1
|
Luo R, Liu J, Wang T, Zhao W, Wang Y, Wen J, Wang H, Ding S, Zhou X. The landscape of malignant transition: Unraveling cancer cell-of-origin and heterogeneous tissue microenvironment. Cancer Lett 2025; 621:217591. [PMID: 40054660 PMCID: PMC12040592 DOI: 10.1016/j.canlet.2025.217591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/10/2025] [Accepted: 02/25/2025] [Indexed: 03/12/2025]
Abstract
Understanding disease progression and sophisticated tumor ecosystems is imperative for investigating tumorigenesis mechanisms and developing novel prevention strategies. Here, we dissected heterogeneous microenvironments during malignant transitions by leveraging data from 1396 samples spanning 13 major tissues. Within transitional stem-like subpopulations highly enriched in precancers and cancers, we identified 30 recurring cellular states strongly linked to malignancy, including hypoxia and epithelial senescence, revealing a high degree of plasticity in epithelial stem cells. By characterizing dynamics in stem-cell crosstalk with the microenvironment along the pseudotime axis, we found differential roles of ANXA1 at different stages of tumor development. In precancerous stages, reduced ANXA1 levels promoted monocyte differentiation toward M1 macrophages and inflammatory responses, whereas during malignant progression, upregulated ANXA1 fostered M2 macrophage polarization and cancer-associated fibroblast transformation by increasing TGF-β production. Our spatiotemporal analysis further provided insights into mechanisms responsible for immunosuppression and a potential target to control evolution of precancer and mitigate the risk for cancer development.
Collapse
Affiliation(s)
- Ruihan Luo
- Laboratory of Hepatic AI Translation, Frontier Science Center for Disease-Related Molecular Network and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China; Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA; Med-X Center for Informatics, Sichuan University, Chengdu, 610041, China.
| | - Jiajia Liu
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Tiangang Wang
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Weiling Zhao
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Yanfei Wang
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Jianguo Wen
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Hongyu Wang
- Department of Diagnostic and Interventional Imaging, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA; Center for Nursing Research, Cizik School of Nursing, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Shanli Ding
- Graduate School of Biomedical Sciences, The University of MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA; McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Ma X, Huang T, Chen X, Li Q, Liao M, Fu L, Huang J, Yuan K, Wang Z, Zeng Y. Molecular mechanisms in liver repair and regeneration: from physiology to therapeutics. Signal Transduct Target Ther 2025; 10:63. [PMID: 39920130 PMCID: PMC11806117 DOI: 10.1038/s41392-024-02104-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 09/02/2024] [Accepted: 12/12/2024] [Indexed: 02/09/2025] Open
Abstract
Liver repair and regeneration are crucial physiological responses to hepatic injury and are orchestrated through intricate cellular and molecular networks. This review systematically delineates advancements in the field, emphasizing the essential roles played by diverse liver cell types. Their coordinated actions, supported by complex crosstalk within the liver microenvironment, are pivotal to enhancing regenerative outcomes. Recent molecular investigations have elucidated key signaling pathways involved in liver injury and regeneration. Viewed through the lens of metabolic reprogramming, these pathways highlight how shifts in glucose, lipid, and amino acid metabolism support the cellular functions essential for liver repair and regeneration. An analysis of regenerative variability across pathological states reveals how disease conditions influence these dynamics, guiding the development of novel therapeutic strategies and advanced techniques to enhance liver repair and regeneration. Bridging laboratory findings with practical applications, recent clinical trials highlight the potential of optimizing liver regeneration strategies. These trials offer valuable insights into the effectiveness of novel therapies and underscore significant progress in translational research. In conclusion, this review intricately links molecular insights to therapeutic frontiers, systematically charting the trajectory from fundamental physiological mechanisms to innovative clinical applications in liver repair and regeneration.
