1
|
Mohan N, Dashwood RH, Rajendran P. A-Z of Epigenetic Readers: Targeting Alternative Splicing and Histone Modification Variants in Cancer. Cancers (Basel) 2024; 16:1104. [PMID: 38539439 PMCID: PMC10968829 DOI: 10.3390/cancers16061104] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 11/03/2024] Open
Abstract
Epigenetic 'reader' proteins, which have evolved to interact with specific chromatin modifications, play pivotal roles in gene regulation. There is growing interest in the alternative splicing mechanisms that affect the functionality of such epigenetic readers in cancer etiology. The current review considers how deregulation of epigenetic processes and alternative splicing events contribute to pathophysiology. An A-Z guide of epigenetic readers is provided, delineating the antagonistic 'yin-yang' roles of full-length versus spliced isoforms, where this is known from the literature. The examples discussed underscore the key contributions of epigenetic readers in transcriptional regulation, early development, and cancer. Clinical implications are considered, offering insights into precision oncology and targeted therapies focused on epigenetic readers that have undergone alternative splicing events during disease pathogenesis. This review underscores the fundamental importance of alternative splicing events in the context of epigenetic readers while emphasizing the critical need for improved understanding of functional diversity, regulatory mechanisms, and future therapeutic potential.
Collapse
Affiliation(s)
- Nivedhitha Mohan
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA
- Department of Translational Medical Sciences, Antibody & Biopharmaceuticals Core, Texas A&M School of Medicine, Houston, TX 77030, USA
| | - Roderick H. Dashwood
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA
- Department of Translational Medical Sciences, Antibody & Biopharmaceuticals Core, Texas A&M School of Medicine, Houston, TX 77030, USA
| | - Praveen Rajendran
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA
- Department of Translational Medical Sciences, Antibody & Biopharmaceuticals Core, Texas A&M School of Medicine, Houston, TX 77030, USA
| |
Collapse
|
2
|
Zhang C, Ni X, Tao C, Zhou Z, Wang F, Gu F, Cui X, Jiang S, Li Q, Lu H, Li D, Wu Z, Zhang R. Targeting PUF60 prevents tumor progression by retarding mRNA decay of oxidative phosphorylation in ovarian cancer. Cell Oncol (Dordr) 2024; 47:157-174. [PMID: 37632669 PMCID: PMC10899302 DOI: 10.1007/s13402-023-00859-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2023] [Indexed: 08/28/2023] Open
Abstract
PURPOSE Ovarian cancer (OC) is the leading cause of death from gynecological malignancies, and its etiology and pathogenesis are currently unclear. Recent studies have found that PUF60 overexpressed in various cancers. However, the exact function of PUF60 in global RNA processing and its role in OC has been unclear. METHODS The expression of PUF60 and its relationship with clinical characteristics were analyzed by multiple database analysis and immunohistochemistry. Phenotypic effects of PUF60 on ovarian cancer cell proliferation and metastasis were examined by in vitro cell proliferation assay, migration assay, and in vivo xenograft models and lung metastasis models. RNA immunoprecipitation, seahorse analyses, RNA stability assay were used to study the effect of PUF60 on the stability of oxidative phosphorylation (OXPHOS)-related genes in OC. RESULTS We report PUF60 is highly expressed in OC with frequent amplification of up to 33.9% and its upregulation predicts a poor prognosis. PUF60 promotes the proliferation and migration of OC cells both in vitro and in vivo. Mechanistically, we demonstrated that silencing of PUF60 enhanced the stability of mRNA transcripts involved in OXPHOS and decreased the formation of processing bodies (P-bodies), ultimately elevating the OXPHOS level. CONCLUSION Our study unveils a novel function of PUF60 in OC energy metabolism. Thus, PUF60 may serve as a novel target for the treatment of patients with OC.
Collapse
Affiliation(s)
- Cancan Zhang
- Department of Obstetrics and Gynecology, Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, 6600 Nanfeng Road, Shanghai, 201499, China
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Xiaoge Ni
- Department of Obstetrics and Gynecology, Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Chunlin Tao
- Department of Obstetrics and Gynecology, Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Ziyang Zhou
- Department of Obstetrics and Gynecology, Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Fengmian Wang
- Department of Obstetrics and Gynecology, Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Fei Gu
- Department of Obstetrics and Gynecology, Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Xiaoxiao Cui
- Department of Obstetrics and Gynecology, Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Shuheng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 800 Dongchuan Road, Shanghai, 200240, China
| | - Qing Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 800 Dongchuan Road, Shanghai, 200240, China
| | - Huan Lu
- Department of Obstetrics and Gynecology, Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Dongxue Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Zhiyong Wu
- Gynecology Department, Shanghai Obstetrics and Gynecology Hospital of Fudan University, No. 419 Fangxie Road, Shanghai, 200011, China.
| | - Rong Zhang
- Department of Obstetrics and Gynecology, Fengxian Hospital, The Third School of Clinical Medicine, Southern Medical University, 6600 Nanfeng Road, Shanghai, 201499, China.
- Shanghai Geriatric Medical Center, Shanghai, China.
| |
Collapse
|
3
|
Li K, Huang Z, Liu C, Xu Y, Chen W, Shi L, Li C, Zhou F, Zhou F. Transcriptomic analysis of human pulmonary microvascular endothelial cells treated with LPS. Cell Signal 2023; 111:110870. [PMID: 37633475 DOI: 10.1016/j.cellsig.2023.110870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/08/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Acute respiratory distress syndrome (ARDS) has a rapid onset and progression, which lead to the severity and complexity of the primary disease and significantly increase the fatality rate of patients. Transcriptomics provides some ideas for clarifying the mechanism of ARDS, exploring prevention and treatment targets, and searching for related specific markers. In this study, RNA-Seq technology was used to observe the gene expression of human pulmonary microvascular endothelial cells (PMVECs) induced by LPS, and to excavate the key genes and signaling pathways in ARDS process. A total of 2300 up-regulated genes were detected, and a corresponding 1696 down-regulated genes were screened. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and protein-protein interaction (PPI) were also used for functional annotation of key genes. TFDP1 was identified as a cell cycle-dependent differentially expressed gene, and its reduced expression was verified in LPS-treated PMVECs and lung tissues of CLP-induced mice. In addition, the inhibition of TFDP1 on inflammation and apoptosis, and the promotion of proliferation were confirmed. The decreased expression of E2F1, Rb, CDK1 and the activation of MAPK signaling pathway were substantiated in the in vivo and in vitro models of ARDS. Moreover, SREBF1 has been demonstrated to be involved in cell cycle arrest in PMVECs by inhibiting CDK1. Our study shows that transcriptomics combined with basic research can broaden the investigation of ARDS mechanisms and may provide a basis for future mechanistic innovations.
Collapse
Affiliation(s)
- Kaili Li
- Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China.
| | - Zuotian Huang
- Department of Hepatobiliary Pancreatic Tumor Center, Chongqing University Cancer Hospital, 400030 Chongqing Municipality, China
| | - Chang Liu
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China.
| | - Yuanyuan Xu
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Wei Chen
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Lu Shi
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Can Li
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Fawei Zhou
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Fachun Zhou
- Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China; Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China.
| |
Collapse
|
4
|
Yan Y, Ren Y, Bao Y, Wang Y. RNA splicing alterations in lung cancer pathogenesis and therapy. CANCER PATHOGENESIS AND THERAPY 2023; 1:272-283. [PMID: 38327600 PMCID: PMC10846331 DOI: 10.1016/j.cpt.2023.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/25/2023] [Accepted: 04/29/2023] [Indexed: 02/09/2024]
Abstract
RNA splicing alterations are widespread and play critical roles in cancer pathogenesis and therapy. Lung cancer is highly heterogeneous and causes the most cancer-related deaths worldwide. Large-scale multi-omics studies have not only characterized the mutational landscapes but also discovered a plethora of transcriptional and post-transcriptional changes in lung cancer. Such resources have greatly facilitated the development of new diagnostic markers and therapeutic options over the past two decades. Intriguingly, altered RNA splicing has emerged as an important molecular feature and therapeutic target of lung cancer. In this review, we provide a brief overview of splicing dysregulation in lung cancer and summarize the recent progress on key splicing events and splicing factors that contribute to lung cancer pathogenesis. Moreover, we describe the general strategies targeting splicing alterations in lung cancer and highlight the potential of combining splicing modulation with currently approved therapies to combat this deadly disease. This review provides new mechanistic and therapeutic insights into splicing dysregulation in cancer.
Collapse
Affiliation(s)
- Yueren Yan
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Yunpeng Ren
- Department of Cellular and Genetic Medicine, Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yufang Bao
- Department of Cellular and Genetic Medicine, Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yongbo Wang
- Department of Cellular and Genetic Medicine, Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
5
|
Xu N, Ren Y, Bao Y, Shen X, Kang J, Wang N, Wang Z, Han X, Li Z, Zuo J, Wei GH, Wang Z, Zong WX, Liu W, Xie G, Wang Y. PUF60 promotes cell cycle and lung cancer progression by regulating alternative splicing of CDC25C. Cell Rep 2023; 42:113041. [PMID: 37682709 DOI: 10.1016/j.celrep.2023.113041] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/27/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023] Open
Abstract
Alternative splicing (AS) has been implicated in cell cycle regulation and cancer, but the underlying mechanisms are poorly understood. The poly(U)-binding splicing factor 60 (PUF60) is essential for embryonic development and is overexpressed in multiple types of cancer. Here, we report that PUF60 promotes mitotic cell cycle and lung cancer progression by controlling AS of the cell division cycle 25C (CDC25C). Systematic analysis of splicing factors deregulated in lung adenocarcinoma (LUAD) identifies that elevated copy number and expression of PUF60 correlate with poor prognosis. PUF60 depletion inhibits LUAD cell-cycle G2/M transition, cell proliferation, and tumor development. Mechanistically, PUF60 knockdown leads to exon skipping enriched in mitotic cell cycle genes, including CDC25C. Exon 3 skipping in the full-length CDC25C results in nonsense-mediated mRNA decay and a decrease of CDC25C protein, thereby inhibiting cell proliferation. This study establishes PUF60 as a cell cycle regulator and an oncogenic splicing factor in lung cancer.
