liver and bone marrow are critical for understanding immune system programming. Considering the vital role immune function plays in offspring health, it will be important to understand how maternal diets can control developmental programming of innate and adaptive immunity.
Collapse
Affiliation(s)
- Benjamin N. Nelson
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Jacob E. Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Department of Physiology and Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Pediatrics, Section of Diabetes and Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
6
|
Lee YJ, Kim J, Kwon YH. Long-Term Effects of Maternal Fat Consumption on the Brain Transcriptome of Obesogenic Diet-Fed Young Adult Mice Offspring. J Nutr 2024; 154:1532-1539. [PMID: 38484978 DOI: 10.1016/j.tjnut.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/17/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Substantial evidence has demonstrated that maternal high-fat (HF) consumption during gestation and lactation plays as a risk factor for neurodevelopmental alterations and subsequent neurological disorders. OBJECTIVE We investigated the regulatory mechanisms of maternal fat consumption on brain development and function in offspring at different ages. METHODS Mouse dams were fed either a control diet [low-fat (LF)] or an HF diet for 3 wk before mating and throughout pregnancy and lactation. Offspring were killed at postnatal day (PD) 21 (LF21 and HF21), and the rest were fed an HF diet for 12 wk until the killing at PD 105 (LF105 and HF105). The expression levels of genes and proteins in the brains of offspring were analyzed by microarray and immunoblotting, respectively. RESULTS Maternal dietary fat content, offspring age, and their interaction affected the expression levels of 1215, 10,453, and 2105 genes, respectively. The 67 differentially expressed genes (DEGs) between the HF21 and LF21 groups were enriched in several Gene Ontology terms related to nervous system development. Among 45 DEGs of the HF105/LF105 comparison, several genes associated with neurotransmitter action are detected. In addition, we observed increased activation of the AMP-dependent protein kinase-cAMP response element binding protein signaling pathway in HF105/LF105 comparison. However, maternal fat content did not change the protein levels of amyloid-β and tau hyperphosphorylation, the markers of neuropathogenesis. CONCLUSIONS Maternal HF feeding altered the expression of genes involved in the development and neurotransmitter system in the brains of PD 21 and HF diet-fed PD 105 offspring, respectively. Especially, the absence of overlap between DEGs at each comparison highlights the dynamic nature of alterations in gene expression in offspring of dams fed an HF diet. Further investigation on older adult offspring is necessary to elucidate the effects of maternal fat intake on the brain pathophysiology of offspring.
Collapse
Affiliation(s)
- Youn Ji Lee
- Department of Food and Nutrition, Seoul National University, Seoul, Korea
| | - Juhae Kim
- Department of Food and Nutrition, Seoul National University, Seoul, Korea; Research Institute of Human Ecology, Seoul National University, Seoul, Korea
| | - Young Hye Kwon
- Department of Food and Nutrition, Seoul National University, Seoul, Korea; Research Institute of Human Ecology, Seoul National University, Seoul, Korea.
| |
Collapse
|
7
|
Moeckli B, Delaune V, Gilbert B, Peloso A, Oldani G, El Hajji S, Slits F, Ribeiro JR, Mercier R, Gleyzolle A, Rubbia-Brandt L, Gex Q, Lacotte S, Toso C. Maternal obesity increases the risk of hepatocellular carcinoma through the transmission of an altered gut microbiome. JHEP Rep 2024; 6:101056. [PMID: 38681863 PMCID: PMC11046215 DOI: 10.1016/j.jhepr.2024.101056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 05/01/2024] Open
Abstract
Background & Aims Emerging evidence suggests that maternal obesity negatively impacts the health of offspring. Additionally, obesity is a risk factor for hepatocellular carcinoma (HCC). Our study aims to investigate the impact of maternal obesity on the risk for HCC development in offspring and elucidate the underlying transmission mechanisms. Methods Female mice were fed either a high-fat diet (HFD) or a normal diet (ND). All offspring received a ND after weaning. We studied liver histology and tumor load in a N-diethylnitrosamine (DEN)-induced HCC mouse model. Results Maternal obesity induced a distinguishable shift in gut microbial composition. At 40 weeks, female offspring of HFD-fed mothers (HFD offspring) were more likely to develop steatosis (9.43% vs. 3.09%, p = 0.0023) and fibrosis (3.75% vs. 2.70%, p = 0.039), as well as exhibiting an increased number of inflammatory infiltrates (4.8 vs. 1.0, p = 0.018) and higher expression of genes involved in fibrosis and inflammation, compared to offspring of ND-fed mothers (ND offspring). A higher proportion of HFD offspring developed liver tumors after DEN induction (79.8% vs. 37.5%, p = 0.0084) with a higher mean tumor volume (234 vs. 3 μm3, p = 0.0041). HFD offspring had a significantly less diverse microbiota than ND offspring (Shannon index 2.56 vs. 2.92, p = 0.0089), which was rescued through co-housing. In the principal component analysis, the microbiota profile of co-housed animals clustered together, regardless of maternal diet. Co-housing of HFD offspring with ND offspring normalized their tumor load. Conclusions Maternal obesity increases female offspring's susceptibility to HCC. The transmission of an altered gut microbiome plays an important role in this predisposition. Impact and implications The worldwide incidence of obesity is constantly rising, with more and more children born to obese mothers. In this study, we investigate the impact of maternal diet on gut microbiome composition and its role in liver cancer development in offspring. We found that mice born to mothers with a high-fat diet inherited a less diverse gut microbiome, presented chronic liver injury and an increased risk of developing liver cancer. Co-housing offspring from normal diet- and high-fat diet-fed mothers restored the gut microbiome and, remarkably, normalized the risk of developing liver cancer. The implementation of microbial screening and restoration of microbial diversity holds promise in helping to identify and treat individuals at risk to prevent harm for future generations.
Collapse
Affiliation(s)
- Beat Moeckli
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
- Department of Surgery, Division of Visceral Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Vaihere Delaune
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
- Department of Surgery, Division of Visceral Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Benoît Gilbert
- Department of Medicine, Division of Rheumatology, Geneva University Hospitals, 1206 Geneva, Switzerland
- Geneva Centre for Inflammation Research (GCIR), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Andrea Peloso
- Department of Surgery, Division of Visceral Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Graziano Oldani
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
- Department of Surgery, Division of General Surgery, The University of British Columbia, Vancouver, Canada
| | - Sofia El Hajji
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
- Department of Surgery, Division of Visceral Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Florence Slits
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Joana Rodrigues Ribeiro
- Department of Surgery, Division of Visceral Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Ruben Mercier
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Adrien Gleyzolle
- Department of Diagnostics, Division of Radiology, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Laura Rubbia-Brandt
- Department of Diagnostics Division of Clinical Pathology, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Quentin Gex
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Stephanie Lacotte
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Christian Toso
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
- Department of Surgery, Division of Visceral Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
| |
Collapse
|
8
|
Nairz J, Messner A, Kiechl SJ, Winder B, Hochmayr C, Egger AE, Griesmacher A, Geiger R, Griesmaier E, Pechlaner R, Knoflach M, Kiechl-Kohlendorfer U, the Early Vascular Ageing in the YOUth (EVA4YOU) Study Group. Determinants of non-alcoholic fatty liver disease in young people: Maternal, neonatal, and adolescent factors. PLoS One 2024; 19:e0298800. [PMID: 38386674 PMCID: PMC10883560 DOI: 10.1371/journal.pone.0298800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
AIM To assess the impact of maternal, neonatal, and adolescent factors on the development of non-alcoholic fatty liver disease (NAFLD) in a cohort of 14- to 19-year-old adolescents. METHODS This study is part of the Early Vascular Ageing in the YOUth study, a single-center cross-sectional study conducted in western Austria. Maternal and neonatal factors were extracted from the mother-child booklet, adolescent factors were evaluated by a face-to-face interview, physical examination, and fasting blood analyses. Liver fat content was assessed by controlled attenuation parameter (CAP) using signals acquired by FibroScan® (Echosense, Paris, France). The association of maternal, neonatal, and adolescent factors with CAP values was analyzed using linear regression models. RESULTS In total, 595 adolescents (27.2% male) aged 17.0 ± 1.3 years were included. 4.9% (n = 29) showed manifest NAFLD with CAP values above the 90th percentile. Male sex (p < 0.001), adolescent triglyceride levels (p = 0.021), Homeostatic Model Assessment for Insulin Resistance index and BMI z-score (p < 0.001, each) showed a significant association with liver fat content in the multivariable analysis. Maternal pre-pregnancy BMI was associated with CAP values after adjustment for sex, age, and birth weight for gestational age (p < 0.001), but this association was predominantly mediated by adolescent BMI (indirect effect b = 1.18, 95% CI [0.69, 1.77]). CONCLUSION Components of the metabolic syndrome were the most important predictors of adolescent liver fat content. Therefore, prevention of NAFLD should focus on lifestyle modification in childhood and adolescence.
Collapse
Affiliation(s)
- Johannes Nairz
- VASCage Research Centre on Vascular Ageing and Stroke, Innsbruck, Tyrol, Austria
- Department of Pediatrics II, Medical University of Innsbruck, Innsbruck, Tyrol, Austria
- Department of Pediatrics III, Medical University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Alex Messner
- VASCage Research Centre on Vascular Ageing and Stroke, Innsbruck, Tyrol, Austria
- Department of Pediatrics II, Medical University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Sophia J. Kiechl
- VASCage Research Centre on Vascular Ageing and Stroke, Innsbruck, Tyrol, Austria
- Department of Neurology, Hochzirl Hospital, Zirl, Tyrol, Austria
| | - Bernhard Winder
- VASCage Research Centre on Vascular Ageing and Stroke, Innsbruck, Tyrol, Austria
- Department of Vascular Surgery, Feldkirch Hospital, Feldkirch, Vorarlberg, Austria
| | - Christoph Hochmayr
- Department of Pediatrics II, Medical University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Alexander E. Egger
- Central Institute of Medical and Chemical Laboratory Diagnostics (ZIMCL), University Hospital of Innsbruck, Innsbruck, Tyrol, Austria
| | - Andrea Griesmacher
- Central Institute of Medical and Chemical Laboratory Diagnostics (ZIMCL), University Hospital of Innsbruck, Innsbruck, Tyrol, Austria
| | - Ralf Geiger
- Department of Pediatrics III, Medical University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Elke Griesmaier
- Department of Pediatrics II, Medical University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Raimund Pechlaner
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Michael Knoflach
- VASCage Research Centre on Vascular Ageing and Stroke, Innsbruck, Tyrol, Austria
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Tyrol, Austria
| | | | | |
Collapse
|
9
|
Lian V, Hinrichs H, Young M, Faerber A, Özler O, Xie Y, Ballentine SJ, Tarr PI, Davidson NO, Thompson MD. Maternal Obesogenic Diet Attenuates Microbiome-Dependent Offspring Weaning Reaction with Worsening of Steatotic Liver Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:209-224. [PMID: 38029921 PMCID: PMC10835466 DOI: 10.1016/j.ajpath.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/15/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023]
Abstract
The mechanisms by which maternal obesity increases the susceptibility to steatotic liver disease in offspring are incompletely understood. Models using different maternal obesogenic diets (MODEs) display phenotypic variability, likely reflecting the influence of timing and diet composition. This study compared three maternal obesogenic diets using standardized exposure times to identify differences in offspring disease progression. This study found that the severity of hepatic inflammation and fibrosis in the offspring depends on the composition of the maternal obesogenic diet. Offspring cecal microbiome composition was shifted in all MODE groups relative to control. Decreased α-diversity in some MODE offspring with shifts in abundance of multiple genera were suggestive of delayed maturation of the microbiome. The weaning reaction typically characterized by a spike in intestinal expression of Tnfa and Ifng was attenuated in MODE offspring in an early microbiome-dependent manner using cross-fostering. Cross-fostering also switched the severity of disease progression in offspring dependent on the diet of the fostering dam. These results identify maternal diet composition and timing of exposure as modifiers in mediating transmissible changes in the microbiome. These changes in the early microbiome alter a critical window during weaning that drives susceptibility to progressive liver disease in the offspring.
Collapse
Affiliation(s)
- Vung Lian
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Holly Hinrichs
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Monica Young
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Austin Faerber
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Oğuz Özler
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Yan Xie
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Samuel J Ballentine
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri
| | - Phillip I Tarr
- Division of Gastroenterology, Hepatology, & Nutrition, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Nicholas O Davidson
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Michael D Thompson
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
10
|
Liang Y, Liu D, Li Y, Hou H, Li P, Ma X, Li P, Zhan J, Wang P. Maternal polysorbate 80 intake promotes offspring metabolic syndrome through vertical microbial transmission in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168624. [PMID: 37979881 DOI: 10.1016/j.scitotenv.2023.168624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023]
Abstract
Polysorbate 80 (P80) is an emulsifier extensively produced, consumed and discharged into the environment, consequently making human exposure inevitable. Despite evidence suggesting that P80 intake causes metabolic syndrome (MS) in mammals via microbial perturbation, limited data exist on its transgenerational impacts on offspring. In this study, we found that maternal P80 treatment impaired intestinal barrier integrity, leading to metabolic endotoxemia, low-grade inflammation and MS-related symptoms in C57BL/6J female offspring. Further analysis of the gut microbiome revealed MS-related changes in the offspring of P80-treated dams. Fecal microbiota transplantation experiment confirmed the crucial role of the altered microbiome in offspring in the transgenerational impacts of P80. Furthermore, we found that the P80-induced microbial alterations were directly transmitted from P80-treated mothers to their offspring and that interrupting vertical microbial transmission through cesarean section and foster nursing blocked the transgenerational impacts of P80 on the offspring microbiome and metabolic health. Moreover, maternal pectin supplementation also effectively mitigated P80-induced microbial alterations and MS-associated phenotypes in offspring. Together, our results indicated that maternal P80 intake could impair offspring metabolic health through the mother-to-offspring transmission of the microbiome, and maternal pectin supplementation might be a promising strategy for reducing the adverse effects of P80.