Collapse
Affiliation(s)
- Xiao Ma
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tengda Huang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiangzheng Chen
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qian Li
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Mingheng Liao
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Fu
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jiwei Huang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Kefei Yuan
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhen Wang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Yong Zeng
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
3
|
La X, Zhang Z, Liang J, Li H, Pang Y, He X, Kang Y, Wu C, Li Z. Isolation and purification of flavonoids from quinoa whole grain and its inhibitory effect on lipid accumulation in nonalcoholic fatty liver disease by inhibiting the expression of CD36 and FASN. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1330-1342. [PMID: 39305086 DOI: 10.1002/jsfa.13923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD), a chronic metabolic disorder marked by excessive lipid deposition, represents a considerable health burden with no established efficacious treatment strategy. Quinoa (Chenopodium quinoa Willd.), valued for its health benefits, is replete with flavonoid bioactives. The aims of this work are to isolate and purify flavonoids from quinoa whole grain that can intervene in NAFLD and to elucidate some of the underlying mechanisms. RESULTS Chenopodium quinoa Willd. flavonoids (CQWF) were obtained successfully through an optimized ultrasonic extraction methodology, followed by isolation and purification utilizing macroporous resin D101. The study then explored the therapeutic potential of CQWF and its eluted fractions in models emulating NAFLD conditions: an in vitro fatty liver cell model induced by oleic acid (OA) and palmitic acid (PA) in the HepG2 and BEL-7402 cell lines, and an in vivo high-fat diet (HFD)-induced NAFLD model in C57BL/6N mice. The findings revealed a comprehensive mitigating effect of CQWF30 on NAFLD, manifesting in reduced intracellular lipid accumulation in steatotic hepatocytes and a concerted downregulation of key lipid metabolism genes, CD36 and FASN. Administration of CQWF30 reduced triglyceride (TG) levels in both the cellular model and the livers of HFD-fed mice. It also reduced serum concentrations of TG, total cholesterol (T-CHO), low-density lipoprotein cholesterol (LDL-C), aspartate aminotransferase (AST), and alanine aminotransferase (ALT), while increasing high-density lipoprotein cholesterol (HDL-C) in the mice. CONCLUSION These results highlighted the promising therapeutic capacity of CQWF, particularly CQWF30. This research advances the exploration and utilization of flavonoids derived from quinoa whole grain, providing innovative dietary intervention strategies for NAFLD. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoqin La
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan, China
| | - Zhaoyan Zhang
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Jingyi Liang
- Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Hanqing Li
- School of Life Science, Shanxi University, Taiyuan, China
| | - Yan Pang
- School of Life Science, Shanxi University, Taiyuan, China
| | - Xiaoting He
- School of Life Science, Shanxi University, Taiyuan, China
| | - Yurui Kang
- School of Life Science, Shanxi University, Taiyuan, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Zhuoyu Li
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan, China
- Institute of Biotechnology, Shanxi University, Taiyuan, China
| |
Collapse
|
4
|
Elmansi AM, Miller RA. Oxidative phosphorylation and fatty acid oxidation in slow-aging mice. Free Radic Biol Med 2024; 224:246-255. [PMID: 39153667 DOI: 10.1016/j.freeradbiomed.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
Oxidative metabolism declines with aging in humans leading to multiple metabolic ailments and subsequent inflammation. In mice, there is evidence of age-related suppression of fatty acid oxidation and oxidative phosphorylation in the liver, heart, and muscles. Many interventions that extend healthy lifespan of mice have been developed, including genetic, pharmacological, and dietary interventions. In this article, we review the literature on oxidative metabolism changes in response to those interventions. We also discuss the molecular pathways that mediate those changes, and their potential as targets for future longevity interventions.
Collapse
Affiliation(s)
- Ahmed M Elmansi
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA; University of Michigan Geriatrics Center, Ann Arbor, MI, USA
| | - Richard A Miller
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA; University of Michigan Geriatrics Center, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Shi Y, Lei Y, Zhao Y, Zhang S, Xu H, Huo L, Liu W, Liu Q. Evaluating the mitochondrial structure and gene expression profile of regenerated liver tissues in mice after 85% partial hepatectomy. J Gastrointest Oncol 2024; 15:2252-2264. [PMID: 39554572 PMCID: PMC11565125 DOI: 10.21037/jgo-24-243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024] Open
Abstract
Background Partial hepatectomy (PH) is the primary method used for treating liver injury and transplantation. The regeneration process after hepatectomy requires an adequate energy supply, and mitochondria serve as the primary source of energy. Alterations in genes related to the respiratory chain complex may impact the liver regeneration process. The aim of this study was the changes in mitochondrial structure and mitochondrial function in 85% PH. Methods A PH (up to 85%) model was developed using male C57BL/6 mice, and the regenerated liver tissue was harvested after 24 hours. Hematoxylin and eosin staining and transmission electron microscopy were used for morphological studies. In terms of proliferation, a positive proliferating cell nuclear antigen (PCNA) rate was detected via immunohistochemistry. Real-time polymerase chain reaction was performed to identify differentially expressed genes (DEGs), which were screened using a P value of <0.05 and a |fold change| of ≥1.5. The Hiplot online tool was used for generating a volcano plot and conducting correlation analyses. R software was employed for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses for the DEGs. A combined Search Tool for the Retrieval of Interacting Genes/Proteins (STRING)-Cytoscape method was used for protein-protein interaction (PPI) network analyses, whereas cytoHubba was used to the screen core DEGs. Results After 85% PH, we observed steatosis, an increased PCNA positivity rate, mitochondrial swelling, and a reduced number of cristae due to cristae disintegration. We screened 30 DEGs that were associated with different processes, including oxidation-reduction, oxidoreductase activity, electron transfer activity, organelle envelope, inner mitochondrial membrane processes, and oxidative phosphorylation as well as those involved in nonalcoholic fatty liver disease (NAFLD). We identified a total of six hub genes: COX4I1, ATP5B, UQCRC2, CYC1, ATP5O, and ATP5A1. Conclusions The 85% PH model promotes mitochondrial complex protein expression, thereby providing energy for liver regeneration. The enriched genes were associated with oxidation-reduction, electron transfer activity, and inner mitochondrial membrane processes.