Collapse
Affiliation(s)
- Nan Xu
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yunpeng Ren
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yufang Bao
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xianfeng Shen
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jiahui Kang
- Institute of Reproductive Medicine, Medical School, Nantong University, Qixiu Road 19, Nantong 226001, China
| | - Ning Wang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zixian Wang
- MOE Key Laboratory of Metabolism and Molecular Medicine & Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Xinlu Han
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zhen Li
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ji Zuo
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Gong-Hong Wei
- MOE Key Laboratory of Metabolism and Molecular Medicine & Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Zefeng Wang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wei-Xing Zong
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Wen Liu
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Gangcai Xie
- Institute of Reproductive Medicine, Medical School, Nantong University, Qixiu Road 19, Nantong 226001, China.
| | - Yongbo Wang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Minhang Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
6
|
wang F, Peng L, Sun Y, Zhang B, Lu S. PUF60 promotes glioblastoma progression through regulation of EGFR stability. Biochem Biophys Res Commun 2022; 636:190-196. [DOI: 10.1016/j.bbrc.2022.10.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 11/02/2022]
|
7
|
Xu L, Lin J, Liu Y, Hua B, Cheng Q, Lin C, Yan Z, Wang Y, Sun N, Qian R, Lu C. CLOCK regulates Drp1 mRNA stability and mitochondrial homeostasis by interacting with PUF60. Cell Rep 2022; 39:110635. [PMID: 35417690 DOI: 10.1016/j.celrep.2022.110635] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 01/26/2022] [Accepted: 03/16/2022] [Indexed: 12/16/2022] Open
Abstract
Circadian genes such as Clock, Bmal1, Cryptochrome1/2, and Period1/2/3 constitute the precise circadian system. ClockΔ19 is a commonly used mouse model harboring a circadian clock gene mutation, which lacks the EXON-19-encoded 51 amino acids. Previous reports have shown that ClockΔ19 mice have severe metabolic abnormalities. Here, we report that the mitochondria of ClockΔ19 mice exhibit excessive fission and dysfunction. We also demonstrate that CLOCK binds to the RNA-binding protein PUF60 through its EXON 19. Further, we find that PUF60 directly maintains mitochondrial homeostasis through regulating Drp1 mRNA stability, while the association with CLOCK can competitively inhibit this function. In ClockΔ19 mice, CLOCKΔ19 releases PUF60, leading to enhanced Drp1 mRNA stability and persistent mitochondrial fission. Our results reveal a direct post-transcriptional role of CLOCK in regulating mitochondrial homeostasis via Drp1 mRNA stability and that the loss of EXON 19 of CLOCK in ClockΔ19 mice leads to severe mitochondrial homeostasis disorders.
Collapse
Affiliation(s)
- Lirong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jiaxin Lin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yutong Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Bingxuan Hua
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qianyun Cheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Changpo Lin
- Institute of Vascular Surgery, Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zuoqin Yan
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yaping Wang
- Department of Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ning Sun
- Wuxi School of Medicine, Jiangnan University, Jiangsu 214122, China.
| | - Ruizhe Qian
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Chao Lu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
8
|
WSB1 regulates c-Myc expression through β-catenin signaling and forms a feedforward circuit. Acta Pharm Sin B 2022; 12:1225-1239. [PMID: 35530152 PMCID: PMC9072231 DOI: 10.1016/j.apsb.2021.10.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/20/2022] Open
Abstract
The dysregulation of transcription factors is widely associated with tumorigenesis. As the most well-defined transcription factor in multiple types of cancer, c-Myc can transform cells by transactivating various downstream genes. Given that there is no effective way to directly inhibit c-Myc, c-Myc targeting strategies hold great potential for cancer therapy. In this study, we found that WSB1, which has a highly positive correlation with c-Myc in 10 cancer cell lines and clinical samples, is a direct target gene of c-Myc, and can positively regulate c-Myc expression, which forms a feedforward circuit promoting cancer development. RNA sequencing results from Bel-7402 cells confirmed that WSB1 promoted c-Myc expression through the β-catenin pathway. Mechanistically, WSB1 affected β-catenin destruction complex-PPP2CA assembly and E3 ubiquitin ligase adaptor β-TRCP recruitment, which inhibited the ubiquitination of β-catenin and transactivated c-Myc. Of interest, the effect of WSB1 on c-Myc was independent of its E3 ligase activity. Moreover, overexpressing WSB1 in the Bel-7402 xenograft model could further strengthen the tumor-driven effect of c-Myc overexpression. Thus, our findings revealed a novel mechanism involved in tumorigenesis in which the WSB1/c-Myc feedforward circuit played an essential role, highlighting a potential c-Myc intervention strategy in cancer treatment.
Collapse
Key Words
- ATM, serine-protein kinase ATM
- CHIP, chromatin immunoprecipitation
- CK1, casein kinase 1
- Cancer treatment
- EBP2, probable rRNA-processing protein EBP2
- ESC complex, elongin B/C-cullin 2/5-SOCS box containing ubiquitin ligase protein complex
- Feedback loop
- GSK3β, glycogen synthase kinase 3β
- HCC, hepatocellular carcinoma
- HIF1-α, hypoxia induced factor 1-alpha
- IHC, immunohistochemistry
- PLK1, serine/threonine-protein kinase PLK1
- PP2A, serine/threonine protein phosphatase 2A
- PROTAC, proteolysis targeting chimaera
- RhoGDI2, Rho GDP dissociation inhibitor 2
- TFs, transcription factors
- Transcription factors
- Tumorigenesis
- Ubiquitination-proteasome pathway
- WSB1
- WSB1, WD repeat and SOCS box containing 1
- c-Myc
- c-Myc, proto-oncogene c-Myc
- eIF4F, eukaryotic translation initiation factor 4F
- β-Catenin destruction complex
Collapse
|
9
|
Wen H, Fu Y, Zhu Y, Tao S, Shang X, Li Z, You T, Zhang W. Long non-coding RNA KRT8P41/miR-193a-3p/FUBP1 axis modulates the proliferation and invasion of chordoma cells. J Bone Oncol 2021; 31:100392. [PMID: 34712553 PMCID: PMC8529087 DOI: 10.1016/j.jbo.2021.100392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 08/12/2021] [Accepted: 09/17/2021] [Indexed: 12/03/2022] Open
Abstract
lncRNA KRT8P41 potentially serves as an oncogenic lncRNA in chordoma. miR-193a binds to lncRNA KRT8P41 and FUBP1 3′UTR. LncRNA KRT8P41/miR-193a axis modulates chordoma cell aggressiveness through FUBP1.
Chordomas are low-grade malignancies accounting for 1–4% of primary bone malignancies. Moreover, local recurrences increase the rate of metastasis. Our previous study identified the far upstream element (FUSE)-binding protein 1 (FUBP1) as a biomarker and potential therapeutic target for chordoma. In this study, lncRNA KRT8P41 was identified as a lncRNA positively correlated with FUBP1. In chordoma patients, higher lncRNA KRT8P41 expression was correlated with a poorer prognosis. LncRNA KRT8P41 silencing significantly inhibited chordoma cell proliferation and invasion. miR-193a was negatively correlated with lncRNA KRT8P41 and FUBP1; lncRNA KRT8P41 inhibited miR-193a expression, and miR-193a inhibited FUBP1 expression. Furthermore, miR-193a directly bound to lncRNA KRT8P41 and FUBP1 and lncRNA KRT8P41 competed with FUBP1 for miR-193a binding and relieved miR-193a-mediated FUBP1 inhibition. LncRNA KRT8P41 silencing inhibited, whereas miR-193a inhibition promoted chordoma cell proliferation and invasion; the inhibition of miR-193a attenuated the roles of lncRNA KRT8P41. Within chordoma tissues, the expression of miR-193a was decreased, and the expression of FUBP1 increased compared to normal control tissues. LncRNA KRT8P41 exhibited a positive correlation with FUBP1 and a negative correlation with miR-193a in vivo. Therefore, it was concluded that lncRNA KRT8P41, miR-193a-3p, and FUBP1 form a lncRNA-miRNA-mRNA axis, modulating the proliferation and invasion of chordoma cells.
Collapse
Affiliation(s)
- Hai Wen
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230036, China
| | - Yang Fu
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230036, China
| | - Yapeng Zhu
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230036, China
| | - Siyue Tao
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230036, China
| | - Xifu Shang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230001, China
| | - Zhongqi Li
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230036, China
| | - Tao You
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230036, China
| | - Wenzhi Zhang
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230036, China
| |
Collapse
|
10
|
Differentially Expressed Long Noncoding RNAs Involved in FUBP1 Promoting Hepatocellular Carcinoma Cells Proliferation. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6664519. [PMID: 33954195 PMCID: PMC8063849 DOI: 10.1155/2021/6664519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 11/17/2022]
Abstract
Background Far upstream element-binding protein 1 (FUBP1) is reported to be involved in cancer development by regulating the transcription of c-myc gene through binding to far upstream element. Highly expressed FUBP1 was negatively correlated with survival rate of patients with hepatocellular carcinoma (HCC) and could promote the proliferation of HCC cells. However, the downstream mechanism of FUBP1 has not yet been clearly explained. This study is aimed at identifying the expression profiles of long noncoding RNA (lncRNA) in HCC cells in response to FUBP1 overexpression and at investigating the possible lncRNAs that participated in cell proliferation process regulated by FUBP1. Methods The overexpression of FUBP1 was mediated by lentiviral infection on 3 different types of HCC cell lines (MHCC97-H, MHCC97-L, and Huh-7). The expression of target genes was detected by quantitative reverse transcription-PCR (RT-PCR) and western blotting assays. Microarray and quantitative RT-PCR were applied to screen the differentially expressed lncRNAs in HCC cells after FUBP1 overexpression. The Cell Counting Kit-8 assay was used to confirm the growth vitality of HCC cells. Results The growth vitality of HCC cells was significantly increased after lentivirus infection. A total of 12 lncRNAs had the same expression trend in the 3 HCC cell lines in response to FUBP1 overexpression, including 3 upregulated lncRNAs and 9 downregulated lncRNAs. Coexpression analysis of dysregulated lncRNAs-mRNAs network showed that lnc-LYZ-2 was the lncRNA most relevant to FUBP1. Inhibition of lnc-LYZ-2 could significantly relieve the proproliferation effect of FUBP1 on HCC cells, suggesting that lnc-LYZ-2 was partially involved in proproliferation regulation of FUBP1. Conclusions Our results indicated that FUBP1 induced the abnormal expression of lncRNAs and the FUBP1-lncRNAs coexpression network in HCC cells, which could provide theoretical and experimental basis for FUBP1-lncRNAs network involved in HCC development.
Collapse
|
11
|
Fu PY, Hu B, Ma XL, Tang WG, Yang ZF, Sun HX, Yu MC, Huang A, Hu JW, Zhou CH, Fan J, Xu Y, Zhou J. Far upstream element-binding protein 1 facilitates hepatocellular carcinoma invasion and metastasis. Carcinogenesis 2021; 41:950-960. [PMID: 31587040 DOI: 10.1093/carcin/bgz171] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 09/20/2019] [Accepted: 10/03/2019] [Indexed: 12/15/2022] Open
Abstract
Previous research suggests that far upstream element-binding protein 1 (FUBP1) plays an important role in various tumors including epatocellular carcinoma (HCC). However, the role of FUBP1 in liver cancer remains controversial, and the regulatory pathway by FUBP1 awaits to be determined. This study aims to identify the role of FUBP1 in HCC progression. Our result shows that the high level of FUBP1 expression in HCC predicts poor prognosis after surgery. Overexpression of FUBP1 promotes HCC proliferation, invasion, and metastasis by activating transforming growth factor-β (TGF-β)/Smad pathway and enhancing epithelial-mesenchymal transition (EMT) in vitro and in vivo. Inhibitor of Thrombospondin-1 (LSKL) could inhibit HCC proliferation and invasion in vitro and in vivo by blocking the activation of TGF-β/Smad pathway mediated by thrombospondin-1 (THBS1). Our study identified the critical role of FUBP1-THBS1-TGF-β signaling axis in HCC and provides potentially new therapeutic modalities in HCC.
