1
|
Kouroumalis E, Tsomidis I, Voumvouraki A. HFE-Related Hemochromatosis May Be a Primary Kupffer Cell Disease. Biomedicines 2025; 13:683. [PMID: 40149659 PMCID: PMC11940282 DOI: 10.3390/biomedicines13030683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/28/2025] [Accepted: 03/08/2025] [Indexed: 03/29/2025] Open
Abstract
Iron overload can lead to increased deposition of iron and cause organ damage in the liver, the pancreas, the heart and the synovium. Iron overload disorders are due to either genetic or acquired abnormalities such as excess transfusions or chronic liver diseases. The most common genetic disease of iron deposition is classic hemochromatosis (HH) type 1, which is caused by mutations of HFE. Other rare forms of HH include type 2A with mutations at the gene hemojuvelin or type 2B with mutations in HAMP that encodes hepcidin. HH type 3, is caused by mutations of the gene that encodes transferrin receptor 2. Mutations of SLC40A1 which encodes ferroportin cause either HH type 4A or HH type 4B. In the present review, an overview of iron metabolism including absorption by enterocytes and regulation of iron by macrophages, liver sinusoidal endothelial cells (LSECs) and hepatocyte production of hepcidin is presented. Hereditary Hemochromatosis and the current pathogenetic model are analyzed. Finally, a new hypothesis based on published data was suggested. The Kupffer cell is the primary defect in HFE hemochromatosis (and possibly in types 2 and 3), while the hepcidin-relative deficiency, which is the common underlying abnormality in the three types of HH, is a secondary consequence.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Department of Gastroenterology, PAGNI University Hospital, University of Crete Medical School, 71500 Heraklion, Greece
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Greece;
| | - Ioannis Tsomidis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Greece;
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Greece;
| |
Collapse
|
2
|
Amadei M, Polticelli F, Musci G, Bonaccorsi di Patti MC. The Ferroxidase-Permease System for Transport of Iron Across Membranes: From Yeast to Humans. Int J Mol Sci 2025; 26:875. [PMID: 39940646 PMCID: PMC11817551 DOI: 10.3390/ijms26030875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/16/2025] [Accepted: 01/19/2025] [Indexed: 02/16/2025] Open
Abstract
Transport of iron across the cell membrane is a tightly controlled process carried out by specific proteins in all living cells. In yeast and in mammals, a system formed by an enzyme with ferroxidase activity coupled to a membrane transporter supports iron uptake or iron efflux, respectively. Ferroxidase belongs to the family of blue multicopper oxidases, enzymes able to couple the one-electron oxidation of substrate(s) to full reduction of molecular oxygen to water. On the other hand, the permeases are widely different and are specific to Fe3+ and Fe2+ in yeast and multicellular organisms, respectively. This review will describe the yeast and human ferroxidase-permease systems, highlighting similarities and differences in structure, function and regulation of the respective protein components.
Collapse
Affiliation(s)
- Matteo Amadei
- Department of Biochemical Sciences ‘A. Rossi Fanelli’, Sapienza University of Rome, 00185 Rome, Italy;
| | | | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy;
| | | |
Collapse
|
3
|
Hong J, Mukherjee B, Sanjoba C, Yamagishi J, Goto Y. Upregulation of ATP6V0D2 benefits intracellular survival of Leishmania donovani in erythrocytes-engulfing macrophages. Front Cell Infect Microbiol 2024; 14:1332381. [PMID: 38357442 PMCID: PMC10864549 DOI: 10.3389/fcimb.2024.1332381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024] Open
Abstract
Visceral leishmaniasis (VL) is the most severe type of leishmaniasis which is caused by infection of Leishmania donovani complex. In the BALB/c mouse model of VL, multinucleated giant cells (MGCs) with heavy parasite infection consist of the largest population of hemophagocytes in the spleen of L. donovani-infected mice, indicating that MGCs provide the parasites a circumstance beneficial for their survival. Although ATP6V0D2 is a demonstrated factor inducing the formation of hemophagocytic MGCs during L. donovani infection, functions of this protein in shaping the infection outcome in macrophages remain unclear. Here we evaluated the influence of upregulated ATP6V0D2 on intracellular survival of the parasites. L. donovani infection-induced hemophagocytosis of normal erythrocytes by macrophages was suppressed by RNAi-based knockdown of Atp6v0d2. The knockdown of Atp6v0d2 did not improve the survival of amastigotes within macrophages when the cells were cultured in the absence of erythrocytes. On the other hand, reduced intracellular survival of amastigotes in macrophages by the knockdown was observed when macrophages were supplemented with antibody-opsonized erythrocytes before infection. There, increase in cytosolic labile iron pool was observed in the L. donovani-infected knocked-down macrophages. It suggests that ATP6V0D2 plays roles not only in upregulation of hemophagocytosis but also in iron trafficking within L. donovani-infected macrophages. Superior access to iron in macrophages may be how the upregulated expression of the molecule brings benefit to Leishmania for their intracellular survival in the presence of erythrocytes.
Collapse
Affiliation(s)
- Jing Hong
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Budhaditya Mukherjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Chizu Sanjoba
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Junya Yamagishi
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yasuyuki Goto
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Feng R, Wang D, Li T, Liu X, Peng T, Liu M, Ren G, Xu H, Luo H, Lu D, Qi B, Zhang M, Li Y. Elevated SLC40A1 impairs cardiac function and exacerbates mitochondrial dysfunction, oxidative stress, and apoptosis in ischemic myocardia. Int J Biol Sci 2024; 20:414-432. [PMID: 38169607 PMCID: PMC10758104 DOI: 10.7150/ijbs.89368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/28/2023] [Indexed: 01/05/2024] Open
Abstract
Iron homeostasis is crucial for optimal cardiac function. Iron deficiency and overload have been linked to the development of cardiomyopathy and heart failure (HF) via intricate mechanisms. Although the crucial role of SLC40A1 in iron metabolism by facilitating the efflux of cellular iron has been confirmed, its specific molecular functions in cardiovascular diseases remain poorly understood. In this study, we generated mice with inducible cardiomyocyte-specific overexpression of SLC40A1 for the first time. The overexpression of SLC40A1 in the cardiomyocytes of adult mice resulted in significant iron deficiency, leading to mitochondrial dysfunction, oxidative stress, and apoptosis, subsequently resulting in the development of fatal HF. Notably, SLC40A1 upregulation was observed in the ischemic region during the initial phase of myocardial infarction (MI), contributing to iron loss in the cardiomyocytes. Conversely, the cardiomyocyte-specific knockdown of SLC40A1 improved cardiac dysfunction after MI by enhancing mitochondrial function, suppressing oxidative stress, and reducing cardiomyocytes apoptosis. Mechanistically, Steap4 interacted with SLC40A1, facilitating SLC40A1-mediated iron efflux from cardiomyocytes. In short, our study presents evidence for the involvement of SLC40A1 in the regulation of myocardial iron levels and the therapeutic benefits of cardiomyocyte-specific knockdown of SLC40A1 in MI in mice.
Collapse
Affiliation(s)
- Renqian Feng
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Di Wang
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Tiantian Li
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Xulin Liu
- Department of Orthodontics, Stomatology Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Tingwei Peng
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Mingchuan Liu
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Gaotong Ren
- Department of Cardiology, NO. 988 Hospital of Joint Logistic Sopport Force, Zhengzhou, 450007, China
| | - Haowei Xu
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Haixia Luo
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Denghui Lu
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Bingchao Qi
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Mingming Zhang
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Yan Li
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an, 710032, China
| |
Collapse
|
5
|
Lin Y, Gong H, Liu J, Hu Z, Gao M, Yu W, Liu J. HECW1 induces NCOA4-regulated ferroptosis in glioma through the ubiquitination and degradation of ZNF350. Cell Death Dis 2023; 14:794. [PMID: 38049396 PMCID: PMC10695927 DOI: 10.1038/s41419-023-06322-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/12/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023]
Abstract
Tumor suppression by inducing NCOA4-mediated ferroptosis has been shown to be feasible in a variety of tumors, including gliomas. However, the regulatory mechanism of ferroptosis induced by NCOA4 in glioma has not been studied deeply. HECW1 and ZNF350 are involved in the biological processes of many tumors, but their specific effects and mechanisms on glioma are still unclear. In this study, we found that HECW1 decreased the survival rate of glioma cells and enhanced iron accumulation, lipid peroxidation, whereas ZNF350 showed the opposite effect. Mechanistically, HECW1 directly regulated the ubiquitination and degradation of ZNF350, eliminated the transcriptional inhibition of NCOA4 by ZNF350, and ultimately activated NCOA4-mediated iron accumulation, lipid peroxidation, and ferroptosis. We demonstrate that HECW1 induces ferroptosis and highlight the value of HECW1 and ZNF350 in the prognostic evaluation of patients with glioma. We also elucidate the mechanisms underlying the HECW1/ZNF350/NCOA4 axis and its regulation of ferroptosis. Our findings enrich the understanding of ferroptosis and provide potential treatment options for glioma patients.
Collapse
Affiliation(s)
- Yuancai Lin
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 36 Sanhao Road, 110000, Shenyang, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, 7 Mulan Road, 117000, Benxi, China
| | - Hailong Gong
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 36 Sanhao Road, 110000, Shenyang, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, 7 Mulan Road, 117000, Benxi, China
| | - Jinliang Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 36 Sanhao Road, 110000, Shenyang, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, 7 Mulan Road, 117000, Benxi, China
| | - Zhiwen Hu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 36 Sanhao Road, 110000, Shenyang, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, 7 Mulan Road, 117000, Benxi, China
| | - Mingjun Gao
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 36 Sanhao Road, 110000, Shenyang, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, 7 Mulan Road, 117000, Benxi, China
| | - Wei Yu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 36 Sanhao Road, 110000, Shenyang, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, 7 Mulan Road, 117000, Benxi, China
| | - Jing Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 36 Sanhao Road, 110000, Shenyang, China.