Collapse
Affiliation(s)
- Yongquan Shi
- Department of Clinical Laboratory Center, Shandong Second Provincial General Hospital, Jinan, China
| | - Yu Lei
- Department of Otolaryngology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanping Zhao
- Department of Clinical Laboratory Center, Shandong Second Provincial General Hospital, Jinan, China
| | - Shuaishuai Zhang
- Department of Clinical Laboratory Center, Shandong Second Provincial General Hospital, Jinan, China
| | - Hongxin Xu
- Department of Clinical Laboratory Center, Shandong Second Provincial General Hospital, Jinan, China
| | - Li Huo
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Wei Liu
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qinlong Liu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
6
|
Xu J, Guo P, Hao S, Shangguan S, Shi Q, Volpe G, Huang K, Zuo J, An J, Yuan Y, Cheng M, Deng Q, Zhang X, Lai G, Nan H, Wu B, Shentu X, Wu L, Wei X, Jiang Y, Huang X, Pan F, Song Y, Li R, Wang Z, Liu C, Liu S, Li Y, Yang T, Xu Z, Du W, Li L, Ahmed T, You K, Dai Z, Li L, Qin B, Li Y, Lai L, Qin D, Chen J, Fan R, Li Y, Hou J, Ott M, Sharma AD, Cantz T, Schambach A, Kristiansen K, Hutchins AP, Göttgens B, Maxwell PH, Hui L, Xu X, Liu L, Chen A, Lai Y, Esteban MA. A spatiotemporal atlas of mouse liver homeostasis and regeneration. Nat Genet 2024; 56:953-969. [PMID: 38627598 DOI: 10.1038/s41588-024-01709-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/06/2024] [Indexed: 05/09/2024]
Abstract
The mechanism by which mammalian liver cell responses are coordinated during tissue homeostasis and perturbation is poorly understood, representing a major obstacle in our understanding of many diseases. This knowledge gap is caused by the difficulty involved with studying multiple cell types in different states and locations, particularly when these are transient. We have combined Stereo-seq (spatiotemporal enhanced resolution omics-sequencing) with single-cell transcriptomic profiling of 473,290 cells to generate a high-definition spatiotemporal atlas of mouse liver homeostasis and regeneration at the whole-lobe scale. Our integrative study dissects in detail the molecular gradients controlling liver cell function, systematically defining how gene networks are dynamically modulated through intercellular communication to promote regeneration. Among other important regulators, we identified the transcriptional cofactor TBL1XR1 as a rheostat linking inflammation to Wnt/β-catenin signaling for facilitating hepatocyte proliferation. Our data and analytical pipelines lay the foundation for future high-definition tissue-scale atlases of organ physiology and malfunction.
Collapse
Affiliation(s)
- Jiangshan Xu
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Pengcheng Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China.
- 3DC STAR, Spatiotemporal Campus at BGI Shenzhen, Shenzhen, China.
| | - Shijie Hao
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuncheng Shangguan
- BGI Research, Shenzhen, China
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health and Guangzhou Medical University, Guangzhou, China
| | - Quan Shi
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Giacomo Volpe
- Hematology and Cell Therapy Unit, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - Keke Huang
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jing Zuo
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Juan An
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yue Yuan
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Mengnan Cheng
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Qiuting Deng
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiao Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Guangyao Lai
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health and Guangzhou Medical University, Guangzhou, China
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Haitao Nan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Baihua Wu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Xinyi Shentu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Liang Wu
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaoyu Wei
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Yujia Jiang
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Xin Huang
- BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fengyu Pan
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Yumo Song
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Ronghai Li
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Zhifeng Wang
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Chuanyu Liu
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
- BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, China
| | - Shiping Liu
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | | | - Tao Yang
- China National GeneBank, BGI Research, Shenzhen, China
- Guangdong Provincial Genomics Data Center, BGI Research, Shenzhen, China
| | - Zhicheng Xu
- China National GeneBank, BGI Research, Shenzhen, China
- Guangdong Provincial Genomics Data Center, BGI Research, Shenzhen, China
| | - Wensi Du
- China National GeneBank, BGI Research, Shenzhen, China
- Guangdong Provincial Genomics Data Center, BGI Research, Shenzhen, China
| | - Ling Li
- China National GeneBank, BGI Research, Shenzhen, China
- Guangdong Provincial Genomics Data Center, BGI Research, Shenzhen, China
| | - Tanveer Ahmed
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Kai You
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zhen Dai
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Li Li
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Baoming Qin
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yinxiong Li
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Liangxue Lai
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Dajiang Qin
- The Fifth Affiliated Hospital of Guangzhou Medical University-BGI Research Center for Integrative Biology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Junling Chen
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangzhou, China
| | - Rong Fan
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangzhou, China
| | - Yongyin Li
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangzhou, China
| | - Jinlin Hou
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangzhou, China
| | - Michael Ott
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Amar Deep Sharma
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Tobias Cantz
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | | | - Andrew P Hutchins
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Berthold Göttgens
- Department of Haematology and Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Patrick H Maxwell
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Lijian Hui
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Xun Xu
- BGI Research, Hangzhou, China.
- BGI Research, Shenzhen, China.
- BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, China.
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China.
| | - Longqi Liu
- BGI Research, Hangzhou, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
- BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, China.
| | - Ao Chen
- BGI Research, Shenzhen, China.
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
- BGI Research, Chongqing, China.
