1
|
Guo Q, Qian C, Wang X, Qian ZM. Transferrin receptors. Exp Mol Med 2025; 57:724-732. [PMID: 40263550 PMCID: PMC12045970 DOI: 10.1038/s12276-025-01436-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/17/2025] [Indexed: 04/24/2025] Open
Abstract
The transferrin receptor (TfR) is one of the key proteins involved in cellular iron uptake. TfR-mediated endocytosis of transferrin-bound iron is the major pathway for iron acquisition by most cells in the body. Over the past three decades, the studies on TfR have made significant progress, and also, our knowledge on cell iron uptake has greatly been improved. Here we focus on recent advances in the studies on TfR and a brief discussion of the structures and functions of four different types of TfR, namely TfR1 (transferrin receptor 1), TfR2 (transferrin receptor 2), TfR3 (glyceraldehyde-3-phosphate dehydrogenase) and TfR4 (cubilin). These proteins work in different cells or organs and at different times, ensuring that cells and tissues get the iron they need. Their normal expression and function are fundamental to the body's iron homeostasis.
Collapse
Affiliation(s)
- Qian Guo
- Laboratory of Drug Delivery, School of Medicine, Shanghai University, Shanghai, China.
| | - Christopher Qian
- School of Biomedical Sciences and Gerald Choa Neuroscience Centre, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xinyu Wang
- Laboratory of Drug Delivery, School of Medicine, Shanghai University, Shanghai, China
| | - Zhong-Ming Qian
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Wang X, Zhang T, Wang S, Shi H, Dong H, Huang Y, Lai W, Hu Y, Yue C. Bio-nanocomplexes impair iron homeostasis to induce non-canonical ferroptosis in cancer cells. J Nanobiotechnology 2025; 23:121. [PMID: 39972473 PMCID: PMC11837358 DOI: 10.1186/s12951-025-03117-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 01/13/2025] [Indexed: 02/21/2025] Open
Abstract
The targeted elevation of the labile iron pool (LIP) represents the most direct and effective strategy to induce ferroptosis in cancer cells. However, the efficiency of increasing LIP to induce ferroptosis via iron supplementation is controversial due to the iron homeostasis between LIP and storage iron pool, leading to poor effects and serious safety concerns. In this study, a bio-nanocomplex named AbDA-Lim, composed of albumin, polydopamine, and limonene, is prepared to promote LIP and induce non-canonical ferroptosis in cancer cells by destroying the iron balance. Albumin avidity drives AbDA-Lim entering cancer cells. Subsequently, the released polydopamine enhances the expression of HMOX1 to degrade haem and facilitate the transformation of Fe (III) to Fe (II). Meanwhile, limonene reduces glutathione (GSH) levels via inhibiting CBS, thereby, triggering the release of Fe (II) into LIP from its GSH-bound storage state. The augmentation of LIP ultimately triggers non-canonical ferroptosis in cancer cells. Furthermore, the photothermal property of polydopamine augments the synergistic anti-tumor efficiency of AbDA-Lim by incorporating photothermal therapy. This study presents a distinctive, cascading, and biotic strategy for promoting LIP non-canonically to induce ferroptosis.
Collapse
Affiliation(s)
- Xin Wang
- Department of General Surgery, Center of Nutrition and Metabolism of Cancer, Beijing Shijitan Hospital, Key Laboratory of Cancer FSMP for State Market Regulation, Capital Medical University, Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, 100038, China
| | - Tianyi Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Drug R&D, Jiangsu Key Laboratory for Nano Technology, Medical School, School of Life Science, Nanjing University, Nanjing, 210093, China
| | - Shuai Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Drug R&D, Jiangsu Key Laboratory for Nano Technology, Medical School, School of Life Science, Nanjing University, Nanjing, 210093, China
| | - Hanping Shi
- Department of General Surgery, Center of Nutrition and Metabolism of Cancer, Beijing Shijitan Hospital, Key Laboratory of Cancer FSMP for State Market Regulation, Capital Medical University, Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, 100038, China
| | - Hong Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Drug R&D, Jiangsu Key Laboratory for Nano Technology, Medical School, School of Life Science, Nanjing University, Nanjing, 210093, China
| | - Yanning Huang
- Office of International Cooperation and Exchanges, Central South University, Changsha, 410008, China
| | - Wenjia Lai
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China.
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Drug R&D, Jiangsu Key Laboratory for Nano Technology, Medical School, School of Life Science, Nanjing University, Nanjing, 210093, China.
| | - Chunyan Yue
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Drug R&D, Jiangsu Key Laboratory for Nano Technology, Medical School, School of Life Science, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
3
|
Xie X, Chang L, Zhu X, Gong F, Che L, Zhang R, Wang L, Gong C, Fang C, Yao C, Hu D, Zhao W, Zhou Y, Zhu S. Rubiadin Mediates the Upregulation of Hepatic Hepcidin and Alleviates Iron Overload via BMP6/SMAD1/5/9-Signaling Pathway. Int J Mol Sci 2025; 26:1385. [PMID: 39941155 PMCID: PMC11818739 DOI: 10.3390/ijms26031385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/01/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Iron overload disease is characterized by the excessive accumulation of iron in the body. To better alleviate iron overload, there is an urgent need for safe and effective small molecule compounds. Rubiadin, the active ingredient derived from the Chinese herb Prismatomeris tetrandra, possesses notable anti-inflammatory and hepatoprotective properties. Nevertheless, its impact on iron metabolism remains largely unexplored. To determine the role of rubiadin on iron metabolism, Western blot analysis, real-time PCR analysis, and the measurement of serum iron were performed. Herein, we discovered that rubiadin significantly downregulated the expression of transferrin receptor 1, ferroportin 1, and ferritin light chain in ferric-ammonium-citrate-treated or -untreated HepG2 cells. Moreover, intraperitoneal administration of rubiadin remarkably decreased serum iron and duodenal iron content and upregulated expression of hepcidin mRNA in the livers of high-iron-fed mice. Mechanistically, bone morphogenetic protein 6 (BMP6) inhibitor LDN-193189 completely reversed the hepcidin upregulation and suppressor of mother against decapentaplegic 1/5/9 (SMAD1/5/9) phosphorylation induced by rubiadin. These results suggested that rubiadin increased hepcidin expression through the BMP6/SMAD1/5/9-signaling pathway. Collectively, our findings uncover a crucial mechanism through which rubiadin modulates iron metabolism and highlight it as a potential natural compound for alleviating iron-overload-related diseases.
Collapse
Affiliation(s)
- Xueting Xie
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (X.X.); (X.Z.); (L.C.); (L.W.); (C.G.); (C.F.); (C.Y.)
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Linyue Chang
- Natural Product Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (L.C.); (F.G.); (R.Z.); (W.Z.)
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xinyue Zhu
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (X.X.); (X.Z.); (L.C.); (L.W.); (C.G.); (C.F.); (C.Y.)
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fengbei Gong
- Natural Product Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (L.C.); (F.G.); (R.Z.); (W.Z.)
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Linlin Che
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (X.X.); (X.Z.); (L.C.); (L.W.); (C.G.); (C.F.); (C.Y.)
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rujun Zhang
- Natural Product Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (L.C.); (F.G.); (R.Z.); (W.Z.)
| | - Lixin Wang
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (X.X.); (X.Z.); (L.C.); (L.W.); (C.G.); (C.F.); (C.Y.)
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chenyuan Gong
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (X.X.); (X.Z.); (L.C.); (L.W.); (C.G.); (C.F.); (C.Y.)
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Cheng Fang
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (X.X.); (X.Z.); (L.C.); (L.W.); (C.G.); (C.F.); (C.Y.)
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chao Yao
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (X.X.); (X.Z.); (L.C.); (L.W.); (C.G.); (C.F.); (C.Y.)
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Dan Hu
- School of Acupuncture, Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 CaiLun Rd., Shanghai 201203, China;
| | - Weimin Zhao
- Natural Product Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (L.C.); (F.G.); (R.Z.); (W.Z.)
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yufu Zhou
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (X.X.); (X.Z.); (L.C.); (L.W.); (C.G.); (C.F.); (C.Y.)
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shiguo Zhu
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (X.X.); (X.Z.); (L.C.); (L.W.); (C.G.); (C.F.); (C.Y.)