Collapse
Affiliation(s)
- Pei-Yao Fu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Bo Hu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Xiao-Lu Ma
- Laboratory Medicine Department, Shanghai Tumor Center of Fudan University, Shanghai, P.R. China
| | - Wei-Guo Tang
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, P.R. China
| | - Zhang-Fu Yang
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Hai-Xiang Sun
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Min-Cheng Yu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Ao Huang
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Jin-Wu Hu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Chen-Hao Zhou
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Yang Xu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Long Q, An X, Chen M, Wang N, Sui S, Li Y, Zhang C, Lee K, Wang X, Tian T, Pan Y, Qiu H, Xie F, Deng W, Zheng F, He L. PUF60/AURKA Axis Contributes to Tumor Progression and Malignant Phenotypes in Bladder Cancer. Front Oncol 2020; 10:568015. [PMID: 33117697 PMCID: PMC7576680 DOI: 10.3389/fonc.2020.568015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/04/2020] [Indexed: 12/17/2022] Open
Abstract
Abnormal expression or mutation of RNA splicing proteins are widely observed in human cancers. Here, we identified poly(U) binding splicing factor 60 (PUF60) as one of the most differentially expressed genes out of 97 RNA splicing proteins between normal and bladder cancer tissues by bioinformatics analysis of TCGA bladder cancer expression data. The expression of PUF60 was significantly higher in tumor tissues, while high PUF60 expression was associated with malignant phenotypes of bladder cancer and shorter survival time. Moreover, we identified aurora kinase A (AURKA) as a new downstream target of PUF60 in bladder cancer cells. PUF60 knockdown significantly inhibited cell viability and colony formation capacity in bladder cancer cells, whereas AURKA overexpression reversed this inhibition effect. Overexpression of PUF60 significantly promoted cell viability and colony formation in bladder cancer cells, while treatment with AURKA specific inhibitor reversed this promotive effect. Mechanistically, PUF60 specifically bound to the AURKA promoter, thereby activating its transcription and expression. Furthermore, we showed that there was a significant positive correlation between PUF60 and AURKA expression in bladder cancer tissues, and PUF60 and AURKA expression contributed to tumor progression and malignant phenotypes in the patients with bladder cancer. Collectively, these results indicate that the PUF60/AURKA axis plays a key role in regulating tumorigenesis and progression of bladder cancer, and may be a potential prognostic biomarker and therapeutic target for bladder cancer patients.
Collapse
Affiliation(s)
- Qian Long
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xin An
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Miao Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Nan Wang
- College of Life Science, Jiaying University, Meizhou, China
| | - Silei Sui
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yixin Li
- The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Changlin Zhang
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Kaping Lee
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xiaonan Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Tian Tian
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yangxun Pan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | | | - Fangyun Xie
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Wuguo Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Fufu Zheng
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liru He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
13
|
Kralovicova J, Borovska I, Kubickova M, Lukavsky PJ, Vorechovsky I. Cancer-Associated Substitutions in RNA Recognition Motifs of PUF60 and U2AF65 Reveal Residues Required for Correct Folding and 3' Splice-Site Selection. Cancers (Basel) 2020; 12:cancers12071865. [PMID: 32664474 PMCID: PMC7408900 DOI: 10.3390/cancers12071865] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 12/22/2022] Open
Abstract
U2AF65 (U2AF2) and PUF60 (PUF60) are splicing factors important for recruitment of the U2 small nuclear ribonucleoprotein to lariat branch points and selection of 3′ splice sites (3′ss). Both proteins preferentially bind uridine-rich sequences upstream of 3′ss via their RNA recognition motifs (RRMs). Here, we examined 36 RRM substitutions reported in cancer patients to identify variants that alter 3′ss selection, RNA binding and protein properties. Employing PUF60- and U2AF65-dependent 3′ss previously identified by RNA-seq of depleted cells, we found that 43% (10/23) and 15% (2/13) of independent RRM mutations in U2AF65 and PUF60, respectively, conferred splicing defects. At least three RRM mutations increased skipping of internal U2AF2 (~9%, 2/23) or PUF60 (~8%, 1/13) exons, indicating that cancer-associated RRM mutations can have both cis- and trans-acting effects on splicing. We also report residues required for correct folding/stability of each protein and map functional RRM substitutions on to existing high-resolution structures of U2AF65 and PUF60. These results identify new RRM residues critical for 3′ss selection and provide relatively simple tools to detect clonal RRM mutations that enhance the mRNA isoform diversity.
Collapse
Affiliation(s)
- Jana Kralovicova
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK;
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia;
| | - Ivana Borovska
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia;
| | - Monika Kubickova
- CEITEC, Masaryk University, 625 00 Brno, Czech Republic; (M.K.); (P.J.L.)
| | - Peter J. Lukavsky
- CEITEC, Masaryk University, 625 00 Brno, Czech Republic; (M.K.); (P.J.L.)
| | - Igor Vorechovsky
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK;
- Correspondence: ; Tel.: +44-2381-206425; Fax: +44-2381-204264
| |
Collapse
|
14
|
Liu W, Xiong X, Chen W, Li X, Hua X, Liu Z, Zhang Z. High expression of FUSE binding protein 1 in breast cancer stimulates cell proliferation and diminishes drug sensitivity. Int J Oncol 2020; 57:488-499. [PMID: 32626933 PMCID: PMC7307591 DOI: 10.3892/ijo.2020.5080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/29/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most common malignant tumor affecting women worldwide and is divided into the following subtypes: Luminal A, Luminal B, HER-2 overexpression and triple-negative breast cancer (TNBC). TNBC accounts for approximately 15-20% of all breast cancer cases. Due to the characteristics of low differentiation, the likelyhood of recurrence and metastasis, strong invasiveness and the lack of hormone receptors and human epidermal growth factor receptor 2 (HER2), patients with TNBC cannot benefit from endocrine therapy or other available targeted agents. Chemotherapy is one of the main treatments for patients with TNBC, and cisplatin is one of the most commonly used and effective drugs. The human far upstream element binding protein 1 (FBP1) is a potent pro-proliferative and anti-apoptotic oncoprotein, which is overexpressed in numerous tumor types. The present study demonstrated that FBP1 and its target, c-Myc, were more highly expressed in breast cancer tissues compared with para-carcinoma tissues, and the FBP1 and c-Myc levels are decreased by cisplatin treatment. The knockdown of FBP1 in TNBC cells decreased cell proliferation by arresting the cell cycle at the G2 phase. The knockdown of FBP1 decreased the expression of G2 phase-associateed protein cyclin A2, whereas it increased that of cyclin B1 and p-CDC2. Furthermore, the knockdown of FBP1 decreased cell migration and metastasis by downregulating matrix metalloproteinase 2 expression, and enhanced the sensitivity of TNBC cells to cisplatin by inducing apoptosis. These results thus suggest that FBP1 is a potential novel biological marker for the diagnosis and treatment of TNBC.
Collapse
Affiliation(s)
- Wei Liu
- Department of Breast Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong 510220, P.R. China
| | - Xifeng Xiong
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong 510220, P.R. China
| | - Weiguang Chen
- Department of Breast Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong 510220, P.R. China
| | - Xiaojian Li
- Department of Burns and Plastic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong 510220, P.R. China
| | - Xing Hua
- Department of Pathology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong 510220, P.R. China
| | - Zhihe Liu
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong 510220, P.R. China
| | - Zhi Zhang
- Department of Burns and Plastic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong 510220, P.R. China
| |
Collapse
|
15
|
Liu J, Li S, Feng G, Meng H, Nie S, Sun R, Yang J, Cheng W. Nine glycolysis-related gene signature predicting the survival of patients with endometrial adenocarcinoma. Cancer Cell Int 2020; 20:183. [PMID: 32489319 PMCID: PMC7247270 DOI: 10.1186/s12935-020-01264-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
Background Endometrial cancer is the fourth most common cancer in women. The death rate for endometrial cancer has increased. Glycolysis of cellular respiration is a complex reaction and is the first step in most carbohydrate catabolism, which was proved to participate in tumors. Methods We analyzed the sample data of over 500 patients from TCGA database. The bioinformatic analysis included GSEA, cox and lasso regression analysis to select prognostic genes, as well as construction of a prognostic model and a nomogram for OS evaluation. The immunohistochemistry staining, survival analysis and expression level validation were also performed. Maftools package was for mutation analysis. GSEA identified Glycolysis was the most related pathway to EC. qRT-PCR verified the expression level of hub gene in clinical samples. Results According to the prognostic model using the train set, 9 glycolysis-related genes including B3GALT6, PAM, LCT, GMPPB, GLCE, DCN, CAPN5, GYS2 and FBP2 were identified as prognosis-related genes. Based on nine gene signature, the EC patients could be classified into high and low risk subgroups, and patients with high risk score showed shorter survival time. Time-dependent ROC analysis and Cox regression suggested that the risk score predicted EC prognosis accurately and independently. Analysis of test and train sets yielded consistent results A nomogram which incorporated the 9-mRNA signature and clinical features was also built for prognostic prediction. Immunohistochemistry staining and TCGA validation showed that expression levels of these genes do differ between EC and normal tissue samples. GSEA revealed that the samples of the low-risk group were mainly concentrated on Bile Acid Metabolism. Patients in the low-risk group displayed obvious mutation signatures compared with those in the high-risk group. The expression levels of B3GALT6, DCN, FBP2 and GYS2 are lower in tumor samples and higher in normal tissue samples. The expression of CAPN5 and LCT in clinical sample tissues is just the opposite. Conclusion This study found that the Glycolysis pathway is associated with EC and screened for hub genes on the Glycolysis pathway, which may serve as new target for the treatment of EC.