- Liaoning Clinical Medical Research Center in Nervous System Disease, 7 Mulan Road, 117000, Benxi, China.
| |
Collapse
|
6
|
Hu J, Li Y, Zhang L, Peng G, Zhang F, Zhao X. Iron overload due to SLC40A1 mutation of type 4 hereditary hemochromatosis. Med Mol Morphol 2023; 56:233-238. [PMID: 37382698 DOI: 10.1007/s00795-023-00359-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/12/2023] [Indexed: 06/30/2023]
Abstract
Hereditary hemochromatosis type 4 is an autosomal-dominant inherited disease characterized by a mutation in the SLC40A1 gene encoding ferroportin. This condition can be further subdivided into types 4A (loss-of-function mutations) and 4B (gain-of-function mutations). To date, only a few cases of type 4B cases have been reported, and the treatment has not been clearly mentioned. Here, we report a genotype of hereditary hemochromatosis type 4B involving the heterozygous mutation c.997 T > C (p. Tyr333His) in SLC40A1. The patient was treated with red blood cell apheresis every month for 1 year, followed by oral deferasirox, and the combined therapy was found to be effective.
Collapse
Affiliation(s)
- Jing Hu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yuan Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Li Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Guangxin Peng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Fengkui Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xin Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
7
|
邓 广, 贾 慧, 李 允, 李 俊, 吴 潮, 石 皓, 秦 梦, 赵 嘉, 刘 畅, 廖 雨, 高 磊. [ Erchen Decoction improves iron homeostasis in mice with non-alcoholic fatty liver disease by regulating iron transport capacity in the spleen]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:1287-1296. [PMID: 37712264 PMCID: PMC10505571 DOI: 10.12122/j.issn.1673-4254.2023.08.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Indexed: 09/16/2023]
Abstract
OBJECTIVE To investigate the effect of Erchen Decoction on iron homeostasis in mice with nonalcoholic fatty liver disease (NAFLD) and its mechanism for regulating iron transport in spleen cells. METHODS Thirty male C57BL/6J mice were given a high-fat diet for 12 weeks and randomized (n=6) at the 7th week for gavage (3 times a week) of drinking water (NAFLD model group), Erchen Decoction at low, medium and high doses (7.5, 15, and 30g/kg, respectively), or polyene phosphatidyl choline (PPC; 9.12 mg/kg), with another 6 mice with low-fat and low-sugar feeding as the control group. The active components of Erchen Decoction were determined by HPLC-MS. Lipid accumulation in the liver was evaluated by HE staining and Nile red staining. Prussian blue staining was used to observe iron content in the spleen. The iron ion content in the liver tissue was detected using a detection kit. The expressions of ferroportin1 (Fpn1), transferrin receptor (TfR), Steap3, HO-1, Ter-119, CD163 and CD68 were detected using Western blotting, immunohistochemistry and immunofluorescence staining. RESULTS Medium- and high-dose Erchen Decoction partially reversed the increase of lipid accumulation in the liver of NAFLD mice and showed better lipid-lowering effect than PPC. The NAFLD mice showed significantly decreased iron ion content in the spleen with increased hepatic and serum iron contents (P < 0.05), decreased TfR protein expression (P < 0.05), and increased Fpn1 and Steap3 protein expressions (P < 0.05), and these changes were significantly improved by the drug interventions. Erchen Decoction also improved the function of CD163 macrophages in the spleen of NAFLD mice by up-regulating the expression of HO-1 (P < 0.05). CONCLUSION Erchen Decoction can alleviate high-fat diet-induced iron metabolism disorder by improving the iron ion transport ability of the spleen cells to delay the progression of NAFLD.
Collapse
Affiliation(s)
- 广辉 邓
- 南方医科大学中医药学院,广东 广州 510515School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
- 南方医科大学中西医结合医院消化内科,广东 广州 510315Department of Gastroenterology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - 慧 贾
- 南方医科大学中医药学院,广东 广州 510515School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - 允家 李
- 南方医科大学中医药学院,广东 广州 510515School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - 俊杰 李
- 南方医科大学中医药学院,广东 广州 510515School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - 潮锋 吴
- 南方医科大学中医药学院,广东 广州 510515School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - 皓 石
- 南方医科大学中医药学院,广东 广州 510515School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - 梦晨 秦
- 南方医科大学中医药学院,广东 广州 510515School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - 嘉敏 赵
- 南方医科大学中医药学院,广东 广州 510515School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - 畅 刘
- 南方医科大学中医药学院,广东 广州 510515School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - 雨欣 廖
- 南方医科大学中医药学院,广东 广州 510515School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - 磊 高
- 南方医科大学中医药学院,广东 广州 510515School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
- 南方医科大学中西医结合医院消化内科,广东 广州 510315Department of Gastroenterology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| |
Collapse
|
8
|
Abstract
In 2020, nearly 20 million peoples got cancer and nearly 10 million peoples died of cancer, indicating the cancer remains a great threat to human health and life. New therapies are still in urgent demand. We here develop a novel cancer therapy named Ferroptosis ASsassinates Tumor (FAST) by combining iron oxide nanoparticles with cancer-selective knockdown of seven key ferroptosis-resistant genes (FPN, LCN2, FTH1, FSP1, GPX4, SLC7A11, NRF2). We found that FAST had notable anti-tumor activity in a variety of cancer cells but little effect on normal cells. Especially, FAST eradicated three different types of tumors (leukemia, colon cancer, and lung metastatic melanoma) from over 50% of cancer mice, making the mice survive up to 250 days without tumor relapse. FAST also significantly inhibited and prevented the growth of spontaneous breast cancer and improved survival in mice. FAST showed high pan anti-tumor efficacy, high cancer specificity, and in vivo safety. FAST defines a new form of advanced nanomaterials, advanced combinatorial nanomaterials, by combining two kinds of nanomaterials, a chemical nanomaterial (iron oxide nanoparticles) and a biochemical nanomaterial (adeno-associated virus), which successfully turns a general iron nanomaterial into an unprecedented assassin to cancer.
Collapse
Affiliation(s)
- Tao Luo
- grid.263826.b0000 0004 1761 0489State Key Laboratory of Bioelectronics, Southeast University, 210096 Nanjing, China
| | - Yile Wang
- grid.263826.b0000 0004 1761 0489State Key Laboratory of Bioelectronics, Southeast University, 210096 Nanjing, China
| | - Jinke Wang
- grid.263826.b0000 0004 1761 0489State Key Laboratory of Bioelectronics, Southeast University, 210096 Nanjing, China
| |
Collapse
|
9
|
Abstract
Although some effective therapies have been available for cancer, it still poses a great threat to human health and life due to its drug resistance and low response in patients. Here, we develop a ferroptosis-based therapy by combining iron nanoparticles and cancer-specific gene interference. The expression of two iron metabolic genes (FPN and LCN2) was selectively knocked down in cancer cells by Cas13a or microRNA controlled by a NF-κB-specific promoter. Cells were simultaneously treated by iron nanoparticles. As a result, a significant ferroptosis was induced in a wide variety of cancer cells. However, the same treatment had little effect on normal cells. By transferring genes with adeno-associated virus and iron nanoparticles, the significant tumor growth inhibition and durable cure were obtained in mice with the therapy. In this work, we thus show a cancer therapy based on gene interference-enhanced ferroptosis.
Collapse
Affiliation(s)
- Jinliang Gao
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
| | - Tao Luo
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
| | - Jinke Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China.
| |
Collapse
|
10
|
Mertens C, Marques O, Horvat NK, Simonetti M, Muckenthaler MU, Jung M. The Macrophage Iron Signature in Health and Disease. Int J Mol Sci 2021; 22:ijms22168457. [PMID: 34445160 PMCID: PMC8395084 DOI: 10.3390/ijms22168457] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022] Open
Abstract
Throughout life, macrophages are located in every tissue of the body, where their main roles are to phagocytose cellular debris and recycle aging red blood cells. In the tissue niche, they promote homeostasis through trophic, regulatory, and repair functions by responding to internal and external stimuli. This in turn polarizes macrophages into a broad spectrum of functional activation states, also reflected in their iron-regulated gene profile. The fast adaptation to the environment in which they are located helps to maintain tissue homeostasis under physiological conditions.
Collapse
Affiliation(s)
- Christina Mertens
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, INF 350, 69120 Heidelberg, Germany; (O.M.); (N.K.H.); (M.U.M.)
- Correspondence: (C.M.); (M.J.); Tel.: +(49)-622-156-4582 (C.M.); +(49)-696-301-6931 (M.J.)
| | - Oriana Marques
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, INF 350, 69120 Heidelberg, Germany; (O.M.); (N.K.H.); (M.U.M.)
- Molecular Medicine Partnership Unit, 69120 Heidelberg, Germany
| | - Natalie K. Horvat
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, INF 350, 69120 Heidelberg, Germany; (O.M.); (N.K.H.); (M.U.M.)