Collapse
Affiliation(s)
- Yiran Liang
- College of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30, Xueyuan Road, Beijing 100083, People's Republic of China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Donghui Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Yan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Haonan Hou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Pengxi Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Xiaoran Ma
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Peize Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Jing Zhan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Peng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China.
| |
Collapse
|
11
|
Chen Z, Xia LP, Shen L, Xu D, Guo Y, Wang H. Glucocorticoids and intrauterine programming of nonalcoholic fatty liver disease. Metabolism 2024; 150:155713. [PMID: 37914025 DOI: 10.1016/j.metabol.2023.155713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023]
Abstract
Accumulating epidemiological and experimental evidence indicates that nonalcoholic fatty liver disease (NAFLD) has an intrauterine origin. Fetuses exposed to adverse prenatal environments (e.g., maternal malnutrition and xenobiotic exposure) are more susceptible to developing NAFLD after birth. Glucocorticoids are crucial triggers of the developmental programming of fetal-origin diseases. Adverse intrauterine environments often lead to fetal overexposure to maternally derived glucocorticoids, which can program fetal hepatic lipid metabolism through epigenetic modifications. Adverse intrauterine environments program the offspring's glucocorticoid-insulin-like growth factor 1 (GC-IGF1) axis, which contributes to postnatal catch-up growth and disturbs glucose and lipid metabolism. These glucocorticoid-driven programming alterations increase susceptibility to NAFLD in the offspring. Notably, after delivery, offspring often face an environment distinct from their in utero life. The mismatch between the intrauterine and postnatal environments can serve as a postnatal hit that further disturbs the programmed endocrine axes, accelerating the onset of NAFLD. In this review, we summarize the current epidemiological and experimental evidence demonstrating that NAFLD has an intrauterine origin and discuss the underlying intrauterine programming mechanisms, focusing on the role of overexposure to maternally derived glucocorticoids. We also briefly discuss potential early life interventions that may be beneficial against fetal-originated NAFLD.
Collapse
Affiliation(s)
- Ze Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430072, China
| | - Li-Ping Xia
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Lang Shen
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Dan Xu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China; Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yu Guo
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
12
|
Andreani GA, Mahmood S, Patel MS, Rideout TC. Maternal pea fiber supplementation to a high calorie diet in obese pregnancies protects male offspring from metabolic dysfunction in adulthood. J Dev Orig Health Dis 2023; 14:711-718. [PMID: 38234128 DOI: 10.1017/s2040174423000399] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
We investigated the influence of maternal yellow-pea fiber supplementation in obese pregnancies on offspring metabolic health in adulthood. Sixty newly-weaned female Sprague-Dawley rats were randomized to either a low-calorie control diet (CON) or high calorie obesogenic diet (HC) for 6-weeks. Obese animals were then fed either the HC diet alone or the HC diet supplemented with yellow-pea fiber (HC + FBR) for an additional 4-weeks prior to breeding and throughout gestation and lactation. On postnatal day (PND) 21, 1 male and 1 female offspring from each dam were weaned onto the CON diet until adulthood (PND 120) for metabolic phenotyping. Adult male, but not female, HC offspring demonstrated increased body weight and feed intake vs CON offspring, however no protection was offered by maternal FBR supplementation. HC male and female adult offspring demonstrated increased serum glucose and insulin resistance (HOMA-IR) compared with CON offspring. Maternal FBR supplementation improved glycemic control in male, but not female offspring. Compared with CON offspring, male offspring from HC dams demonstrated marked dyslipidemia (higher serum cholesterol, increased number of TG-rich lipoproteins, and smaller LDL particles) which was largely normalized in offspring from HC + FBR mothers. Male offspring born to obese mothers (HC) had higher hepatic TG, which tended to be lowered (p = 0.07) by maternal FBR supplementation.Supplementation of a maternal high calorie diet with yellow-pea fiber in prepregnancy and throughout gestation and lactation protects male offspring from metabolic dysfunction in the absence of any change in body weight status in adulthood.
Collapse
Affiliation(s)
- Gabriella A Andreani
- Departments of Exercise and Nutrition Sciences, School of Public Health and Health Professions, Buffalo, NY, USA
| | - Saleh Mahmood
- Departments of Exercise and Nutrition Sciences, School of Public Health and Health Professions, Buffalo, NY, USA
| | - Mulchand S Patel
- Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Todd C Rideout
- Departments of Exercise and Nutrition Sciences, School of Public Health and Health Professions, Buffalo, NY, USA
| |
Collapse
|
13
|
Gong H, Yuan Q, Du M, Mao X. Polar lipid-enriched milk fat globule membrane supplementation in maternal high-fat diet promotes intestinal barrier function and modulates gut microbiota in male offspring. Food Funct 2023; 14:10204-10220. [PMID: 37909908 DOI: 10.1039/d2fo04026c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Intestinal development plays a critical role in physiology and disease in early life and has long-term effects on the health status throughout the lifespan. Maternal high-fat diet (HFD) fuels the inflammatory reaction and metabolic syndrome, disrupts intestinal barrier function, and alters gut microbiota in offspring. The aim of this study was to evaluate whether polar lipid-enriched milk fat globule membrane (MFGM-PL) supplementation in maternal HFD could promote intestinal barrier function and modulate gut microbiota in male offspring. Obese female rats induced by HFD were supplemented with MFGM-PL during pregnancy and lactation. The offspring were fed HFD for 11 weeks after weaning. MFGM-PL supplementation to dams fed HFD decreased the body weight gain and ameliorated abnormalities of serum insulin, lipids, and inflammatory cytokines in offspring at weaning. Maternal MFGM-PL supplementation promoted the intestinal barrier by increasing the expression of Ki-67, lysozyme, mucin 2, zonula occludens-1, claudin-3, and occludin. Additionally, MFGM-PL supplementation to HFD dams improved gut dysbiosis in offspring. MFGM-PL increased the relative abundance of Akkermansiaceae, Ruminococcaceae, and Blautia. Concomitantly, maternal MFGM-PL treatment increased short-chain fatty acids of colonic contents and G-protein-coupled receptor (GPR) 41 and GPR 43 expressions in the colon of offspring. Importantly, the beneficial effects of maternal MFGM-PL intervention persisted to offspring's adulthood, as evidenced by increased relative abundance of norank_f_Muribaculaceae, Peptostreptococcaceae and Romboutsia and modulated the taxonomic diversity of gut microbiota in adult offspring. In summary, maternal MFGM-PL supplementation improved intestinal development in the offspring of dams fed with HFD, which exerted long-term beneficial effects on offspring intestinal health.
Collapse
Affiliation(s)
- Han Gong
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Qichen Yuan
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Xueying Mao
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
14
|
Verçosa BLA, Muniz-Junqueira MI, Barradas ALB, Costa FAL, Melo MN, Vasconcelos AC. Enhanced apoptotic index in hepatocytes, Kupffer cells, and inflammatory infiltrate showed positive correlation with hepatic lesion intensity, parasite load, and clinical status in naturally Leishmania-infected dogs. Microb Pathog 2023:106194. [PMID: 37269879 DOI: 10.1016/j.micpath.2023.106194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/09/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
It is unknown if Leishmania amastigote infections affect hepatocytes and Kupffer cell apoptosis, and the role played by apoptosis in liver lesions in leishmaniasis is still unclear. Clinically affected and subclinically infected dogs with leishmaniosis and uninfected controls were assessed. Parasite load, biochemical markers for evaluation of liver damage, morphometry (area, perimeter, number of inflammatory focus, major and minor diameters), apoptosis in hepatic tissue (hepatocytes, Kupffer cells, and inflammatory infiltrates) and cellularity in inflammatory foci were quantified. The parasite load in clinically affected dogs proved to be higher than in the other groups. All morphometric parameters (area, perimeter, number of inflammatory focus, major and minor diameters) from clinically affected were higher than the values found in the subclinically infected and uninfected control dogs. Only clinically affected dogs presented high levels of ALT, FA, GGT and cholesterol in serum. Strong positive correlation was observed between biochemical markers for evaluation of liver damage (ALT, FA, GGT and cholesterol) and hepatic apoptosis (hepatocytes, Kupffer cells, and inflammation). Clinically affected dogs showed a more intense hepatic lesion. Hepatocytes showed a higher rate of apoptosis in Leishmania-infected dogs than in uninfected control dogs. The Kupffer cell apoptotic index and apoptosis within the inflammatory infiltrates were higher in clinically affected dogs. The apoptotic index evaluated in hepatocytes, Kupffer cells, and inflammatory infiltrates showed a positive correlation with the intensity of the hepatic lesion, parasite load, and clinical status. Apoptotic cells also showed positive immunostaining for TUNEL, Bcl2, and Bax. Our data showed that hepatic apoptosis was related to the severity of liver damage, the progression of infection, and the parasite load in leishmaniasis. Apoptotic regulated cell recruitment modulated the inflammatory response and favored the survival and dissemination of parasites, depending on the clinical status of the Leishmania-infected dogs.
Collapse
Affiliation(s)
- Bárbara Laurice Araujo Verçosa
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Laboratório de Imunologia Celular, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil; Faculdade de Ciências da Saúde Pitágoras de Codó, Maranhão, Brazil.
| | | | - Ana Lys Bezerra Barradas
- Departamento de Clínica e Cirurgia veterinária, Centro de Ciências Agrárias, Universidade Federal do Piauí, Teresina, Piauí, Brazil
| | - Francisco Assis Lima Costa
- Departamento de Clínica e Cirurgia veterinária, Centro de Ciências Agrárias, Universidade Federal do Piauí, Teresina, Piauí, Brazil
| | - Maria Norma Melo
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anilton Cesar Vasconcelos
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
15
|
Nash MJ, Dobrinskikh E, Soderborg TK, Janssen RC, Takahashi DL, Dean TA, Varlamov O, Hennebold JD, Gannon M, Aagaard KM, McCurdy CE, Kievit P, Bergman BC, Jones KL, Pietras EM, Wesolowski SR, Friedman JE. Maternal diet alters long-term innate immune cell memory in fetal and juvenile hematopoietic stem and progenitor cells in nonhuman primate offspring. Cell Rep 2023; 42:112393. [PMID: 37058409 PMCID: PMC10570400 DOI: 10.1016/j.celrep.2023.112393] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/30/2023] [Accepted: 03/30/2023] [Indexed: 04/15/2023] Open
Abstract
Maternal overnutrition increases inflammatory and metabolic disease risk in postnatal offspring. This constitutes a major public health concern due to increasing prevalence of these diseases, yet mechanisms remain unclear. Here, using nonhuman primate models, we show that maternal Western-style diet (mWSD) exposure is associated with persistent pro-inflammatory phenotypes at the transcriptional, metabolic, and functional levels in bone marrow-derived macrophages (BMDMs) from 3-year-old juvenile offspring and in hematopoietic stem and progenitor cells (HSPCs) from fetal and juvenile bone marrow and fetal liver. mWSD exposure is also associated with increased oleic acid in fetal and juvenile bone marrow and fetal liver. Assay for transposase-accessible chromatin with sequencing (ATAC-seq) profiling of HSPCs and BMDMs from mWSD-exposed juveniles supports a model in which HSPCs transmit pro-inflammatory memory to myeloid cells beginning in utero. These findings show that maternal diet alters long-term immune cell developmental programming in HSPCs with proposed consequences for chronic diseases featuring altered immune/inflammatory activation across the lifespan.
Collapse
Affiliation(s)
- Michael J Nash
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Evgenia Dobrinskikh
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Taylor K Soderborg
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rachel C Janssen
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Diana L Takahashi
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Tyler A Dean
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Oleg Varlamov
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Jon D Hennebold
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Maureen Gannon
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Kjersti M Aagaard
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Carrie E McCurdy
- Department of Human Physiology, University of Oregon, Eugene, OR 97403, USA
| | - Paul Kievit
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Bryan C Bergman
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kenneth L Jones
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Eric M Pietras
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Stephanie R Wesolowski
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jacob E Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
16
|
Galvan-Martinez DH, Bosquez-Mendoza VM, Ruiz-Noa Y, Ibarra-Reynoso LDR, Barbosa-Sabanero G, Lazo-de-la-Vega-Monroy ML. Nutritional, pharmacological, and environmental programming of NAFLD in early life. Am J Physiol Gastrointest Liver Physiol 2023; 324:G99-G114. [PMID: 36472341 DOI: 10.1152/ajpgi.00168.2022] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the main liver disease worldwide, and its prevalence in children and adolescents has been increasing in the past years. It has been demonstrated that parental exposure to different conditions, both preconceptionally and during pregnancy, can lead to fetal programming of several metabolic diseases, including NAFLD. In this article, we review some of the maternal and paternal conditions that may be involved in early-life programing of adult NAFLD. First, we describe the maternal nutritional factors that have been suggested to increase the risk of NAFLD in the offspring, such as an obesogenic diet, overweight/obesity, and altered lipogenesis. Second, we review the association of certain vitamin supplementation and the use of some drugs during pregnancy, for instance, glucocorticoids, with a higher risk of NAFLD. Furthermore, we discuss the evidence showing that maternal-fetal pathologies, including gestational diabetes mellitus (GDM), insulin resistance (IR), and intrauterine growth restriction (IUGR), as well as the exposure to environmental contaminants, and the impact of microbiome changes, are important factors in early-life programming of NAFLD. Finally, we review how paternal preconceptional conditions, such as exercise and diet (particularly obesogenic diets), may impact fetal growth and liver function. Altogether, the presented evidence supports the hypothesis that both in utero exposure and parental conditions may influence fetal outcomes, including the development of NAFLD in early life and adulthood. The study of these conditions is crucial to better understand the diverse mechanisms involved in NAFLD, as well as for defining new preventive strategies for this disease.