Collapse
Affiliation(s)
- JinHui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 Jiangsu China
| | - SiYue Li
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 Jiangsu China
| | - Gao Feng
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu China
| | - HuangYang Meng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 Jiangsu China
| | - SiPei Nie
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 Jiangsu China
| | - Rui Sun
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 Jiangsu China
| | - Jing Yang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 Jiangsu China
| | - WenJun Cheng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 Jiangsu China
| |
Collapse
|
16
|
Chen Y, Liu J, Geng N, Feng C. Upregulation of far upstream element-binding protein 1 (FUBP1) promotes tumor proliferation and unfavorable prognosis in tongue squamous cell carcinoma. Int J Biol Markers 2020; 35:56-65. [PMID: 32339054 DOI: 10.1177/1724600820912252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background: A well-known transcriptional regulator of the proto-oncogene c-Myc, far-upstream element (FUSE) binding protein 1 (FUBP1) has been demonstrated by previous work to be aberrantly expressed in lots of cancers and plays a critical role in tumor progression; however, its expression and function in tongue squamous cell carcinoma (TSCC) remains unclear. Methods: Evaluations with immunohistochemistry, quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were performed to assess FUBP1 expression. The correlations of FUBP1 expression levels with various clinicopathological factors were evaluated with univariate and multivariate analyses. In addition, the role of FUBP1 in TSCC proliferation was studied in TSCC cells by silencing FUBP1. The role of FUBP1 on proliferation and apoptosis was confirmed by cell counting Kit-8, colony formation, cell cycle, and cell apoptosis assays. Results: Immunohistochemistry, qRT-PCR and Western blot results showed FUBP1 expression was higher in TSCC tissues in comparison with adjacent non-cancerous tissues ( P <0.05), as well as in patients with advanced-stage disease or cervical lymph node metastasis ( P<0.001). The 5-year survival rate was significantly lower in the group with high FUBP1 expression than in that with low FUBP1 expression ( P=0.035). FUBP1 expression was also an independent predictor for overall survival in TSCC patients, and was closely related to poor prognosis. FUBP1 knockdown inhibited cancer cell proliferation, and induced cell cycle arrest and apoptosis. Conclusion: FUBP1 was overexpressed in TSCC, and correlated with TSCC cell proliferation and poor prognosis. FUBP1 appears to act as a potential oncogene in TSCC, and may be considered a novel biomarker for TSCC.
Collapse
Affiliation(s)
- Yang Chen
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiameng Liu
- Department of Oral and Maxillofacial Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou, Guangdong, China
| | - Ningbo Geng
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chongjin Feng
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
17
|
Jiang P, Huang M, Qi W, Wang F, Yang T, Gao T, Luo C, Deng J, Yang Z, Zhou T, Zou Y, Gao G, Yang X. FUBP1 promotes neuroblastoma proliferation via enhancing glycolysis-a new possible marker of malignancy for neuroblastoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:400. [PMID: 31511046 PMCID: PMC6737630 DOI: 10.1186/s13046-019-1414-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 09/05/2019] [Indexed: 12/16/2022]
Abstract
Background Neuroblastoma (NB) is one of the deadliest paediatric solid tumours due to its rapid proliferative characteristics. Amplified copies of MYCN are considered the most important marker for the prediction of tumour relapse and progression in NB, but they were only detected in 20–30% of NB patients, indicating there might be other oncogenes in the development of NB. The far upstream element binding protein 1 (FUBP1) was first identified as a transcriptional regulator of the proto-oncogene MYC. However, the expression and role of FUBP1 in NB have not been documented. Methods FUBP1 expression was analysed from GEO database and verified by immunohistochemistry (IHC) and western blotting (WB) in NB tissues and cell lines. Cell proliferation and apoptosis were detected by Cell Counting Kit-8, Colony formation assay, EDU, TUNEL staining and flow cytometric analysis. Several glycolytic metabolites production was confirmed by ELISA and oxygen consuming rate (OCR). Luciferase assay, WB, chromatin immunoprecipitation (CHIP) were used to explore the mechanisms of the effect of FUBP1 on NB. Results FUBP1 mRNA levels were increased along with the increase in International Neuroblastoma Staging System (INSS) stages. High expression of FUBP1 with low N-Myc expression accounted for 44.6% of NB patient samples (n = 65). In addition, FUBP1 protein levels were remarkably increased with NB malignancy in the NB tissue microarray (NB: n = 65; ganglioneuroblastoma: n = 31; ganglioneuroma: n = 27). Furthermore, FUBP1 expression was negatively correlated with patient survival rate but positively correlated with ki67 content. In vitro experiments showed that FUBP1 promotes NB cell proliferation and inhibits cell apoptosis via enhancing glycolysis and ATP production. Mechanistically, FUBP1 inhibited the degradation of HIF1α via downregulation of Von Hippel-Lindau (VHL), the E3 ligase for HIF1α, resulting in upregulation of lactate dehydrogenase isoform B (LDHB) expression to enhance glycolysis. Overexpressed or silenced N-Myc could not regulate FUBP1 or LDHB levels. Conclusions Taken together, our findings demonstrate for the first time that elevated FUBP1 promotes NB glycolysis and growth by targeting HIF1α rather than N-Myc, suggesting that FUBP1 is a novel and powerful oncogene in the development of NB independent of N-Myc and may have potential in the diagnosis and treatment of NB.
Collapse
Affiliation(s)
- Ping Jiang
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Mao Huang
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Weiwei Qi
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Fenghua Wang
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Tianyou Yang
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Tianxiao Gao
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chuanghua Luo
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Jing Deng
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Zhonghan Yang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Ti Zhou
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Yan Zou
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Guoquan Gao
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China. .,Guangdong Engineering & Technology Research Center for Gene Manipulation and Biomacromolecular Products, Sun Yat-sen University, Guangzhou, China.
| | - Xia Yang
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China. .,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
18
|
Královicová J, Ševcíková I, Stejskalová E, Obuca M, Hiller M, Stanek D, Vorechovský I. PUF60-activated exons uncover altered 3' splice-site selection by germline missense mutations in a single RRM. Nucleic Acids Res 2019; 46:6166-6187. [PMID: 29788428 PMCID: PMC6093180 DOI: 10.1093/nar/gky389] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/01/2018] [Indexed: 12/27/2022] Open
Abstract
PUF60 is a splicing factor that binds uridine (U)-rich tracts and facilitates association of the U2 small nuclear ribonucleoprotein with primary transcripts. PUF60 deficiency (PD) causes a developmental delay coupled with intellectual disability and spinal, cardiac, ocular and renal defects, but PD pathogenesis is not understood. Using RNA-Seq, we identify human PUF60-regulated exons and show that PUF60 preferentially acts as their activator. PUF60-activated internal exons are enriched for Us upstream of their 3′ splice sites (3′ss), are preceded by longer AG dinucleotide exclusion zones and more distant branch sites, with a higher probability of unpaired interactions across a typical branch site location as compared to control exons. In contrast, PUF60-repressed exons show U-depletion with lower estimates of RNA single-strandedness. We also describe PUF60-regulated, alternatively spliced isoforms encoding other U-bound splicing factors, including PUF60 partners, suggesting that they are co-regulated in the cell, and identify PUF60-regulated exons derived from transposed elements. PD-associated amino-acid substitutions, even within a single RNA recognition motif (RRM), altered selection of competing 3′ss and branch points of a PUF60-dependent exon and the 3′ss choice was also influenced by alternative splicing of PUF60. Finally, we propose that differential distribution of RNA processing steps detected in cells lacking PUF60 and the PUF60-paralog RBM39 is due to the RBM39 RS domain interactions. Together, these results provide new insights into regulation of exon usage by the 3′ss organization and reveal that germline mutation heterogeneity in RRMs can enhance phenotypic variability at the level of splice-site and branch-site selection.
Collapse
Affiliation(s)
- Jana Královicová
- University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK.,Slovak Academy of Sciences, Centre for Biosciences, 840 05 Bratislava, Slovak Republic
| | - Ivana Ševcíková
- Slovak Academy of Sciences, Centre for Biosciences, 840 05 Bratislava, Slovak Republic
| | - Eva Stejskalová
- Czech Academy of Sciences, Institute of Molecular Genetics, 142 20 Prague, Czech Republic
| | - Mina Obuca
- Czech Academy of Sciences, Institute of Molecular Genetics, 142 20 Prague, Czech Republic
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics and Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - David Stanek
- Czech Academy of Sciences, Institute of Molecular Genetics, 142 20 Prague, Czech Republic
| | - Igor Vorechovský
- University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| |
Collapse
|
19
|
Kang M, Lee SM, Kim W, Lee KH, Kim DY. Fubp1 supports the lactate-Akt-mTOR axis through the upregulation of Hk1 and Hk2. Biochem Biophys Res Commun 2019; 512:93-99. [PMID: 30871777 DOI: 10.1016/j.bbrc.2019.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 12/21/2022]
Abstract
Cells require energy for homeostatic activities, growth and division. By utilizing glucose as the main energy source, cells generate ATP and metabolic precursors through glycolysis and citric acid cycle. Although the oxidative phosphorylation can produce more ATP molecules from one molecule of glucose than glycolysis, rapidly growing cells primarily metabolize glucose via aerobic glycolysis. This aerobic glycolysis makes cells to uptake glucose at a higher rate and to efficiently convert glucose into the macromolecules required for new daughter cells. Recent evidence suggests that Fubp1 promotes cell proliferation and survival, and it is overexpressed in a variety of cancers. However, the role of Fubp1 in cellular metabolism remains unclear. In the present study, we demonstrated that Fubp1 upregulates the mRNA levels of two hexokinase genes, Hk1 and Hk2. We also found the positive correlation in mRNA expression between Fubp1 and both of hexokinase genes in several types of cancers. We suggest that Fubp1 contributes to cell survival through supporting lactate-Akt-mTOR axis.
Collapse
Affiliation(s)
- Mingyu Kang
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, 41940, Republic of Korea
| | - Sang Min Lee
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, 41940, Republic of Korea
| | - Wanil Kim
- Department of Cosmetic Science and Technology, College of Bio-industry, Daegu Haany University, Gyeongsan, 38610, Republic of Korea
| | - Kyung-Ha Lee
- Department of Cosmetic Science and Technology, College of Bio-industry, Daegu Haany University, Gyeongsan, 38610, Republic of Korea
| | - Do-Yeon Kim
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, 41940, Republic of Korea; Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41940, Republic of Korea.
| |
Collapse
|
20
|
Sun D, Lei W, Hou X, Li H, Ni W. PUF60 accelerates the progression of breast cancer through downregulation of PTEN expression. Cancer Manag Res 2019; 11:821-830. [PMID: 30697074 PMCID: PMC6340502 DOI: 10.2147/cmar.s180242] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background PUF60 is a splicing variant of far upstream element binding protein 1-interacting repressor, which is abnormally expressed in a variety of tumors and is closely involved in their progression. However, whether PUF60 participates in the occurrence and development of breast cancer remains unknown. Therefore, the objective of the current study is to explore the effects and mechanism of PUF60 in the progression of breast cancer. Methods PUF60 expression patterns in breast cancer tissues and cells were determined by RT-PCR and Western blotting. The relationship between PUF60 expression and patients' clinical features and outcome was evaluated to assess the potential of PUF60 as a marker for progression and prognosis prediction. CCK-8, flow cytometry, transwell and in vivo tumor formation assays were used to detect cell proliferation, apoptosis, migration, invasion and tumorigenesis. The effects of PUF60 on the activation of PTEN/PI3K/AKT were also evaluated by Western blotting and immunofluorescence assays. Results The expression of PUF60 was elevated in breast cancer tissue samples and cell lines, and its high expression was closely associated with the high incidence of lymph node metastasis and advanced TNM stage. Besides, upregulation of PUF60 with lentivirus infection significantly increased the growth, migration, and invasion and repressed the apoptosis of breast cancer HCC1937 and MDA-MB-231 cells, while silencing of PUF60 with shRNA showed the opposite results. Moreover, PUF60 upregulation promoted the expression of p-AKT, PI3K, and mTOR, while decreased PTEN expression through inhibiting its stability and enhancing its ubiquitination. Furthermore, upregulation of PUF60 promoted the tumorigenesis in vivo, whereas this effect was impaired when PTEN expression was upregulated in MDA-MB-231 and HCC1937 cells. Conclusion This study demonstrates that PUF60 is highly expressed in breast cancer; upregulation of PUF60 accelerates the progression of breast cancer through PTEN inhibition.