- JFL-BGI STOmics Center, BGI-Shenzhen, Chongqing, China.
| | - Yiwei Lai
- BGI Research, Hangzhou, China.
- BGI Research, Shenzhen, China.
- 3DC STAR, Spatiotemporal Campus at BGI Shenzhen, Shenzhen, China.
- BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, China.
| | - Miguel A Esteban
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China.
- 3DC STAR, Spatiotemporal Campus at BGI Shenzhen, Shenzhen, China.
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- The Fifth Affiliated Hospital of Guangzhou Medical University-BGI Research Center for Integrative Biology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
7
|
Luo R, Liu J, Wen J, Zhou X. Single-cell Landscape of Malignant Transition: Unraveling Cancer Cell-of-Origin and Heterogeneous Tissue Microenvironment. RESEARCH SQUARE 2024:rs.3.rs-4085185. [PMID: 38645221 PMCID: PMC11030487 DOI: 10.21203/rs.3.rs-4085185/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Understanding disease progression and sophisticated tumor ecosystems is imperative for investigating tumorigenesis mechanisms and developing novel prevention strategies. Here, we dissected heterogeneous microenvironments during malignant transitions by leveraging data from 1396 samples spanning 13 major tissues. Within transitional stem-like subpopulations highly enriched in precancers and cancers, we identified 30 recurring cellular states strongly linked to malignancy, including hypoxia and epithelial senescence, revealing a high degree of plasticity in epithelial stem cells. By characterizing dynamics in stem-cell crosstalk with the microenvironment along the pseudotime axis, we found differential roles of ANXA1 at different stages of tumor development. In precancerous stages, reduced ANXA1 levels promoted monocyte differentiation toward M1 macrophages and inflammatory responses, whereas during malignant progression, upregulated ANXA1 fostered M2 macrophage polarization and cancer-associated fibroblast transformation by increasing TGF-β production. Our spatiotemporal analysis further provided insights into mechanisms responsible for immunosuppression and a potential target to control evolution of precancer and mitigate the risk for cancer development.
Collapse
Affiliation(s)
| | - Jiajia Liu
- The University of Texas Health Science Center at Houston
| | - Jianguo Wen
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston
| | - Xiaobo Zhou
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston
| |
Collapse
|
8
|
Hu Y, Wang R, Liu J, Wang Y, Dong J. Lipid droplet deposition in the regenerating liver: A promoter, inhibitor, or bystander? Hepatol Commun 2023; 7:e0267. [PMID: 37708445 PMCID: PMC10503682 DOI: 10.1097/hc9.0000000000000267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/29/2023] [Indexed: 09/16/2023] Open
Abstract
Liver regeneration (LR) is a complex process involving intricate networks of cellular connections, cytokines, and growth factors. During the early stages of LR, hepatocytes accumulate lipids, primarily triacylglycerol, and cholesterol esters, in the lipid droplets. Although it is widely accepted that this phenomenon contributes to LR, the impact of lipid droplet deposition on LR remains a matter of debate. Some studies have suggested that lipid droplet deposition has no effect or may even be detrimental to LR. This review article focuses on transient regeneration-associated steatosis and its relationship with the liver regenerative response.
Collapse
Affiliation(s)
- Yuelei Hu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Ruilin Wang
- Department of Cadre’s Wards Ultrasound Diagnostics. Ultrasound Diagnostic Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Juan Liu
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing, China
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing, China
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Yunfang Wang
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing, China
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing, China
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Jiahong Dong
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, China
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing, China
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
9
|
Choi YJ, Yun SH, Yu J, Mun Y, Lee W, Park CJ, Han BW, Lee BH. Chaperone-mediated autophagy dysregulation during aging impairs hepatic fatty acid oxidation via accumulation of NCoR1. Mol Metab 2023; 76:101784. [PMID: 37524243 PMCID: PMC10448198 DOI: 10.1016/j.molmet.2023.101784] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023] Open
Abstract
OBJECTIVE Alterations in lipid metabolism are associated with aging and age-related diseases. Chaperone-mediated autophagy (CMA) is a lysosome-dependent process involved in specific protein degradation. Heat shock cognate 71 kDa protein (Hsc70) recognizes cytosolic proteins with KFERQ motif and allows them to enter the lysosome via lysosome-associated membrane glycoprotein 2 isoform A (LAMP2A). CMA deficiency is associated with dysregulated lipid metabolism in the liver. In this study, we examined the effect of CMA on lipid metabolism in the aged liver. METHODS 12-week-old and 88-week-old mice were employed to assess the effect of aging on hepatic CMA activity. We generated CMA-deficient mouse primary hepatocytes using siRNA for Lamp2a and liver-specific LAMP2A knockdown mice via adeno-associated viruses expressing short hairpin RNAs to investigate the influence of CMA on lipid metabolism. RESULTS We noted aging-induced progression toward fatty liver and a decrease in LAMP2A levels in total protein and lysosomes. The expression of genes associated with fatty acid oxidation was markedly downregulated in the aged liver, as verified in CMA-deficient mouse primary hepatocytes. In addition, the aged liver accumulated nuclear receptor corepressor 1 (NCoR1), a negative regulator of peroxisome proliferator-activated receptor α (PPARα). We found that Hsc70 binds to NCoR1 via the KFERQ motif. Lamp2a siRNA treatment accumulated NCoR1 and decreased the fatty acid oxidation rate. Pharmacological activation of CMA by AR7 treatment increased LAMP2A expression, leading to NCoR1 degradation. A liver-specific LAMP2A knockdown via adeno-associated viruses expressing short hairpin RNAs caused NCoR1 accumulation, inactivated PPARα, downregulated the expression of fatty acid oxidation-related genes and significantly increased liver triglyceride levels. CONCLUSIONS Our results elucidated a novel PPARα regulatory mechanism involving CMA-mediated NCoR1 degradation during aging. These findings demonstrate that CMA dysregulation is crucial for the progression of aging-related fatty liver diseases.