- Molecular Medicine Partnership Unit, 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Collaboration for Joint PhD Degree between EMBL and the Faculty of Biosciences, University of Heidelberg, 69117 Heidelberg, Germany
| | - Manuela Simonetti
- Institute of Pharmacology, Medical Faculty Heidelberg, Heidelberg University, INF 366, 69120 Heidelberg, Germany;
| | - Martina U. Muckenthaler
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, INF 350, 69120 Heidelberg, Germany; (O.M.); (N.K.H.); (M.U.M.)
- Molecular Medicine Partnership Unit, 69120 Heidelberg, Germany
| | - Michaela Jung
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
- Correspondence: (C.M.); (M.J.); Tel.: +(49)-622-156-4582 (C.M.); +(49)-696-301-6931 (M.J.)
| |
Collapse
|
11
|
Cai C, Zeng D, Gao Q, Ma L, Zeng B, Zhou Y, Wang H. Decreased ferroportin in hepatocytes promotes macrophages polarize towards an M2-like phenotype and liver fibrosis. Sci Rep 2021; 11:13386. [PMID: 34183746 PMCID: PMC8239022 DOI: 10.1038/s41598-021-92839-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/03/2021] [Indexed: 12/03/2022] Open
Abstract
Iron release from macrophages is closely regulated by the interaction of hepcidin, a peptide hormone produced by hepatocytes, with the macrophage iron exporter ferroportin (FPN1). However, the functions of FPN1 in hepatocyte secretion and macrophage polarization remain unknown. CD68 immunohistochemical staining and double immunofluorescence staining for F4/80 and Ki67 in transgenic mouse livers showed that the number of macrophages in FPN1−/+ and FPN1−/− mouse livers was significantly increased compared to that in WT (FPN+/+) mice. FPN1 downregulation in hepatic cells increased the levels of the M2 markers CD206, TGF- β, VEGF, MMP-9, Laminin, Collagen, IL-4 and IL-10. Furthermore, the expression of CD16/32 and iNOS, as M1 markers, exhibited the opposite trend. Meanwhile, α-SMA immunohistochemistry and Sirius red staining showed that the trend of liver fibrosis in FPN1−/− mice was more significant than that in control mice. Similarly, in vitro FPN1 knockdown in L02-Sh/L02-SCR liver cell lines yielded similar results. Taken together, we demonstrated that downregulated FPN1 expression in hepatocytes can promote the proliferation and polarization of macrophages, leading to hepatic fibrosis. Above all, the FPN1 axis might provide a potential target for hepatic fibrosis.
Collapse
Affiliation(s)
- Chengyuan Cai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Danning Zeng
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, People's Republic of China
| | - Qing Gao
- Department of Healthy Food Development, Infinitus (China) Company Ltd., Guangzhou, 510024, Guangdong, People's Republic of China
| | - Lei Ma
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China
| | - Bohang Zeng
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, People's Republic of China
| | - Yi Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China.
| | - He Wang
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, People's Republic of China.
| |
Collapse
|
12
|
Abbasi U, Abbina S, Gill A, Takuechi LE, Kizhakkedathu JN. Role of Iron in the Molecular Pathogenesis of Diseases and Therapeutic Opportunities. ACS Chem Biol 2021; 16:945-972. [PMID: 34102834 DOI: 10.1021/acschembio.1c00122] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Iron is an essential mineral that serves as a prosthetic group for a variety of proteins involved in vital cellular processes. The iron economy within humans is highly conserved in that there is no proper iron excretion pathway. Therefore, iron homeostasis is highly evolved to coordinate iron acquisition, storage, transport, and recycling efficiently. A disturbance in this state can result in excess iron burden in which an ensuing iron-mediated generation of reactive oxygen species imparts widespread oxidative damage to proteins, lipids, and DNA. On the contrary, problems in iron deficiency either due to genetic or nutritional causes can lead to a number of iron deficiency disorders. Iron chelation strategies have been in the works since the early 1900s, and they still remain the most viable therapeutic approach to mitigate the toxic side effects of excess iron. Intense investigations on improving the efficacy of chelation strategies while being well tolerated and accepted by patients have been a particular focus for many researchers over the past 30 years. Moreover, recent advances in our understanding on the role of iron in the pathogenesis of different diseases (both in iron overload and iron deficiency conditions) motivate the need to develop new therapeutics. We summarized recent investigations into the role of iron in health and disease conditions, iron chelation, and iron delivery strategies. Information regarding small molecule as well as macromolecular approaches and how they are employed within different disease pathogenesis such as primary and secondary iron overload diseases, cancer, diabetes, neurodegenerative diseases, infections, and in iron deficiency is provided.
Collapse
Affiliation(s)
- Usama Abbasi
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z7
| | - Srinivas Abbina
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z7
| | - Arshdeep Gill
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
| | - Lily E. Takuechi
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z7
| | - Jayachandran N. Kizhakkedathu
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z7
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
- The School of Biomedical Engineering, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| |
Collapse
|
13
|
Colucci S, Marques O, Altamura S. 20 years of Hepcidin: How far we have come. Semin Hematol 2021; 58:132-144. [PMID: 34389105 DOI: 10.1053/j.seminhematol.2021.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/12/2021] [Accepted: 05/31/2021] [Indexed: 12/20/2022]
Abstract
Twenty years ago the discovery of hepcidin deeply changed our understanding of the regulation of systemic iron homeostasis. It is now clear that hepcidin orchestrates systemic iron levels by controlling the amount of iron exported into the bloodstream through ferroportin. Hepcidin expression is increased in situations where systemic iron levels should be reduced, such as in iron overload and infection. Conversely, hepcidin is repressed during iron deficiency, hypoxia or expanded erythropoiesis, to increase systemic iron availability and sustain erythropoiesis. In this review, we will focus on molecular mechanisms of hepcidin regulation and on the pathological consequences of their disruption.
Collapse
Affiliation(s)
- Silvia Colucci
- Department of Pediatric Hematology, Oncology and Immunology - University of Heidelberg, Heidelberg, Germany.; Molecular Medicine Partnership Unit, EMBL and University of Heidelberg, Heidelberg, Germany
| | - Oriana Marques
- Department of Pediatric Hematology, Oncology and Immunology - University of Heidelberg, Heidelberg, Germany.; Molecular Medicine Partnership Unit, EMBL and University of Heidelberg, Heidelberg, Germany
| | - Sandro Altamura
- Department of Pediatric Hematology, Oncology and Immunology - University of Heidelberg, Heidelberg, Germany.; Molecular Medicine Partnership Unit, EMBL and University of Heidelberg, Heidelberg, Germany..
| |
Collapse
|
14
|
Evidence for dimerization of ferroportin in a human hepatic cell line using proximity ligation assays. Biosci Rep 2021; 40:222672. [PMID: 32301493 PMCID: PMC7201565 DOI: 10.1042/bsr20191499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 04/08/2020] [Accepted: 04/16/2020] [Indexed: 12/30/2022] Open
Abstract
Mutations in the only known iron exporter ferroportin (FPN) in humans are associated with the autosomal dominantly inherited iron overload disorder ferroportin disease or type IV hereditary hemochromatosis (HH). While our knowledge of the central role of FPN in iron homeostasis has grown in the last 20 years, there exist some questions surrounding the structure and membrane topology of FPN with conflicting data on whether this receptor acts as a monomer or a multimer. To investigate and determine if FPN dimerization occurs in cells, we used novel tools including a variety of different FPN constructs expressing different tagged versions of the protein, a novel antibody that only detects cell surface FPN and proximity ligation assays. The results of the present study suggest that both the carboxy- and amino-termini of the FPN protein are intracellular. We also show that exogenously transfected FPN forms dimers; these dimers can be formed between the wild-type and mutant FPN proteins. This is the first study to examine the intracellular dimerization of FPN protein. Using proximity ligation assays, we show intracellular localization of FPN dimers and the interaction between FPN and hepcidin proteins as well. These results have important implications in the field of iron metabolism and add to our knowledge about FPN membrane topology and physiology of iron transport. This will be of importance in understanding the clinical implications of FPN mutations and of interest to future research aimed at targeting FPN expression to modulate iron homeostasis.
Collapse
|
15
|
Gammella E, Correnti M, Cairo G, Recalcati S. Iron Availability in Tissue Microenvironment: The Key Role of Ferroportin. Int J Mol Sci 2021; 22:ijms22062986. [PMID: 33804198 PMCID: PMC7999357 DOI: 10.3390/ijms22062986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022] Open
Abstract
Body iron levels are regulated by hepcidin, a liver-derived peptide that exerts its function by controlling the presence of ferroportin (FPN), the sole cellular iron exporter, on the cell surface. Hepcidin binding leads to FPN internalization and degradation, thereby inhibiting iron release, in particular from iron-absorbing duodenal cells and macrophages involved in iron recycling. Disruption in this regulatory mechanism results in a variety of disorders associated with iron-deficiency or overload. In recent years, increasing evidence has emerged to indicate that, in addition to its role in systemic iron metabolism, FPN may play an important function in local iron control, such that its dysregulation may lead to tissue damage despite unaltered systemic iron homeostasis. In this review, we focus on recent discoveries to discuss the role of FPN-mediated iron export in the microenvironment under both physiological and pathological conditions.
Collapse
|
16
|
Rishi G, Subramaniam VN. Biology of the iron efflux transporter, ferroportin. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 123:1-16. [PMID: 33485480 DOI: 10.1016/bs.apcsb.2020.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Iron, the most common metal in the earth, is also an essential component for almost all living organisms. While these organisms require iron for many biological processes, too much or too little iron itself poses many issues; this is most easily recognized in human beings. The control of body iron levels is thus an important metabolic process which is regulated essentially by controlling the expression, activity and levels of the iron transporter ferroportin. Ferroportin is the only known iron exporter. The function and activity of ferroportin is influenced by its interaction with the iron-regulatory peptide hepcidin, which itself is regulated by many factors. Here we review the current state of understanding of the mechanisms that regulate ferroportin and its function.