Collapse
Affiliation(s)
- Dongying Sun
- Department of Medical Imaging, Henan University First Affiliated Hospital, Kaifeng, Henan, China,
| | - Wei Lei
- Department of Medical Imaging, Henan University First Affiliated Hospital, Kaifeng, Henan, China,
| | - Xiaodong Hou
- Department of Medical Imaging, Henan University First Affiliated Hospital, Kaifeng, Henan, China,
| | - Hui Li
- Department of Medical Imaging, Henan University First Affiliated Hospital, Kaifeng, Henan, China,
| | - Wenlu Ni
- Department of Medical Imaging, Henan University First Affiliated Hospital, Kaifeng, Henan, China,
| |
Collapse
|
21
|
Hoang VT, Verma D, Godavarthy PS, Llavona P, Steiner M, Gerlach K, Michels BE, Bohnenberger H, Wachter A, Oellerich T, Müller-Kuller U, Weissenberger E, Voutsinas JM, Oehler VG, Farin HF, Zörnig M, Krause DS. The transcriptional regulator FUBP1 influences disease outcome in murine and human myeloid leukemia. Leukemia 2019; 33:1700-1712. [PMID: 30635626 DOI: 10.1038/s41375-018-0358-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/28/2018] [Accepted: 12/05/2018] [Indexed: 01/20/2023]
Abstract
The transcriptional regulator far upstream element binding protein 1 (FUBP1) acts as an oncoprotein in solid tumor entities and plays a role in the maintenance of hematopoietic stem cells. However, its potential function in leukemia is unknown. In murine models of chronic (CML) and acute myeloid leukemia (AML) induced by BCR-ABL1 and MLL-AF9, respectively, knockdown of Fubp1 resulted in prolonged survival, decreased numbers of CML progenitor cells, decreased cell cycle activity and increased apoptosis. Knockdown of FUBP1 in CML and AML cell lines recapitulated these findings and revealed enhanced DNA damage compared to leukemia cells expressing wild type FUBP1 levels. FUBP1 was more highly expressed in human CML compared to normal bone marrow cells and its expression correlated with disease progression. In AML, higher FUBP1 expression in patient leukemia cells was observed with a trend toward correlation with shorter overall survival. Treatment of mice with AML with irinotecan, known to inhibit topoisomerase I and FUBP1, significantly prolonged survival alone or in combination with cytarabine. In summary, our data suggest that FUBP1 acts as cell cycle regulator and apoptosis inhibitor in leukemia. We demonstrated that FUBP1 might play a role in DNA repair, and its inhibition may improve outcome in leukemia patients.
Collapse
Affiliation(s)
- Van T Hoang
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Divij Verma
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | | | - Pablo Llavona
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Marlene Steiner
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Katharina Gerlach
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Birgitta E Michels
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Hanibal Bohnenberger
- Universitätsmedizin Göttingen, Institute of Pathology, Georg-August-Universität, 37075, Göttingen, Germany
| | - Astrid Wachter
- Universitätsmedizin Göttingen, Department of Medical Statistics, Georg-August-Universität, 37075, Göttingen, Germany
| | - Thomas Oellerich
- German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,University Hospital Frankfurt, Department of Medicine II, Hematology/Oncology, Frankfurt, Germany
| | - Uta Müller-Kuller
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Eva Weissenberger
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Jenna M Voutsinas
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Biostatistics, Seattle, WA, USA
| | - Vivian G Oehler
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Division of Hematology, University of Washington Medical Center, Seattle, WA, USA
| | - Henner F Farin
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Zörnig
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Daniela S Krause
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany. .,German Cancer Consortium (DKTK), Heidelberg, Germany. .,German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Faculty of Medicine, Johann Wolfgang Goethe University, Frankfurt, Germany.
| |
Collapse
|
22
|
Debaize L, Troadec MB. The master regulator FUBP1: its emerging role in normal cell function and malignant development. Cell Mol Life Sci 2019; 76:259-281. [PMID: 30343319 PMCID: PMC11105487 DOI: 10.1007/s00018-018-2933-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/06/2018] [Accepted: 10/01/2018] [Indexed: 12/20/2022]
Abstract
The human Far Upstream Element (FUSE) Binding Protein 1 (FUBP1) is a multifunctional DNA- and RNA-binding protein involved in diverse cellular processes. FUBP1 is a master regulator of transcription, translation, and RNA splicing. FUBP1 has been identified as a potent pro-proliferative and anti-apoptotic factor by modulation of complex networks. FUBP1 is also described either as an oncoprotein or a tumor suppressor. Especially, FUBP1 overexpression is observed in a growing number of cancer and leads to a deregulation of targets that includes the fine-tuned MYC oncogene. Moreover, recent loss-of-function analyses of FUBP1 establish its essential functions in hematopoietic stem cell maintenance and survival. Therefore, FUBP1 appears as an emerging suspect in hematologic disorders in addition to solid tumors. The scope of the present review is to describe the advances in our understanding of the molecular basis of FUBP1 functions in normal cells and carcinogenesis. We also delineate the recent progresses in the understanding of the master role of FUBP1 in normal and pathological hematopoiesis. We conclude that FUBP1 is not only worth studying biologically but is also of clinical relevance through its pivotal role in regulating multiple cellular processes and its involvement in oncogenesis.
Collapse
Affiliation(s)
- Lydie Debaize
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, F-35000, Rennes, France
| | - Marie-Bérengère Troadec
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, F-35000, Rennes, France.
- Univ Brest, INSERM, EFS, UMR 1078, GGB, F-29200, Brest, France.
- CHRU de Brest, laboratoire de cytogénétique, F-29200, Brest, France.
| |
Collapse
|
23
|
Debaize L, Jakobczyk H, Avner S, Gaudichon J, Rio AG, Sérandour AA, Dorsheimer L, Chalmel F, Carroll JS, Zörnig M, Rieger MA, Delalande O, Salbert G, Galibert MD, Gandemer V, Troadec MB. Interplay between transcription regulators RUNX1 and FUBP1 activates an enhancer of the oncogene c-KIT and amplifies cell proliferation. Nucleic Acids Res 2018; 46:11214-11228. [PMID: 30500954 PMCID: PMC6265458 DOI: 10.1093/nar/gky756] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 12/31/2022] Open
Abstract
Runt-related transcription factor 1 (RUNX1) is a well-known master regulator of hematopoietic lineages but its mechanisms of action are still not fully understood. Here, we found that RUNX1 localizes on active chromatin together with Far Upstream Binding Protein 1 (FUBP1) in human B-cell precursor lymphoblasts, and that both factors interact in the same transcriptional regulatory complex. RUNX1 and FUBP1 chromatin localization identified c-KIT as a common target gene. We characterized two regulatory regions, at +700 bp and +30 kb within the first intron of c-KIT, bound by both RUNX1 and FUBP1, and that present active histone marks. Based on these regions, we proposed a novel FUBP1 FUSE-like DNA-binding sequence on the +30 kb enhancer. We demonstrated that FUBP1 and RUNX1 cooperate for the regulation of the expression of the oncogene c-KIT. Notably, upregulation of c-KIT expression by FUBP1 and RUNX1 promotes cell proliferation and renders cells more resistant to the c-KIT inhibitor imatinib mesylate, a common therapeutic drug. These results reveal a new mechanism of action of RUNX1 that implicates FUBP1, as a facilitator, to trigger transcriptional regulation of c-KIT and to regulate cell proliferation. Deregulation of this regulatory mechanism may explain some oncogenic function of RUNX1 and FUBP1.
Collapse
Affiliation(s)
- Lydie Debaize
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
| | - Hélène Jakobczyk
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
| | - Stéphane Avner
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
| | - Jérémie Gaudichon
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
| | - Anne-Gaëlle Rio
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
| | - Aurélien A Sérandour
- CRCINA, INSERM, CNRS, Université d’Angers, Université de Nantes, 44035 Nantes, France
- Ecole Centrale de Nantes, Nantes, France
| | - Lena Dorsheimer
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, Frankfurt, Germany
| | - Frédéric Chalmel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) – UMR_S 1085, F-35000 Rennes, France
| | - Jason S Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Martin Zörnig
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, D-60528 Frankfurt, Germany
| | - Michael A Rieger
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, Frankfurt, Germany
| | - Olivier Delalande
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
| | - Gilles Salbert
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
| | - Marie-Dominique Galibert
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
- Génétique Somatique des Cancers, Centre Hospitalier Universitaire, 35033 Rennes, France
| | - Virginie Gandemer
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
- Department of pediatric oncohematology, Centre Hospitalier Universitaire, 35203 Rennes, France
| | - Marie-Bérengère Troadec
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290, F-35000 Rennes, France
| |
Collapse
|
24
|
Fan P, Ma J, Jin X. Far upstream element-binding protein 1 is up-regulated in pancreatic cancer and modulates immune response by increasing programmed death ligand 1. Biochem Biophys Res Commun 2018; 505:830-836. [DOI: 10.1016/j.bbrc.2018.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/01/2018] [Indexed: 12/31/2022]
|
25
|
Ogura Y, Hoshino T, Tanaka N, Ailiken G, Kobayashi S, Kitamura K, Rahmutulla B, Kano M, Murakami K, Akutsu Y, Nomura F, Itoga S, Matsubara H, Matsushita K. Disturbed alternative splicing of FIR (PUF60) directed cyclin E overexpression in esophageal cancers. Oncotarget 2018; 9:22929-22944. [PMID: 29796163 PMCID: PMC5955432 DOI: 10.18632/oncotarget.25149] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 03/22/2018] [Indexed: 02/06/2023] Open
Abstract
Overexpression of alternative splicing of far upstream element binding protein 1 (FUBP1) interacting repressor (FIR; poly(U) binding splicing factor 60 [PUF60]) and cyclin E were detected in esophageal squamous cell carcinomas (ESCC). Accordingly, the expression of FBW7 was examined by which cyclin E is degraded as a substrate via the proteasome system. Expectedly, FBW7 expression was decreased significantly in ESCC. Conversely, c-myc gene transcriptional repressor FIR (alias PUF60; U2AF-related protein) and its alternative splicing variant form (FIRΔexon2) were overexpressed in ESCC. Further, anticancer drugs (cis-diaminedichloroplatinum/cisplatin [CDDP] or 5-fluorouracil [5-FU]) and knockdown of FIR by small interfering RNA (siRNA) increased cyclin E while knockdown of FIRΔexon2 by siRNA decreased cyclin E expression in ESCC cell lines (TE1, TE2, and T.Tn) or cervical SCC cells (HeLa cells). Especially, knockdown of SAP155 (SF3b1), a splicing factor required for proper alternative splicing of FIR pre-mRNA, decreased cyclin E. Therefore, disturbed alternative splicing of FIR generated FIR/FIRΔexon2 with cyclin E overexpression in esophageal cancers, indicating that SAP155 siRNA potentially rescued FBW7 function by reducing expression of FIR and/or FIRΔexon2. Remarkably, Three-dimensional structure analysis revealed the hypothetical inhibitory mechanism of FBW7 function by FIR/FIRΔexon2, a novel mechanism of cyclin E overexpression by FIR/FIRΔexon2-FBW7 interaction was discussed. Clinically, elevated FIR expression potentially is an indicator of the number of lymph metastases and anti-FIR/FIRΔexon2 antibodies in sera as cancer diagnosis, indicating chemical inhibitors of FIR/FIRΔexon2-FBW7 interaction could be potential candidate drugs for cancer therapy. In conclusion, elevated cyclin E expression was, in part, induced owing to potential FIR/FIRΔexon2–FBW7 interaction in ESCC.