Collapse
Affiliation(s)
| | | | - Yeniley Ruiz-Noa
- Health Sciences Division, Medical Sciences Department, University of Guanajuato, Campus Leon, Mexico
| | | | - Gloria Barbosa-Sabanero
- Health Sciences Division, Medical Sciences Department, University of Guanajuato, Campus Leon, Mexico
| | | |
Collapse
|
17
|
Hinrichs H, Faerber A, Young M, Ballentine SJ, Thompson MD. Maternal Exercise Protects Male Offspring From Maternal Diet-Programmed Nonalcoholic Fatty Liver Disease Progression. Endocrinology 2023; 164:6991827. [PMID: 36655378 PMCID: PMC10091505 DOI: 10.1210/endocr/bqad010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023]
Abstract
Maternal obesity programs the risk for development of nonalcoholic fatty liver disease (NAFLD) in offspring. Maternal exercise is a potential intervention to prevent developmentally programmed phenotypes. We hypothesized that maternal exercise would protect from progression of NAFLD in offspring previously exposed to a maternal obesogenic diet. Female mice were fed chow (CON) or high fat, fructose, cholesterol (HFFC) and bred with lean males. A subset had an exercise wheel introduced 4 weeks after starting the diet to allow for voluntary exercise. The offspring were weaned to the HFFC diet for 7 weeks to induce NAFLD. Serum, adipose, and liver tissue were collected for metabolic, histologic, and gene expression analyses. Cecal contents were collected for 16S sequencing. Global metabolomics was performed on liver. Female mice fed the HFFC diet had increased body weight prior to adding an exercise wheel. Female mice fed the HFFC diet had an increase in exercise distance relative to CON during the preconception period. Exercise distance was similar between groups during pregnancy and lactation. CON-active and HFFC-active offspring exhibited decreased inflammation compared with offspring from sedentary dams. Fibrosis increased in offspring from HFFC-sedentary dams compared with CON-sedentary. Offspring from exercised HFFC dams exhibited less fibrosis than offspring from sedentary HFFC dams. While maternal diet significantly affected the microbiome of offspring, the effect of maternal exercise was minimal. Metabolomics analysis revealed shifts in multiple metabolites including several involved in bile acid, 1-carbon, histidine, and acylcarnitine metabolism. This study provides preclinical evidence that maternal exercise is a potential approach to prevent developmentally programmed liver disease progression in offspring.
Collapse
Affiliation(s)
- Holly Hinrichs
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Austin Faerber
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Monica Young
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Samuel J Ballentine
- Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael D Thompson
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
18
|
Bai J, Liu F. The Yin-Yang functions of macrophages in metabolic disorders. LIFE MEDICINE 2022; 1:319-332. [PMID: 39872753 PMCID: PMC11749365 DOI: 10.1093/lifemedi/lnac035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/29/2022] [Indexed: 01/30/2025]
Abstract
Macrophages are widely distributed in various metabolic tissues/organs and play an essential role in the immune regulation of metabolic homeostasis. Macrophages have two major functions: adaptive defenses against invading pathogens by triggering inflammatory cytokine release and eliminating damaged/dead cells via phagocytosis to constrain inflammation. The pro-inflammatory role of macrophages in insulin resistance and related metabolic diseases is well established, but much less is known about the phagocytotic function of macrophages in metabolism. In this review, we review our current understanding of the ontogeny, tissue distribution, and polarization of macrophages in the context of metabolism. We also discuss the Yin-Yang functions of macrophages in the regulation of energy homeostasis. Third, we summarize the crosstalk between macrophages and gut microbiota. Lastly, we raise several important but remain to be addressed questions with respect to the mechanisms by which macrophages are involved in immune regulation of metabolism.
Collapse
Affiliation(s)
- Juli Bai
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- Department of Pharmacology, University of Texas Health at San Antonio, San Antonio, TX 78229, USA
| | - Feng Liu
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| |
Collapse
|
19
|
Maternal Fructose Intake, Programmed Mitochondrial Function and Predisposition to Adult Disease. Int J Mol Sci 2022; 23:ijms232012215. [DOI: 10.3390/ijms232012215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/27/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
Fructose consumption is now recognised as a major risk factor in the development of metabolic diseases, such as hyperlipidaemia, diabetes, non-alcoholic fatty liver disease and obesity. In addition to environmental, social, and genetic factors, an unfavourable intrauterine environment is now also recognised as an important factor in the progression of, or susceptibility to, metabolic disease during adulthood. Developmental trajectory in the short term, in response to nutrient restriction or excessive nutrient availability, may promote adaptation that serves to maintain organ functionality necessary for immediate survival and foetal development. Consequently, this may lead to decreased function of organ systems when presented with an unfavourable neonatal, adolescent and/or adult nutritional environment. These early events may exacerbate susceptibility to later-life disease since sub-optimal maternal nutrition increases the risk of non-communicable diseases (NCDs) in future generations. Earlier dietary interventions, implemented in pregnant mothers or those considering pregnancy, may have added benefit. Although, the mechanisms by which maternal diets high in fructose and the vertical transmission of maternal metabolic phenotype may lead to the predisposition to adult disease are poorly understood. In this review, we will discuss the potential contribution of excessive fructose intake during pregnancy and how this may lead to developmental reprogramming of mitochondrial function and predisposition to metabolic disease in offspring.
Collapse
|
20
|
Savva C, Helguero LA, González-Granillo M, Melo T, Couto D, Angelin B, Domingues MR, Li X, Kutter C, Korach-André M. Molecular programming modulates hepatic lipid metabolism and adult metabolic risk in the offspring of obese mothers in a sex-specific manner. Commun Biol 2022; 5:1057. [PMID: 36195702 PMCID: PMC9532402 DOI: 10.1038/s42003-022-04022-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/22/2022] [Indexed: 11/09/2022] Open
Abstract
Male and female offspring of obese mothers are known to differ extensively in their metabolic adaptation and later development of complications. We investigate the sex-dependent responses in obese offspring mice with maternal obesity, focusing on changes in liver glucose and lipid metabolism. Here we show that maternal obesity prior to and during gestation leads to hepatic steatosis and inflammation in male offspring, while female offspring are protected. Females from obese mothers display important changes in hepatic transcriptional activity and triglycerides profile which may prevent the damaging effects of maternal obesity compared to males. These differences are sustained later in life, resulting in a better metabolic balance in female offspring. In conclusion, sex and maternal obesity drive differently transcriptional and posttranscriptional regulation of major metabolic processes in offspring liver, explaining the sexual dimorphism in obesity-associated metabolic risk. Sex and maternal obesity drive differently transcriptional and posttranscriptional regulation of major metabolic processes in the livers of female and male offspring, contributing to the sexual dimorphism in obesity-associated metabolic risk.
Collapse
Affiliation(s)
- Christina Savva
- Department of Medicine, Cardiometabolic Unit and Integrated Cardio Metabolic Center, Karolinska Institute, Stockholm, Sweden.,Clinical Department of Endocrinology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Luisa A Helguero
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | | | - Tânia Melo
- Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, Aveiro, Portugal.,CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Daniela Couto
- Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, Aveiro, Portugal.,CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Bo Angelin
- Department of Medicine, Cardiometabolic Unit and Integrated Cardio Metabolic Center, Karolinska Institute, Stockholm, Sweden.,Clinical Department of Endocrinology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Maria Rosário Domingues
- Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, Aveiro, Portugal.,CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Xidan Li
- Department of Medicine, Cardiometabolic Unit and Integrated Cardio Metabolic Center, Karolinska Institute, Stockholm, Sweden
| | - Claudia Kutter
- Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Marion Korach-André
- Department of Medicine, Cardiometabolic Unit and Integrated Cardio Metabolic Center, Karolinska Institute, Stockholm, Sweden. .,Department of Gene Technology, Science for Life Laboratory, Royal Institute of Technology (KTH), Stockholm, Sweden.
| |
Collapse
|
21
|
Wang P, Wang S, Ma Y, Li H, Liu Z, Lin G, Li X, Yang F, Qiu M. Sarcopenic obesity and therapeutic outcomes in gastrointestinal surgical oncology: A meta-analysis. Front Nutr 2022; 9:921817. [PMID: 35938099 PMCID: PMC9355157 DOI: 10.3389/fnut.2022.921817] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Sarcopenic obesity (SO) has been indicated as a scientific and clinical priority in oncology. This meta-analysis aimed to investigate the impacts of preoperative SO on therapeutic outcomes in gastrointestinal surgical oncology. METHODS We searched the PubMed, EMBASE, and Cochrane Library databases through March 4th 2022 to identify cohort studies. Endpoints included postoperative complications and survival outcomes. Newcastle Ottawa Scale was used for quality assessment. Heterogeneity and publication bias were assessed. Subgroup analyses and sensitivity analyses were performed. RESULTS Twenty-six studies (8,729 participants) with moderate to good quality were included. The pooled average age was 65.6 [95% confidence interval (CI) 63.7-67.6] years. The significant heterogeneity in SO definition and diagnosis among studies was observed. Patients with SO showed increased incidences of total complications (odds ratio 1.30, 95% CI: 1.03-1.64, P = 0.030) and major complications (Clavien-Dindo grade ≥ IIIa, odds ratio 2.15, 95% CI: 1.39-3.32, P = 0.001). SO was particularly associated with the incidence of cardiac complications, leak complications, and organ/space infection. SO was also predictive of poor overall survival (hazard ratio 1.73, 95% CI: 1.46-2.06, P < 0.001) and disease-free survival (hazard ratio 1.41, 95% CI: 1.20-1.66, P < 0.001). SO defined as sarcopenia in combination with obesity showed greater association with adverse outcomes than that defined as an increased ratio of fat mass to muscle mass. A low prevalence rate of SO (< 10%) was associated with increased significance for adverse outcomes compared to the high prevalence rate of SO (> 20%). CONCLUSION The SO was associated with increased complications and poor survival in gastrointestinal surgical oncology. Interventions aiming at SO have potentials to promote surgery benefits for patients with gastrointestinal cancers. The heterogeneity in SO definition and diagnosis among studies should be considered when interpreting these findings. SYSTEMATIC REVIEW REGISTRATION [https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=255286], identifier [CRD42021255286].
Collapse
Affiliation(s)
- Peiyu Wang
- Department of Thoracic Surgery, Thoracic Oncology Institute, Peking University People’s Hospital, Beijing, China
| | - Shaodong Wang
- Department of Thoracic Surgery, Thoracic Oncology Institute, Peking University People’s Hospital, Beijing, China
| | - Yi Ma
- Department of Thoracic Surgery, Thoracic Oncology Institute, Peking University People’s Hospital, Beijing, China
| | - Haoran Li
- Department of Thoracic Surgery, Thoracic Oncology Institute, Peking University People’s Hospital, Beijing, China
| | - Zheng Liu
- Department of Thoracic Surgery, Thoracic Oncology Institute, Peking University People’s Hospital, Beijing, China
| | - Guihu Lin
- Department of Thoracic Surgery, China Aerospace Science and Industry Corporation 731 Hospital, Beijing, China
| | - Xiao Li
- Department of Thoracic Surgery, Thoracic Oncology Institute, Peking University People’s Hospital, Beijing, China
| | - Fan Yang
- Department of Thoracic Surgery, Thoracic Oncology Institute, Peking University People’s Hospital, Beijing, China
| | - Mantang Qiu
- Department of Thoracic Surgery, Thoracic Oncology Institute, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
22
|
Chae SA, Son JS, Zhao L, Gao Y, Liu X, Marie de Avila J, Zhu MJ, Du M. Exerkine apelin reverses obesity-associated placental dysfunction by accelerating mitochondrial biogenesis in mice. Am J Physiol Endocrinol Metab 2022; 322:E467-E479. [PMID: 35403440 PMCID: PMC9126223 DOI: 10.1152/ajpendo.00023.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Maternal exercise (ME) protects against adverse effects of maternal obesity (MO) on fetal development. As a cytokine stimulated by exercise, apelin (APN) is elevated due to ME, but its roles in mediating the effects of ME on placental development remain to be defined. Two studies were conducted. In the first study, 18 female mice were assigned to control (CON), obesogenic diet (OB), or OB with exercise (OB/Ex) groups (n = 6); in the second study, the same number of female mice were assigned to three groups; CON with PBS injection (CD/PBS), OB/PBS, or OB with apelin injection (OB/APN). In the exercise study, daily treadmill exercise during pregnancy significantly elevated the expression of PR domain 16 (PRDM16; P < 0.001), which correlated with enhanced oxidative metabolism and mitochondrial biogenesis in the placenta (P < 0.05). More importantly, these changes were partially mirrored in the apelin study. Apelin administration upregulated PRDM16 protein level (P < 0.001), mitochondrial biogenesis (P < 0.05), placental nutrient transporter expression (P < 0.001), and placental vascularization (P < 0.01), which were impaired due to MO (P < 0.05). In summary, MO impairs oxidative phosphorylation in the placenta, which is improved by ME; apelin administration partially mimics the beneficial effects of exercise on improving placental function, which prevents placental dysfunction due to MO.NEW & NOTEWORTHY Maternal exercise prevents metabolic disorders of mothers and offspring induced by high-fat diet. Exercise intervention enhances PRDM16 activation, oxidative metabolism, and vascularization of placenta, which are inhibited due to maternal obesity. Similar to maternal exercise, apelin administration improves placental function of obese dams.