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
4
|
Cornelis MC, Fazlollahi A, Bennett DA, Schneider JA, Ayton S. Genetic Markers of Postmortem Brain Iron. J Neurochem 2025; 169:e16309. [PMID: 39918201 PMCID: PMC11804167 DOI: 10.1111/jnc.16309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/26/2024] [Accepted: 01/02/2025] [Indexed: 02/11/2025]
Abstract
Brain iron (Fe) dyshomeostasis is implicated in neurodegenerative diseases. Genome-wide association studies (GWAS) have identified plausible loci correlated with peripheral levels of Fe. Systemic organs and the brain share several Fe regulatory proteins but there likely exist different homeostatic pathways. We performed the first GWAS of inductively coupled plasma mass spectrometry measures of postmortem brain Fe from 635 Rush Memory and Aging Project (MAP) participants. Sixteen single nucleotide polymorphisms (SNPs) associated with Fe in at least one of four brain regions were measured (p < 5 × 10-8). Promising SNPs (p < 5 × 10-6) were followed up for replication in published GWAS of blood, spleen, and brain imaging Fe traits and mapped to candidate genes for targeted cortical transcriptomic and epigenetic analysis of postmortem Fe in MAP. Results for SNPs previously associated with other Fe traits were also examined. Ninety-eight SNPs associated with postmortem brain Fe were at least nominally (p < 0.05) associated with one or more related Fe traits. Most novel loci identified had no direct links to Fe regulatory pathways but rather endoplasmic reticulum-Golgi trafficking (SORL1, SORCS2, MARCH1, CLTC), heparan sulfate (HS3ST4, HS3ST1), and coenzyme A (SLC5A6, PANK3); supported by nearest gene function and omic analyses. We replicated (p < 0.05) several previously published Fe loci mapping to candidate genes in cellular and systemic Fe regulation. Finally, novel loci (BMAL, COQ5, SLC25A11) and replication of prior loci (PINK1, PPIF, LONP1) lend support to the role of circadian rhythms and mitochondria function in Fe regulation more generally. In summary, we provide support for novel loci linked to pathways that may have greater relevance to brain Fe accumulation; some of which are implicated in neurodegeneration. However, replication of a subset of prior loci for blood Fe suggests that genetic determinants or biological pathways underlying Fe accumulation in the brain are not completely distinct from those of Fe circulating in the periphery.
Collapse
Affiliation(s)
- Marilyn C. Cornelis
- Department of Preventive MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Amir Fazlollahi
- Department of Radiology, Royal Melbourne HospitalUniversity of MelbourneMelbourneVictoriaAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | | | | | - Scott Ayton
- The Florey Institute of Neuroscience and Mental HealthMelbourneVictoriaAustralia
- Florey Department of Neuroscience and Mental HealthThe University of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
5
|
Shen MQ, Guo Q, Li W, Qian ZM. Apolipoprotein E deficiency leads to the polarization of splenic macrophages towards M1 phenotype by increasing iron content. Genes Immun 2024; 25:381-388. [PMID: 39103538 DOI: 10.1038/s41435-024-00290-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024]
Abstract
Apolipoprotein E (ApoE) plays a crucial role in iron homeostasis in the body, while macrophages are the principal cells responsible for handling iron in mammals. However, it is unknown whether ApoE can affect the functional subtypes and the iron handling capacity of splenic macrophages (SM). Here, we investigated the effects of ApoE deficiency (ApoE-/-) on the polarization and iron content of SM and its potential mechanisms. ApoE-/- was found to induce a significant increase in the expressions of M1 marker genes CD86, IL-1β, IL-6, IL-12, TNF-α and iNOS and a reduction in M2 marker genes CD206, Arg-1, IL-10 and Ym-1 in SM of mice aged 28 weeks, Meanwhile, ApoE-/- caused a significant increase in iron content and expression of ferritin, transferrin receptor 1 (TfR1), iron regulatory protein 1 (IRP1) and heme oxygenase-1 (HO-1) and a reduction in ferroportin1 (Fpn1) in spleen and/or SM of mice aged 28 weeks. It was concluded that ApoE-/- can increase iron content through increased iron uptake mediated by TfR/ IRPs and decreased iron release mediated by Fpn1, leading to polarization of the SM to M1 phenotype.
Collapse
Affiliation(s)
- Meng-Qi Shen
- Institute of Translational and Precision Medicine, Nantong University, Nantong, Jiangsu, China
- School of Health Medicine, Nantong Polytechnic College, Nantong, China
| | - Qian Guo
- School of Medicine, Shanghai University, Shanghai, China.
| | - Wei Li
- Institute of Translational and Precision Medicine, Nantong University, Nantong, Jiangsu, China
| | - Zhong-Ming Qian
- Institute of Translational and Precision Medicine, Nantong University, Nantong, Jiangsu, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Zhu X, Zuo Q, Xie X, Chen Z, Wang L, Chang L, Liu Y, Luo J, Fang C, Che L, Zhou X, Yao C, Gong C, Hu D, Zhao W, Zhou Y, Zhu S. Rocaglamide regulates iron homeostasis by suppressing hepcidin expression. Free Radic Biol Med 2024; 219:153-162. [PMID: 38657753 DOI: 10.1016/j.freeradbiomed.2024.04.232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
The anemia of inflammation (AI) is characterized by the presence of inflammation and abnormal elevation of hepcidin. Accumulating evidence has proved that Rocaglamide (RocA) was involved in inflammation regulation. Nevertheless, the role of RocA in AI, especially in iron metabolism, has not been investigated, and its underlying mechanism remains elusive. Here, we demonstrated that RocA dramatically suppressed the elevation of hepcidin and ferritin in LPS-treated mice cell line RAW264.7 and peritoneal macrophages. In vivo study showed that RocA can restrain the depletion of serum iron (SI) and transferrin (Tf) saturation caused by LPS. Further investigation showed that RocA suppressed the upregulation of hepcidin mRNA and downregulation of Fpn1 protein expression in the spleen and liver of LPS-treated mice. Mechanistically, this effect was attributed to RocA's ability to inhibit the IL-6/STAT3 pathway, resulting in the suppression of hepcidin mRNA and subsequent increase in Fpn1 and TfR1 expression in LPS-treated macrophages. Moreover, RocA inhibited the elevation of the cellular labile iron pool (LIP) and reactive oxygen species (ROS) induced by LPS in RAW264.7 cells. These findings reveal a pivotal mechanism underlying the roles of RocA in modulating iron homeostasis and also provide a candidate natural product on alleviating AI.
Collapse
Affiliation(s)
- Xinyue Zhu
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China; Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Quan Zuo
- Natural Product Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, PR China
| | - Xueting Xie
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China; Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Zhongxian Chen
- Natural Product Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, PR China
| | - Lixin Wang
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China; Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Linyue Chang
- Natural Product Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, PR China
| | - Yangli Liu
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China; Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Jiaojiao Luo
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China; Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Cheng Fang
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China; Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Linlin Che
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China; Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Xinyue Zhou
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China; Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Chao Yao
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China; Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Chenyuan Gong
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China; Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Dan Hu
- School of Acupuncture, Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 CaiLun Rd, Shanghai, 201203, PR China
| | - Weimin Zhao
- Natural Product Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, PR China.
| | - Yufu Zhou
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China; Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China.
| | - Shiguo Zhu
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China; Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China.
| |
Collapse
|
7
|
Nguyen TTP, Nguyen PL, Park SH, Jung CH, Jeon TI. Hydrogen Sulfide and Liver Health: Insights into Liver Diseases. Antioxid Redox Signal 2024; 40:122-144. [PMID: 37917113 DOI: 10.1089/ars.2023.0404] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Significance: Hydrogen sulfide (H2S) is a recently recognized gasotransmitter involved in physiological and pathological conditions in mammals. It protects organs from oxidative stress, inflammation, hypertension, and cell death. With abundant expression of H2S-production enzymes, the liver is closely linked to H2S signaling. Recent Advances: Hepatic H2S comes from various sources, including gut microbiota, exogenous sulfur salts, and endogenous production. Recent studies highlight the importance of hepatic H2S in liver diseases such as nonalcoholic fatty liver disease (NAFLD), liver injury, and cancer, particularly at advanced stages. Endogenous H2S production deficiency is associated with severe liver disease, while exogenous H2S donors protect against liver dysfunction. Critical Issues: However, the roles of H2S in NAFLD, liver injury, and liver cancer are still debated, and its effects depend on donor type, dosage, treatment duration, and cell type, suggesting a multifaceted role. This review aimed to critically evaluate H2S production, metabolism, mode of action, and roles in liver function and disease. Future Direction: Understanding H2S's precise roles and mechanisms in liver health will advance potential therapeutic applications in preclinical and clinical research. Targeting H2S-producing enzymes and exogenous H2S sources, alone or in combination with other drugs, could be explored. Quantifying endogenous H2S levels may aid in diagnosing and managing liver diseases. Antioxid. Redox Signal. 40, 122-144.
Collapse
Affiliation(s)
- Thuy T P Nguyen
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Phuc L Nguyen
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
| | - So-Hyun Park
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Chang Hwa Jung
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Tae-Il Jeon
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
8
|
Ren X, Wang X, Zheng G, Wang S, Wang Q, Yuan M, Xu T, Xu J, Huang P, Ge M. Targeting one-carbon metabolism for cancer immunotherapy. Clin Transl Med 2024; 14:e1521. [PMID: 38279895 PMCID: PMC10819114 DOI: 10.1002/ctm2.1521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/15/2023] [Accepted: 12/10/2023] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND One-carbon (1C) metabolism is a metabolic network that plays essential roles in biological reactions. In 1C metabolism, a series of nutrients are used to fuel metabolic pathways, including nucleotide metabolism, amino acid metabolism, cellular redox defence and epigenetic maintenance. At present, 1C metabolism is considered the hallmark of cancer. The 1C units obtained from the metabolic pathways increase the proliferation rate of cancer cells. In addition, anticancer drugs, such as methotrexate, which target 1C metabolism, have long been used in the clinic. In terms of immunotherapy, 1C metabolism has been used to explore biomarkers connected with immunotherapy response and immune-related adverse events in patients. METHODS We collected numerous literatures to explain the roles of one-carbon metabolism in cancer immunotherapy. RESULTS In this review, we focus on the important pathways in 1C metabolism and the function of 1C metabolism enzymes in cancer immunotherapy. Then, we summarise the inhibitors acting on 1C metabolism and their potential application on cancer immunotherapy. Finally, we provide a viewpoint and conclusion regarding the opportunities and challenges of targeting 1C metabolism for cancer immunotherapy in clinical practicability in the future. CONCLUSION Targeting one-carbon metabolism is useful for cancer immunotherapy.