Collapse
Affiliation(s)
- Yukiko Ogura
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tyuji Hoshino
- Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Nobuko Tanaka
- Department of Laboratory Medicine & Division of Clinical Genetics and Proteomics, Chiba University Hospital, Chiba, Japan
| | - Guzhanuer Ailiken
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Sohei Kobayashi
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Laboratory Medicine & Division of Clinical Genetics and Proteomics, Chiba University Hospital, Chiba, Japan
| | - Kouichi Kitamura
- Department of Laboratory Medicine & Division of Clinical Genetics and Proteomics, Chiba University Hospital, Chiba, Japan.,Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masayuki Kano
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kentarou Murakami
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasunori Akutsu
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Fumio Nomura
- Department of Laboratory Medicine & Division of Clinical Genetics and Proteomics, Chiba University Hospital, Chiba, Japan
| | - Sakae Itoga
- Department of Laboratory Medicine & Division of Clinical Genetics and Proteomics, Chiba University Hospital, Chiba, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuyuki Matsushita
- Department of Laboratory Medicine & Division of Clinical Genetics and Proteomics, Chiba University Hospital, Chiba, Japan
| |
Collapse
|
26
|
Kobayashi S, Hoshino T, Hiwasa T, Satoh M, Rahmutulla B, Tsuchida S, Komukai Y, Tanaka T, Matsubara H, Shimada H, Nomura F, Matsushita K. Anti-FIRs (PUF60) auto-antibodies are detected in the sera of early-stage colon cancer patients. Oncotarget 2018; 7:82493-82503. [PMID: 27756887 PMCID: PMC5347708 DOI: 10.18632/oncotarget.12696] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/12/2016] [Indexed: 01/09/2023] Open
Abstract
Anti-PUF60, poly(U)-binding-splicing factor, autoantibodies are reported to be detected in the sera of dermatomyositis and Sjogren's syndrome that occasionally associated with malignancies. PUF60 is identical with far-upstream element-binding protein-interacting repressor (FIR) that is a transcriptional repressor of c-myc gene. In colorectal cancers, a splicing variant of FIR that lacks exon2 (FIRΔexon2) is overexpressed as a dominant negative form of FIR. In this study, to reveal the presence and the significance of anti-FIRs (FIR/FIRΔexon2) antibodies in cancers were explored in the sera of colorectal and other cancer patients. Anti-FIRs antibodies were surely detected in the preoperative sera of 28 colorectal cancer patients (32.2% of positive rates), and the detection rate was significantly higher than that in healthy control sera (Mann-Whitney U test, p < 0.01). The level of anti-FIRs antibodies significantly decreased after the operation (p < 0.01). Anti-FIRs antibodies were detected in the sera of early-stage and/or recurrent colon cancer patients in which anti-p53 antibodies, CEA, and CA19-9 were not detected as well as in the sera of other cancer patients. Furthermore, the area under the curve of receiver operating characteristic for anti-FIRs antibodies was significantly larger (0.85) than that for anti-p53 antibodies or CA19-9. In conclusions, the combination of anti-FIRs antibodies with other clinically available tumor markers further improved the specificity and accuracy of cancer diagnosis.
Collapse
Affiliation(s)
- Sohei Kobayashi
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba City, Chiba 260-8670, Japan
| | - Tyuji Hoshino
- Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Takaki Hiwasa
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Mamoru Satoh
- Divisions of Clinical Mass Spectrometry and Clinical Genetics, Chiba University Hospital, Chiba 260-8670, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba City, Chiba 260-8670, Japan.,Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba City, Chiba 260-8670, Japan
| | - Sachio Tsuchida
- Divisions of Clinical Mass Spectrometry and Clinical Genetics, Chiba University Hospital, Chiba 260-8670, Japan
| | - Yuji Komukai
- Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Tomoaki Tanaka
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba City, Chiba 260-8670, Japan
| | - Hisahiro Matsubara
- Department of Academic Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Hideaki Shimada
- Department of Gastroenterological Surgery, Toho University Omori Medical Center, Tokyo 143-8541, Japan
| | - Fumio Nomura
- Divisions of Clinical Mass Spectrometry and Clinical Genetics, Chiba University Hospital, Chiba 260-8670, Japan
| | - Kazuyuki Matsushita
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba City, Chiba 260-8670, Japan.,Department of Laboratory Medicine & Division of Clinical Genetics and Proteomics Chiba University Hospital, Chiba 260-8670, Japan
| |
Collapse
|
27
|
Pinna F, Bissinger M, Beuke K, Huber N, Longerich T, Kummer U, Schirmacher P, Sahle S, Breuhahn K. A20/TNFAIP3 Discriminates Tumor Necrosis Factor (TNF)-Induced NF-κB from JNK Pathway Activation in Hepatocytes. Front Physiol 2017; 8:610. [PMID: 28878689 PMCID: PMC5572400 DOI: 10.3389/fphys.2017.00610] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 08/08/2017] [Indexed: 12/18/2022] Open
Abstract
In the liver tumor necrosis factor (TNF)-induced signaling critically regulates the immune response of non-parenchymal cells as well as proliferation and apoptosis of hepatocytes via activation of the NF-κB and JNK pathways. Especially, the induction of negative feedback regulators, such as IκBα and A20 is responsible for the dynamic and time-restricted response of these important pathways. However, the precise mechanisms responsible for different TNF-induced phenotypes under physiological stimulation conditions are not completely understood so far. In addition, it is not known if varying TNF concentrations may differentially affect the desensitization properties of both pathways. By using computational modeling, we first showed that TNF-induced activation and downstream signaling is qualitatively comparable between primary mouse hepatocytes and immortalized hepatocellular carcinoma (HCC) cells. In order to define physiologically relevant TNF levels, which allow for an adjustable and dynamic NF-κB/JNK pathway response in parenchymal liver cells, a range of cytokine concentrations was defined that led to gradual pathway responses in HCC cells (1-5 ng/ml). Repeated stimulations with low (1 ng/ml), medium (2.5 ng/ml) and high (5 ng/ml) TNF amounts demonstrated that JNK signaling was still active at cytokine concentrations, which led to dampened NF-κB signaling illustrating differential pathway responsiveness depending on TNF input dynamics. SiRNA-mediated inhibition of the negative feedback regulator A20 (syn. TNFAIP3) or its overexpression did not significantly affect the NF-κB response. In contrast, A20 silencing increased the JNK response, while its overexpression dampened JNK phosphorylation. In addition, the A20 knockdown sensitized hepatocellular cells to TNF-induced cleavage and activity of the effector caspase-3. In conclusion, a mathematical model-based approach shows that the TNF-induced pathway responses are qualitatively comparable in primary and immortalized mouse hepatocytes. The cytokine amount defines the pathway responsiveness under repeated treatment conditions with NF-κB signaling being dampened 'earlier' than JNK. A20 appears to be the molecular switch discriminating between NF-κB and JNK signaling when stimulating with varying physiological cytokine concentrations.
Collapse
Affiliation(s)
- Federico Pinna
- Molecular Hepatopathology, Institute of Pathology, University Hospital HeidelbergHeidelberg, Germany.,Institute of Pathology, RWTH Aachen University HospitalAachen, Germany
| | - Michaela Bissinger
- Molecular Hepatopathology, Institute of Pathology, University Hospital HeidelbergHeidelberg, Germany
| | - Katharina Beuke
- Department of Modeling of Biological Processes, Centre for Organismal Studies, BioQuant, University of HeidelbergHeidelberg, Germany
| | - Nicolas Huber
- Department of Modeling of Biological Processes, Centre for Organismal Studies, BioQuant, University of HeidelbergHeidelberg, Germany
| | - Thomas Longerich
- Institute of Pathology, RWTH Aachen University HospitalAachen, Germany
| | - Ursula Kummer
- Department of Modeling of Biological Processes, Centre for Organismal Studies, BioQuant, University of HeidelbergHeidelberg, Germany
| | - Peter Schirmacher
- Molecular Hepatopathology, Institute of Pathology, University Hospital HeidelbergHeidelberg, Germany
| | - Sven Sahle
- Department of Modeling of Biological Processes, Centre for Organismal Studies, BioQuant, University of HeidelbergHeidelberg, Germany
| | - Kai Breuhahn
- Molecular Hepatopathology, Institute of Pathology, University Hospital HeidelbergHeidelberg, Germany
| |
Collapse
|
28
|
Kimura A, Kitamura K, Ailiken G, Satoh M, Minamoto T, Tanaka N, Nomura F, Matsushita K. FIR haplodeficiency promotes splicing to pyruvate kinase M2 in mice thymic lymphoma tissues revealed by six-plex tandem mass tag quantitative proteomic analysis. Oncotarget 2017; 8:67955-67965. [PMID: 28978087 PMCID: PMC5620227 DOI: 10.18632/oncotarget.19061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 05/15/2017] [Indexed: 12/30/2022] Open
Abstract
The switch of pyruvate kinase (PK) M1 to PKM2 is pivotal for glucose metabolism in cancers. The PKM1/M2 shift is controlled by the alternative splicing of two mutually exclusive exons in the PKM gene. PKM1 is expressed in differentiated tissues, whereas PKM2 is expressed in cancer tissues. This study revealed that the haplodeficiency of FUSE-binding protein (FBP)-interacting repressor (FIR), a transcriptional repressor of the c-myc gene, contributed to the splicing of PKM1 to PKM2 in mice thymic lymphoma and/or T-cell type acute lymphoblastic leukemia (T-ALL) using six-plex tandem mass tag (TMT) quantitative proteomic analysis. TMT revealed 648 proteins that were up- or downregulated in mice thymic lymphoma tissues compared with wild type mouse. These proteins included transcription factors and proteins involved in DNA damage repair, DNA replication, T-cell activation/proliferation, apoptosis, etc. Among them, PKM2 protein, but not PKM1, was upregulated in the thymic lymphoma as well as T-ALL. Using qRT-PCR, we revealed that the activation of PKM2 mRNA was higher in thymic lymphoma cells of FIR+/−TP53−/− mice than that in control lymphocytes of FIR+/+TP53−/− sorted by flow cytometry. FIR knockdown by siRNA suppressed hnRNPA1 expression in HeLa cells. These results indicated that FIR haplodeficiency contributes the alternative splicing of PKM1 to PKM2 by partly inhibiting hnRNPA1 expression in the thymic lymphoma cells prior to T-ALL. Taken together, our findings suggest that FIR and its related spliceosomes are potential therapeutic targets for cancers, including T-ALL.