Collapse
Affiliation(s)
- Song Ah Chae
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, Washington
| | - Jun Seok Son
- Laboratory of Perinatal Kinesioepigenetics, Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Liang Zhao
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, Washington
| | - Yao Gao
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, Washington
| | - Xiangdong Liu
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, Washington
| | - Jeanene Marie de Avila
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, Washington
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, Washington
| | - Min Du
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, Washington
| |
Collapse
|
23
|
Rodrigo N, Saad S, Pollock C, Glastras SJ. Diet Modification before or during Pregnancy on Maternal and Foetal Outcomes in Rodent Models of Maternal Obesity. Nutrients 2022; 14:2154. [PMID: 35631295 PMCID: PMC9146671 DOI: 10.3390/nu14102154] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 12/10/2022] Open
Abstract
The obesity epidemic has serious implications for women of reproductive age; its rising incidence is associated not just with health implications for the mother but also has transgenerational ramifications for the offspring. Increased incidence of diabetes, cardiovascular disease, obesity, and kidney disease are seen in both the mothers and the offspring. Animal models, such as rodent studies, are fundamental to studying maternal obesity and its impact on maternal and offspring health, as human studies lack rigorous controlled experimental design. Furthermore, the short and prolific reproductive potential of rodents enables examination across multiple generations and facilitates the exploration of interventional strategies to mitigate the impact of maternal obesity, both before and during pregnancy. Given that obesity is a major public health concern, it is important to obtain a greater understanding of its pathophysiology and interaction with reproductive health, placental physiology, and foetal development. This narrative review focuses on the known effects of maternal obesity on the mother and the offspring, and the benefits of interventional strategies, including dietary intervention, before or during pregnancy on maternal and foetal outcomes. It further examines the contribution of rodent models of maternal obesity to elucidating pathophysiological pathways of disease development, as well as methods to reduce the impact of obesity on the mothers and the developing foetus. The translation of these findings into the human experience will also be discussed.
Collapse
Affiliation(s)
- Natassia Rodrigo
- Department of Diabetes, Endocrinology and Metabolism, Royal North Shore Hospital, Sydney 2065, Australia;
- Kolling Institute of Medical Research, Sydney 2065, Australia; (S.S.); (C.P.)
- Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
| | - Sonia Saad
- Kolling Institute of Medical Research, Sydney 2065, Australia; (S.S.); (C.P.)
- Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
| | - Carol Pollock
- Kolling Institute of Medical Research, Sydney 2065, Australia; (S.S.); (C.P.)
- Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
- Department of Renal Medicine, Royal North Shore Hospital, Sydney 2065, Australia
| | - Sarah J. Glastras
- Department of Diabetes, Endocrinology and Metabolism, Royal North Shore Hospital, Sydney 2065, Australia;
- Kolling Institute of Medical Research, Sydney 2065, Australia; (S.S.); (C.P.)
- Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
| |
Collapse
|
24
|
Thompson MD, Hinrichs H, Faerber A, Tarr PI, Davidson NO. Maternal obesogenic diet enhances cholestatic liver disease in offspring. J Lipid Res 2022; 63:100205. [PMID: 35341737 PMCID: PMC9046959 DOI: 10.1016/j.jlr.2022.100205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/08/2022] [Accepted: 03/19/2022] [Indexed: 10/25/2022] Open
Abstract
Human and animal model data show that maternal obesity promotes nonalcoholic fatty liver disease in offspring and alters bile acid (BA) homeostasis. Here we investigated whether offspring exposed to maternal obesogenic diets exhibited greater cholestatic injury. We fed female C57Bl6 mice conventional chow (CON) or high fat/high sucrose (HF/HS) diet and then bred them with lean males. Offspring were fed 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) for 2 weeks to induce cholestasis, and a subgroup was then fed CON for an additional 10 days. Additionally, to evaluate the role of the gut microbiome, we fed antibiotic-treated mice cecal contents from CON or HF/HS offspring, followed by DDC for 2 weeks. We found that HF/HS offspring fed DDC exhibited increased fine branching of the bile duct (ductular reaction) and fibrosis but did not differ in BA pool size or intrahepatic BA profile compared to offspring of mice fed CON. We also found that after 10 days recovery, HF/HS offspring exhibited sustained ductular reaction and periportal fibrosis, while lesions in CON offspring were resolved. In addition, cecal microbiome transplant from HF/HS offspring donors worsened ductular reaction, inflammation, and fibrosis in mice fed DDC. Finally, transfer of the microbiome from HF/HS offspring replicated the cholestatic liver injury phenotype. Taken together, we conclude that maternal HF/HS diet predisposes offspring to increased cholestatic injury after DDC feeding and delays recovery after returning to CON diets. These findings highlight the impact of maternal obesogenic diet on hepatobiliary injury and repair pathways during experimental cholestasis.
Collapse
Affiliation(s)
- Michael D Thompson
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| | - Holly Hinrichs
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Austin Faerber
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Phillip I Tarr
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Nicholas O Davidson
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
25
|
Zeng J, Shen F, Zou ZY, Yang RX, Jin Q, Yang J, Chen GY, Fan JG. Association of maternal obesity and gestational diabetes mellitus with overweight/obesity and fatty liver risk in offspring. World J Gastroenterol 2022; 28:1681-1691. [PMID: 35581961 PMCID: PMC9048784 DOI: 10.3748/wjg.v28.i16.1681] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/30/2021] [Accepted: 03/16/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Childhood obesity and fatty liver are associated with adverse outcomes such as diabetes, metabolic syndrome, and cardiovascular diseases in adulthood. It is very important to identify relevant risk factors and intervene as early as possible. At present, the relationship between maternal and offspring metabolic factors is conflicting. AIM To estimate the association of maternal obesity and gestational diabetes mellitus (GDM) with overweight/obesity and fatty liver risk in offspring at 8 years of age. METHODS The prospective study included mothers who all had a 75-g oral glucose tolerance test at 24-28 wk of gestation and whose offspring completed follow-up at 8 years of age. Offspring birth weight, sex, height, weight, and body mass index (BMI) were measured and calculated. FibroScan-502 examination with an M probe (Echosens, Paris, France) was prospectively conducted in offspring aged 8 years from the Shanghai Prenatal Cohort Study. RESULTS A total of 430 mother-child pairs were included in the analysis. A total of 62 (14.2%) mothers were classified as obese, and 48 (11.1%) were classified as having GDM. The mean age of the offspring at follow-up was 8 years old. Thirty-seven (8.6%) offspring were overweight, 14 (3.3%) had obesity, and 60 (14.0%) had fatty liver. The prevalence of overweight, obesity and fatty liver in offspring increased significantly across maternal BMI quartiles (all P < 0.05). Among offspring of mothers with GDM, 12 (25.0%) were overweight, 4 (8.3%) were obese, and 12 (25.0%) had fatty liver vs. 25 (6.5%), 10 (2.6%) and 48 (12.6%), respectively, for offspring of mothers without GDM (all P < 0.05). In multiple logistic regression, after adjustment for variables, the OR for fatty liver in offspring was 8.26 (95%CI: 2.38-28.75) for maternal obesity and GDM. CONCLUSION This study showed that maternal obesity can increase the odds of overweight/obesity and fatty liver in offspring, and GDM status also increases the odds of overweight/obesity in offspring. Weight management and glycemic control before and during pregnancy need to be highlighted in primary prevention of pediatric obesity and fatty liver.
Collapse
Affiliation(s)
- Jing Zeng
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Feng Shen
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Zi-Yuan Zou
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Rui-Xu Yang
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Qian Jin
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jing Yang
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Guang-Yu Chen
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jian-Gao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
| |
Collapse
|
26
|
Recent Experimental Studies of Maternal Obesity, Diabetes during Pregnancy and the Developmental Origins of Cardiovascular Disease. Int J Mol Sci 2022; 23:ijms23084467. [PMID: 35457285 PMCID: PMC9027277 DOI: 10.3390/ijms23084467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 12/14/2022] Open
Abstract
Globally, cardiovascular disease remains the leading cause of death. Most concerning is the rise in cardiovascular risk factors including obesity, diabetes and hypertension among youth, which increases the likelihood of the development of earlier and more severe cardiovascular disease. While lifestyle factors are involved in these trends, an increasing body of evidence implicates environmental exposures in early life on health outcomes in adulthood. Maternal obesity and diabetes during pregnancy, which have increased dramatically in recent years, also have profound effects on fetal growth and development. Mounting evidence is emerging that maternal obesity and diabetes during pregnancy have lifelong effects on cardiovascular risk factors and heart disease development. However, the mechanisms responsible for these observations are unknown. In this review, we summarize the findings of recent experimental studies, showing that maternal obesity and diabetes during pregnancy affect energy metabolism and heart disease development in the offspring, with a focus on the mechanisms involved. We also evaluate early proof-of-concept studies for interventions that could mitigate maternal obesity and gestational diabetes-induced cardiovascular disease risk in the offspring.
Collapse
|
27
|
Querter I, Pauwels NS, De Bruyne R, Dupont E, Verhelst X, Devisscher L, Van Vlierberghe H, Geerts A, Lefere S. Maternal and Perinatal Risk Factors for Pediatric Nonalcoholic Fatty Liver Disease: A Systematic Review. Clin Gastroenterol Hepatol 2022; 20:740-755. [PMID: 33862225 DOI: 10.1016/j.cgh.2021.04.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND & AIMS Nonalcoholic fatty liver disease (NAFLD) has become the most common pediatric liver disease. The intrauterine and early life environment can have an important impact on long-term metabolic health. We investigated the impact of maternal prepregnancy obesity, (pre)gestational diabetes, breastfeeding, and birth anthropometrics/preterm birth on the development of NAFLD in children and adolescents. METHODS A comprehensive search was performed in MEDLINE, PubMed Central, EMBASE, and grey literature databases through August 2020. The primary outcome was the prevalence of pediatric NAFLD, whereas the histologic severity of steatohepatitis and/or fibrosis were secondary outcomes. Study selection, data extraction, and quality assessment were performed by 2 independent reviewers. RESULTS Our systematic review included 33 articles. Study heterogeneity regarding patient populations, diagnostic tools, and overall quality was considerable. Eight studies determined the impact of maternal prepregnancy overweight/obesity and identified this as a possible modifiable risk factor for pediatric NAFLD. Conversely, 8 studies investigated (pre)gestational diabetes, yet the evidence on its impact is conflicting. Breastfeeding was associated with a reduced risk for NAFLD, steatohepatitis, and fibrosis, especially in studies that evaluated longer periods of breastfeeding. Being born preterm or small for gestational age has an unclear impact on the development of NAFLD, although an early catch-up growth might drive NAFLD. CONCLUSIONS In a systematic review, we found that maternal prepregnancy overweight and obesity were associated with an increased risk of pediatric NAFLD. Breastfeeding might be protective against the development of NAFLD when the duration of breastfeeding is sufficiently long (≥6 months).
Collapse
Affiliation(s)
- Ilya Querter
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, Ghent
| | - Nele S Pauwels
- Knowledge Center for Health Ghent, Ghent University and Ghent University Hospital, Ghent
| | - Ruth De Bruyne
- Pediatric Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine and Pediatrics, Ghent University, Ghent
| | | | - Xavier Verhelst
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, Ghent
| | - Lindsey Devisscher
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences; Liver Research Center Ghent, Ghent University, Ghent, Belgium
| | - Hans Van Vlierberghe
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, Ghent
| | - Anja Geerts
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, Ghent
| | - Sander Lefere
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, Ghent; Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences; Liver Research Center Ghent, Ghent University, Ghent, Belgium.
| |
Collapse
|
28
|
Magalhaes MS, Potter HG, Ahlback A, Gentek R. Developmental programming of macrophages by early life adversity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 368:213-259. [PMID: 35636928 DOI: 10.1016/bs.ircmb.2022.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Macrophages are central elements of all organs, where they have a multitude of physiological and pathological functions. The first macrophages are produced during fetal development, and most adult organs retain populations of fetal-derived macrophages that self-maintain without major input of hematopoietic stem cell-derived monocytes. Their developmental origins make macrophages highly susceptible to environmental perturbations experienced in early life, in particular the fetal period. It is now well recognized that such adverse developmental conditions contribute to a wide range of diseases later in life. This chapter explores the notion that macrophages are key targets of environmental adversities during development, and mediators of their long-term impact on health and disease. We first briefly summarize our current understanding of macrophage ontogeny and their biology in tissues and consider potential mechanisms by which environmental stressors may mediate fetal programming. We then review evidence for programming of macrophages by adversities ranging from maternal immune activation and diet to environmental pollutants and toxins, which have disease relevance for different organ systems. Throughout this chapter, we contemplate appropriate experimental strategies to study macrophage programming. We conclude by discussing how our current knowledge of macrophage programming could be conceptualized, and finally highlight open questions in the field and approaches to address them.