Collapse
Affiliation(s)
- Gautam Rishi
- Hepatogenomics Research Group, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - V Nathan Subramaniam
- Hepatogenomics Research Group, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| |
Collapse
|
17
|
Maldonado E, Rojas DA, Morales S, Miralles V, Solari A. Dual and Opposite Roles of Reactive Oxygen Species (ROS) in Chagas Disease: Beneficial on the Pathogen and Harmful on the Host. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8867701. [PMID: 33376582 PMCID: PMC7746463 DOI: 10.1155/2020/8867701] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/22/2020] [Accepted: 11/25/2020] [Indexed: 11/18/2022]
Abstract
Chagas disease is a neglected tropical disease, which affects an estimate of 6-7 million people worldwide. Chagas disease is caused by Trypanosoma cruzi, which is a eukaryotic flagellate unicellular organism. At the primary infection sites, these parasites are phagocytized by macrophages, which produce reactive oxygen species (ROS) in response to the infection with T. cruzi. The ROS produce damage to the host tissues; however, macrophage-produced ROS is also used as a signal for T. cruzi proliferation. At the later stages of infection, mitochondrial ROS is produced by the infected cardiomyocytes that contribute to the oxidative damage, which persists at the chronic stage of the disease. The oxidative damage leads to a functional impairment of the heart. In this review article, we will discuss the mechanisms by which T. cruzi is able to deal with the oxidative stress and how this helps the parasite growth at the acute phase of infection and how the oxidative stress affects the cardiomyopathy at the chronic stage of the Chagas disease. We will describe the mechanisms used by the parasite to deal with ROS and reactive nitrogen species (RNS) through the trypanothione and the mechanisms used to repair the damaged DNA. Also, a description of the events produced by ROS at the acute and chronic stages of the disease is presented. Lastly, we discuss the benefits of ROS for T. cruzi growth and proliferation and the possible mechanisms involved in this phenomenon. Hypothesis is put forward to explain the molecular mechanisms by which ROS triggers parasite growth and proliferation and how ROS is able to produce a long persisting damage on cardiomyocytes even in the absence of the parasite.
Collapse
Affiliation(s)
- Edio Maldonado
- Programa Biología Celular y Molecular, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Diego A. Rojas
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Sebastian Morales
- Programa Biología Celular y Molecular, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Vicente Miralles
- Departamento de Bioquímica y Biología Molecular, Universidad de Valencia, Valencia, Spain
| | - Aldo Solari
- Programa Biología Celular y Molecular, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
18
|
Le Tertre M, Ka C, Raud L, Berlivet I, Gourlaouen I, Richard G, Uguen K, Chen JM, Férec C, Fichou Y, Le Gac G. Splicing analysis of SLC40A1 missense variations and contribution to hemochromatosis type 4 phenotypes. Blood Cells Mol Dis 2020; 87:102527. [PMID: 33341511 DOI: 10.1016/j.bcmd.2020.102527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 02/09/2023]
Abstract
Hemochromatosis type 4, or ferroportin disease, is considered as the second leading cause of primary iron overload after HFE-related hemochromatosis. The disease, which is predominantly associated with missense variations in the SLC40A1 gene, is characterized by wide clinical heterogeneity. We tested the possibility that some of the reported missense mutations, despite their positions within exons, cause splicing defects. Fifty-eight genetic variants were selected from the literature based on two criteria: a precise description of the nucleotide change and individual evidence of iron overload. The selected variants were investigated by different in silico prediction tools and prioritized for midigene splicing assays. Of the 15 variations tested in vitro, only two were associated with splicing changes. We confirm that the c.1402G>A transition (p.Gly468Ser) disrupts the exon 7 donor site, leading to the use of an exonic cryptic splicing site and the generation of a truncated reading frame. We observed, for the first time, that the p.Gly468Ser substitution has no effect on the ferroportin iron export function. We demonstrate alternative splicing of exon 5 in different cell lines and show that the c.430A>G (p.Asn144Asp) variant promotes exon 5 inclusion. This could be part of a gain-of-function mechanism. We conclude that splicing mutations rarely contribute to hemochromatosis type 4 phenotypes. An in-depth investigation of exon 5 auxiliary splicing sequences may help to elucidate the mechanism by which splicing regulatory proteins regulate the production of the full length SLC40A1 transcript and to clarify its physiological importance.
Collapse
Affiliation(s)
- Marlène Le Tertre
- Univ Brest, Inserm, EFS, UMR1078, GGB, F-29200, France; CHRU de Brest, Service de Génétique Médicale et Biologie de la Reproduction, Laboratoire de Génétique Moléculaire et Histocompatibilité, F-29200, France
| | - Chandran Ka
- Univ Brest, Inserm, EFS, UMR1078, GGB, F-29200, France; CHRU de Brest, Service de Génétique Médicale et Biologie de la Reproduction, Laboratoire de Génétique Moléculaire et Histocompatibilité, F-29200, France; Laboratory of Excellence GR-Ex, F-75015, France
| | - Loann Raud
- Univ Brest, Inserm, EFS, UMR1078, GGB, F-29200, France; Association Gaétan Saleün, F-29200, France
| | | | - Isabelle Gourlaouen
- Univ Brest, Inserm, EFS, UMR1078, GGB, F-29200, France; Laboratory of Excellence GR-Ex, F-75015, France
| | | | - Kévin Uguen
- Univ Brest, Inserm, EFS, UMR1078, GGB, F-29200, France; CHRU de Brest, Service de Génétique Médicale et Biologie de la Reproduction, Laboratoire de Génétique Moléculaire et Histocompatibilité, F-29200, France
| | - Jian-Min Chen
- Univ Brest, Inserm, EFS, UMR1078, GGB, F-29200, France
| | - Claude Férec
- Univ Brest, Inserm, EFS, UMR1078, GGB, F-29200, France; CHRU de Brest, Service de Génétique Médicale et Biologie de la Reproduction, Laboratoire de Génétique Moléculaire et Histocompatibilité, F-29200, France; Association Gaétan Saleün, F-29200, France
| | - Yann Fichou
- Univ Brest, Inserm, EFS, UMR1078, GGB, F-29200, France; Laboratory of Excellence GR-Ex, F-75015, France
| | - Gérald Le Gac
- Univ Brest, Inserm, EFS, UMR1078, GGB, F-29200, France; CHRU de Brest, Service de Génétique Médicale et Biologie de la Reproduction, Laboratoire de Génétique Moléculaire et Histocompatibilité, F-29200, France; Laboratory of Excellence GR-Ex, F-75015, France.
| |
Collapse
|
19
|
Corradini E, Buzzetti E, Pietrangelo A. Genetic iron overload disorders. Mol Aspects Med 2020; 75:100896. [PMID: 32912773 DOI: 10.1016/j.mam.2020.100896] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/11/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023]
Abstract
Due to its pivotal role in orchestrating vital cellular functions and metabolic processes, iron is an essential component of the human body and a main micronutrient in the human diet. However, excess iron causes an increased production of reactive oxygen species leading to cell dysfunction or death, tissue damage and organ disease. Iron overload disorders encompass a wide spectrum of pathological conditions of hereditary or acquired origin. A number of 'iron genes' have been identified as being associated with hereditary iron overload syndromes, the most common of which is hemochromatosis. Although linked to at least five different genes, hemochromatosis is recognized as a unique syndromic entity based on a common pathogenetic mechanism leading to excessive entry of unneeded iron into the bloodstream. In this review, we focus on the pathophysiologic basis and clinical aspects of the most common genetic iron overload syndromes in humans.
Collapse
Affiliation(s)
- Elena Corradini
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia; Internal Medicine and Centre for Hemochromatosis and Heredometabolic Liver Diseases, ERN -EuroBloodNet Center, Azienda Ospedaliero-Universitaria di Modena, Policlinico, Modena, Italy
| | - Elena Buzzetti
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia; Internal Medicine and Centre for Hemochromatosis and Heredometabolic Liver Diseases, ERN -EuroBloodNet Center, Azienda Ospedaliero-Universitaria di Modena, Policlinico, Modena, Italy
| | - Antonello Pietrangelo
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia; Internal Medicine and Centre for Hemochromatosis and Heredometabolic Liver Diseases, ERN -EuroBloodNet Center, Azienda Ospedaliero-Universitaria di Modena, Policlinico, Modena, Italy.
| |
Collapse
|
20
|
Viveiros A, Panzer M, Baumgartner N, Schaefer B, Finkenstedt A, Henninger B, Theurl I, Nachbaur K, Weiss G, Haubner R, Decristoforo C, Tilg H, Zoller H. Reduced iron export associated with hepcidin resistance can explain the iron overload spectrum in ferroportin disease. Liver Int 2020; 40:1941-1951. [PMID: 32450003 PMCID: PMC7496278 DOI: 10.1111/liv.14539] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Ferroportin disease (FD) and hemochromatosis type 4 (HH4) are associated with variants in the ferroportin-encoding gene SLC40A1. Both phenotypes are characterized by iron overload despite being caused by distinct variants that either mediate reduced cellular iron export in FD or resistance against hepcidin-induced inactivation of ferroportin in HH4. The aim of this study was to assess if reduced iron export also confers hepcidin resistance and causes iron overload in FD associated with the R178Q variant. METHODS The ferroportin disease variants R178Q andA77D and the HH4-variant C326Y were overexpressed in HEK-293T cells and subcellular localization was characterized by confocal microscopy and flow cytometry. Iron export and cytosolic ferritin were measured as markers of iron transport and radioligand binding studies were performed. The hepcidin-ferroportin axis was assessed by ferritin/hepcidin correlation in patients with different iron storage diseases. RESULTS In the absence of hepcidin, the R178Q and A77D variants exported less iron when compared to normal and C326Y ferroportin. In the presence of hepcidin, the R178Q and C326Y, but not the A77D-variant, exported more iron than cells expressing normal ferroportin. Regression analysis of serum hepcidin and ferritin in patients with iron overload are compatible with hepcidin deficiency in HFE hemochromatosis and hepcidin resistance in R178Q FD. CONCLUSIONS These results support a novel concept that in certain FD variants reduced iron export and hepcidin resistance could be interlinked. Evasion of mutant ferroportin from hepcidin-mediated regulation could result in uncontrolled iron absorption and iron overload despite reduced transport function.