Collapse
Affiliation(s)
- Xinxin Ren
- Department of Head and Neck SurgeryOtolaryngology & Head and Neck Center, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Malignant TumorHangzhouZhejiangChina
- Department of PathologyCancer CenterZhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Xiang Wang
- Department of PharmacyAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Guowan Zheng
- Department of Head and Neck SurgeryOtolaryngology & Head and Neck Center, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Malignant TumorHangzhouZhejiangChina
| | - Shanshan Wang
- Department of PharmacyCenter for Clinical PharmacyCancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Qiyue Wang
- Department of Head and Neck SurgeryOtolaryngology & Head and Neck Center, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Malignant TumorHangzhouZhejiangChina
| | - Mengnan Yuan
- Department of PharmacyCenter for Clinical PharmacyCancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Tong Xu
- Department of PharmacyCenter for Clinical PharmacyCancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Jiajie Xu
- Department of Head and Neck SurgeryOtolaryngology & Head and Neck Center, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Malignant TumorHangzhouZhejiangChina
| | - Ping Huang
- Department of PharmacyCenter for Clinical PharmacyCancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Minghua Ge
- Department of Head and Neck SurgeryOtolaryngology & Head and Neck Center, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Malignant TumorHangzhouZhejiangChina
| |
Collapse
|
9
|
Qian ZM, Li W, Guo Q. Ferroportin1 in the brain. Ageing Res Rev 2023; 88:101961. [PMID: 37236369 DOI: 10.1016/j.arr.2023.101961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/20/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023]
Abstract
Despite years of research, it remains unclear why certain brain regions of patients with neurodegenerative diseases (NDs) have abnormally high levels of iron, although it has long been suggested that disrupted expression of iron-metabolizing proteins due to genetic or non-genetic factors is responsible for the enhancement in brain iron contents. In addition to the increased expression of cell-iron importers lactoferrin (lactotransferrin) receptor (LfR) in Parkinson's disease (PD) and melanotransferrin (p97) in Alzheimer's disease (AD), some investigations have suggested that cell-iron exporter ferroportin 1 (Fpn1) may be also associated with the elevated iron observed in the brain. The decreased expression of Fpn1 and the resulting decrease in the amount of iron excreted from brain cells has been thought to be able to enhance iron levels in the brain in AD, PD and other NDs. Cumulative results also suggest that the reduction of Fpn1 can be induced by hepcidin-dependent and -independent pathways. In this article, we discuss the current understanding of Fpn1 expression in the brain and cell lines of rats, mice and humans, with emphasis on the potential involvement of reduced Fpn1 in brain iron enhancement in patients with AD, PD and other NDs.
Collapse
Affiliation(s)
- Zhong-Ming Qian
- Department of Neurology, Affiliated Hospital of Nantong University, and Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, Jiangsu China 226019.
| | - Wei Li
- Department of Neurology, Affiliated Hospital of Nantong University, and Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, Jiangsu China 226019
| | - Qian Guo
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, 881 Yonghe Road, Nantong, Jiangsu 226001, China; Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| |
Collapse
|
10
|
Ma J, Guo Q, Shen MQ, Li W, Zhong QX, Qian ZM. Apolipoprotein E is required for brain iron homeostasis in mice. Redox Biol 2023; 64:102779. [PMID: 37339558 PMCID: PMC10363452 DOI: 10.1016/j.redox.2023.102779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Apolipoprotein E deficiency (ApoE-/-) increases progressively iron in the liver, spleen and aortic tissues with age in mice. However, it is unknown whether ApoE affects brain iron. METHODS We investigated iron contents, expression of transferrin receptor 1 (TfR1), ferroportin 1 (Fpn1), iron regulatory proteins (IRPs), aconitase, hepcidin, Aβ42, MAP2, reactive oxygen species (ROS), cytokines and glutathione peroxidase 4 (Gpx4) in the brain of ApoE-/- mice. RESULTS We demonstrated that ApoE-/- induced a significant increase in iron, TfR1 and IRPs and a reduction in Fpn1, aconitase and hepcidin in the hippocampus and basal ganglia. We also showed that replenishment of ApoE absent partly reversed the iron-related phenotype in ApoE-/- mice at 24-months old. In addition, ApoE-/- induced a significant increase in Aβ42, MDA, 8-isoprostane, IL-1β, IL-6, and TNFα and a reduction in MAP2 and Gpx4 in hippocampus, basal ganglia and/or cortex of mice at 24-months old. CONCLUSIONS Our findings implied that ApoE is required for brain iron homeostasis and ApoE-/--induced increase in brain iron is due to the increased IRP/TfR1-mediated cell-iron uptake as well as the reduced IRP/Fpn1 associated cell-iron export and suggested that ApoE-/- induced neuronal injury resulted mainly from the increased iron and subsequently ROS, inflammation and ferroptosis.
Collapse
Affiliation(s)
- Juan Ma
- Department of Neurology, Affiliated Hospital, and Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, Jiangsu, 226001, China; Laboratory of Neuropharmacology of Pharmacy School, and National Clinical Research Center for Aging and Medicine of Huashan Hospital, Fudan University, Shanghai, 201203, China.
| | - Qian Guo
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, 881 Yonghe Road, Nantong, Jiangsu, 226001, China; Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| | - Meng-Qi Shen
- Department of Neurology, Affiliated Hospital, and Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, Jiangsu, 226001, China.
| | - Wei Li
- Department of Neurology, Affiliated Hospital, and Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, Jiangsu, 226001, China.
| | - Qi-Xin Zhong
- Department of Cardiovascular Medicine, Shenzhen Hospital, Guangzhou University of Chinese Medicine, Shenzhen, 518034, China.
| | - Zhong-Ming Qian
- Department of Neurology, Affiliated Hospital, and Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
11
|
Wang R, Tang C. Hydrogen Sulfide Biomedical Research in China-20 Years of Hindsight. Antioxidants (Basel) 2022; 11:2136. [PMID: 36358508 PMCID: PMC9686505 DOI: 10.3390/antiox11112136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/19/2023] Open
Abstract
Hydrogen sulfide (H2S) is an important gasotransmitter that is produced by mammalian cells and performs profound physiological and pathophysiological functions. Biomedical research on H2S metabolism and function in China began 20 years ago, which pioneered the examination of the correlation of abnormal H2S metabolism and cardiovascular diseases. Over the last two decades, research teams in China have made numerous breakthrough discoveries on the effects of H2S metabolism on hypertension, atherosclerosis, pulmonary hypertension, shock, angiogenesis, chronic obstructive pulmonary disease, pain, iron homeostasis, and testicle function, to name a few. These research developments, carried by numerous research teams all over China, build nationwide research network and advance both laboratory study and clinical applications. An integrated and collaborative research strategy would further promote and sustain H2S biomedical research in China and in the world.
Collapse
Affiliation(s)
- Rui Wang
- Department of Biology, Faculty of Science, York University, Toronto, ON M3J 1P3, Canada
| | - Chaoshu Tang
- Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing 100191, China
| |
Collapse
|
12
|
Hydrogen Sulfide Attenuates High-Fat Diet-Induced Obesity: Involvement of mTOR/IKK/NF-κB Signaling Pathway. Mol Neurobiol 2022; 59:6903-6917. [PMID: 36053437 DOI: 10.1007/s12035-022-03004-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/16/2022] [Indexed: 10/14/2022]
Abstract
Obesity has become a public health epidemic worldwide and is associated with many diseases with high mortality including hypertension, diabetes, and heart disease. High-fat diet (HFD)-induced energy imbalance is one of the primary causes of obesity, but the underlying mechanisms are not fully elucidated. Our study showed that HFD reduced the level of hydrogen sulfide (H2S) and its catalytic enzyme cystathionine β-synthase (CBS) in mouse hypothalamus and plasma. We found that HFD activated mTOR, IKK/NF-κB, the main pathway regulating inflammation. Activation of inflammatory pathway promoted the production of pro-inflammatory cytokines including IL-6, IL-1β, and TNF-α, which caused cell damage and loss in the hypothalamus. The disturbance of the hypothalamic neuron circuits resulted in body weight gain in HFD-induced mice. Importantly, we also showed that restoration of H2S level with NaHS or activation of CBS with SAMe attenuated HFD-induced activation of mTOR, IKK/NF-κB signaling, which reduced the inflammation and the neuronal cell loss in the hypothalamus, and also inhibited body weight gain in mice. The same effects were obtained by inhibiting mTOR or NF-κB, which suggested that mTOR and NF-κB were the critical molecular factors involved in hypothalamic inflammation. Taken together, this study identified that HFD-induced hypothalamus inflammation plays a critical role in the development of obesity. Moreover, the inhibition of hypothalamic inflammation by regaining H2S level could be a potential therapeutic to prevent the development of obesity.