Collapse
Affiliation(s)
- Marlene S Magalhaes
- Centre for Inflammation Research & Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Harry G Potter
- Centre for Inflammation Research & Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Anna Ahlback
- Centre for Inflammation Research & Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Rebecca Gentek
- Centre for Inflammation Research & Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
29
|
Stevanović-Silva J, Beleza J, Coxito P, Costa RC, Ascensão A, Magalhães J. Fit mothers for a healthy future: Breaking the intergenerational cycle of non-alcoholic fatty liver disease with maternal exercise. Eur J Clin Invest 2022; 52:e13596. [PMID: 34120338 DOI: 10.1111/eci.13596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/01/2021] [Accepted: 05/06/2021] [Indexed: 12/20/2022]
Abstract
UNLABELLED SPECIAL ISSUE: 'FOIEGRAS-Bioenergetic Remodelling in the Pathophysiology and Treatment of Non-Alcoholic Fatty Liver Disease'. BACKGROUND Non-alcoholic fatty liver disease (NAFLD) emerges as significant health burden worldwide. Lifestyle changes, unhealthy dietary habits and physical inactivity, can trigger NAFLD development. Persisting on these habits during pregnancy affects in utero environment and prompts a specific metabolic response in foetus resulting in offspring metabolic maladjustments potentially critical for developing NAFLD later in life. The increasing prevalence of NAFLD, particularly in children, has shifted the research focus towards preventive and therapeutic strategies. Yet, designing effective approaches that can break the NAFLD intergenerational cycle becomes even more complicated. Regular physical exercise (PE) is a powerful non-pharmacological strategy known to counteract deleterious metabolic outcomes. In this narrative review, we aimed to briefly describe NAFLD pathogenesis focusing on maternal nutritional challenge and foetal programming, and to provide potential mechanisms behind the putative intergenerational effect of PE against metabolic diseases, including liver diseases. METHODS Following detailed electronic database search, recent existing evidence about NAFLD development, intergenerational programming and gestational exercise effects was critically analysed and discussed. RESULTS PE during pregnancy could have a great potential to counteract intergenerational transmission of metabolic burden. The interplay between different PE roles-metabolic, endocrine and epigenetic-could offer a more stable in utero environment to the foetus, thus rescuing offspring vulnerability to metabolic disturbances. CONCLUSIONS The better understanding of maternal PE beneficial consequences on offspring metabolism could reinforce the importance of PE during pregnancy as an indispensable strategy in improving offspring health.
Collapse
Affiliation(s)
- Jelena Stevanović-Silva
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, Porto, Portugal
| | - Jorge Beleza
- Department of Cell Biology, Physiology & Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Pedro Coxito
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, Porto, Portugal
| | - Rui Carlos Costa
- Department of Communication and Art, Research Institute for Design, Media and Culture (ID+), Aveiro University, Aveiro, Portugal
| | - António Ascensão
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, Porto, Portugal
| | - José Magalhães
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, Porto, Portugal
| |
Collapse
|
30
|
Thompson MD, Kang J, Faerber A, Hinrichs H, Özler O, Cowen J, Xie Y, Tarr PI, Davidson NO. Maternal obesogenic diet regulates offspring bile acid homeostasis and hepatic lipid metabolism via the gut microbiome in mice. Am J Physiol Gastrointest Liver Physiol 2022; 322:G295-G309. [PMID: 34984925 PMCID: PMC8816615 DOI: 10.1152/ajpgi.00247.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mice exposed in gestation to maternal high-fat/high-sucrose (HF/HS) diet develop altered bile acid (BA) homeostasis. We hypothesized that these reflect an altered microbiome and asked if microbiota transplanted from HF/HS offspring change hepatic BA and lipid metabolism to determine the directionality of effect. Female mice were fed HF/HS or chow (CON) for 6 wk and bred with lean males. 16S sequencing was performed to compare taxa in offspring. Cecal microbiome transplantation (CMT) was performed from HF/HS or CON offspring into antibiotic-treated mice fed chow or high fructose. BA, lipid metabolic, and gene expression analyses were performed in recipient mice. Gut microbiomes from HF/HS offspring segregated from CON offspring, with increased Firmicutes to Bacteriodetes ratios and Verrucomicrobial abundance. After CMT was performed, HF/HS-recipient mice had larger BA pools, increased intrahepatic muricholic acid, and decreased deoxycholic acid species. HF/HS-recipient mice exhibited downregulated hepatic Mrp2, increased hepatic Oatp1b2, and decreased ileal Asbt mRNA expression. HF/HS-recipient mice exhibited decreased cecal butyrate and increased hepatic expression of Il6. HF/HS-recipient mice had larger livers and increased intrahepatic triglyceride versus CON-recipient mice after fructose feeding, with increased hepatic mRNA expression of lipogenic genes including Srebf1, Fabp1, Mogat1, and Mogat2. CMT from HF/HS offspring increased BA pool and shifted the composition of the intrahepatic BA pool. CMT from HF/HS donor offspring increased fructose-induced liver triglyceride accumulation. These findings support a causal role for vertical transfer of an altered microbiome in hepatic BA and lipid metabolism in HF/HS offspring.NEW & NOTEWORTHY We utilized a mouse model of maternal obesogenic diet exposure to evaluate the effect on offspring microbiome and bile acid homeostasis. We identified shifts in the offspring microbiome associated with changes in cecal bile acid levels. Transfer of the microbiome from maternal obesogenic diet-exposed offspring to microbiome-depleted mice altered bile acid homeostasis and increased fructose-induced hepatic steatosis.
Collapse
Affiliation(s)
- Michael D. Thompson
- 1Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Jisue Kang
- 1Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Austin Faerber
- 1Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Holly Hinrichs
- 1Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Oğuz Özler
- 1Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Jamie Cowen
- 1Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Yan Xie
- 2Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Phillip I. Tarr
- 3Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Nicholas O. Davidson
- 2Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
31
|
Moeckli B, Delaune V, Prados J, Tihy M, Peloso A, Oldani G, Delmi T, Slits F, Gex Q, Rubbia-Brandt L, Goossens N, Lacotte S, Toso C. Impact of Maternal Obesity on Liver Disease in the Offspring: A Comprehensive Transcriptomic Analysis and Confirmation of Results in a Murine Model. Biomedicines 2022; 10:biomedicines10020294. [PMID: 35203502 PMCID: PMC8869223 DOI: 10.3390/biomedicines10020294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/16/2022] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
The global obesity epidemic particularly affects women of reproductive age. Offspring of obese mothers suffer from an increased risk of liver disease but the molecular mechanisms involved remain unknown. We performed an integrative genomic analysis of datasets that investigated the impact of maternal obesity on the hepatic gene expression profile of the offspring in mice. Furthermore, we developed a murine model of maternal obesity and studied the development of liver disease and the gene expression profile of the top dysregulated genes by quantitative real-time polymerase chain reaction (qPCR). Our data are available for interactive exploration on our companion webpage. We identified five publicly available datasets relevant to our research question. Pathways involved in metabolism, the innate immune system, the clotting cascade, and the cell cycle were consistently dysregulated in the offspring of obese mothers. Concerning genes involved in the development of liver disease, Egfr, Vegfb, Wnt2,Pparg and six other genes were dysregulated in multiple independent datasets. In our own model, we observed a higher tendency towards the development of non-alcoholic liver disease (60 vs. 20%) and higher levels of alanine aminotransferase (41.0 vs. 12.5 IU/l, p = 0.008) in female offspring of obese mothers. Male offspring presented higher levels of liver fibrosis (2.4 vs. 0.6% relative surface area, p = 0.045). In a qPCR gene expression analysis of our own samples, we found Fgf21, Pparg, Ppard, and Casp6 to be dysregulated by maternal obesity. Maternal obesity represents a looming threat to the liver health of future generations. Our comprehensive transcriptomic analysis will help to better understand the mechanisms of the development of liver disease in the offspring of obese mothers and can give rise to further explorations.
Collapse
Affiliation(s)
- Beat Moeckli
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, Division of Visceral Surgery, University of Geneva, 1206 Geneva, Switzerland; (B.M.); (V.D.); (A.P.); (G.O.); (T.D.); (F.S.); (Q.G.); (C.T.)
- Department of Surgery, Division of Visceral Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Vaihere Delaune
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, Division of Visceral Surgery, University of Geneva, 1206 Geneva, Switzerland; (B.M.); (V.D.); (A.P.); (G.O.); (T.D.); (F.S.); (Q.G.); (C.T.)
- Department of Surgery, Division of Visceral Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Julien Prados
- Bioinformatics Support Platform, Services Communs de la Faculté, University of Geneva, 1206 Geneva, Switzerland;
| | - Matthieu Tihy
- Division of Clinical Pathology, Geneva University Hospitals, 1205 Geneva, Switzerland; (M.T.); (L.R.-B.)
| | - Andrea Peloso
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, Division of Visceral Surgery, University of Geneva, 1206 Geneva, Switzerland; (B.M.); (V.D.); (A.P.); (G.O.); (T.D.); (F.S.); (Q.G.); (C.T.)
- Department of Surgery, Division of Visceral Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Graziano Oldani
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, Division of Visceral Surgery, University of Geneva, 1206 Geneva, Switzerland; (B.M.); (V.D.); (A.P.); (G.O.); (T.D.); (F.S.); (Q.G.); (C.T.)
- Department of Surgery, Division of Visceral Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Thomas Delmi
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, Division of Visceral Surgery, University of Geneva, 1206 Geneva, Switzerland; (B.M.); (V.D.); (A.P.); (G.O.); (T.D.); (F.S.); (Q.G.); (C.T.)
| | - Florence Slits
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, Division of Visceral Surgery, University of Geneva, 1206 Geneva, Switzerland; (B.M.); (V.D.); (A.P.); (G.O.); (T.D.); (F.S.); (Q.G.); (C.T.)
| | - Quentin Gex
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, Division of Visceral Surgery, University of Geneva, 1206 Geneva, Switzerland; (B.M.); (V.D.); (A.P.); (G.O.); (T.D.); (F.S.); (Q.G.); (C.T.)
| | - Laura Rubbia-Brandt
- Division of Clinical Pathology, Geneva University Hospitals, 1205 Geneva, Switzerland; (M.T.); (L.R.-B.)
| | - Nicolas Goossens
- Division of Gastroenterology, Geneva University Hospitals, 1205 Geneva, Switzerland;
| | - Stéphanie Lacotte
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, Division of Visceral Surgery, University of Geneva, 1206 Geneva, Switzerland; (B.M.); (V.D.); (A.P.); (G.O.); (T.D.); (F.S.); (Q.G.); (C.T.)
- Correspondence:
| | - Christian Toso
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, Division of Visceral Surgery, University of Geneva, 1206 Geneva, Switzerland; (B.M.); (V.D.); (A.P.); (G.O.); (T.D.); (F.S.); (Q.G.); (C.T.)
- Department of Surgery, Division of Visceral Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
| |
Collapse
|
32
|
Abeysekera KWM, Orr JG, Madley-Dowd P, Fernandes GS, Zuccolo L, Gordon FH, Lawlor DA, Heron J, Hickman M. Association of maternal pre-pregnancy BMI and breastfeeding with NAFLD in young adults: a parental negative control study. THE LANCET REGIONAL HEALTH. EUROPE 2021; 10:100206. [PMID: 34806068 PMCID: PMC8589711 DOI: 10.1016/j.lanepe.2021.100206] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
BACKGROUND The importance of the maternal-infant dyad in the genesis of nonalcoholic fatty liver disease (NAFLD) is of increasing interest. The Avon Longitudinal Study of Parents and Children (ALSPAC) showed that at age 24, 1 in 5 had NAFLD measured by transient elastography and controlled attenuation parameter (CAP). Our aim was to investigate the association between breastfeeding duration and maternal pre-pregnancy BMI on offspring NAFLD in young adulthood. METHODS 4021 participants attended clinic for FibroScan and CAP measurement using Echosens 502 Touch®. 440 participants with Alcohol Use Disorders were excluded. Offspring of 100 non-singleton pregnancies were excluded. 2961 valid CAP measurements for NAFLD were analysed. Exposures of interest were breastfeeding of any duration, ≥6months exclusive breastfeeding, and maternal pre-pregnancy BMI. Multivariable regression models estimated the odds of NAFLD at 24 years. We performed a paternal negative control test to explore residual confounding in the analyses of pre-pregnancy BMI. FINDINGS There was a modest inverse association of exclusive and non-exclusive breastfeeding ≥6 months having a protective effect on NAFLD in offspring (OR 0·92 [95%CI 0·66-1·27] and OR 0·90 [0·67-1·21] respectively).The odds of offspring NAFLD in overweight pre-pregnancy maternal BMI and paternal BMI was OR 2·09 [1·62-2·68] and OR 1·33 [95%CI 1·07-1·65] respectively, with the ratio of effect sizes OR 1·57 [1·11-2·22]. Similarly, odds of offspring NAFLD with obese pre-pregnancy maternal BMI and paternal BMI was OR 2·66 [1·71-4·14] and OR 1·35 [0·91-2·00] respectively, with the ratio of effect sizes OR 1·98 [1·05-3·74]. INTERPRETATION Higher maternal pre-pregnancy BMI was associated with offspring NAFLD, having accounted for shared parental confounding. We did not replicate previous work that found a strong association between breastfeeding and NAFLD. FUNDING Medical Research Council UK, Alcohol Research UK, David Telling Charitable Trust.