Collapse
Affiliation(s)
- André Viveiros
- Department of Medicine IMedical University and University Hospital of InnsbruckInnsbruckAustria
| | - Marlene Panzer
- Department of Medicine IMedical University and University Hospital of InnsbruckInnsbruckAustria
| | - Nadja Baumgartner
- Department of Medicine IMedical University and University Hospital of InnsbruckInnsbruckAustria
| | - Benedikt Schaefer
- Department of Medicine IMedical University and University Hospital of InnsbruckInnsbruckAustria
| | - Armin Finkenstedt
- Department of Medicine IMedical University and University Hospital of InnsbruckInnsbruckAustria
| | - Benjamin Henninger
- Department of RadiologyMedical University and University Hospital of InnsbruckInnsbruckAustria
| | - Igor Theurl
- Department of Medicine IIMedical University and University Hospital of InnsbruckInnsbruckAustria
| | - Karin Nachbaur
- Department of Medicine IMedical University and University Hospital of InnsbruckInnsbruckAustria
| | - Günter Weiss
- Department of Medicine IIMedical University and University Hospital of InnsbruckInnsbruckAustria
| | - Roland Haubner
- Department of Nuclear MedicineMedical University and University Hospital of InnsbruckInnsbruckAustria
| | - Clemens Decristoforo
- Department of Nuclear MedicineMedical University and University Hospital of InnsbruckInnsbruckAustria
| | - Herbert Tilg
- Department of Medicine IMedical University and University Hospital of InnsbruckInnsbruckAustria
| | - Heinz Zoller
- Department of Medicine IMedical University and University Hospital of InnsbruckInnsbruckAustria
| |
Collapse
|
21
|
Bolondi G, Russo E, Gamberini E, Circelli A, Meca MCC, Brogi E, Viola L, Bissoni L, Poletti V, Agnoletti V. Iron metabolism and lymphocyte characterisation during Covid-19 infection in ICU patients: an observational cohort study. World J Emerg Surg 2020; 15:41. [PMID: 32605582 PMCID: PMC7324776 DOI: 10.1186/s13017-020-00323-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Background Iron metabolism and immune response to SARS-CoV-2 have not been described yet in intensive care patients, although they are likely involved in Covid-19 pathogenesis. Methods We performed an observational study during the peak of pandemic in our intensive care unit, dosing D-dimer, C-reactive protein, troponin T, lactate dehydrogenase, ferritin, serum iron, transferrin, transferrin saturation, transferrin soluble receptor, lymphocyte count and NK, CD3, CD4, CD8 and B subgroups of 31 patients during the first 2 weeks of their ICU stay. Correlation with mortality and severity at the time of admission was tested with the Spearman coefficient and Mann–Whitney test. Trends over time were tested with the Kruskal–Wallis analysis. Results Lymphopenia is severe and constant, with a nadir on day 2 of ICU stay (median 0.555 109/L; interquartile range (IQR) 0.450 109/L); all lymphocytic subgroups are dramatically reduced in critically ill patients, while CD4/CD8 ratio remains normal. Neither ferritin nor lymphocyte count follows significant trends in ICU patients. Transferrin saturation is extremely reduced at ICU admission (median 9%; IQR 7%), then significantly increases at days 3 to 6 (median 33%, IQR 26.5%, p value 0.026). The same trend is observed with serum iron levels (median 25.5 μg/L, IQR 69 μg/L at admission; median 73 μg/L, IQR 56 μg/L on days 3 to 6) without reaching statistical significance. Hyperferritinemia is constant during intensive care stay: however, its dosage might be helpful in individuating patients developing haemophagocytic lymphohistiocytosis. D-dimer is elevated and progressively increases from admission (median 1319 μg/L; IQR 1285 μg/L) to days 3 to 6 (median 6820 μg/L; IQR 6619 μg/L), despite not reaching significant results. We describe trends of all the abovementioned parameters during ICU stay. Conclusions The description of iron metabolism and lymphocyte count in Covid-19 patients admitted to the intensive care unit provided with this paper might allow a wider understanding of SARS-CoV-2 pathophysiology.
Collapse
Affiliation(s)
- Giuliano Bolondi
- Anesthesia and Intensive Care Unit, AUSL Romagna - Bufalini Hospital, viale Ghirotti 286, 47521, Cesena, FC, Italy.
| | - Emanuele Russo
- Anesthesia and Intensive Care Unit, AUSL Romagna - Bufalini Hospital, viale Ghirotti 286, 47521, Cesena, FC, Italy
| | - Emiliano Gamberini
- Anesthesia and Intensive Care Unit, AUSL Romagna - Bufalini Hospital, viale Ghirotti 286, 47521, Cesena, FC, Italy
| | - Alessandro Circelli
- Anesthesia and Intensive Care Unit, AUSL Romagna - Bufalini Hospital, viale Ghirotti 286, 47521, Cesena, FC, Italy
| | - Manlio Cosimo Claudio Meca
- Anesthesia and Intensive Care Unit, AUSL Romagna - Bufalini Hospital, viale Ghirotti 286, 47521, Cesena, FC, Italy
| | - Etrusca Brogi
- Anesthesia and Intensive Care Unit, AUSL Romagna - Bufalini Hospital, viale Ghirotti 286, 47521, Cesena, FC, Italy
| | - Lorenzo Viola
- Anesthesia and Intensive Care Unit, AUSL Romagna - Bufalini Hospital, viale Ghirotti 286, 47521, Cesena, FC, Italy
| | - Luca Bissoni
- Anesthesia and Intensive Care Unit, AUSL Romagna - Bufalini Hospital, viale Ghirotti 286, 47521, Cesena, FC, Italy
| | - Venerino Poletti
- Department of Respiratory Diseases & Allergy, Aarhus University Hospital, 8200, Aarhus, Denmark.,Department of Respiratory Diseases, AUSL Romagna - Morgagni Hospital, Forlì, Italy
| | - Vanni Agnoletti
- Anesthesia and Intensive Care Unit, AUSL Romagna - Bufalini Hospital, viale Ghirotti 286, 47521, Cesena, FC, Italy
| |
Collapse
|
22
|
Yang S, Deng Q, Sun L, Dong K, Li Y, Wu S, Huang R. Salmonella effector SpvB interferes with intracellular iron homeostasis via regulation of transcription factor NRF2. FASEB J 2019; 33:13450-13464. [PMID: 31569998 DOI: 10.1096/fj.201900883rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Iron is a necessary nutrient for humans and nearly all bacterial species. During Salmonella infection, macrophages limit the availability of iron to intracellular pathogens in one of the central components of nutritional immunity. However, Salmonella also have mechanisms to interfere with the antimicrobial effect of host iron withdrawal and meet their own nutrient requirements by scavenging iron from the host. Here, we provide what is, to our knowledge, the first report that SpvB, a pSLT-encoded cytotoxic protein whose function is associated with the intracellular stage of salmonellosis, perturbs macrophage iron metabolism, thereby facilitating Salmonella survival and intracellular replication. In investigating the underlying mechanism, we observed that the Salmonella effector SpvB down-regulated nuclear factor erythroid-derived 2-related factor 2 (NRF2), and its C-terminal domain was necessary and sufficient for NRF2 degradation via the proteasome pathway. Decreased NRF2 expression in the nucleus resulted in a decrease in its transcriptional target ferroportin, encoding the sole macrophage iron exporter, thus ultimately decreasing iron efflux and increasing the intracellular iron content. Additionally, SpvB contributes to the pathogenesis of Salmonella including severe serum hypoferremia, increased splenic and hepatic bacterial burden, and inflammatory injury in vivo. Together, our observations uncovered a novel contribution of SpvB to Salmonella pathology via interference with host intracellular iron metabolism.-Yang, S., Deng, Q., Sun, L., Dong, K., Li, Y., Wu, S., Huang, R. Salmonella effector SpvB interferes with intracellular iron homeostasis via regulation of transcription factor NRF2.