Collapse
Affiliation(s)
- Asako Kimura
- Department of Medical Technology and Sciences, Narita School of Health Sciences, International University of Health and Welfare, Chiba-ken, Japan
| | - Kouichi Kitamura
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan.,Division of Laboratory Medicine, Chiba University Hospital, Chiba, Japan
| | - Guzhanuer Ailiken
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Mamoru Satoh
- Division of Clinical Mass Spectrometry and Clinical Genetics, Chiba University Hospital, Chiba, Japan
| | - Toshinari Minamoto
- Division of Translational and Clinical Oncology and Surgical Oncology, Cancer Research Institute, Kanazawa University and Hospital, Kanazawa, Japan
| | - Nobuko Tanaka
- Division of Laboratory Medicine, Chiba University Hospital, Chiba, Japan
| | - Fumio Nomura
- Division of Clinical Mass Spectrometry and Clinical Genetics, Chiba University Hospital, Chiba, Japan
| | - Kazuyuki Matsushita
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan.,Division of Laboratory Medicine, Chiba University Hospital, Chiba, Japan
| |
Collapse
|
29
|
Pyrazolo[1,5 a ]pyrimidines as a new class of FUSE binding protein 1 (FUBP1) inhibitors. Bioorg Med Chem 2016; 24:5717-5729. [DOI: 10.1016/j.bmc.2016.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/13/2016] [Accepted: 09/08/2016] [Indexed: 12/12/2022]
|
30
|
Samarin J, Laketa V, Malz M, Roessler S, Stein I, Horwitz E, Singer S, Dimou E, Cigliano A, Bissinger M, Falk CS, Chen X, Dooley S, Pikarsky E, Calvisi DF, Schultz C, Schirmacher P, Breuhahn K. PI3K/AKT/mTOR-dependent stabilization of oncogenic far-upstream element binding proteins in hepatocellular carcinoma cells. Hepatology 2016; 63:813-26. [PMID: 26901106 PMCID: PMC5262441 DOI: 10.1002/hep.28357] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/20/2015] [Indexed: 02/06/2023]
Abstract
UNLABELLED Transcription factors of the far-upstream element-binding protein (FBP) family represent cellular pathway hubs, and their overexpression in liver cancer (hepatocellular carcinoma [HCC]) stimulates tumor cell proliferation and correlates with poor prognosis. Here we determine the mode of oncogenic FBP overexpression in HCC cells. Using perturbation approaches (kinase inhibitors, small interfering RNAs) and a novel system for rapalog-dependent activation of AKT isoforms, we demonstrate that activity of the phosphatidylinositol-4,5-biphosphate 3-kinase/AKT pathway is involved in the enrichment of nuclear FBP1 and FBP2 in liver cancer cells. In human HCC tissues, phospho-AKT significantly correlates with nuclear FBP1/2 accumulation and expression of the proliferation marker KI67. Mechanistic target of rapamycin (mTOR) inhibition or blockade of its downstream effector eukaryotic translation initiation factor 4E activity equally reduced FBP1/2 concentrations. The mTORC1 inhibitor rapamycin diminishes FBP enrichment in liver tumors after hydrodynamic gene delivery of AKT plasmids. In addition, the multikinase inhibitor sorafenib significantly reduces FBP levels in HCC cells and in multidrug resistance 2-deficient mice that develop HCC due to severe inflammation. Both FBP1/2 messenger RNAs are highly stable, with FBP2 being more stable than FBP1. Importantly, inhibition of phosphatidylinositol-4,5-biphosphate 3-kinase/AKT/mTOR signaling significantly diminishes FBP1/2 protein stability in a caspase-3/-7-dependent manner. CONCLUSION These data provide insight into a transcription-independent mechanism of FBP protein enrichment in liver cancer; further studies will have to show whether this previously unknown interaction between phosphatidylinositol-4,5-biphosphate 3-kinase/AKT/mTOR pathway activity and caspase-mediated FBP stabilization allows the establishment of interventional strategies in FBP-positive HCCs.
Collapse
Affiliation(s)
- Jana Samarin
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Vibor Laketa
- Cell Biology and Cell Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Mona Malz
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stephanie Roessler
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Ilan Stein
- Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Elad Horwitz
- Department of Developmental Biology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Stephan Singer
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Eleni Dimou
- Cell Biology and Cell Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Antonio Cigliano
- Institute of Pathology, University Medicine Greifswald, Greifswald, Germany
| | - Michaela Bissinger
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA
| | - Steven Dooley
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Eli Pikarsky
- Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | - Carsten Schultz
- Cell Biology and Cell Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
31
|
Zhou W, Chung YJ, Parrilla Castellar ER, Zheng Y, Chung HJ, Bandle R, Liu J, Tessarollo L, Batchelor E, Aplan PD, Levens D. Far Upstream Element Binding Protein Plays a Crucial Role in Embryonic Development, Hematopoiesis, and Stabilizing Myc Expression Levels. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:701-15. [PMID: 26774856 DOI: 10.1016/j.ajpath.2015.10.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/29/2015] [Accepted: 10/27/2015] [Indexed: 11/27/2022]
Abstract
The transcription factor far upstream element binding protein (FBP) binds and activates the MYC promoter when far upstream element is via TFIIH helicase activity early in the transcription cycle. The fundamental biology and pathology of FBP are complex. In some tumors FBP seems pro-oncogenic, whereas in others it is a tumor suppressor. We generated an FBP knockout (Fubp1(-/-)) mouse to study FBP deficiency. FBP is embryo lethal from embryonic day 10.5 to birth. A spectrum of pathology is associated with FBP loss; besides cerebral hyperplasia and pulmonary hypoplasia, pale livers, hypoplastic spleen, thymus, and bone marrow, cardiac hypertrophy, placental distress, and small size were all indicative of anemia. Immunophenotyping of hematopoietic cells in wild-type versus knockout livers revealed irregular trilineage anemia, with deficits in colony formation. Despite normal numbers of hematopoietic stem cells, transplantation of Fubp1(-/-) hematopoietic stem cells into irradiated mice entirely failed to reconstitute hematopoiesis. In competitive transplantation assays against wild-type donor bone marrow, Fubp1(-/-) hematopoietic stem cells functioned only sporadically at a low level. Although cultures of wild-type mouse embryo fibroblasts set Myc levels precisely, Myc levels of mouse varied wildly between fibroblasts harvested from different Fubp1(-/-) embryos, suggesting that FBP contributes to Myc set point fixation. FBP helps to hold multiple physiologic processes to close tolerances, at least in part by constraining Myc expression.
Collapse
Affiliation(s)
- Weixin Zhou
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Yang Jo Chung
- Laboratory of Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | | | - Ying Zheng
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Hye-Jung Chung
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Russell Bandle
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Juhong Liu
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Lino Tessarollo
- Mouse Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Eric Batchelor
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Peter D Aplan
- Laboratory of Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - David Levens
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
32
|
Long non-coding RNA CARLo-5 expression is associated with disease progression and predicts outcome in hepatocellular carcinoma patients. Clin Exp Med 2015; 17:33-43. [PMID: 26433964 DOI: 10.1007/s10238-015-0395-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/14/2015] [Indexed: 12/30/2022]
Abstract
Recently, many studies show that long non-coding RNAs (lncRNAs) play important roles in cancer biology. Although its expression was reported dysregulated during tumorigenesis, the contributions of lncRNAs to hepatocellular carcinoma (HCC) are still largely unknown. In particular, the lncRNA CARLo-5 has a functional role in cell-cycle regulation in colon cancer, while the clinical significance and biological function of CARLo-5 in HCC remain unelucidated. In order to fill those study blanks, the expression level of CARLo-5 in human HCC specimens was tested, and its correlation with clinicopathologic features as well as the prognosis for patients with HCC was analyzed. Additionally, MTT, wound healing and transwell assays were employed to investigate the biological function of CARLo-5. The results showed that CARLo-5 levels were significantly overexpressed in HCC tissues compared to ANLT. Besides, high expression of CARLo-5 was associated with liver cirrhosis (P = 0.001), tumor number (P < 0.001), vascular invasion (P = 0.001), capsular formation (P = 0.014) and Edmondson-Steiner grade (P < 0.001), which proved that CARLo-5 was an independent risk factor for overall survival and disease-free survival. In addition, in highly metastatic HCC cell lines (HCCLM3 and MHCC97-L), CARLo-5 was up-regulated, but in lowly metastatic HCC cell lines (HepG2, SNU387), it showed down-regulated. Besides, by using gain and loss of function experiments in HCC cell lines (HCCLM3 and HepG2), the results showed that CARLo-5 overexpression significantly enhanced cell proliferation, migration and invasion in vitro. Our study also revealed that CARLo-5 was prominently up-regulated in HCC specimens and its high expression was associated with poor prognosis of HCC patients. Totally, those findings together indicate that CARLo-5 promotes proliferation and metastasis of HCC and potentially emerged as a novel therapeutic target.