Collapse
|
13
|
Aschner M, Skalny AV, Ke T, da Rocha JBT, Paoliello MMB, Santamaria A, Bornhorst J, Rongzhu L, Svistunov AA, Djordevic AB, Tinkov AA. Hydrogen Sulfide (H 2S) Signaling as a Protective Mechanism against Endogenous and Exogenous Neurotoxicants. Curr Neuropharmacol 2022; 20:1908-1924. [PMID: 35236265 PMCID: PMC9886801 DOI: 10.2174/1570159x20666220302101854] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/10/2022] [Accepted: 02/27/2022] [Indexed: 11/22/2022] Open
Abstract
In view of the significant role of H2S in brain functioning, it is proposed that H2S may also possess protective effects against adverse effects of neurotoxicants. Therefore, the objective of the present review is to discuss the neuroprotective effects of H2S against toxicity of a wide spectrum of endogenous and exogenous agents involved in the pathogenesis of neurological diseases as etiological factors or key players in disease pathogenesis. Generally, the existing data demonstrate that H2S possesses neuroprotective effects upon exposure to endogenous (amyloid β, glucose, and advanced-glycation end-products, homocysteine, lipopolysaccharide, and ammonia) and exogenous (alcohol, formaldehyde, acrylonitrile, metals, 6-hydroxydopamine, as well as 1-methyl-4-phenyl- 1,2,3,6- tetrahydropyridine (MPTP) and its metabolite 1-methyl-4-phenyl pyridine ion (MPP)) neurotoxicants. On the one hand, neuroprotective effects are mediated by S-sulfhydration of key regulators of antioxidant (Sirt1, Nrf2) and inflammatory response (NF-κB), resulting in the modulation of the downstream signaling, such as SIRT1/TORC1/CREB/BDNF-TrkB, Nrf2/ARE/HO-1, or other pathways. On the other hand, H2S appears to possess a direct detoxicative effect by binding endogenous (ROS, AGEs, Aβ) and exogenous (MeHg) neurotoxicants, thus reducing their toxicity. Moreover, the alteration of H2S metabolism through the inhibition of H2S-synthetizing enzymes in the brain (CBS, 3-MST) may be considered a significant mechanism of neurotoxicity. Taken together, the existing data indicate that the modulation of cerebral H2S metabolism may be used as a neuroprotective strategy to counteract neurotoxicity of a wide spectrum of endogenous and exogenous neurotoxicants associated with neurodegeneration (Alzheimer's and Parkinson's disease), fetal alcohol syndrome, hepatic encephalopathy, environmental neurotoxicant exposure, etc. In this particular case, modulation of H2S-synthetizing enzymes or the use of H2S-releasing drugs should be considered as the potential tools, although the particular efficiency and safety of such interventions are to be addressed in further studies.
Collapse
Affiliation(s)
- Michael Aschner
- Address correspondence to this author at the Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; E-mail
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wang Y, Liao S, Pan Z, Jiang S, Fan J, Yu S, Xue L, Yang J, Ma S, Liu T, Zhang J, Chen Y. Hydrogen sulfide alleviates particulate matter-induced emphysema and airway inflammation by suppressing ferroptosis. Free Radic Biol Med 2022; 186:1-16. [PMID: 35490984 DOI: 10.1016/j.freeradbiomed.2022.04.014] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/25/2022] [Indexed: 12/20/2022]
Abstract
BACKGROUND Redox imbalance is an vital mechanism for COPD. At present, insufficient researches have been conducted on the protective effect of hydrogen sulfide (H2S) on PM-induced COPD. However, whether H2S exerts the anti-injury role by blocking ferroptosis and restoring redox equilibrium remain to be investigated. METHODS Human lung tissue samples were collected for IHC staining, and the expressions of Nrf2, ferritinophagy- and ferroptosis-related proteins were observed. The WT C57BL/6 and Nrf2 knockout mice models were established with PM(200 μg per mouse). NaHS(Exogenous H2S) was injected intraperitoneally 30 min in advance. Twenty-nine days later, mice lung tissues were evaluated by HE's and PERLS-DAB's staining. Meanwhile, inflammation and oxidative stress indicators and iron levels were assessed by corresponding ELISA kit. Related protein expressions were detected through Western blot. BEAS-2B cells with or without H2S were exposed to PM2.5 for 36 h. Cell viability, mitochondrial morphology, inflammatory cytokines, antioxidant factors, iron levels, autophagic flux and the levels of ROS, LIP ROS, MitoROS, MMP, as well as related protein expressions were detected by specific methods, respectively. In addition, V5-Nrf2, Nrf2 siRNA, Nrf2 inhibitor ML385, PPAR-γ inhibitor GW9662, autophagy inhibitor CQ, iron chelator DFO and ferroptosis inhibitor Fer-1 were used to verify the target signaling pathways. RESULTS We found that the expressions of LIP ROS, ROS, COX2, MDA and other oxidative factors increased, while the antioxidant markers GPX4, GSH and GSH-Px significantly decreased, as well as active iron accumulation in COPD patients, PM-exposured WT and Nrf2-KO mice models and PM2.5-mediated cell models. NaHS pretreatment markedly inhibited PM-induced emphysema and airway inflammation by alleviating ferroptotic changes in vivo and vitro. With the use of V5-Nrf2 overexpression plasmid, Nrf2 siRNA and pathway inhibitors, we found NaHS activates the expressions of Nrf2 and PPAR-γ, and inhibites ferritinophagy makers LC3B, NCOA4 and FTH1 in BEAS-2B cells. Moreover, the anti-ferroptotic effect of NaHS was further verified to be related to the activation of Nrf2 signal in MEF cells. CONCLUSION This research suggested that H2S alleviated PM-induced emphysema and airway inflammation via restoring redox balance and inhibiting ferroptosis through regulating Nrf2-PPAR-ferritinophagy signaling pathway.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Sha Liao
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Zihan Pan
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Simin Jiang
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Jing Fan
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Siwang Yu
- Department of Chemical Biology, Peking University School of Pharmaceutical Sciences, Beijing, China
| | - Lixiang Xue
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Jianling Yang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Shaohua Ma
- Department of Thoracic Surgery, Peking University Third Hospital, Beijing, China
| | - Tong Liu
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.
| | - Jing Zhang
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China.
| | - Yahong Chen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
15
|
Liu J, Zhao Y, Ding Z, Zhao Y, Chen T, Ge W, Zhang J. Iron accumulation with age alters metabolic pattern and circadian clock gene expression through the reduction of AMP-modulated histone methylation. J Biol Chem 2022; 298:101968. [PMID: 35460695 PMCID: PMC9117543 DOI: 10.1016/j.jbc.2022.101968] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 02/07/2023] Open
Abstract
Iron accumulates with age in mammals, and its possible implications in altering metabolic responses are not fully understood. Here, we report that both high-iron diet and advanced age in mice consistently altered gene expression of many pathways, including those governing the oxidative stress response and the circadian clock. We used a metabolomic approach to reveal similarities between metabolic profiles and the daily oscillation of clock genes in old and iron-overloaded mouse livers. In addition, we show that phlebotomy decreased iron accumulation in old mice, partially restoring the metabolic patterns and amplitudes of the oscillatory expression of clock genes Per1 and Per2. We further identified that the transcriptional regulation of iron occurred through a reduction in AMP-modulated methylation of histone H3K9 in the Per1 and H3K4 in the Per2 promoters, respectively. Taken together, our results indicate that iron accumulation with age can affect metabolic patterns and the circadian clock.
Collapse
Affiliation(s)
- Junhao Liu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Yang Zhao
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Zhao Ding
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Yue Zhao
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Tingting Chen
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Wenhao Ge
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China.
| |
Collapse
|
16
|
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues and organs. Physiol Rev 2022; 103:31-276. [DOI: 10.1152/physrev.00028.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
H2S belongs to the class of molecules known as gasotransmitters, which also includes nitric oxide (NO) and carbon monoxide (CO). Three enzymes are recognized as endogenous sources of H2S in various cells and tissues: cystathionine g-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current article reviews the regulation of these enzymes as well as the pathways of their enzymatic and non-enzymatic degradation and elimination. The multiple interactions of H2S with other labile endogenous molecules (e.g. NO) and reactive oxygen species are also outlined. The various biological targets and signaling pathways are discussed, with special reference to H2S and oxidative posttranscriptional modification of proteins, the effect of H2S on channels and intracellular second messenger pathways, the regulation of gene transcription and translation and the regulation of cellular bioenergetics and metabolism. The pharmacological and molecular tools currently available to study H2S physiology are also reviewed, including their utility and limitations. In subsequent sections, the role of H2S in the regulation of various physiological and cellular functions is reviewed. The physiological role of H2S in various cell types and organ systems are overviewed. Finally, the role of H2S in the regulation of various organ functions is discussed as well as the characteristic bell-shaped biphasic effects of H2S. In addition, key pathophysiological aspects, debated areas, and future research and translational areas are identified A wide array of significant roles of H2S in the physiological regulation of all organ functions emerges from this review.