Collapse
Affiliation(s)
- Kushala WM Abeysekera
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
- Department of Liver Medicine, University Hospitals Bristol and Weston NHS Foundation Trust, UK
| | - James G Orr
- Department of Liver Medicine, University Hospitals Bristol and Weston NHS Foundation Trust, UK
| | - Paul Madley-Dowd
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Gwen S Fernandes
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Luisa Zuccolo
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Fiona H Gordon
- Department of Liver Medicine, University Hospitals Bristol and Weston NHS Foundation Trust, UK
| | - Deborah A Lawlor
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Bristol NIHR Biomedical Research Centre
| | - Jon Heron
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Matthew Hickman
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| |
Collapse
|
33
|
Hagström H, Simon TG, Roelstraete B, Stephansson O, Söderling J, Ludvigsson JF. Maternal obesity increases the risk and severity of NAFLD in offspring. J Hepatol 2021; 75:1042-1048. [PMID: 34289397 DOI: 10.1016/j.jhep.2021.06.045] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Maternal obesity has been linked to the development of cardiovascular disease and diabetes in offspring, but its relationship to non-alcoholic fatty liver disease (NAFLD) is unclear. METHODS Through the nationwide ESPRESSO cohort study we identified all individuals ≤25 years of age in Sweden with biopsy-verified NAFLD diagnosed between 1992 and 2016 (n = 165). These were matched by age, sex, and calendar year with up to 5 controls (n = 717). Through linkage with the nationwide Swedish Medical Birth Register (MBR) we retrieved data on maternal early-pregnancy BMI, and possible confounders, in order to calculate adjusted odds ratios (aORs) for NAFLD in offspring. RESULTS Maternal BMI was associated with NAFLD in offspring: underweight (aOR 0.84; 95% CI 0.14-5.15), normal weight (reference, aOR 1), overweight (aOR 1.51; 0.95-2.40), and obese (aOR 3.26; 1.72-6.19) women. Severe NAFLD (biopsy-proven fibrosis or cirrhosis) was also more common in offspring of overweight (aOR 1.94; 95% CI 0.96-3.90) and obese (aOR 3.67; 95% CI 1.61-8.38) mothers. Associations were similar after adjusting for maternal pre-eclampsia and gestational diabetes. Socio-economic parameters (smoking, mother born outside the Nordic countries and less than 10 years of basic education) were also associated with NAFLD in offspring but did not materially alter the effect size of maternal BMI in a multivariable model. CONCLUSIONS This nationwide study found a strong association between maternal overweight/obesity and future NAFLD in offspring. Adjusting for socio-economic and metabolic parameters in the mother did not affect this finding, suggesting that maternal obesity is an independent risk factor for NAFLD in offspring. LAY SUMMARY In a study of all young persons in Sweden with a liver biopsy consistent with fatty liver, the authors found that compared to matched controls, the risk of fatty liver was much higher in those with obese mothers. This was independent of available confounders and suggests that the high prevalence of obesity in younger persons might lead to a higher risk of fatty liver in their offspring.
Collapse
Affiliation(s)
- Hannes Hagström
- Division of Hepatology, Department of Upper GI, Karolinska University Hospital, Stockholm, Sweden; Clinical Epidemiology Division, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden; Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden.
| | - Tracey G Simon
- Division of Gastroenterology and Hepatology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Clinical and Translational Epidemiology Unit (CTEU), Massachusetts General Hospital, Boston, MA, USA
| | - Bjorn Roelstraete
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Olof Stephansson
- Clinical Epidemiology Division, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden; Division of Women's Health, Department of Obstetrics, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Söderling
- Clinical Epidemiology Division, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Jonas F Ludvigsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Department of Pediatrics, Orebro University Hospital, Orebro, Sweden; Division of Epidemiology and Public Health, School of Medicine, University of Nottingham, UK; Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
34
|
Geurtsen ML, Wahab RJ, Felix JF, Gaillard R, Jaddoe VW. Maternal Early-Pregnancy Glucose Concentrations and Liver Fat Among School-Age Children. Hepatology 2021; 74:1902-1913. [PMID: 34008183 PMCID: PMC8519071 DOI: 10.1002/hep.31910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Gestational diabetes seems to be associated with offspring NAFLD. We hypothesized that maternal glucose concentrations across the full range may have persistent effects on offspring liver fat accumulation. APPROACH AND RESULTS In a multiethnic, population-based, prospective cohort study among 2,168 women and their offspring, maternal early-pregnancy glucose concentrations were measured at a median of 13.1 weeks' gestation (95% CI, 9.6-17.2). Liver fat fraction was measured at 10 years by MRI. NAFLD was defined as liver fat fraction ≥5.0%. We performed analyses among all mothers with different ethnic backgrounds and those of European ancestry only. The multiethnic group had a median maternal early-pregnancy glucose concentration of 4.3 mmol/L (interquartile range, 3.9-4.9) and a 2.8% (n = 60) prevalence of NAFLD. The models adjusted for child age and sex only showed that in the multiethnic group, higher maternal early-pregnancy glucose concentrations were associated with higher liver fat accumulation and higher odds of NAFLD, but these associations attenuated into nonsignificance after adjustment for potential confounders. Among mothers of European ancestry only, maternal early-pregnancy glucose concentrations were associated with increased odds of NAFLD (OR, 1.95; 95% CI, 1.32; 2.88, after adjustment for confounders) per 1-mmol/L increase in maternal early-pregnancy glucose concentration. These associations were not explained by maternal prepregnancy and childhood body mass index, visceral fat, and metabolic markers. CONCLUSIONS In this study, maternal early-pregnancy glucose concentrations were only among mothers of European ancestry associated with offspring NAFLD. The associations of higher maternal early-pregnancy glucose concentrations with offspring NAFLD may differ between ethnic groups.
Collapse
Affiliation(s)
- Madelon L. Geurtsen
- The Generation R Study GroupErasmus MC, University Medical Center RotterdamRotterdamThe Netherlands,Department of PediatricsErasmus MC, University Medical Center RotterdamRotterdamThe Netherlands
| | - Rama J. Wahab
- The Generation R Study GroupErasmus MC, University Medical Center RotterdamRotterdamThe Netherlands,Department of PediatricsErasmus MC, University Medical Center RotterdamRotterdamThe Netherlands
| | - Janine F. Felix
- The Generation R Study GroupErasmus MC, University Medical Center RotterdamRotterdamThe Netherlands,Department of PediatricsErasmus MC, University Medical Center RotterdamRotterdamThe Netherlands
| | - Romy Gaillard
- The Generation R Study GroupErasmus MC, University Medical Center RotterdamRotterdamThe Netherlands,Department of PediatricsErasmus MC, University Medical Center RotterdamRotterdamThe Netherlands
| | - Vincent W.V. Jaddoe
- The Generation R Study GroupErasmus MC, University Medical Center RotterdamRotterdamThe Netherlands,Department of PediatricsErasmus MC, University Medical Center RotterdamRotterdamThe Netherlands
| |
Collapse
|
35
|
Han S, Zhu F, Huang X, Yan P, Xu K, Shen F, Sun J, Yang Z, Jin G, Teng Y. Maternal obesity accelerated non-alcoholic fatty liver disease in offspring mice by reducing autophagy. Exp Ther Med 2021; 22:716. [PMID: 34007325 PMCID: PMC8120514 DOI: 10.3892/etm.2021.10148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/02/2021] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease characterized by an excessive accumulation of triacylglycerol in the liver. Autophagy is a lysosome-dependent degradation product recovery process, which widely occurs in eukaryotic cells, responsible for the vital maintenance of cellular energy balance. Previously published studies have demonstrated that autophagy is closely related to NAFLD occurrence and maternal obesity increases the susceptibility of offspring to non-alcoholic fatty liver disease, however, the underlying mechanism of this remains unclear. In the present study, NAFLD mouse models (offspring of an obese mother mouse via high-fat feeding) were generated, and the physiological indices of the liver were observed using total cholesterol, triglyceride, high-density lipoprotein and low-density lipoprotein serum assay kits. The morphological changes of the liver were also observed via HE, Masson and oil red O staining. Reverse transcription-quantitative-PCR and western blotting were performed to detect changes of autophagy-related genes in liver or fibrosis marker proteins (α-smooth muscle actin or TGF-β1). Changes in serum inflammatory cytokine IL-6 levels were determined via ELISA. The results of the present study demonstrated that the offspring of an obese mother were more likely to develop NALFD than the offspring of a chow-fed mother, due to their increased association with liver fibrosis. When feeding continued to 17 weeks, the worst cases of NAFLD were observed and the level of autophagy decreased significantly compared with the offspring of a normal weight mouse. In addition, after 17 weeks of feeding, compared with the offspring of a chow-fed mother, the offspring of an obese mouse mother had reduced adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) phosphorylation levels and increased mammalian target of rapamycin (mTOR) phosphorylation levels. These results suggested that a reduced level of AMPK/mTOR mediated autophagy may be of vital importance for the increased susceptibility of offspring to NAFLD caused by maternal obesity. In conclusion, the current study provided a new direction for the treatment of NAFLD in offspring caused by maternal obesity.
Collapse
Affiliation(s)
- Shuguang Han
- Graduate School, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China.,Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Feng Zhu
- Graduate School, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China.,Department of Pediatrics, The Second Affiliated Hospital of Jiaxing University, Jiaxing Second Hospital, Jiaxing, Zhejiang 314000, P.R. China
| | - Xiaoxia Huang
- Department of Pediatrics, The Second Affiliated Hospital of Jiaxing University, Jiaxing Second Hospital, Jiaxing, Zhejiang 314000, P.R. China.,The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, P.R. China
| | - Panpan Yan
- Graduate School, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China.,Department of Pediatrics, The Second Affiliated Hospital of Jiaxing University, Jiaxing Second Hospital, Jiaxing, Zhejiang 314000, P.R. China
| | - Ke Xu
- Department of Pediatrics, The Second Affiliated Hospital of Jiaxing University, Jiaxing Second Hospital, Jiaxing, Zhejiang 314000, P.R. China
| | - Fangfang Shen
- Department of Pediatrics, The Second Affiliated Hospital of Jiaxing University, Jiaxing Second Hospital, Jiaxing, Zhejiang 314000, P.R. China
| | - Jiawen Sun
- Graduate School, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Zeyu Yang
- Graduate School, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Guoxi Jin
- Graduate School, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China.,Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Yiqun Teng
- Graduate School, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China.,Department of Pediatrics, The Second Affiliated Hospital of Jiaxing University, Jiaxing Second Hospital, Jiaxing, Zhejiang 314000, P.R. China
| |
Collapse
|
36
|
Cao B, Liu C, Zhang Q, Dong Y. Maternal High-Fat Diet Leads to Non-alcoholic Fatty Liver Disease Through Upregulating Hepatic SCD1 Expression in Neonate Rats. Front Nutr 2020; 7:581723. [PMID: 33282902 PMCID: PMC7705221 DOI: 10.3389/fnut.2020.581723] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the leading cause of liver disease in children, with evidence that the maternal diet and the early life nutritional environment are potential risk for such disease. This study was aimed to investigate the effects of maternal high-fat diet (HFD) on the occurrence of NAFLD in offspring rats and the underlying mechanisms. In this study, the incidence of NAFLD was compared in F1 offspring rats between the maternal HFD group and standard chow (SC) group. In addition, the expression levels of inflammatory cytokines in the placenta, in the umbilical cord blood, and in the livers of neonate offsprings were compared between two groups. HepG2 cells were treated with recombinant IL6 (rIL6) to assess stearoyl-CoA desaturase 1 (SCD1) expression and lipid synthesis in an inflammatory condition. Lipid accumulation was assayed in both SCD1 overexpression and interference HepG2 cells as well as in neonatal rats. Our results showed that HFD exposure before and throughout the pregnancy induced the elevated hepatic TG content of F1 neonates. The levels of inflammatory cytokines in the placenta, umbilical cord blood, and the livers of HFD F1 neonates were significantly higher than those of the SC group. In addition, rIL6 treatment led to TG accumulation accompanied by the upregulation of SCD1 in HepG2 cell lines. Overexpression of SCD1 led to the accumulation of TG contents in HepG2 cells, whereas Scd1 knockdown attenuated the effects of rIL6 treatment. Overexpression of SCD1 in F1 neonatal rats led to hepatic lipid accumulation. Our study indicated that maternal HFD led to intrauterine inflammation, which subsequently caused transgenerationally abnormal hepatic lipid metabolism of F1 neonates. This modulation might be mediated by upregulating SCD1 expression in hepatic cells.