Collapse
Affiliation(s)
- You-Jin Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung Ho Yun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jihyeon Yu
- Division of Life Science, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Yewon Mun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Wonseok Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Cheon Jun Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Byung Woo Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Byung-Hoon Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
10
|
Elmansi AM, Miller RA. Coordinated transcriptional upregulation of oxidative metabolism proteins in long-lived endocrine mutant mice. GeroScience 2023; 45:2967-2981. [PMID: 37273159 PMCID: PMC10643730 DOI: 10.1007/s11357-023-00849-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/31/2023] [Indexed: 06/06/2023] Open
Abstract
Caloric restriction (CR), which extends lifespan in rodents, leads to increased hepatic fatty acid β-oxidation and oxidative phosphorylation (OXPHOS), with parallel changes in proteins and their mRNAs. Genetic mutants that extend lifespan, including growth hormone receptor knockout (GHRKO) and Snell dwarf (SD) mice, have lower respiratory quotient, suggesting increased reliance on fatty acid oxidation, but the molecular mechanism(s) of this metabolic shift have not yet been worked out. Here we show that both GHRKO and SD mice have significantly higher mRNA and protein levels of enzymes involved in mitochondrial and peroxisomal fatty acid β-oxidation. In addition, multiple subunits of OXPHOS complexes I-IV are upregulated in GHRKO and SD livers, and Complex V subunit ATP5a is upregulated in liver of GHRKO mice. Expression of these genes is regulated by a group of nuclear receptors and transcription factors including peroxisome proliferator-activated receptors (PPARs) and estrogen-related receptors (ERRs). We found that levels of these nuclear receptors and their co-activator PGC-1α were unchanged or downregulated in liver of GHRKO and SD mice. In contrast, NCOR1, a co-repressor for the same receptors, was significantly downregulated in the two long-lived mouse models, suggesting a plausible mechanism for the changes in FAO and OXPHOS proteins. Hepatic levels of HDAC3, a co-factor for NCOR1 transcriptional repression, were also downregulated. The role of NCOR1 is well established in the contexts of cancer and metabolic disease, but may provide new mechanistic insights into metabolic control in long-lived mouse models.
Collapse
Affiliation(s)
- Ahmed M Elmansi
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Richard A Miller
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
- University of Michigan Geriatrics Center, Ann Arbor, MI, USA.
| |
Collapse
|
11
|
Biswas VK, Sen K, Ahad A, Ghosh A, Verma S, Pati R, Prusty S, Nayak SP, Podder S, Kumar D, Gupta B, Raghav SK. NCoR1 controls Mycobacterium tuberculosis growth in myeloid cells by regulating the AMPK-mTOR-TFEB axis. PLoS Biol 2023; 21:e3002231. [PMID: 37590294 PMCID: PMC10465006 DOI: 10.1371/journal.pbio.3002231] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 08/29/2023] [Accepted: 07/04/2023] [Indexed: 08/19/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) defends host-mediated killing by repressing the autophagolysosome machinery. For the first time, we report NCoR1 co-repressor as a crucial host factor, controlling Mtb growth in myeloid cells by regulating both autophagosome maturation and lysosome biogenesis. We found that the dynamic expression of NCoR1 is compromised in human peripheral blood mononuclear cells (PBMCs) during active Mtb infection, which is rescued upon prolonged anti-mycobacterial therapy. In addition, a loss of function in myeloid-specific NCoR1 considerably exacerbates the growth of M. tuberculosis in vitro in THP1 differentiated macrophages, ex vivo in bone marrow-derived macrophages (BMDMs), and in vivo in NCoR1MyeKO mice. We showed that NCoR1 depletion controls the AMPK-mTOR-TFEB signalling axis by fine-tuning cellular adenosine triphosphate (ATP) homeostasis, which in turn changes the expression of proteins involved in autophagy and lysosomal biogenesis. Moreover, we also showed that the treatment of NCoR1 depleted cells by Rapamycin, Antimycin-A, or Metformin rescued the TFEB activity and LC3 levels, resulting in enhanced Mtb clearance. Similarly, expressing NCoR1 exogenously rescued the AMPK-mTOR-TFEB signalling axis and Mtb killing. Overall, our data revealed a central role of NCoR1 in Mtb pathogenesis in myeloid cells.