Collapse
|
33
|
Müller B, Bovet M, Yin Y, Stichel D, Malz M, González-Vallinas M, Middleton A, Ehemann V, Schmitt J, Muley T, Meister M, Herpel E, Singer S, Warth A, Schirmacher P, Drasdo D, Matthäus F, Breuhahn K. Concomitant expression of far upstream element (FUSE) binding protein (FBP) interacting repressor (FIR) and its splice variants induce migration and invasion of non-small cell lung cancer (NSCLC) cells. J Pathol 2015; 237:390-401. [PMID: 26177862 DOI: 10.1002/path.4588] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 12/26/2022]
Abstract
Transcription factors integrate a variety of oncogenic input information, facilitate tumour growth and cell dissemination, and therefore represent promising therapeutic target structures. Because over-expression of DNA-interacting far upstream element binding protein (FBP) supports non-small cell lung cancer (NSCLC) migration, we asked whether its repressor, FBP-interacting repressor (FIR) is functionally inactivated and how FIR might affect NSCLC cell biology. Different FIR splice variants were highly expressed in the majority of NSCLCs, with the highest levels in tumours carrying genomic gains of chromosome 8q24.3, which contained the FIR gene locus. Nuclear FIR expression was significantly enriched at the invasion front of primary NSCLCs, but this did not correlate with tumour cell proliferation. FIR accumulation was associated with worse patient survival and tumour recurrence; in addition, FIR over-expression significantly correlated with lymph node metastasis in squamous cell carcinomas (SCCs). In vitro, we applied newly developed methods and modelling approaches for the quantitative and time-resolved description of the pro-migratory and pro-invasive capacities of SCC cells. siRNA-mediated silencing of all FIR variants significantly reduced the speed and directional movement of tumour cells in all phases of migration. Furthermore, sprouting efficiency and single cell invasiveness were diminished following FIR inhibition. Interestingly, the silencing of FIR isoforms lacking exon 2 (FIR(Δexon2)) alone was sufficient to reduce lateral migration and invasion. In summary, by using scale-spanning data derived from primary human tissues, quantitative cellular analyses and mathematical modelling, we have demonstrated that concomitant over-expression of FIR and its splice variants drives NSCLC migration and dissemination.
Collapse
Affiliation(s)
- Benedikt Müller
- Institute of Pathology, University Hospital Heidelberg, Germany
| | - Michael Bovet
- Institute of Pathology, University Hospital Heidelberg, Germany
| | - Yi Yin
- INRIA, Rocquencourt, Paris, France.,Sorbonne Universités, UPMC University Paris 6, Labortoire Jacques-Louis, Paris, France
| | - Damian Stichel
- Centre for Modelling and Simulation in the Biosciences (BIOMS), University of Heidelberg, Germany
| | - Mona Malz
- Institute of Pathology, University Hospital Heidelberg, Germany
| | | | - Alistair Middleton
- Centre for Modelling and Simulation in the Biosciences (BIOMS), University of Heidelberg, Germany
| | - Volker Ehemann
- Institute of Pathology, University Hospital Heidelberg, Germany
| | | | - Thomas Muley
- Translational Research Unit, Thoraxklinik, University Hospital Heidelberg, Germany.,Translational Lung Research Centre Heidelberg (TLRC-H) [Member, German Centre for Lung Research (DZL)], Heidelberg, Germany
| | - Michael Meister
- Translational Research Unit, Thoraxklinik, University Hospital Heidelberg, Germany.,Translational Lung Research Centre Heidelberg (TLRC-H) [Member, German Centre for Lung Research (DZL)], Heidelberg, Germany
| | - Esther Herpel
- Institute of Pathology, University Hospital Heidelberg, Germany.,Tissue Bank, National Centre for Tumour Diseases (NCT), Heidelberg, Germany
| | - Stephan Singer
- Institute of Pathology, University Hospital Heidelberg, Germany.,European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Arne Warth
- Institute of Pathology, University Hospital Heidelberg, Germany.,Translational Lung Research Centre Heidelberg (TLRC-H) [Member, German Centre for Lung Research (DZL)], Heidelberg, Germany
| | | | - Dirk Drasdo
- INRIA, Rocquencourt, Paris, France.,Sorbonne Universités, UPMC University Paris 6, Labortoire Jacques-Louis, Paris, France.,IZBI, University of Leipzig, Germany
| | - Franziska Matthäus
- Centre for Modelling and Simulation in the Biosciences (BIOMS), University of Heidelberg, Germany
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, Germany
| |
Collapse
|
34
|
Matsushita K, Kitamura K, Rahmutulla B, Tanaka N, Ishige T, Satoh M, Hoshino T, Miyagi S, Mori T, Itoga S, Shimada H, Tomonaga T, Kito M, Nakajima-Takagi Y, Kubo S, Nakaseko C, Hatano M, Miki T, Matsuo M, Fukuyo M, Kaneda A, Iwama A, Nomura F. Haploinsufficiency of the c-myc transcriptional repressor FIR, as a dominant negative-alternative splicing model, promoted p53-dependent T-cell acute lymphoblastic leukemia progression by activating Notch1. Oncotarget 2015; 6:5102-17. [PMID: 25671302 PMCID: PMC4467136 DOI: 10.18632/oncotarget.3244] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 12/27/2014] [Indexed: 12/22/2022] Open
Abstract
FUSE-binding protein (FBP)-interacting repressor (FIR) is a c-myc transcriptional suppressor. A splice variant of FIR that lacks exon 2 in the transcriptional repressor domain (FIRΔexon2) upregulates c-myc transcription by inactivating wild-type FIR. The ratio of FIRΔexon2/FIR mRNA was increased in human colorectal cancer and hepatocellular carcinoma tissues. Because FIRΔexon2 is considered to be a dominant negative regulator of FIR, FIR heterozygous knockout (FIR⁺/⁻) C57BL6 mice were generated. FIR complete knockout (FIR⁻/⁻) was embryonic lethal before E9.5; therefore, it is essential for embryogenesis. This strongly suggests that insufficiency of FIR is crucial for carcinogenesis. FIR⁺/⁻ mice exhibited prominent c-myc mRNA upregulation, particularly in the peripheral blood (PB), without any significant pathogenic phenotype. Furthermore, elevated FIRΔexon2/FIR mRNA expression was detected in human leukemia samples and cell lines. Because the single knockout of TP53 generates thymic lymphoma, FIR⁺/⁻TP53⁻/⁻ generated T-cell type acute lymphocytic/lymphoblastic leukemia (T-ALL) with increased organ or bone marrow invasion with poor prognosis. RNA-sequencing analysis of sorted thymic lymphoma cells revealed that the Notch signaling pathway was activated significantly in FIR⁺/⁻TP53⁻/⁻ compared with that in FIR⁺/⁺TP53⁻/⁻ mice. Notch1 mRNA expression in sorted thymic lymphoma cells was confirmed using qRT-PCR. In addition, flow cytometry revealed that c-myc mRNA was negatively correlated with FIR but positively correlated with Notch1 in sorted T-ALL/thymic lymphoma cells. Moreover, the knockdown of TP53 or c-myc using siRNA decreased Notch1 expression in cancer cells. In addition, an adenovirus vector encoding FIRΔexon2 cDNA increased bleomycin-induced DNA damage. Taken together, these data suggest that the altered expression of FIRΔexon2 increased Notch1 at least partially by activating c-Myc via a TP53-independent pathway. In conclusion, the alternative splicing of FIR, which generates FIRΔexon2, may contribute to both colorectal carcinogenesis and leukemogenesis.
Collapse
Affiliation(s)
- Kazuyuki Matsushita
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Inohana, Chiba, Japan
- Division of Laboratory Medicine, Chiba University Hospital, Inohana, Chiba, Japan
| | - Kouichi Kitamura
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Inohana, Chiba, Japan
- Division of Laboratory Medicine, Chiba University Hospital, Inohana, Chiba, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Inohana, Chiba, Japan
| | - Nobuko Tanaka
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Inohana, Chiba, Japan
| | - Takayuki Ishige
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Inohana, Chiba, Japan
- Division of Laboratory Medicine, Chiba University Hospital, Inohana, Chiba, Japan
| | - Mamoru Satoh
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Inohana, Chiba, Japan
| | - Tyuji Hoshino
- Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana, Chiba, Japan
| | - Satoru Miyagi
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Takeshi Mori
- Department of Pediatrics, Graduate School of Medicine, Kobe University, Kusunoki-cho, Kobe, Japan
| | - Sakae Itoga
- Division of Laboratory Medicine, Chiba University Hospital, Inohana, Chiba, Japan
| | - Hideaki Shimada
- Department of Surgery, School of Medicine, Toho University, Omori-nishi, Ota-ku, Tokyo, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Saito-Asagi, Ibaraki, Osaka, Japan
| | - Minoru Kito
- Oriental Yeast Co., Ltd. Azusawa, Itabashi-ku, Tokyo, Japan
| | - Yaeko Nakajima-Takagi
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Shuji Kubo
- Department of Genetics, Hyogo College of Medicine, Mukogawa-cho, Nishinomiya, Hyogo Prefecture, Japan
| | - Chiaki Nakaseko
- Department of Haematology, Chiba University Hospital, Inohana, Chiba, Japan
| | - Masahiko Hatano
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, Inohana, Chiba, Japan
| | - Takashi Miki
- Department of Medical Physiology, Graduate School of Medicine, Chiba University, Inohana, Chiba, Japan
| | - Masafumi Matsuo
- Department of Pediatrics, Graduate School of Medicine, Kobe University, Kusunoki-cho, Kobe, Japan
- Department of Medical Rehabilitation, Faculty of Rehabilitation, Kobegakuin University, Arise, Ikawadani, Nishi, Kobe, Japan
| | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Inohana, Chiba, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Inohana, Chiba, Japan
| | - Atsushi Iwama
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Fumio Nomura
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Inohana, Chiba, Japan
- Division of Laboratory Medicine, Chiba University Hospital, Inohana, Chiba, Japan
| |
Collapse
|
35
|
Rahmutulla B, Matsushita K, Nomura F. Alternative splicing of DNA damage response genes and gastrointestinal cancers. World J Gastroenterol 2014; 20:17305-17313. [PMID: 25516641 PMCID: PMC4265588 DOI: 10.3748/wjg.v20.i46.17305] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/18/2014] [Accepted: 09/16/2014] [Indexed: 02/06/2023] Open
Abstract
Alternative splicing, which is a common phenomenon in mammalian genomes, is a fundamental process of gene regulation and contributes to great protein diversity. Alternative splicing events not only occur in the normal gene regulation process but are also closely related to certain diseases including cancer. In this review, we briefly demonstrate the concept of alternative splicing and DNA damage and describe the association of alternative splicing and cancer pathogenesis, focusing on the potential relationship of alternative splicing, DNA damage, and gastrointestinal cancers. We will also discuss whether alternative splicing leads to genetic instability, which is considered to be a driving force for tumorigenesis. Better understanding of the role and mechanism of alternative splicing in tumorigenesis may provide new directions for future cancer studies.
Collapse
|