Collapse
Affiliation(s)
- Baige Cao
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chongxiao Liu
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qianren Zhang
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Dong
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
37
|
Hyun J, Jung Y. DNA Methylation in Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2020; 21:8138. [PMID: 33143364 PMCID: PMC7662478 DOI: 10.3390/ijms21218138] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a widespread hepatic disorder in the United States and other Westernized countries. Nonalcoholic steatohepatitis (NASH), an advanced stage of NAFLD, can progress to end-stage liver disease, including cirrhosis and liver cancer. Poor understanding of mechanisms underlying NAFLD progression from simple steatosis to NASH has limited the development of effective therapies and biomarkers. An accumulating body of studies has suggested the importance of DNA methylation, which plays pivotal roles in NAFLD pathogenesis. DNA methylation signatures that can affect gene expression are influenced by environmental and lifestyle experiences such as diet, obesity, and physical activity and are reversible. Hence, DNA methylation signatures and modifiers in NAFLD may provide the basis for developing biomarkers indicating the onset and progression of NAFLD and therapeutics for NAFLD. Herein, we review an update on the recent findings in DNA methylation signatures and their roles in the pathogenesis of NAFLD and broaden people's perspectives on potential DNA methylation-related treatments and biomarkers for NAFLD.
Collapse
Affiliation(s)
- Jeongeun Hyun
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea;
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, Korea
- Cell and Matter Institute, Dankook University, Cheonan 31116, Korea
| | - Youngmi Jung
- Department of Integrated Biological Science, Pusan National University, Pusan 46241, Korea
- Department of Biological Sciences, Pusan National University, Pusan 46241, Korea
| |
Collapse
|
38
|
Mandala A, Janssen RC, Palle S, Short KR, Friedman JE. Pediatric Non-Alcoholic Fatty Liver Disease: Nutritional Origins and Potential Molecular Mechanisms. Nutrients 2020; 12:E3166. [PMID: 33081177 PMCID: PMC7602751 DOI: 10.3390/nu12103166] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the number one chronic liver disease worldwide and is estimated to affect nearly 40% of obese youth and up to 10% of the general pediatric population without any obvious signs or symptoms. Although the early stages of NAFLD are reversible with diet and lifestyle modifications, detecting such stages is hindered by a lack of non-invasive methods of risk assessment and diagnosis. This absence of non-invasive means of diagnosis is directly related to the scarcity of long-term prospective studies of pediatric NAFLD in children and adolescents. In the majority of pediatric NAFLD cases, the mechanisms driving the origin and rapid progression of NAFLD remain unknown. The progression from NAFLD to non-alcoholic steatohepatitis (NASH) in youth is associated with unique histological features and possible immune processes and metabolic pathways that may reflect different mechanisms compared with adults. Recent data suggest that circulating microRNAs (miRNAs) are important new biomarkers underlying pathways of liver injury. Several factors may contribute to pediatric NAFLD development, including high-sugar diets, in utero exposures via epigenetic alterations, changes in the neonatal microbiome, and altered immune system development and mitochondrial function. This review focuses on the unique aspects of pediatric NAFLD and how nutritional exposures impact the immune system, mitochondria, and liver/gastrointestinal metabolic health. These factors highlight the need for answers to how NAFLD develops in children and for early stage-specific interventions.
Collapse
Affiliation(s)
- Ashok Mandala
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (A.M.); (R.C.J.); (K.R.S.)
| | - Rachel C. Janssen
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (A.M.); (R.C.J.); (K.R.S.)
| | - Sirish Palle
- Department of Pediatrics, Section of Gastroenterology, Hepatology & Nutrition, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Kevin R. Short
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (A.M.); (R.C.J.); (K.R.S.)
- Department of Pediatrics, Section of Diabetes and Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jacob E. Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (A.M.); (R.C.J.); (K.R.S.)
- Department of Pediatrics, Section of Diabetes and Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
39
|
Maragkoudaki X, Naylor M, Papacleovoulou G, Stolarczyk E, Rees D, Pombo JM, Abu-Hayyeh S, Czajka A, Howard JK, Malik AN, Williamson C, Poston L, Taylor PD. Supplementation with a prebiotic (polydextrose) in obese mouse pregnancy improves maternal glucose homeostasis and protects against offspring obesity. Int J Obes (Lond) 2020; 44:2382-2393. [PMID: 33033395 DOI: 10.1038/s41366-020-00682-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/08/2020] [Accepted: 09/04/2020] [Indexed: 12/29/2022]
Abstract
OBJECTIVES We hypothesised that maternal diet-induced-obesity has adverse consequences for offspring energy expenditure and susceptibility to obesity in adulthood, and that the prebiotic polydextrose (PDX) would prevent the consequences of programming by maternal obesity. METHODS Female mice were fed a control (Con) or obesogenic diet (Ob) for 6 weeks prior to mating and throughout pregnancy and lactation. Half the obese dams were supplemented with 5% PDX (ObPDX) in drinking water throughout pregnancy and lactation. Offspring were weaned onto standard chow. At 3 and 6 months, offspring energy intake (EI) and energy expenditure (EE by indirect calorimetry) were measured, and a glucose-tolerance test performed. Offspring of control (OffCon), obese (OffOb) and PDX supplemented (OffObP) dams were subsequently challenged for 3 weeks with Ob, and energy balanced reassessed. Potential modifiers of offspring energy balance including gut microbiota and biomarkers of mitochondrial activity were also evaluated. RESULTS Six-month-old male OffOb demonstrated increased bodyweight (BW, P < 0.001) and white adipose tissue mass (P < 0.05), decreased brown adipose tissue mass (BAT, P < 0.01), lower night-time EE (P < 0.001) versus OffCon, which were prevented in OffObP. Both male and female OffOb showed abnormal glucose-tolerance test (peak [Glucose] P < 0.001; AUC, P < 0.05) which was prevented by PDX. The Ob challenge resulted in greater BW gain in both male and female OffOb versus OffCon (P < 0.05), also associated with increased EI (P < 0.05) and reduced EE in females (P < 0.01). OffObP were protected from accelerated BW gain on the OB diet compared with controls, associated with increased night-time EE in both male (P < 0.05) and female OffObP (P < 0.001). PDX also prevented an increase in skeletal muscle mtDNA copy number in OffOb versus OffCon (P < 0.01) and increased the percentage of Bacteroides cells in faecal samples from male OffObP relative to controls. CONCLUSIONS Maternal obesity adversely influences adult offspring energy balance and propensity for obesity, which is ameliorated by maternal PDX treatment with associated changes in gut microbiota composition and skeletal muscle mitochondrial function.
Collapse
Affiliation(s)
- Xanthi Maragkoudaki
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Matthew Naylor
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Georgia Papacleovoulou
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Emilie Stolarczyk
- Department of Diabetes Research, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Douglas Rees
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Joaquim M Pombo
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Shadi Abu-Hayyeh
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Anja Czajka
- Department of Diabetes Research, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Jane K Howard
- Department of Diabetes Research, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Afshan N Malik
- Department of Diabetes Research, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Catherine Williamson
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Lucilla Poston
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Paul D Taylor
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| |
Collapse
|
40
|
Thompson MD. Developmental Programming of NAFLD by Parental Obesity. Hepatol Commun 2020; 4:1392-1403. [PMID: 33024911 PMCID: PMC7527686 DOI: 10.1002/hep4.1578] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
The surge of obesity across generations has become an increasingly relevant issue, with consequences for associated comorbidities in offspring. Data from longitudinal birth cohort studies support an association between maternal obesity and offspring nonalcoholic fatty liver disease (NAFLD), suggesting that perinatal obesity or obesogenic diet exposure reprograms offspring liver and increases NAFLD susceptibility. In preclinical models, offspring exposed to maternal obesogenic diet have increased hepatic steatosis after diet-induced obesity; however, the implications for later NAFLD development and progression are still unclear. Although some models show increased NAFLD incidence and progression in offspring, development of nonalcoholic steatohepatitis with fibrosis may be model dependent. Multigenerational programming of NAFLD phenotypes occurs after maternal obesogenic diet exposure; however, the mechanisms for such programming remain poorly understood. Likewise, emerging data on the role of paternal obesity in offspring NAFLD development reveal incomplete mechanisms. This review will explore the impact of parental obesity and obesogenic diet exposure on offspring NAFLD and areas for further investigation, including the impact of parental diet on disease progression, and consider potential interventions in preclinical models.
Collapse
Affiliation(s)
- Michael D. Thompson
- Division of Endocrinology and DiabetesDepartment of PediatricsWashington University School of MedicineSt. LouisMO
| |
Collapse
|
41
|
Kislal S, Shook LL, Edlow AG. Perinatal exposure to maternal obesity: Lasting cardiometabolic impact on offspring. Prenat Diagn 2020; 40:1109-1125. [PMID: 32643194 DOI: 10.1002/pd.5784] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 06/25/2020] [Accepted: 07/05/2020] [Indexed: 12/11/2022]
Abstract
Evidence from epidemiological, clinical, and animal model studies clearly demonstrates that prenatal and lactational maternal obesity and high-fat diet consumption are associated with cardiometabolic morbidity in offspring. Fetal and offspring sex may be an important effect modifier. Adverse offspring cardiometabolic outcomes observed in the setting of maternal obesity include an increased risk for obesity, features of metabolic syndrome (hypertension, hyperglycemia and insulin resistance, hyperlipidemia, increased adiposity), and non-alcoholic fatty liver disease. This review article synthesizes human and animal data linking maternal obesity and high-fat diet consumption in pregnancy and lactation to adverse cardiometabolic outcomes in offspring. We review key mechanisms underlying skeletal muscle, adipose tissue, pancreatic, liver, and central brain reward programming in obesity-exposed offspring, and how such malprogramming contributes to offspring cardiometabolic morbidity.
Collapse
Affiliation(s)
- Sezen Kislal
- Vincent Center for Reproductive Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Lydia L Shook
- Division of Maternal-Fetal Medicine, Department of Ob/Gyn, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrea G Edlow
- Vincent Center for Reproductive Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, Massachusetts, USA.,Division of Maternal-Fetal Medicine, Department of Ob/Gyn, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
42
|
Protective Effects of MitoTEMPO on Nonalcoholic Fatty Liver Disease via Regulating Myeloid-Derived Suppressor Cells and Inflammation in Mice. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9329427. [PMID: 32802885 PMCID: PMC7414374 DOI: 10.1155/2020/9329427] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/02/2020] [Accepted: 07/08/2020] [Indexed: 12/21/2022]
Abstract
MitoTEMPO, a mitochondrial antioxidant, has protective effects on liver-related diseases. However, the role of MitoTEMPO on nonalcoholic fatty liver disease (NAFLD) and its possible mechanisms are largely unknown. Here, we investigated the effects of MitoTEMPO on NAFLD using high fat diet- (HFD-) induced obese mice as animal models. MitoTEMPO was intraperitoneally injected into HFD mice. Liver morphological changes were observed by H&E and Oil Red O staining, and the frequency of MDSCs in peripheral blood was analyzed by flow cytometry. Moreover, real-time quantitative PCR, western blot, and immunohistochemistry were conducted to detect the mRNA and protein expressions in the liver tissues. The results showed that the hepatic steatosis in liver tissues of HFD mice injected with MitoTEMPO was significantly ameliorated. Additionally, MitoTEMPO reduced the frequency of CD11b+Gr-1+ MDSCs in peripheral circulation and decreased Gr-1+ cell accumulation in the livers. Further studies demonstrated that MitoTEMPO administration suppressed the mRNA and protein expressions of MDSC-associated proinflammatory mediators, such as monocyte chemoattractant protein-1 (MCP-1), S100 calcium-binding protein A8 (S100A8), and S100 calcium-binding protein A9 (S100A9). Our results suggest that MitoTEMPO appears to be a potential chemical compound affecting certain immune cells and further ameliorates inflammation in obese-associated NAFLD.
Collapse
|
43
|
Ursodeoxycholic acid improves feto-placental and offspring metabolic outcomes in hypercholanemic pregnancy. Sci Rep 2020; 10:10361. [PMID: 32587408 PMCID: PMC7316783 DOI: 10.1038/s41598-020-67301-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 04/14/2020] [Indexed: 11/08/2022] Open
Abstract
Perturbations in the intrauterine environment can result in lifelong consequences for metabolic health during postnatal life. Intrahepatic cholestasis of pregnancy (ICP) can predispose offspring to metabolic disease in adulthood, likely due to a combination of the effects of increased bile acids, maternal dyslipidemia and deranged maternal and fetal lipid homeostasis. Whereas ursodeoxycholic acid (UDCA) is a commonly used treatment for ICP, no studies have yet addressed whether it can also prevent the metabolic effects of ICP in the offspring and fetoplacental unit. We therefore analyzed the lipid profile of fetal serum from untreated ICP, UDCA-treated ICP and uncomplicated pregnancies and found that UDCA ameliorates ICP-associated fetal dyslipidemia. We then investigated the effects of UDCA in a mouse model of hypercholanemic pregnancy and showed that it induces hepatoprotective mechanisms in the fetal liver, reduces hepatic fatty acid synthase (Fas) expression and improves glucose tolerance in the adult offspring. Finally, we showed that ICP leads to epigenetic changes in pathways of relevance to the offspring phenotype. We therefore conclude that UDCA can be used as an intervention in pregnancy to reduce features of metabolic disease in the offspring of hypercholanemic mothers.