Collapse
Affiliation(s)
- Viplov Kumar Biswas
- Immuno-genomics & Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Kaushik Sen
- Immuno-genomics & Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Abdul Ahad
- Immuno-genomics & Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, India
| | - Arup Ghosh
- Immuno-genomics & Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Surbhi Verma
- Molecular Medicine: Cellular Immunology, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Rashmirekha Pati
- Immuno-genomics & Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, India
| | - Subhasish Prusty
- Immuno-genomics & Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Sourya Prakash Nayak
- Immuno-genomics & Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, India
| | - Sreeparna Podder
- Immuno-genomics & Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Dhiraj Kumar
- Molecular Medicine: Cellular Immunology, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Bhawna Gupta
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Sunil Kumar Raghav
- Immuno-genomics & Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| |
Collapse
|
12
|
Xie Z, Xie T, Liu J, Zhang Q, Xiao X. Glucokinase Inactivation Ameliorates Lipid Accumulation and Exerts Favorable Effects on Lipid Metabolism in Hepatocytes. Int J Mol Sci 2023; 24:ijms24054315. [PMID: 36901746 PMCID: PMC10002408 DOI: 10.3390/ijms24054315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Glucokinase-maturity onset diabetes of the young (GCK-MODY) is a kind of rare diabetes with low incidence of vascular complications caused by GCK gene inactivation. This study aimed to investigate the effects of GCK inactivation on hepatic lipid metabolism and inflammation, providing evidence for the cardioprotective mechanism in GCK-MODY. We enrolled GCK-MODY, type 1 and 2 diabetes patients to analyze their lipid profiles, and found that GCK-MODY individuals exhibited cardioprotective lipid profile with lower triacylglycerol and elevated HDL-c. To further explore the effects of GCK inactivation on hepatic lipid metabolism, GCK knockdown HepG2 and AML-12 cell models were established, and in vitro studies showed that GCK knockdown alleviated lipid accumulation and decreased the expression of inflammation-related genes under fatty acid treatment. Lipidomic analysis indicated that the partial inhibition of GCK altered the levels of several lipid species with decreased saturated fatty acids and glycerolipids including triacylglycerol and diacylglycerol, and increased phosphatidylcholine in HepG2 cells. The hepatic lipid metabolism altered by GCK inactivation was regulated by the enzymes involved in de novo lipogenesis, lipolysis, fatty acid β-oxidation and the Kennedy pathway. Finally, we concluded that partial inactivation of GCK exhibited beneficial effects in hepatic lipid metabolism and inflammation, which potentially underlies the protective lipid profile and low cardiovascular risks in GCK-MODY patients.
Collapse
Affiliation(s)
- Ziyan Xie
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Ting Xie
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Jieying Liu
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Qian Zhang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
- Correspondence: or ; Tel./Fax: +86-10-6915-5073
| |
Collapse
|
13
|
Lei X, Liu Q, Qin W, Tong Q, Li Z, Xu W, Liu G, Fu J, Zhang J, Kuang T, Shao Y, Liu C, Fang Y, Cao Z, Yan L, Liu Z, Liu S, Yamamoto H, Mori M, Liang XM, Xu X. TRPM8 contributes to liver regeneration via mitochondrial energy metabolism mediated by PGC1α. Cell Death Dis 2022; 13:1050. [PMID: 36526620 PMCID: PMC9758188 DOI: 10.1038/s41419-022-05475-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
Impairment of liver regeneration leads to severe morbidity in acute and chronic severe liver disease. Transient receptor potential melastain 8 (TRPM8) is involved in a variety of processes, including temperature sensing, ion homeostasis, and cell proliferation. However, whether TRPM8 contributes to liver regeneration is still unclear. We assessed the effect and mechanism of TRPM8 in liver regeneration and hepatocyte proliferation in vivo and in vitro. In this study, we found that TRPM8 deficiency impairs liver regeneration in mice. Mechanistically, the results revealed that mitochondrial energy metabolism was attenuated in livers from TRPM8 knockout (KO) mice. Furthermore, we found that TRPM8 contributes to the proliferation of hepatocytes via PGC1α. Taken together, this study shows that TRPM8 contributes to liver regeneration in mice after hepatectomy. Genetic approaches and pharmacological approaches to regulate TRPM8 activity may be beneficial to the promotion of liver regeneration.
Collapse
Affiliation(s)
- Xiaohua Lei
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- The First Affiliated Hospital, Department of Hepato-Biliary-Pancreatic Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, People's Republic of China
| | - Qiang Liu
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Wei Qin
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Qing Tong
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Zhenghao Li
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Wendi Xu
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Guoxing Liu
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Jie Fu
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Ju Zhang
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Tao Kuang
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yaoli Shao
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Chun Liu
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yu Fang
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Zhenyu Cao
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Likun Yan
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Zhiqiang Liu
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Siyuan Liu
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Hirofumi Yamamoto
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Masaki Mori
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Xin M Liang
- Wellman Center for Photomedicine, Division of Hematology and Oncology, Division of Endocrinology, Massachusetts General Hospital, VA Boston Healthcare System, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Xundi Xu
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
- Department of general surgery. Southern China Hospital, Health Science Center, Shenzhen University, Shenzhen, People's Republic of China.