Collapse
Affiliation(s)
- Sidi Yang
- Department of Medical Microbiology, Medical College, Soochow University, Suzhou, China
| | - Qifeng Deng
- Department of Medical Microbiology, Medical College, Soochow University, Suzhou, China
| | - Lanqing Sun
- Department of Medical Microbiology, Medical College, Soochow University, Suzhou, China
| | - Kedi Dong
- Department of Medical Microbiology, Medical College, Soochow University, Suzhou, China
| | - Yuanyuan Li
- Department of Medical Microbiology, Medical College, Soochow University, Suzhou, China
| | - Shuyan Wu
- Department of Medical Microbiology, Medical College, Soochow University, Suzhou, China
| | - Rui Huang
- Department of Medical Microbiology, Medical College, Soochow University, Suzhou, China
| |
Collapse
|
23
|
Jiang S, Fang X, Liu M, Ni Y, Ma W, Zhao R. MiR-20b Down-Regulates Intestinal Ferroportin Expression In Vitro and In Vivo. Cells 2019; 8:cells8101135. [PMID: 31554201 PMCID: PMC6829237 DOI: 10.3390/cells8101135] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/16/2019] [Accepted: 09/21/2019] [Indexed: 12/11/2022] Open
Abstract
Ferroportin (FPN) is the only known cellular iron exporter in mammalian. However, post-transcriptional regulation of intestinal FPN has not yet been completely understood. In this study, bioinformatics algorithms (TargetScan, PicTar, PITA, and miRanda) were applied to predict, screen and obtain microRNA-17 family members (miR-17, miR-20a, miR-20b, and miR-106a) targeting FPN, ‘seed sequence’ and responding binding sites on the 3′untranslated region (3′UTR) region of FPN. Dual-luciferase reporter assays revealed miRNA-17 family members’ mimics decreased the luciferase activity, whereas their inhibitors increased the luciferase activity. Compared with the FPN 3′UTR wild type reporter, co-transfection of a miRNA-17 family members’ over-expression plasmids and FPN 3′UTR mutant reporters enhanced the luciferase activity in HCT116 cells. Transfection with miR-20b overexpression plasmid significantly enhanced its expression, and it inhibited endogenous FPN protein expression in Caco-2 cells. Additionally, tail-vein injection of miR-20b resulted in increasing duodenal miR-20b expression, decreasing duodenal FPN protein expression, which was closely related to lower plasma iron level in mice. Taken together, these data suggest that the miR-20b is identified to regulate intestinal FPN expression in vitro and in vivo, which will provide a potential target for intestinal iron exportation.
Collapse
Affiliation(s)
- Shuxia Jiang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Xi Fang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Mingni Liu
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Yingdong Ni
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Wenqiang Ma
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| |
Collapse
|
24
|
Vlasveld LT, Janssen R, Bardou-Jacquet E, Venselaar H, Hamdi-Roze H, Drakesmith H, Swinkels DW. Twenty Years of Ferroportin Disease: A Review or An Update of Published Clinical, Biochemical, Molecular, and Functional Features. Pharmaceuticals (Basel) 2019; 12:ph12030132. [PMID: 31505869 PMCID: PMC6789780 DOI: 10.3390/ph12030132] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/14/2019] [Accepted: 08/20/2019] [Indexed: 12/14/2022] Open
Abstract
Iron overloading disorders linked to mutations in ferroportin have diverse phenotypes in vivo, and the effects of mutations on ferroportin in vitro range from loss of function (LOF) to gain of function (GOF) with hepcidin resistance. We reviewed 359 patients with 60 ferroportin variants. Overall, macrophage iron overload and low/normal transferrin saturation (TSAT) segregated with mutations that caused LOF, while GOF mutations were linked to high TSAT and parenchymal iron accumulation. However, the pathogenicity of individual variants is difficult to establish due to the lack of sufficiently reported data, large inter-assay variability of functional studies, and the uncertainty associated with the performance of available in silico prediction models. Since the phenotypes of hepcidin-resistant GOF variants are indistinguishable from the other types of hereditary hemochromatosis (HH), these variants may be categorized as ferroportin-associated HH, while the entity ferroportin disease may be confined to patients with LOF variants. To further improve the management of ferroportin disease, we advocate for a global registry, with standardized clinical analysis and validation of the functional tests preferably performed in human-derived enterocytic and macrophagic cell lines. Moreover, studies are warranted to unravel the definite structure of ferroportin and the indispensable residues that are essential for functionality.
Collapse
Affiliation(s)
- L Tom Vlasveld
- Department of Internal Medicine, Haaglanden MC-Bronovo, 2597AX The Hague, The Netherlands
| | - Roel Janssen
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Edouard Bardou-Jacquet
- Liver Diseases Department, French Reference Centre for Rare Iron Overload Diseases of Genetic Origin, University Hospital Pontchaillou, 35033 Rennes, France
| | - Hanka Venselaar
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud, University Medical Center, P.O. Box 9191, 6500 HB Nijmegen, The Netherlands
| | - Houda Hamdi-Roze
- Molecular Genetics Department, French Reference Centre for Rare Iron Overload Diseases of Genetic Origin, University Hospital Pontchaillou, 35033 Rennes, France
| | - Hal Drakesmith
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX39DS, UK
| | - Dorine W Swinkels
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
25
|
Kolloli A, Singh P, Rodriguez GM, Subbian S. Effect of Iron Supplementation on the Outcome of Non-Progressive Pulmonary Mycobacterium tuberculosis Infection. J Clin Med 2019; 8:jcm8081155. [PMID: 31382404 PMCID: PMC6722820 DOI: 10.3390/jcm8081155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/13/2022] Open
Abstract
The human response to Mycobacterium tuberculosis (Mtb) infection is affected by the availability of iron (Fe), which is necessary for proper immune cell function and is essential for the growth and virulence of bacteria. Increase in host Fe levels promotes Mtb growth and tuberculosis (TB) pathogenesis, while Fe-supplementation to latently infected, asymptomatic individuals is a significant risk factor for disease reactivation. However, the effect of Fe-supplementation on the host immunity during latent Mtb infection remains unclear, due partly to the paucity in availability of animal models that recapitulate key pathophysiological features seen in humans. We have demonstrated that rabbits can develop non-progressive latency similar to infected humans. In this study, using this model we have evaluated the effect of Fe-supplementation on the bacterial growth, disease pathology, and immune response. Systemic and lung Fe parameters, gene expression profile, lung bacterial burden, and disease pathology were determined in the Mtb-infected/Fe- or placebo-supplemented rabbits. Results show that Fe-supplementation to Mtb-infected rabbits did not significantly change the hematocrit and Hb levels, although it elevated total Fe in the lungs. Expression of selected host iron- and immune-response genes in the blood and lungs was perturbed in Mtb-infected/Fe-supplemented rabbits. Iron-supplementation during acute or chronic stages of Mtb infection did not significantly affect the bacterial burden or disease pathology in the lungs. Data presented in this study is of significant relevance for current public health policies on Fe-supplementation therapy given to anemic patients with latent Mtb infection.
Collapse
Affiliation(s)
- Afsal Kolloli
- The Public Health Research Institute Center of New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Pooja Singh
- The Public Health Research Institute Center of New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - G Marcela Rodriguez
- The Public Health Research Institute Center of New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Selvakumar Subbian
- The Public Health Research Institute Center of New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA.
| |
Collapse
|
26
|
Ferroportin Disease Caused by a Heterozygous Variant p.Cys326Phe in the SLC40A1 Gene and the Efficacy of Therapeutic Phlebotomy in Children. J Pediatr Hematol Oncol 2019; 41:e325-e328. [PMID: 30130274 DOI: 10.1097/mph.0000000000001301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Therapeutic phlebotomy is recommended for treating hereditary hemochromatosis. However, the procedure and its efficacy for children remain unclear. We describe a young female patient with ferroportin disease, which was confirmed from excess iron deposition within hepatocytes and by identifying a heterozygous variant p.Cys326Phe in SLC40A1. She had been followed without phlebotomy. Liver histology at age 13 years revealed iron deposition progression. Phlebotomy was initiated and her iron markers and imaging findings improved without severe adverse effects. Therapeutic phlebotomy for children is effective and well-tolerated and should be considered as early as possible after a hemochromatosis diagnosis.
Collapse
|
27
|
Oh CK, Moon Y. Dietary and Sentinel Factors Leading to Hemochromatosis. Nutrients 2019; 11:nu11051047. [PMID: 31083351 PMCID: PMC6566178 DOI: 10.3390/nu11051047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/29/2019] [Accepted: 05/07/2019] [Indexed: 02/06/2023] Open
Abstract
Although hereditary hemochromatosis is associated with the mutation of genes involved in iron transport and metabolism, secondary hemochromatosis is due to external factors, such as intended or unintended iron overload, hemolysis-linked iron exposure or other stress-impaired iron metabolism. The present review addresses diet-linked etiologies of hemochromatosis and their pathogenesis in the network of genes and nutrients. Although the mechanistic association to diet-linked etiologies can be complicated, the stress sentinels are pivotally involved in the pathological processes of secondary hemochromatosis in response to iron excess and other external stresses. Moreover, the mutations in these sentineling pathway-linked genes increase susceptibility to secondary hemochromatosis. Thus, the crosstalk between nutrients and genes would verify the complex procedures in the clinical outcomes of secondary hemochromatosis and chronic complications, such as malignancy. All of this evidence provides crucial insights into comprehensive clinical or nutritional interventions for hemochromatosis.
Collapse
Affiliation(s)
- Chang-Kyu Oh
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences, Pusan National University, Yangsan 50612, Korea.
| | - Yuseok Moon
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences, Pusan National University, Yangsan 50612, Korea.
- BioMedical Research Institute, Pusan National University, Yangsan 50612, Korea.