Collapse
Affiliation(s)
- Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece & Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
17
|
Arif HM, Qian Z, Wang R. Signaling Integration of Hydrogen Sulfide and Iron on Cellular Functions. Antioxid Redox Signal 2022; 36:275-293. [PMID: 34498949 DOI: 10.1089/ars.2021.0203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: Hydrogen sulfide (H2S) is an endogenous signaling molecule, regulating numerous physiological functions from vasorelaxation to neuromodulation. Iron is a well-known bioactive metal ion, being the central component of hemoglobin for oxygen transportation and participating in biomolecule degradation, redox balance, and enzymatic actions. The interplay between H2S and iron metabolisms and functions impacts significantly on the fate and wellness of different types of cells. Recent Advances: Iron level in vivo affects the production of H2S via nonenzymatic reactions. On the contrary, H2S quenches excessive iron inside the cells and regulates the redox status of iron. Critical Issues: Abnormal metabolisms of both iron and H2S are associated with various conditions and diseases such as iron overload, anemia, oxidative stress, and cardiovascular and neurodegenerative diseases. The molecular mechanisms for the interactions between H2S and iron are unsettled yet. Here we review signaling links of the production, metabolism, and their respective and integrative functions of H2S and iron in normalcy and diseases. Future Directions: Physiological and pathophysiological importance of H2S and iron as well as their therapeutic applications should be evaluated jointly, not separately. Future investigation should expand from iron-rich cells and tissues to the others, in which H2S and iron interaction has not received due attention. Antioxid. Redox Signal. 36, 275-293.
Collapse
Affiliation(s)
| | - Zhongming Qian
- Institute of Translational & Precision Medicine, Nantong University, Nantong, China
| | - Rui Wang
- Department of Biology, York University, Toronto, Canada
| |
Collapse
|
18
|
Zhou YF, Song SS, Tian MX, Tang Z, Wang H, Fang Y, Qu WF, Jiang XF, Tao CY, Huang R, Zhou PY, Zhu SG, Zhou J, Fan J, Liu WR, Shi YH. Cystathionine β-synthase mediated PRRX2/IL-6/STAT3 inactivation suppresses Tregs infiltration and induces apoptosis to inhibit HCC carcinogenesis. J Immunother Cancer 2021; 9:jitc-2021-003031. [PMID: 34413167 PMCID: PMC8380548 DOI: 10.1136/jitc-2021-003031] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2021] [Indexed: 12/29/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is characterized by inflammation and immunopathogenesis. Accumulating evidence has shown that the cystathionine β-synthase/hydrogen sulfide (CBS/H2S) axis is involved in the regulation of inflammation. However, roles of CBS in HCC development and immune evasion have not been systematically investigated, and their underlying mechanisms remain elusive. Here, we investigated the roles of CBS in tumor cells and tumor microenvironment of HCC. Methods 236 HCC samples were collected to detect the expression of CBS, cleaved Caspase-3 and paired related homeobox 2 (PRRX2) and the number of immune cells. HCC cell lines were employed to examine the effects of CBS on cellular viability, apoptosis and signaling in vitro. Cbs heterozygous knockout mice, C57BL/6 mice, nude mice and non-obese diabetic severe combined immunodeficiency mice were used to investigate the in vivo functions of CBS. Results Downregulation of CBS was observed in HCC, and low expression of CBS predicted poor prognosis in HCC patients. CBS overexpression dramatically promoted cellular apoptosis in vitro and inhibited tumor growth in vivo. Activation of the Cbs/H2S axis also reduced the abundance of tumor-infiltrating Tregs, while Cbs deficiency promoted Tregs-mediated immune evasion and boosted tumor growth in Cbs heterozygous knockout mice. Mechanistically, CBS facilitated the expression cleaved Caspase-3 in tumor cells, and on the other hand, suppressed Foxp3 expression in Tregs via inactivating IL-6/STAT3 pathway. As a transcription factor of IL-6, PRRX2 was reduced by CBS. Additionally, miR-24-3p was proven to be an upstream suppressor of CBS in HCC. Conclusions Our results indicate the antitumor function of CBS in HCC by inactivation of the PRRX2/IL-6/STAT3 pathway, which may serve as a potential target for HCC clinical immunotherapy.
Collapse
Affiliation(s)
- Yu-Fu Zhou
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education & Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Shanghai, People's Republic of China
- Department of Immunology and Pathogenic Biology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Shu-Shu Song
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education & Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Shanghai, People's Republic of China
- Department of Biochemistry and Molecular, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Meng-Xin Tian
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education & Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Shanghai, People's Republic of China
| | - Zheng Tang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education & Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Shanghai, People's Republic of China
| | - Han Wang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education & Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Shanghai, People's Republic of China
| | - Yuan Fang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education & Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Shanghai, People's Republic of China
| | - Wei-Feng Qu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education & Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Shanghai, People's Republic of China
| | - Xi-Fei Jiang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education & Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Shanghai, People's Republic of China
| | - Chen-Yang Tao
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education & Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Shanghai, People's Republic of China
| | - Run Huang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education & Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Shanghai, People's Republic of China
| | - Pei-Yun Zhou
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education & Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Shanghai, People's Republic of China
| | - Shi-Guo Zhu
- Department of Immunology and Pathogenic Biology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jian Zhou
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education & Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Shanghai, People's Republic of China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Jia Fan
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education & Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Shanghai, People's Republic of China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Wei-Ren Liu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education & Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Shanghai, People's Republic of China
| | - Ying-Hong Shi
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education & Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Shanghai, People's Republic of China
| |
Collapse
|
19
|
Ge W, Zhao Y, Yang Y, Ding Z, Xu X, Weng D, Wang S, Cheng R, Zhang J. An insulin-independent mechanism for transcriptional regulation of Foxo1 in type 2 diabetic mice. J Biol Chem 2021; 297:100846. [PMID: 34058194 PMCID: PMC8233149 DOI: 10.1016/j.jbc.2021.100846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/08/2021] [Accepted: 05/26/2021] [Indexed: 11/29/2022] Open
Abstract
Hepatic gluconeogenesis is the major contributor to the hyperglycemia observed in both patients and animals with type 2 diabetes. The transcription factor FOXO1 plays a dominant role in stimulating hepatic gluconeogenesis. FOXO1 is mainly regulated by insulin under physiological conditions, but liver-specific disruption of Foxo1 transcription restores normal gluconeogenesis in mice in which insulin signaling has been blocked, suggesting that additional regulatory mechanisms exist. Understanding the transcriptional regulation of Foxo1 may be conducive to the development of insulin-independent strategies for the control of hepatic gluconeogenesis. Here, we found that elevated plasma levels of adenine nucleotide in type 2 diabetes are the major regulators of Foxo1 transcription. We treated lean mice with 5'-AMP and examined their transcriptional profiles using RNA-seq. KEGG analysis revealed that the 5'-AMP treatment led to shifted profiles that were similar to db/db mice. Many of the upregulated genes were in pathways associated with the pathology of type 2 diabetes including Foxo1 signaling. As observed in diabetic db/db mice, lean mice treated with 5'-AMP displayed enhanced Foxo1 transcription, involving an increase in cellular adenosine levels and a decrease in the S-adenosylmethionine to S-adenosylhomocysteine ratio. This reduced methylation potential resulted in declining histone H3K9 methylation in the promoters of Foxo1, G6Pc, and Pepck. In mouse livers and cultured cells, 5'-AMP induced expression of more FOXO1 protein, which was found to be localized in the nucleus, where it could promote gluconeogenesis. Our results revealed that adenine nucleotide-driven Foxo1 transcription is crucial for excessive glucose production in type 2 diabetic mice.
Collapse
Affiliation(s)
- Wenhao Ge
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Yang Zhao
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Yunxia Yang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Zhao Ding
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Xi Xu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Dan Weng
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Shiming Wang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Rui Cheng
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China.
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China.
| |
Collapse
|
20
|
Zhang F, Zhao P, Qian Z, Zhong M. Central Nervous System Inflammation Induced by Lipopolysaccharide Up-Regulates Hepatic Hepcidin Expression by Activating the IL-6/JAK2/STAT3 Pathway in Mice. Front Nutr 2021; 8:649640. [PMID: 33869267 PMCID: PMC8046903 DOI: 10.3389/fnut.2021.649640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/26/2021] [Indexed: 11/13/2022] Open
Abstract
It is known that lipopolysaccharide (LPS) triggers inflammatory response after intracerebroventricular (ICV) injection and elevates the expression of hepcidin through the interleukin 6/janus kinase 2/transducer and activator of the transcription 3 (IL-6/JAK2/STAT3) signaling pathway in the brain. This study was conducted to determine whether LPS ICV injection can regulate peripheral hepatic hepcidin expression and iron metabolism. Here, we studied the hepcidin expression in the liver, as well as serum iron and transferrin saturation, after LPS ICV injection. We also demonstrated the role of the IL-6/JAK2/STAT3 pathway in hepcidin expression in the livers of IL-6 knockout (IL-6–/– mice) and IL-6+/+ mice. AG490 was used to verify the effect of the IL-6/JAK2/STAT3 pathway on hepatic hepcidin expression. Our present study demonstrated that LPS ICV injection up-regulated hepatic hepcidin expression. This finding provides further evidence for highlighting the importance of the central inflammation on hepatic hepcidin expression and peripheral iron metabolism.