| |
Collapse
|
14
|
Yin F, Wu MM, Wei XL, Ren RX, Liu MH, Chen CQ, Yang L, Xie RQ, Jiang SY, Wang XF, Wang H. Hepatic NCoR1 deletion exacerbates alcohol-induced liver injury in mice by promoting CCL2-mediated monocyte-derived macrophage infiltration. Acta Pharmacol Sin 2022; 43:2351-2361. [PMID: 35149852 PMCID: PMC9433401 DOI: 10.1038/s41401-022-00863-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/07/2022] [Indexed: 02/06/2023]
Abstract
Nuclear receptor corepressor 1 (NCoR1) is a corepressor of the epigenetic regulation of gene transcription that has important functions in metabolism and inflammation, but little is known about its role in alcohol-associated liver disease (ALD). In this study, we developed mice with hepatocyte-specific NCoR1 knockout (NCoR1Hep-/-) using the albumin-Cre/LoxP system and investigated the role of NCoR1 in the pathogenesis of ALD and the underlying mechanisms. The traditional alcohol feeding model and NIAAA model of ALD were both established in wild-type and NCoR1Hep-/- mice. We showed that after ALD was established, NCoR1Hep-/- mice had worse liver injury but less steatosis than wild-type mice. We demonstrated that hepatocyte-specific loss of NCoR1 attenuated liver steatosis by promoting fatty acid oxidation by upregulating BMAL1 (a circadian clock component that has been reported to promote peroxisome proliferator activated receptor alpha (PPARα)-mediated fatty β-oxidation by upregulating de novo lipid synthesis). On the other hand, hepatocyte-specific loss of NCoR1 exacerbated alcohol-induced liver inflammation and oxidative stress by recruiting monocyte-derived macrophages via C-C motif chemokine ligand 2 (CCL2). In the mouse hepatocyte line AML12, NCoR1 knockdown significantly increased ethanol-induced CCL2 release. These results suggest that hepatocyte NCoR1 plays distinct roles in controlling liver inflammation and steatosis, which provides new insights into the development of treatments for steatohepatitis induced by chronic alcohol consumption.
Collapse
Affiliation(s)
- Fan Yin
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Miao-Miao Wu
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Xiao-Li Wei
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Rui-Xue Ren
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Meng-Hua Liu
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Chong-Qing Chen
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Liu Yang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Rui-Qian Xie
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Shan-Yue Jiang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Xue-Fu Wang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
15
|
Sawong S, Pekthong D, Suknoppakit P, Winitchaikul T, Kaewkong W, Somran J, Intapa C, Parhira S, Srisawang P. Calotropis gigantea stem bark extracts inhibit liver cancer induced by diethylnitrosamine. Sci Rep 2022; 12:12151. [PMID: 35840761 PMCID: PMC9287404 DOI: 10.1038/s41598-022-16321-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 07/08/2022] [Indexed: 11/09/2022] Open
Abstract
Several fractions of Calotropis gigantea extracts have been proposed to have potential anticancer activity in many cancer models. The present study evaluated the anticancer activity of C. gigantea stem bark extracts in liver cancer HepG2 cells and diethylnitrosamine (DEN)-induced primary liver cancer in rats. The carcinogenesis model induced by DEN administration has been widely used to study pathophysiological features and responses in rats that are comparable to those seen in cancer patients. The dichloromethane (CGDCM), ethyl acetate, and water fractions obtained from partitioning crude ethanolic extract were quantitatively analyzed for several groups of secondary metabolites and calactin contents. A combination of C. gigantea stem bark extracts with doxorubicin (DOX) was assessed in this study to demonstrate the enhanced cytotoxic effect to cancer compared to the single administration. The combination of DOX and CGDCM, which had the most potential cytotoxic effect in HepG2 cells when compared to the other three fractions, significantly increased cytotoxicity through the apoptotic effect with increased caspase-3 expression. This combination treatment also reduced ATP levels, implying a correlation between ATP and apoptosis induction. In a rat model of DEN-induced liver cancer, treatment with DOX, C. gigantea at low (CGDCM-L) and high (CGDCM-H) doses, and DOX + CGDCM-H for 4 weeks decreased the progression of liver cancer by lowering the liver weight/body weight ratio and the occurrence of liver hyperplastic nodules, fibrosis, and proliferative cells. The therapeutic applications lowered TNF-α, IL-6, TGF-β, and α-SMA inflammatory cytokines in a similar way, implying that CGDCM had a curative effect against the inflammation-induced liver carcinogenesis produced by DEN exposure. Furthermore, CGDCM and DOX therapy decreased ATP and fatty acid synthesis in rat liver cancer, which was correlated with apoptosis inhibition. CGDCM reduced cleaved caspase-3 expression in liver cancer rats when used alone or in combination with DOX, implying that apoptosis-inducing hepatic carcinogenesis was suppressed. Our results also verified the low toxicity of CGDCM injection on the internal organs of rats. Thus, this research clearly demonstrated a promising, novel anticancer approach that could be applied in future clinical studies of CGDCM and combination therapy.