- Program of Food Health Sciences, Busan 46241, Korea.
| |
Collapse
|
28
|
Haschka D, Petzer V, Kocher F, Tschurtschenthaler C, Schaefer B, Seifert M, Sopper S, Sonnweber T, Feistritzer C, Arvedson TL, Zoller H, Stauder R, Theurl I, Weiss G, Tymoszuk P. Classical and intermediate monocytes scavenge non-transferrin-bound iron and damaged erythrocytes. JCI Insight 2019; 4:98867. [PMID: 30996139 PMCID: PMC6538345 DOI: 10.1172/jci.insight.98867] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/14/2019] [Indexed: 12/12/2022] Open
Abstract
Myelomonocytic cells are critically involved in iron turnover as aged RBC recyclers. Human monocytes are divided in 3 subpopulations of classical, intermediate, and nonclassical cells, differing in inflammatory and migratory phenotype. Their functions in iron homeostasis are, however, unclear. Here, we asked whether the functional diversity of monocyte subsets translates into differences in handling physiological and pathological iron species. By microarray data analysis and flow cytometry we identified a set of iron-related genes and proteins upregulated in classical and, in part, intermediate monocytes. These included the iron exporter ferroportin (FPN1), ferritin, transferrin receptor, putative transporters of non-transferrin-bound iron (NTBI), and receptors for damaged erythrocytes. Consequently, classical monocytes displayed superior scavenging capabilities of potentially toxic NTBI, which were augmented by blocking iron export via hepcidin. The same subset and, to a lesser extent, the intermediate population, efficiently cleared damaged erythrocytes in vitro and mediated erythrophagocytosis in vivo in healthy volunteers and patients having received blood transfusions. To summarize, our data underline the physiologically important function of the classical and intermediate subset in clearing NTBI and damaged RBCs. As such, these cells may play a nonnegligible role in iron homeostasis and limit iron toxicity in iron overload conditions. Human classical and intermediate monocytes mediate clearance of non-transferrin-bound iron and erythrophagocytosis.
Collapse
Affiliation(s)
| | | | | | | | - Benedikt Schaefer
- Department of Internal Medicine I, Medical University of Innsbruck, Innsbruck, Austria
| | | | | | | | | | - Tara L Arvedson
- Department of Oncology, Amgen Inc., Thousand Oaks, California, USA
| | - Heinz Zoller
- Department of Internal Medicine I, Medical University of Innsbruck, Innsbruck, Austria
| | | | | | | | | |
Collapse
|
29
|
Macrophages: versatile players in renal inflammation and fibrosis. Nat Rev Nephrol 2019; 15:144-158. [PMID: 30692665 DOI: 10.1038/s41581-019-0110-2] [Citation(s) in RCA: 648] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2018] [Indexed: 12/15/2022]
Abstract
Macrophages have important roles in immune surveillance and in the maintenance of kidney homeostasis; their response to renal injury varies enormously depending on the nature and duration of the insult. Macrophages can adopt a variety of phenotypes: at one extreme, M1 pro-inflammatory cells contribute to infection clearance but can also promote renal injury; at the other extreme, M2 anti-inflammatory cells have a reparative phenotype and can contribute to the resolution phase of the response to injury. In addition, bone marrow monocytes can differentiate into myeloid-derived suppressor cells that can regulate T cell immunity in the kidney. However, macrophages can also promote renal fibrosis, a major driver of progression to end-stage renal disease, and the CD206+ subset of M2 macrophages is strongly associated with renal fibrosis in both human and experimental diseases. Myofibroblasts are important contributors to renal fibrosis and recent studies provide evidence that macrophages recruited from the bone marrow can transition directly into myofibroblasts within the injured kidney. This process is termed macrophage-to-myofibroblast transition (MMT) and is driven by transforming growth factor-β1 (TGFβ1)-Smad3 signalling via a Src-centric regulatory network. MMT may serve as a key checkpoint for the progression of chronic inflammation into pathogenic fibrosis.
Collapse
|
30
|
Abstract
Dietary iron absorption and systemic iron traffic are tightly controlled by hepcidin, a liver-derived peptide hormone. Hepcidin inhibits iron entry into plasma by binding to and inactivating the iron exporter ferroportin in target cells, such as duodenal enterocytes and tissue macrophages. Hepcidin is induced in response to increased body iron stores to inhibit further iron absorption and prevent iron overload. The mechanism involves the BMP/SMAD signaling pathway, which triggers transcriptional hepcidin induction. Inactivating mutations in components of this pathway cause hepcidin deficiency, which allows inappropriately increased iron absorption and efflux into the bloodstream. This leads to hereditary hemochromatosis (HH), a genetically heterogenous autosomal recessive disorder of iron metabolism characterized by gradual buildup of unshielded non-transferrin bound iron (NTBI) in plasma and excessive iron deposition in tissue parenchymal cells. The predominant HH form is linked to mutations in the HFE gene and constitutes the most frequent genetic disorder in Caucasians. Other, more severe and rare variants are caused by inactivating mutations in HJV (hemojuvelin), HAMP (hepcidin) or TFR2 (transferrin receptor 2). Mutations in SLC40A1 (ferroportin) that cause hepcidin resistance recapitulate the biochemical phenotype of HH. However, ferroportin-related hemochromatosis is transmitted in an autosomal dominant manner. Loss-of-function ferroportin mutations lead to ferroportin disease, characterized by iron overload in macrophages and low transferrin saturation. Aceruloplasminemia and atransferrinemia are further inherited disorders of iron overload caused by deficiency in ceruloplasmin or transferrin, the plasma ferroxidase and iron carrier, respectively.
Collapse
Affiliation(s)
- Kostas Pantopoulos
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
31
|
Ferroportin-Hepcidin Axis in Prepubertal Obese Children with Sufficient Daily Iron Intake. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15102156. [PMID: 30275363 PMCID: PMC6210055 DOI: 10.3390/ijerph15102156] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/27/2018] [Accepted: 09/29/2018] [Indexed: 12/12/2022]
Abstract
Iron metabolism may be disrupted in obesity, therefore, the present study assessed the iron status, especially ferroportin and hepcidin concentrations, as well as associations between the ferroportin-hepcidin axis and other iron markers in prepubertal obese children. The following were determined: serum ferroportin, hepcidin, ferritin, soluble transferrin receptor (sTfR), iron concentrations and values of hematological parameters as well as the daily dietary intake in 40 obese and 40 normal-weight children. The ferroportin/hepcidin and ferritin/hepcidin ratios were almost two-fold lower in obese children (p = 0.001; p = 0.026, respectively). Similar iron concentrations (13.2 vs. 15.2 µmol/L, p = 0.324), the sTfR/ferritin index (0.033 vs. 0.041, p = 0.384) and values of hematological parameters were found in obese and control groups, respectively. Iron daily intake in the obese children examined was consistent with recommendations. In this group, the ferroportin/hepcidin ratio positively correlated with energy intake (p = 0.012), dietary iron (p = 0.003) and vitamin B12 (p = 0.024). In the multivariate regression model an association between the ferroportin/hepcidin ratio and the sTfR/ferritin index in obese children (β = 0.399, p = 0.017) was found. These associations did not exist in the controls. The results obtained suggest that in obese children with sufficient iron intake, the altered ferroportin-hepcidin axis may occur without signs of iron deficiency or iron deficiency anemia. The role of other micronutrients, besides dietary iron, may also be considered in the iron status of these children.
Collapse
|
32
|
Brissot P, Bernard DG, Brissot E, Loréal O, Troadec MB. Rare anemias due to genetic iron metabolism defects. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 777:52-63. [PMID: 30115430 DOI: 10.1016/j.mrrev.2018.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/05/2018] [Accepted: 06/21/2018] [Indexed: 01/19/2023]
Abstract
Anemia is defined by a deficiency of hemoglobin, an iron-rich protein that binds oxygen in the blood. It can be due to multiple causes, either acquired or genetic. Alterations of genes involved in iron metabolism may be responsible, usually at a young age, for rare forms of chronic and often severe congenital anemia. These diseases encompass a variety of sideroblastic anemias, characterized by the presence of ring sideroblasts in the bone marrow. Clinical expression of congenital sideroblastic anemia is either monosyndromic (restricted to hematological lineages) or polysyndromic (with systemic expression), depending on whether iron metabolism, and especially heme synthesis, is directly or indirectly affected. Beside sideroblastic anemias, a number of other anemias can develop due to mutations of key proteins acting either on cellular iron transport (such as the DMT1 transporter), plasma iron transport (transferrin), and iron recycling (ceruloplasmin). Contrasting with the aforementioned entities which involve compartmental, and sometimes, systemic iron excess, the iron refractory iron deficiency anemia (IRIDA) corresponds to a usually severe anemia with whole body iron deficiency related to chronic increase of plasma hepcidin, the systemic negative regulator of plasma iron. Once clinically suggested, these diseases are confirmed by genetic testing in specialized laboratories.