Collapse
Affiliation(s)
- Fali Zhang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Peng Zhao
- Institute of Translational & Precision Medicine, Laboratory of Neuropharmacology, Nantong University, Nantong, China
| | - Zhongming Qian
- Institute of Translational & Precision Medicine, Laboratory of Neuropharmacology, Nantong University, Nantong, China.,Laboratory of Neuropharmacology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Mingkang Zhong
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Ma J, Qian C, Bao Y, Liu MY, Ma HM, Shen MQ, Li W, Wang JJ, Bao YX, Liu Y, Ke Y, Qian ZM. Apolipoprotein E deficiency induces a progressive increase in tissue iron contents with age in mice. Redox Biol 2021; 40:101865. [PMID: 33493903 PMCID: PMC7823209 DOI: 10.1016/j.redox.2021.101865] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/10/2021] [Accepted: 01/10/2021] [Indexed: 12/21/2022] Open
Abstract
Association of both iron/hepcidin and apolipoprotein E (ApoE) with development of Alzheimer disease (AD) and atherosclerosis led us to hypothesize that ApoE might be required for body iron homeostasis. Here, we demonstrated that ApoE knock-out (KO) induced a progressive accumulation of iron with age in the liver and spleen of mice. Subsequent investigations showed that the increased iron in the liver and spleen was due to phosphorylated extracellular regulated protein kinases (pERK) mediated up-regulation of transferrin receptor 1 (TfR1), and nuclear factor erythroid 2-related factor-2 (Nrf2)-dependent down-regulation of ferroportin 1. Furthermore, replenishment of ApoE could partially reverse the iron-related phenotype in ApoE KO mice. The findings imply that ApoE may be essential for body iron homeostasis and also suggest that clinical late-onset diseases with unexplained iron abnormality may partly be related to deficiency or reduced expression of ApoE. Apolipoprotein E deficiency induces a progressive increase in tissue iron contents with age in mice. ApoE−/− induced a progressive accumulation of iron with age in the liver and spleen of mice. The increased iron was due to upregulation of TfR1 and downregulation of Fpn1. Replenishment of ApoE could partially reverse the iron-related phenotype in ApoE KO mice. ApoE may be essential for body iron homeostasis.
Collapse
Affiliation(s)
- Juan Ma
- Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, 226001, China; Laboratory of Neuropharmacology of Pharmacy School, and National Clinical Research Center for Aging and Medicine of Huashan Hospital, Fudan University, Shanghai, 201203, China
| | - Christopher Qian
- School of Biomedical Sciences and Gerald Choa Neuroscience Centre, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Yong Bao
- Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, 226001, China
| | - Meng-Yue Liu
- Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, 226001, China
| | - Hui-Min Ma
- Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, 226001, China
| | - Meng-Qi Shen
- Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, 226001, China
| | - Wei Li
- Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, 226001, China
| | - Jiao-Jiao Wang
- Laboratory of Neuropharmacology of Pharmacy School, and National Clinical Research Center for Aging and Medicine of Huashan Hospital, Fudan University, Shanghai, 201203, China; Research Center for Medicine and Biology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Yu-Xin Bao
- Research Center for Medicine and Biology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Yong Liu
- Department of Pain and Rehabilitation, The Second Affiliated Hospital, The Army Medical University, Chongqing, China
| | - Ya Ke
- School of Biomedical Sciences and Gerald Choa Neuroscience Centre, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| | - Zhong-Ming Qian
- Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, 226001, China; Laboratory of Neuropharmacology of Pharmacy School, and National Clinical Research Center for Aging and Medicine of Huashan Hospital, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
22
|
Mu MD, Qian ZM, Yang SX, Rong KL, Yung WH, Ke Y. Therapeutic effect of a histone demethylase inhibitor in Parkinson's disease. Cell Death Dis 2020; 11:927. [PMID: 33116116 PMCID: PMC7595123 DOI: 10.1038/s41419-020-03105-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 08/11/2020] [Accepted: 08/15/2020] [Indexed: 12/30/2022]
Abstract
Iron accumulation in the substantia nigra is recognized as a hallmark of Parkinson's disease (PD). Therefore, reducing accumulated iron and associated oxidative stress is considered a promising therapeutic strategy for PD. However, current iron chelators have poor membrane permeability and lack cell-type specificity. Here we identified GSK-J4, a histone demethylase inhibitor with the ability to cross blood brain barrier, as a potent iron suppressor. Only a trace amount of GSK-J4 significantly and selectively reduced intracellular labile iron in dopaminergic neurons, and suppressed H2O2 and 6-OHDA-induced cell death in vitro. The iron-suppressive effect was mainly mediated by inducing an increase in the expression of the iron exporter ferroportin-1. In parallel, GSK-J4 rescued dopaminergic neuron loss and motor defects in 6-OHDA-induced PD rats, which was accompanied by reduction of oxidative stress. Importantly, GSK-J4 rescued the abnormal changes of histone methylation, H3K4me3 and H3K27me3 during 6-OHDA treatment although the iron-suppressive and neuroprotective effects were sensitive to H3K4me3 inhibition only. Also, upregulating H3K4me3 increased ferroportin-1 expression and neuroprotection. Taken together, we demonstrate a previously unappreciated action of GSK-J4 on cell-specific iron suppression and neuroprotection via epigenetic mechanism. Compared with conventional iron chelators, this compound has a stronger therapeutic potential for PD.
Collapse
Affiliation(s)
- Ming-Dao Mu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
- Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Zhong-Ming Qian
- Institute of Translational and Precision Medicine, Nantong University, Nantong 226001, China
| | - Sheng-Xi Yang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
- Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Kang-Lin Rong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
- Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Wing-Ho Yung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China.
- Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China.
| | - Ya Ke
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China.
- Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China.
| |
Collapse
|
23
|
Zuhra K, Augsburger F, Majtan T, Szabo C. Cystathionine-β-Synthase: Molecular Regulation and Pharmacological Inhibition. Biomolecules 2020; 10:E697. [PMID: 32365821 PMCID: PMC7277093 DOI: 10.3390/biom10050697] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
Cystathionine-β-synthase (CBS), the first (and rate-limiting) enzyme in the transsulfuration pathway, is an important mammalian enzyme in health and disease. Its biochemical functions under physiological conditions include the metabolism of homocysteine (a cytotoxic molecule and cardiovascular risk factor) and the generation of hydrogen sulfide (H2S), a gaseous biological mediator with multiple regulatory roles in the vascular, nervous, and immune system. CBS is up-regulated in several diseases, including Down syndrome and many forms of cancer; in these conditions, the preclinical data indicate that inhibition or inactivation of CBS exerts beneficial effects. This article overviews the current information on the expression, tissue distribution, physiological roles, and biochemistry of CBS, followed by a comprehensive overview of direct and indirect approaches to inhibit the enzyme. Among the small-molecule CBS inhibitors, the review highlights the specificity and selectivity problems related to many of the commonly used "CBS inhibitors" (e.g., aminooxyacetic acid) and provides a comprehensive review of their pharmacological actions under physiological conditions and in various disease models.
Collapse
Affiliation(s)
- Karim Zuhra
- Chair of Pharmacology, Section of Medicine, University of Fribourg, 1702 Fribourg, Switzerland; (K.Z.); (F.A.)
| | - Fiona Augsburger
- Chair of Pharmacology, Section of Medicine, University of Fribourg, 1702 Fribourg, Switzerland; (K.Z.); (F.A.)
| | - Tomas Majtan
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, 1702 Fribourg, Switzerland; (K.Z.); (F.A.)
| |
Collapse
|
24
|
Sheng Y, Chen YJ, Qian ZM, Zheng J, Liu Y. Cyclophosphamide induces a significant increase in iron content in the liver and spleen of mice. Hum Exp Toxicol 2020; 39:973-983. [PMID: 32129080 DOI: 10.1177/0960327120909880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Objective: Oxidative stress is one of the major mechanisms of cyclophosphamide (CPX)-induced toxicities. However, it is unknown how CPX induces oxidative stress. Based on the available information, we speculated that CPX could increase iron content in the tissues and then induce oxidative stress. Method: We tested this hypothesis by investigating the effects of CPX on iron and ferritin contents, expression of transferrin receptor 1 (TfR1), ferroportin 1 (Fpn1), iron regulatory proteins (IRPs), hepcidin, and nuclear factor erythroid 2-related factor-2 (Nrf2) in the liver and spleen, and also on reticulocyte count, immature reticulocyte fraction, and hemoglobin (Hb) in the blood in c57/B6 mouse. Results: We demonstrated that CPX could induce a significant increase in iron contents and ferritin expression in the liver and spleen, notably inhibit erythropoiesis and Hb synthesis and lead to a reduction in iron usage. The reduced expression in TfR1 and Fpn1 is a secondary effect of CPX-induced iron accumulation in the liver and spleen and also partly associated with the suppressed IRP/iron-responsive element system, upregulation of hepcidin, and downregulation of Nrf2. Conclusions: The reduced iron usage is one of the causes for iron overload in the liver and spleen and the increased tissue iron might be one of the mechanisms for CPX to induce oxidative stress and toxicities.