Collapse
|
44
|
Chen HC, Chen YZ, Wang CH, Lin FJ. The nonalcoholic fatty liver disease-like phenotype and lowered serum VLDL are associated with decreased expression and DNA hypermethylation of hepatic ApoB in male offspring of ApoE deficient mothers fed a with Western diet. J Nutr Biochem 2019; 77:108319. [PMID: 31926452 DOI: 10.1016/j.jnutbio.2019.108319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 11/13/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023]
Abstract
Increasing evidence indicates that the intra-uterine environment has consequences for later life. However, the mechanisms of this fetal programming remain unclear. We aimed to investigate the impact of diet-induced maternal hypercholesterolemia on the predisposition of offspring to nonalcoholic fatty liver diseases (NAFLD) and metabolic diseases and its underlying mechanisms. Female apolipoprotein (Apo) E-deficient mice were fed a control diet (CD) or high fat/high cholesterol Western-type diet (WD) before and throughout pregnancy and lactation, and their offspring were weaned onto a CD postnatally. Strikingly, male offspring of WD-fed dams developed glucose intolerance and decreased peripheral insulin sensitivity and exhibited hepatic steatosis. Hepatic steatosis could be attributed, at least in part, to increased hepatic lipogenesis in E18.5 embryos and decreased serum VLDL levels in adulthood. In addition, males born to WD-fed dams had lower serum ApoB levels and hepatic ApoB gene expression compared with males born to CD-fed dams. DNA methylation analysis revealed increased methylation of CpG dinucleotides on the promoter region of the ApoB genes in the livers of male offspring of WD-fed dams. Our findings suggest that maternal WD intake can exacerbate the development of NAFLD in male offspring potentially by affecting ApoB gene expression through epigenetic alterations.
Collapse
Affiliation(s)
- Hsiao-Chien Chen
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yi-Zhen Chen
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Chih-Hong Wang
- Department of Biological Science and Technology, National Chiao Tung University, HsinChu, Taiwan
| | - Fu-Jung Lin
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan; Research Center for Development Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
45
|
Obesity during pregnancy results in maternal intestinal inflammation, placental hypoxia, and alters fetal glucose metabolism at mid-gestation. Sci Rep 2019; 9:17621. [PMID: 31772245 PMCID: PMC6879619 DOI: 10.1038/s41598-019-54098-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/07/2019] [Indexed: 12/18/2022] Open
Abstract
We investigated whether diet-induced changes in the maternal intestinal microbiota were associated with changes in bacterial metabolites and their receptors, intestinal inflammation, and placental inflammation at mid-gestation (E14.5) in female mice fed a control (17% kcal fat, n = 7) or a high-fat diet (HFD 60% kcal fat, n = 9; ad libitum) before and during pregnancy. Maternal diet-induced obesity (mDIO) resulted in a reduction in maternal fecal short-chain fatty acid producing Lachnospiraceae, lower cecal butyrate, intestinal antimicrobial peptide levels, and intestinal SCFA receptor Ffar3, Ffar2 and Hcar2 transcript levels. mDIO increased maternal intestinal pro-inflammatory NFκB activity, colonic CD3+ T cell number, and placental inflammation. Maternal obesity was associated with placental hypoxia, increased angiogenesis, and increased transcript levels of glucose and amino acid transporters. Maternal and fetal markers of gluconeogenic capacity were decreased in pregnancies complicated by obesity. We show that mDIO impairs bacterial metabolite signaling pathways in the mother at mid-gestation, which was associated with significant structural changes in placental blood vessels, likely as a result of placental hypoxia. It is likely that maternal intestinal changes contribute to adverse maternal and placental adaptations that, via alterations in fetal hepatic glucose handling, may impart increased risk of metabolic dysfunction in offspring.
Collapse
|
46
|
Cuff AO, Sillito F, Dertschnig S, Hall A, Luong TV, Chakraverty R, Male V. The Obese Liver Environment Mediates Conversion of NK Cells to a Less Cytotoxic ILC1-Like Phenotype. Front Immunol 2019; 10:2180. [PMID: 31572388 PMCID: PMC6749082 DOI: 10.3389/fimmu.2019.02180] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/29/2019] [Indexed: 01/22/2023] Open
Abstract
The liver contains both NK cells and their less cytotoxic relatives, ILC1. Here, we investigate the role of NK cells and ILC1 in the obesity-associated condition, non-alcoholic fatty liver disease (NAFLD). In the livers of mice suffering from NAFLD, NK cells are less able to degranulate, express lower levels of perforin and are less able to kill cancerous target cells than those from healthy animals. This is associated with a decreased ability to kill cancer cells in vivo. On the other hand, we find that perforin-deficient mice suffer from less severe NAFLD, suggesting that this reduction in NK cell cytotoxicity may be protective in the obese liver, albeit at the cost of increased susceptibility to cancer. The decrease in cytotoxicity is associated with a shift toward a transcriptional profile characteristic of ILC1, increased expression of the ILC1-associated proteins CD200R1 and CD49a, and an altered metabolic profile mimicking that of ILC1. We show that the conversion of NK cells to this less cytotoxic phenotype is at least partially mediated by TGFβ, which is expressed at high levels in the obese liver. Finally, we show that reduced cytotoxicity is also a feature of NK cells in the livers of human NAFLD patients.
Collapse
Affiliation(s)
- Antonia O. Cuff
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Francesca Sillito
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Simone Dertschnig
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Andrew Hall
- Institute for Liver and Digestive Health, Royal Free Hospital and University College London, London, United Kingdom
| | - Tu Vinh Luong
- Institute for Liver and Digestive Health, Royal Free Hospital and University College London, London, United Kingdom
| | - Ronjon Chakraverty
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Victoria Male
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| |
Collapse
|
47
|
Sureshchandra S, Marshall NE, Messaoudi I. Impact of pregravid obesity on maternal and fetal immunity: Fertile grounds for reprogramming. J Leukoc Biol 2019; 106:1035-1050. [PMID: 31483523 DOI: 10.1002/jlb.3ri0619-181r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/12/2022] Open
Abstract
Maternal pregravid obesity results in several adverse health outcomes during pregnancy, including increased risk of gestational diabetes, preeclampsia, placental abruption, and complications at delivery. Additionally, pregravid obesity and in utero exposure to high fat diet have been shown to have detrimental effects on fetal programming, predisposing the offspring to adverse cardiometabolic, endocrine, and neurodevelopmental outcomes. More recently, a deeper appreciation for the modulation of offspring immunity and infectious disease-related outcomes by maternal pregravid obesity has emerged. This review will describe currently available animal models for studying the impact of maternal pregravid obesity on fetal immunity and review the data from clinical and animal model studies. We also examine the burden of pregravid obesity on the maternal-fetal interface and the link between placental and systemic inflammation. Finally, we discuss future studies needed to identify key mechanistic underpinnings that link maternal inflammatory changes and fetal cellular reprogramming events.
Collapse
Affiliation(s)
- Suhas Sureshchandra
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| | - Nicole E Marshall
- Maternal-Fetal Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
48
|
Thompson MD, Derse A, Ferey JLA, Reid M, Xie Y, Christ M, Chatterjee D, Nguyen C, Harasymowicz N, Guilak F, Moley KH, Davidson NO. Transgenerational impact of maternal obesogenic diet on offspring bile acid homeostasis and nonalcoholic fatty liver disease. Am J Physiol Endocrinol Metab 2019; 316:E674-E686. [PMID: 30860882 PMCID: PMC6482665 DOI: 10.1152/ajpendo.00474.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/24/2019] [Accepted: 02/04/2019] [Indexed: 12/18/2022]
Abstract
Studies show maternal obesity is a risk factor for metabolic syndrome and nonalcoholic fatty liver disease (NAFLD) in offspring. Here we evaluated potential mechanisms underlying these phenotypes. Female C57Bl6 mice were fed chow or an obesogenic high-fat/high-sucrose (HF/HS) diet with subsequent mating of F1 and F2 female offspring to lean males to develop F2 and F3 generations, respectively. Offspring were fed chow or fibrogenic (high transfat, cholesterol, fructose) diets, and histopathological, metabolic changes, and bile acid (BA) homeostasis was evaluated. Chow-fed F1 offspring from maternal HF/HS lineages (HF/HS) developed periportal fibrosis and inflammation with aging, without differences in hepatic steatosis but increased BA pool size and shifts in BA composition. F1, but not F2 or F3, offspring from HF/HS showed increased steatosis on a fibrogenic diet, yet inflammation and fibrosis were paradoxically decreased in F1 offspring, a trend continued in F2 and F3 offspring. HF/HS feeding leads to increased periportal fibrosis and inflammation in chow-fed offspring without increased hepatic steatosis. By contrast, fibrogenic diet-fed F1 offspring from HF/HS dams exhibited worse hepatic steatosis but decreased inflammation and fibrosis. These findings highlight complex adaptations in NAFLD phenotypes with maternal diet.
Collapse
Affiliation(s)
- Michael D Thompson
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri
| | - Alaina Derse
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri
| | - Jeremie LA Ferey
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University in St. Louis, St. Louis, Missouri
| | - Michaela Reid
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University in St. Louis, St. Louis, Missouri
| | - Yan Xie
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Miranda Christ
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri
| | - Deyali Chatterjee
- Deparment of Pathology, Washington University in St. Louis, St. Louis, Missouri
| | - Chau Nguyen
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri
| | - Natalia Harasymowicz
- Department of Orthopedic Surgery, Washington University in St. Louis, St. Louis, Missouri
| | - Farshid Guilak
- Department of Orthopedic Surgery, Washington University in St. Louis, St. Louis, Missouri
| | - Kelle H Moley
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University in St. Louis, St. Louis, Missouri
| | - Nicholas Oliver Davidson
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
49
|
Understanding susceptibility and targeting treatment in non-alcoholic fatty liver disease in children; moving the fulcrum. Proc Nutr Soc 2019; 78:362-371. [DOI: 10.1017/s0029665118002914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of paediatric liver disease, affecting 10% of school-aged children and 44–70% of obese children and young people (CYP) in the western world. Encompassing a spectrum from simple steatosis to steatohepatitis and progressive fibrosis, the disease is rapidly becoming the most common indication for liver transplantation. The molecular pathogenesis of NAFLD remains only partially understood. Development and progression of NAFLD is influenced by genetic and nutritional factors, insulin resistance, oxidative stress, gut microbiome, bile acid metabolism and lipid/glucose handling and is closely associated with overweight and obesity. Lifestyle change is the only proven effective treatment for paediatric NAFLD, however this is difficult to achieve in many. Given that moderate or severe fibrosis is already present in 30–50% of children with NAFLD at the time of presentation, progression in CYP may be more rapid, though adequate outcome data do not yet exist in this cohort. CYP with NAFLD are an excellent population in which to study underlying mechanisms and interventions to correct disease progression as they are largely unaffected by other environmental influences such as alcohol and may represent the more severe end of the spectrum in terms of early onset. Undoubtedly genetic and epigenetic mechanisms determine a large proportion of susceptibility to the disease and potentially, identification of individuals at risk may allow for targeted therapy. This review with give a clinical perspective of paediatric NAFLD focused on identifying those at risk of progressive disease and what to consider in attempting to modify risk.
Collapse
|
50
|
Paul HA, Collins KH, Nicolucci AC, Urbanski SJ, Hart DA, Vogel HJ, Reimer RA. Maternal prebiotic supplementation reduces fatty liver development in offspring through altered microbial and metabolomic profiles in rats. FASEB J 2019; 33:5153-5167. [PMID: 30629464 DOI: 10.1096/fj.201801551r] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A maternal high-fat/sucrose diet, in the presence of maternal obesity, can program increased susceptibility to obesity and metabolic disease in offspring. In particular, nonalcoholic fatty liver disease risk is associated with poor maternal nutrition and obesity status, which may manifest via alterations in gut microbiota. Here, we report that in a preclinical model of diet-induced maternal obesity, maternal supplementation of a high-fat/sucrose diet with the prebiotic oligofructose improves glucose tolerance, insulin sensitivity, and hepatic steatosis in offspring following a long-term high-fat/sucrose dietary challenge compared with offspring of untreated dams. These improvements are associated with alterations in gut microbial composition and serum inflammatory profiles in early life and improvements in inflammatory and fatty-acid gene expression profiles in tissues. Serum metabolomics analysis highlights potential metabolic links between the gut microbiota and the degree of steatosis, including alterations in 1-carbon metabolism. Overall, our data suggest that maternal prebiotic intake protects offspring against hepatic steatosis and insulin resistance following 21 wk of high fat/sucrose diet, which is in part due to alterations in gut microbiota.-Paul, H. A., Collins, K. H., Nicolucci, A. C., Urbanski, S. J., Hart, D. A., Vogel, H. J., Reimer, R. A. Maternal prebiotic supplementation reduces fatty liver development in offspring through altered microbial and metabolomic profiles in rats.
Collapse
Affiliation(s)
- Heather A Paul
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Kelsey H Collins
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | | | - Stefan J Urbanski
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - David A Hart
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada; and
| | - Hans J Vogel
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Biological Sciences, Bio-Nuclear Magnetic Resonance (NMR) Center, University of Calgary, Calgary, Alberta, Canada
| | - Raylene A Reimer
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|