Collapse
Affiliation(s)
- Pierre Brissot
- INSERM, Univ Rennes, INRA, Institut NUMECAN (Nutrition, Metabolisms and Cancer), UMR_S 1241, F-35000 Rennes, France.
| | - Delphine G Bernard
- UMR 1078 "Génétique, Génomique Fonctionnelle et Biotechnologies", INSERM, Univ. Brest, EFS, IBSAM, Brest, France
| | - Eolia Brissot
- Sorbonne Universités, UPMC Univ. Paris 06, AP-HP, Centre de recherche Saint-Antoine, UMR-S938, Paris, France; Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, APHP, Paris, France
| | - Olivier Loréal
- INSERM, Univ Rennes, INRA, Institut NUMECAN (Nutrition, Metabolisms and Cancer), UMR_S 1241, F-35000 Rennes, France
| | - Marie-Bérengère Troadec
- Univ. Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F- 35000 Rennes, France.
| |
Collapse
|
33
|
Abstract
Haemochromatosis is defined as systemic iron overload of genetic origin, caused by a reduction in the concentration of the iron regulatory hormone hepcidin, or a reduction in hepcidin-ferroportin binding. Hepcidin regulates the activity of ferroportin, which is the only identified cellular iron exporter. The most common form of haemochromatosis is due to homozygous mutations (specifically, the C282Y mutation) in HFE, which encodes hereditary haemochromatosis protein. Non-HFE forms of haemochromatosis due to mutations in HAMP, HJV or TFR2 are much rarer. Mutations in SLC40A1 (also known as FPN1; encoding ferroportin) that prevent hepcidin-ferroportin binding also cause haemochromatosis. Cellular iron excess in HFE and non-HFE forms of haemochromatosis is caused by increased concentrations of plasma iron, which can lead to the accumulation of iron in parenchymal cells, particularly hepatocytes, pancreatic cells and cardiomyocytes. Diagnosis is noninvasive and includes clinical examination, assessment of plasma iron parameters, imaging and genetic testing. The mainstay therapy is phlebotomy, although iron chelation can be used in some patients. Hepcidin supplementation might be an innovative future approach.
Collapse
Affiliation(s)
- Pierre Brissot
- INSERM, Univ. Rennes, INRA, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| | - Antonello Pietrangelo
- Division of Internal Medicine 2 and Center for Haemochromatosis, University Hospital of Modena, Modena, Italy
| | - Paul C. Adams
- Department of Medicine, University of Western Ontario, London, Ontario, Canada
| | - Barbara de Graaff
- Menzies Institute for Medical Research, University of Tasmania, Tasmania, Australia
| | | | - Olivier Loréal
- INSERM, Univ. Rennes, INRA, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| |
Collapse
|
34
|
Characterization of three novel pathogenic SLC40A1 mutations and genotype/phenotype correlations in 7 Italian families with type 4 hereditary hemochromatosis. Biochim Biophys Acta Mol Basis Dis 2018; 1864:464-470. [DOI: 10.1016/j.bbadis.2017.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/23/2017] [Accepted: 11/13/2017] [Indexed: 11/19/2022]
|
35
|
Girelli D, Ugolini S, Busti F, Marchi G, Castagna A. Modern iron replacement therapy: clinical and pathophysiological insights. Int J Hematol 2017; 107:16-30. [PMID: 29196967 DOI: 10.1007/s12185-017-2373-3] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 11/24/2017] [Indexed: 12/13/2022]
Abstract
Iron deficiency, with or without anemia, is extremely frequent worldwide, representing a major public health problem. Iron replacement therapy dates back to the seventeenth century, and has progressed relatively slowly until recently. Both oral and intravenous traditional iron formulations are known to be far from ideal, mainly because of tolerability and safety issues, respectively. At the beginning of this century, the discovery of hepcidin/ferroportin axis has represented a turning point in the knowledge of the pathophysiology of iron metabolism disorders, ushering a new era. In the meantime, advances in the pharmaceutical technologies are producing newer iron formulations aimed at minimizing the problems inherent with traditional approaches. The pharmacokinetic of oral and parenteral iron is substantially different, and diversities have become even clearer in light of the hepcidin master role in regulating systemic iron homeostasis. Here we review how iron therapy is changing because of such important advances in both pathophysiology and pharmacology.
Collapse
Affiliation(s)
- Domenico Girelli
- Department of Medicine, Section of Internal Medicine, Veneto Region Referral Center for Iron Metabolism Disorders, Center of Excellence for Rare Hematological Diseases "EuroBloodNet", University of Verona, Policlinico G.B. Rossi, 37134, Verona, Italy.
| | - Sara Ugolini
- Department of Medicine, Section of Internal Medicine, Veneto Region Referral Center for Iron Metabolism Disorders, Center of Excellence for Rare Hematological Diseases "EuroBloodNet", University of Verona, Policlinico G.B. Rossi, 37134, Verona, Italy
| | - Fabiana Busti
- Department of Medicine, Section of Internal Medicine, Veneto Region Referral Center for Iron Metabolism Disorders, Center of Excellence for Rare Hematological Diseases "EuroBloodNet", University of Verona, Policlinico G.B. Rossi, 37134, Verona, Italy
| | - Giacomo Marchi
- Department of Medicine, Section of Internal Medicine, Veneto Region Referral Center for Iron Metabolism Disorders, Center of Excellence for Rare Hematological Diseases "EuroBloodNet", University of Verona, Policlinico G.B. Rossi, 37134, Verona, Italy
| | - Annalisa Castagna
- Department of Medicine, Section of Internal Medicine, Veneto Region Referral Center for Iron Metabolism Disorders, Center of Excellence for Rare Hematological Diseases "EuroBloodNet", University of Verona, Policlinico G.B. Rossi, 37134, Verona, Italy
| |
Collapse
|
36
|
Pietrangelo A. Ferroportin disease: pathogenesis, diagnosis and treatment. Haematologica 2017; 102:1972-1984. [PMID: 29101207 PMCID: PMC5709096 DOI: 10.3324/haematol.2017.170720] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/25/2017] [Indexed: 12/14/2022] Open
Abstract
Ferroportin Disease (FD) is an autosomal dominant hereditary iron loading disorder associated with heterozygote mutations of the ferroportin-1 (FPN) gene. It represents one of the commonest causes of genetic hyperferritinemia, regardless of ethnicity. FPN1 transfers iron from the intestine, macrophages and placenta into the bloodstream. In FD, loss-of-function mutations of FPN1 limit but do not impair iron export in enterocytes, but they do severely affect iron transfer in macrophages. This leads to progressive and preferential iron trapping in tissue macrophages, reduced iron release to serum transferrin (i.e. inappropriately low transferrin saturation) and a tendency towards anemia at menarche or after intense bloodletting. The hallmark of FD is marked iron accumulation in hepatic Kupffer cells. Numerous FD-associated mutations have been reported worldwide, with a few occurring in different populations and some more commonly reported (e.g. Val192del, A77D, and G80S). FPN1 polymorphisms also represent the gene variants most commonly responsible for hyperferritinemia in Africans. Differential diagnosis includes mainly hereditary hemochromatosis, the syndrome commonly due to either HFE or TfR2, HJV, HAMP, and, in rare instances, FPN1 itself. Here, unlike FD, hyperferritinemia associates with high transferrin saturation, iron-spared macrophages, and progressive parenchymal cell iron load. Abdominal magnetic resonance imaging (MRI), the key non-invasive diagnostic tool for the diagnosis of FD, shows the characteristic iron loading SSL triad (spleen, spine and liver). A non-aggressive phlebotomy regimen is recommended, with careful monitoring of transferrin saturation and hemoglobin due to the risk of anemia. Family screening is mandatory since siblings and offspring have a 50% chance of carrying the pathogenic mutation.
Collapse
Affiliation(s)
- Antonello Pietrangelo
- Center for Hemochromatosis, Department of Internal Medicine II, University of Modena and Reggio Emilia Policlinico, Modena, Italy
| |
Collapse
|
37
|
Abstract
The regulation of iron metabolism in biological systems centers on providing adequate iron for cellular function while limiting iron toxicity. Because mammals cannot excrete iron, mechanisms have evolved to control iron acquisition, storage, and distribution at both systemic and cellular levels. Hepcidin, the master regulator of iron homeostasis, controls iron flows into plasma through inhibition of the only known mammalian cellular iron exporter ferroportin. Hepcidin is feedback-regulated by iron status and strongly modulated by inflammation and erythropoietic demand. This review highlights recent advances that have changed our understanding of iron metabolism and its regulation.
Collapse
Affiliation(s)
- Richard Coffey
- Departments of Medicine and Pathology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095-1690
| | - Tomas Ganz
- Departments of Medicine and Pathology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095-1690.
| |
Collapse
|
38
|
Recalcati S, Gammella E, Buratti P, Cairo G. Molecular regulation of cellular iron balance. IUBMB Life 2017; 69:389-398. [PMID: 28480557 DOI: 10.1002/iub.1628] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/19/2017] [Indexed: 12/12/2022]
Abstract
Handling a life-supporting yet redox-active metal like iron represents a significant challenge to cells and organisms that must not only tightly balance intra- and extracellular iron concentrations but also chaperone it during its journey from its point of entry to final destinations, to prevent inappropriate generation of damaging reactive oxygen species. Accordingly, regulatory mechanisms have been developed to maintain appropriate cellular and body iron levels. In intracellular compartments, about 95% of iron is protein-bound and the expression of the major proteins of iron metabolism is controlled by an integrated and dynamic system involving multilayered levels of regulation. However, dysregulation of iron homeostasis, which could result from both iron-related and unrelated effectors, may occur and have important pathological consequences in a number of human disorders. In this review, we describe the current understanding of the mechanisms that keep cellular iron balance and outline recent advances that increased our knowledge of the molecular physiology of iron metabolism. © 2017 IUBMB Life, 69(6):389-398, 2017.
Collapse
Affiliation(s)
- Stefania Recalcati
- Department of Biomedical Sciences for Health, University of Milan, Milano, Italy
| | - Elena Gammella
- Department of Biomedical Sciences for Health, University of Milan, Milano, Italy
| | - Paolo Buratti
- Department of Biomedical Sciences for Health, University of Milan, Milano, Italy
| | - Gaetano Cairo
- Department of Biomedical Sciences for Health, University of Milan, Milano, Italy
| |
Collapse
|