Collapse
Affiliation(s)
- Y Sheng
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Y-J Chen
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Z-M Qian
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Translational & Precision Medicine, Nantong University, Nantong, China
| | - J Zheng
- Institute of Translational & Precision Medicine, Nantong University, Nantong, China
| | - Y Liu
- Department of Pain and Rehabilitation, The Second Affiliated Hospital, The Army Medical University, Chongqing, China
| |
Collapse
|
25
|
Zhou Y, Meng JL, Feng L, Huang YH, Ye J, Li M, Xu ZY, Li XW, Yuan F, Song B. Abdominal magnetic resonance imaging examination of Tibetan patients with abnormal iron metabolism and a preliminary study of correlations with blood cell analysis. J Int Med Res 2020; 48:300060520905483. [PMID: 32228088 PMCID: PMC7133079 DOI: 10.1177/0300060520905483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/15/2020] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE The objective was to investigate factors influencing the high incidence of abnormal iron metabolism in a Tibetan population. METHODS This was a retrospective observational study. Magnetic resonance imaging and blood analysis of 363 Tibetan patients were performed and patients divided into normal and abnormal groups based on the clinical diagnostic standard. The upper limit of normal liver iron content was 50 μmol/g. We analyzed the association between abnormal iron metabolism and blood cell indicators using the Spearman rank correlation test. RESULTS In male patients, differences in mean corpuscular hemoglobin (MCH) and MCH concentration in blood between the normal and abnormal groups were significant. Abnormal iron metabolism in male patients was positively correlated with MCH and MCH concentration. In female patients, differences in erythrocytes, hemoglobin, and hematocrit levels between the two groups were significant. Erythrocyte counts and hemoglobin and hematocrit levels of female patients were positively correlated. CONCLUSION Iron overload in male patients was correlated with an increase in MCH and MCH concentration, and that in female patients was correlated with levels of erythrocytes, hemoglobin, and hematocrit. The incidence rate of iron overload was higher in males than in females and was correlated with age in this Tibetan population.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Radiology, Hospital of Chengdu office of People’s Government of Tibetan Autonomous Region (Hospital C. T.), Chengdu, China
| | - Jin-Li Meng
- Department of Radiology, Hospital of Chengdu office of People’s Government of Tibetan Autonomous Region (Hospital C. T.), Chengdu, China
| | - Li Feng
- Department of Radiology, Hospital of Chengdu office of People’s Government of Tibetan Autonomous Region (Hospital C. T.), Chengdu, China
| | - Yong-Hong Huang
- Department of Radiology, Hospital of Chengdu office of People’s Government of Tibetan Autonomous Region (Hospital C. T.), Chengdu, China
| | - Jin Ye
- Department of Radiology, Hospital of Chengdu office of People’s Government of Tibetan Autonomous Region (Hospital C. T.), Chengdu, China
| | - Man Li
- Department of Radiology, Hospital of Chengdu office of People’s Government of Tibetan Autonomous Region (Hospital C. T.), Chengdu, China
| | - Zhong-You Xu
- Department of Radiology, Hospital of Chengdu office of People’s Government of Tibetan Autonomous Region (Hospital C. T.), Chengdu, China
| | - Xiang-Wei Li
- Department of Radiology, Hospital of Chengdu office of People’s Government of Tibetan Autonomous Region (Hospital C. T.), Chengdu, China
| | - Fang Yuan
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
26
|
Tran BH, Yu Y, Chang L, Tan B, Jia W, Xiong Y, Dai T, Zhong R, Zhang W, Le VM, Rose P, Wang Z, Mao Y, Zhu YZ. A Novel Liposomal S-Propargyl-Cysteine: A Sustained Release of Hydrogen Sulfide Reducing Myocardial Fibrosis via TGF-β1/Smad Pathway. Int J Nanomedicine 2019; 14:10061-10077. [PMID: 31920303 PMCID: PMC6935304 DOI: 10.2147/ijn.s216667] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/14/2019] [Indexed: 11/23/2022] Open
Abstract
Purpose S-propargyl-cysteine (SPRC; alternatively known as ZYZ-802) is a novel modulator of endogenous tissue H2S concentrations with known cardioprotective and anti-inflammatory effects. However, its rapid metabolism and excretion have limited its clinical application. To overcome these issues, we have developed some novel liposomal carriers to deliver ZYZ-802 to cells and tissues and have characterized their physicochemical, morphological and pharmacological properties. Methods Two liposomal formulations of ZYZ-802 were prepared by thin-layer hydration and the morphological characteristics of each liposome system were assessed using a laser particle size analyzer and transmission electron microscopy. The entrapment efficiency and ZYZ-802 release profiles were determined following ultrafiltration centrifugation, dialysis tube and HPLC measurements. LC-MS/MS was used to evaluate the pharmacokinetic parameters and tissue distribution profiles of each formulation via the measurements of plasma and tissues ZYZ-802 and H2S concentrations. Using an in vivo model of heart failure (HF), the cardio-protective effects of liposomal carrier were determined by echocardiography, histopathology, Western blot and the assessment of antioxidant and myocardial fibrosis markers. Results Both liposomal formulations improved ZYZ-802 pharmacokinetics and optimized H2S concentrations in plasma and tissues. Liposomal ZYZ-802 showed enhanced cardioprotective effects in vivo. Importantly, liposomal ZYZ-802 could inhibit myocardial fibrosis via the inhibition of the TGF-β1/Smad signaling pathway. Conclusion The liposomal formulations of ZYZ-802 have enhanced pharmacokinetic and pharmacological properties in vivo. This work is the first report to describe the development of liposomal formulations to improve the sustained release of H2S within tissues.
Collapse
Affiliation(s)
- Ba Hieu Tran
- School of Pharmacy, Fudan University, Shanghai, People's Republic of China.,School of Pharmacy, Macau University of Science and Technology, Taipa, Macau.,Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam
| | - Ying Yu
- School of Pharmacy, Fudan University, Shanghai, People's Republic of China.,Department of Cardiology, Xinhua Hospital, Shanghai, People's Republic of China
| | - Lingling Chang
- School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | - Bo Tan
- Department of Clinical Pharmacology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Wanwan Jia
- School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | - Ying Xiong
- School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | - Tao Dai
- School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | - Rui Zhong
- School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | - Weiping Zhang
- Department of Hematology, Institute of Hematology of PLA, Changhai Hospital, Shanghai, People's Republic of China
| | - Van Minh Le
- NTT Institute of Hi-Technology (NIH), Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Peter Rose
- School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Zhijun Wang
- School of Pharmacy, Fudan University, Shanghai, People's Republic of China.,School of Pharmacy, Macau University of Science and Technology, Taipa, Macau
| | - Yicheng Mao
- School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | - Yi Zhun Zhu
- School of Pharmacy, Fudan University, Shanghai, People's Republic of China.,School of Pharmacy, Macau University of Science and Technology, Taipa, Macau
| |
Collapse
|
27
|
Zhao P, Qian C, Chen YJ, Sheng Y, Ke Y, Qian ZM. Cystathionine β-synthase (CBS) deficiency suppresses erythropoiesis by disrupting expression of heme biosynthetic enzymes and transporter. Cell Death Dis 2019; 10:708. [PMID: 31551410 PMCID: PMC6760157 DOI: 10.1038/s41419-019-1951-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/08/2019] [Accepted: 08/26/2019] [Indexed: 12/20/2022]
Abstract
The reduced iron usage induced by the suppression of erythropoiesis is a major cause of the systemic iron overload in CBS knockout (CBS−/−) mice. However, the relevant mechanisms are unknown. Here, we examined changes in granulocyte/erythroid cell ratios, iron content, and expression of iron-metabolism proteins, including; two key enzymes involved in the heme biosynthetic pathway, ALAS2 (delta-aminolevulinate synthase 2) and FECH (ferrochelatase), a heme exporter from the cytosol and mitochondria, FLVCR (feline leukemia virus subgroup C cellular receptor) as well as EPO (erythropoietin), EPOR (erythropoietin receptor) and HIF-2α (hypoxia inducible factor-2 subunit α), in the blood, bone marrow or liver of CBS−/− (homozygous), CBS+/− (heterozygous) and CBS+/+ (Wild Type) mice. Our findings demonstrate that CBS deficiency can induce a significant reduction in the expression of ALAS2, FECH, FLVCR, HIF-2α, EPO, and EPOR as well as an increase in interleukin-6 (IL-6), hepcidin and iron content in the blood, bone marrow or liver of mice. We conclude that the suppression of erythropoiesis is mainly due to the CBS deficiency-induced disruption in the expression of heme biosynthetic enzymes and heme-transporter.
Collapse
Affiliation(s)
- Peng Zhao
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, Shanghai, 201203, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, FudanUniversity, Shanghai, 200040, China
| | - Christopher Qian
- School of Biomedical Sciences and Gerald Choa Neuroscience Centre, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Yun-Jin Chen
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, Shanghai, 201203, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, FudanUniversity, Shanghai, 200040, China
| | - Yuan Sheng
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, Shanghai, 201203, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, FudanUniversity, Shanghai, 200040, China
| | - Ya Ke
- School of Biomedical Sciences and Gerald Choa Neuroscience Centre, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong.
| | - Zhong-Ming Qian
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, Shanghai, 201203, China. .,National Clinical Research Center for Aging and Medicine, Huashan Hospital, FudanUniversity, Shanghai, 200040, China. .,Institute of Translational & Precision Medicine, Nantong University, Nantong, JS, 226019, China.
| |
Collapse
|
28
|
Qian ZM, Ke Y. Hepcidin and its therapeutic potential in neurodegenerative disorders. Med Res Rev 2019; 40:633-653. [PMID: 31471929 DOI: 10.1002/med.21631] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/18/2019] [Accepted: 08/05/2019] [Indexed: 12/12/2022]
Abstract
Abnormally high brain iron, resulting from the disrupted expression or function of proteins involved in iron metabolism in the brain, is an initial cause of neuronal death in neuroferritinopathy and aceruloplasminemia, and also plays a causative role in at least some of the other neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, and Friedreich's ataxia. As such, iron is believed to be a novel target for pharmacological intervention in these disorders. Reducing iron toward normal levels or hampering the increases in iron associated with age in the brain is a promising therapeutic strategy for all iron-related neurodegenerative disorders. Hepcidin is a crucial regulator of iron homeostasis in the brain. Recent studies have suggested that upregulating brain hepcidin levels can significantly reduce brain iron content through the regulation of iron transport protein expression in the blood-brain barrier and in neurons and astrocytes. In this review, we focus on the discussion of the therapeutic potential of hepcidin in iron-associated neurodegenerative diseases and also provide a systematic overview of recent research progress on how misregulated brain iron metabolism is involved in the development of multiple neurodegenerative disorders.
Collapse
Affiliation(s)
- Zhong-Ming Qian
- Institute of Translational & Precision Medicine, Nantong University, Nantong, Jiangsu, China.,Laboratory of Neuropharmacology, School of Pharmacy & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ya Ke
- School of Biomedical Sciences and Gerald Choa Neuroscience Centre, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| |
Collapse
|
29
|
Badiei A, Sudharsan R, Santana E, Dunaief JL, Aguirre GD. Comparative localization of cystathionine beta synthases and cystathionine gamma lyase in canine, non-human primate and human retina. Exp Eye Res 2019; 181:72-84. [PMID: 30653965 PMCID: PMC6443508 DOI: 10.1016/j.exer.2019.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/18/2018] [Accepted: 01/03/2019] [Indexed: 12/15/2022]
Abstract
Chronic exposure of the retina to light and high concentrations of polyunsaturated fatty acid in photoreceptor cells make this tissue susceptible to oxidative damage. As retinal degenerative diseases are associated with photoreceptor degeneration, the antioxidant activity of both hydrogen sulfide (H2S) and glutathione (GSH) may play an important role in ameliorating disease progression. H2S production is driven by cystathionine-γ-lyase (CSE) and cystathionine-β-synthase (CBS), the key enzymes that also drive transsulfuration pathway (TSP) necessary for GSH production. As it is currently unclear whether localized production of either H2S or GSH contributes to retinal homeostasis, we undertook a comparative analysis of CBS and CSE expression in canine, non-human primate (NHP) and human retinas to determine if these antioxidants could play a regulatory role in age-related or disease-associated retinal degeneration. Retinas from normal dogs, NHPs and humans were used for the study. Laser capture microdissection (LCM) was performed to isolate individual layers of the canine retina and analyze CBS and CSE gene expression by qRT-PCR. Immunohistochemistry and western blotting were performed for CBS and CSE labeling and protein expression in dog, NHP, and human retina, respectively. Using qRT-PCR, western blot, and immunohistochemistry (IHC), we showed that CBS and CSE are expressed in the canine, NHP, and human retina. IHC results from canine retina demonstrated increased expression levels of CBS but not CSE with post-developmental aging. IHC results also showed non-overlapping localization of both proteins with CBS presenting in rods, amacrine, horizontal, and nerve fiber cell layers while CSE was expressed by RPE, cones and Mϋller cells. Finally, we demonstrated that these enzymes localized to all three layers of canine, NHP and human retina: photoreceptors, outer plexiform layer (OPL) and notably in the ganglion cells layer/nerve fiber layer (GCL/NFL). QRT-PCR performed using RNA extracted from tissues isolated from these cell layers using laser capture microdissection (LCM) confirmed that each of CBS and CSE are expressed equally in these three layers. Together, these findings reveal that CSE and CBS are expressed in the retina, thereby supporting further studies to determine the role of H2S and these proteins in oxidative stress and apoptosis in retinal degenerative diseases.
Collapse
Affiliation(s)
- Alireza Badiei
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Raghavi Sudharsan
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Evelyn Santana
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joshua L Dunaief
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Gustavo D Aguirre
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
30
|
Zhang MW, Zhao P, Yung WH, Sheng Y, Ke Y, Qian ZM. Tissue iron is negatively correlated with TERC or TERT mRNA expression: A heterochronic parabiosis study in mice. Aging (Albany NY) 2018; 10:3834-3850. [PMID: 30555055 PMCID: PMC6326661 DOI: 10.18632/aging.101676] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/18/2018] [Indexed: 12/21/2022]
Abstract
To test the hypothesis that iron accumulation in tissues with age is a key harmful factor for the development of aging, we established heterochronic parabiosis-pairings and investigated changes in serum iron, the expression of major iron transport proteins and iron contents, as well as telomerase reverse transcriptase (TERT), telomerase RNA component (TERC), and telomere length in the liver, kidney and heart of Y-O(O) (old pairing with young), Y-O(Y) (young pairing with old), O-O (pairings between two old) and Y-Y (pairings between two young) mice. We demonstrated that the reduced serum iron, increased iron and reduced expression of TERT and TERC in the tissues of aged mice are reversible by exposure to a younger mouse’s circulation. All of these measurements in young mice are reversible by exposure to an older mouse’s circulation. Correlation analysis showed that tissue iron is negatively correlated with TERT and TERC expression in the liver, kidney and heart of parabiotic mice. These findings provide new evidence for the key role of iron in aging and also imply the existence of rejuvenating factors in young serum with an anti-ageing role that act by reversing the impaired activity of iron metabolism in old mice.
Collapse
Affiliation(s)
- Meng-Wan Zhang
- National Clinical Research Center for Aging and Medicine, Huashan Hostital, Laboratory of Neuropharmacology, School of Pharmacy, Fudan University, Shanghai 201203, PRC
| | - Peng Zhao
- National Clinical Research Center for Aging and Medicine, Huashan Hostital, Laboratory of Neuropharmacology, School of Pharmacy, Fudan University, Shanghai 201203, PRC
| | - Wing-Ho Yung
- School of Biomedical Sciences and Gerald Choa Neuroscience Centre, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Yuan Sheng
- National Clinical Research Center for Aging and Medicine, Huashan Hostital, Laboratory of Neuropharmacology, School of Pharmacy, Fudan University, Shanghai 201203, PRC
| | - Ya Ke
- School of Biomedical Sciences and Gerald Choa Neuroscience Centre, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Zhong-Ming Qian
- National Clinical Research Center for Aging and Medicine, Huashan Hostital, Laboratory of Neuropharmacology, School of Pharmacy, Fudan University, Shanghai 201203, PRC.,Laboratory of Neuropharmacology, Institute of Translational & Precision Medicine, Nantong University, Nantong 226019, PRC
| |
Collapse
|
31
|
Zhang M, Yang G, Zhou Y, Qian C, Mu M, Ke Y, Qian Z. Regulating ferroportin‐1 and transferrin receptor‐1 expression: A novel function of hydrogen sulfide. J Cell Physiol 2018; 234:3158-3169. [DOI: 10.1002/jcp.27431] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 08/27/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Meng‐Wan Zhang
- Laboratory of Neuropharmacology School of Pharmacy, Fudan University Shanghai China
- Laboratory of Neuropharmacology Institute of Translational & Precision Medicine, Nantong University Nantong China
| | - Guang Yang
- Laboratory of Neuropharmacology School of Pharmacy, Fudan University Shanghai China
- Laboratory of Neuropharmacology Institute of Translational & Precision Medicine, Nantong University Nantong China
| | - Yu‐Fu Zhou
- Laboratory of Neuropharmacology School of Pharmacy, Fudan University Shanghai China
- Laboratory of Neuropharmacology Institute of Translational & Precision Medicine, Nantong University Nantong China
| | - Christopher Qian
- Gerald Choa Neuroscience Centre School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong Hong Kong Hong Kong
| | - Ming‐Dao Mu
- Gerald Choa Neuroscience Centre School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong Hong Kong Hong Kong
| | - Ya Ke
- Gerald Choa Neuroscience Centre School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong Hong Kong Hong Kong
| | - Zhong‐Ming Qian
- Laboratory of Neuropharmacology School of Pharmacy, Fudan University Shanghai China
- Laboratory of Neuropharmacology Institute of Translational & Precision Medicine, Nantong University Nantong China
| |
Collapse
|
32
|
A pharmacological probe identifies cystathionine β-synthase as a new negative regulator for ferroptosis. Cell Death Dis 2018; 9:1005. [PMID: 30258181 PMCID: PMC6158189 DOI: 10.1038/s41419-018-1063-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/26/2018] [Accepted: 08/30/2018] [Indexed: 12/16/2022]
Abstract
Cystathionine β-synthase (CBS) is responsible for the first enzymatic reaction in the transsulfuration pathway of sulfur amino acids. The molecular function and mechanism of CBS as well as that of transsulfuration pathway remain ill-defined in cell proliferation and death. In the present study, we designed, synthesized and obtained a bioactive inhibitor CH004 for human CBS, which functions in vitro and in vivo. CH004 inhibits CBS activity, elevated the cellular homocysteine and suppressed the production of hydrogen sulfide in a dose-dependent manner in cells or in vivo. Chemical or genetic inhibition of CBS demonstrates that endogenous CBS is closely coupled with cell proliferation and cell cycle. Moreover, CH004 substantially retarded in vivo tumor growth in a xenograft mice model of liver cancer. Importantly, inhibition of CBS triggers ferroptosis in hepatocellular carcinoma. Overall, the study provides several clues for studying the interplays amongst transsulfuration pathway, ferroptosis and liver cancer.
Collapse
|