Collapse
Affiliation(s)
- Suphunwadee Sawong
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Dumrongsak Pekthong
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Pennapha Suknoppakit
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Thanwarat Winitchaikul
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Worasak Kaewkong
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Julintorn Somran
- Department of Pathology, Faculty of Medicine, Naresuan University, Phitsanulok, 65000, Thailand
| | - Chaidan Intapa
- Department of Oral Diagnosis, Faculty of Dentistry, Naresuan University, Phitsanulok, 65000, Thailand
| | - Supawadee Parhira
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand.
| | - Piyarat Srisawang
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.
| |
Collapse
|
16
|
Chang C, Wang D, Xi L, Guo X, Wang G, Yu G. The orphan GPR50 receptor interacting with TβRI induces G1/S-phase cell cycle arrest via Smad3-p27/p21 in BRL-3A cells. Biochem Pharmacol 2022; 202:115117. [PMID: 35671788 DOI: 10.1016/j.bcp.2022.115117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 11/02/2022]
Abstract
The liver has the powerful capacity to regenerate after injury or resection. In one of our previous studies, GPR50 was observed to be significantly upregulated at 6 h, following a partial hepatectomy (PH) in rat liver regeneration (LR) via gene expression profile. However, little research has been done on the regulation and mechanism of GPR50 in the liver. Herein, we observed that the overexpression of GPR50 inhibited the proliferation of BRL-3A cells. To further explore the molecular mechanisms of GPR50 in the regulation of BRL-3A cell proliferation, interaction between GPR50 and transforming growth factor-beta I (TβRI) and iTRAQTM differential proteomic analysis were elucidated, which suggested that GPR50 may interact with TβRI to activate the TGF-β signaling pathway and arrest BRL-3A cell cycle G1/S transition. Subsequently, the potential mechanism underlying the role of GPR50 in hepatocyte growth was also explored through the addition of a signaling pathway inhibitor. These data suggested that interaction between the orphan GPR50 receptor and TβRI induced the G1⁄S-phase cell cycle arrest of BRL-3A cells via the Smad3-p27/p21 pathway.
Collapse
Affiliation(s)
- Cuifang Chang
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Danlin Wang
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Lingling Xi
- Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, China
| | - Xueqiang Guo
- Institute of Regenerative Medicine and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Gaiping Wang
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Guoying Yu
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| |
Collapse
|
17
|
The nuclear receptor co-repressor 1 is a novel cardioprotective factor against acute myocardial ischemia-reperfusion injury. J Mol Cell Cardiol 2022; 166:50-62. [DOI: 10.1016/j.yjmcc.2022.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 01/01/2022] [Accepted: 01/18/2022] [Indexed: 12/31/2022]
|
18
|
Liang R, Lin YH, Zhu H. Genetic and Cellular Contributions to Liver Regeneration. Cold Spring Harb Perspect Biol 2021; 14:a040832. [PMID: 34750173 PMCID: PMC9438780 DOI: 10.1101/cshperspect.a040832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The regenerative capabilities of the liver represent a paradigm for understanding tissue repair in solid organs. Regeneration after partial hepatectomy in rodent models is well understood, while regeneration in the context of clinically relevant chronic injuries is less studied. Given the growing incidence of fatty liver disease, cirrhosis, and liver cancer, interest in liver regeneration is increasing. Here, we will review the principles, genetics, and cell biology underlying liver regeneration, as well as new approaches being used to study heterogeneity in liver tissue maintenance and repair.
Collapse
Affiliation(s)
- Roger Liang
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Yu-Hsuan Lin
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Hao Zhu
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
19
|
Li Q, Fan B, Ding J, Xiang X, Zhang J. A novel immune signature to predict the prognosis of patients with hepatocellular carcinoma. Medicine (Baltimore) 2021; 100:e26948. [PMID: 34414957 PMCID: PMC8376334 DOI: 10.1097/md.0000000000026948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 07/16/2021] [Indexed: 01/04/2023] Open
Abstract
Aberrant immunity has been associated with the initiation and progression of cancers such as hepatocellular carcinoma (HCC). Here, we aim to develop a signature based on immune-related genes (IRGs) to predict the prognosis of HCC patients. The gene expression profiles of 891 HCC samples were derived from 4 publicly accessible datasets. A total of 1534 IRGs from Immunology Database and Analysis Portal website were obtained as candidate genes for prognostic assessment. Using least absolute shrinkage and selection operator (LASSO) regression analysis, 12 IRGs were selected as prognostic biomarkers and were then aggregated to generate an IRG score for each HCC sample. In the training dataset (n = 365), patients with high IRG scores showed a remarkably poorer overall survival than those with low IRG scores (log-rank P < .001). Similar results were documented in 3 independent testing datasets (n = 226, 221, 79, respectively). Multivariate Cox regression and stratified analyses indicated that the IRG score was an independent and robust signature to predict the overall survival in HCC patients. Patients with high IRG scores tended to be in advanced TNM stages, with increased risks of tumor recurrence and metastasis. More importantly, the IRG score was strongly associated with certain immune cell counts, gene expression of immune checkpoints, estimated immune score, and mutation of critical genes in HCC. In conclusion, the proposed IRG score can predict the prognosis and reflect the tumor immune microenvironment of HCC patients, which may facilitate the individualized treatment and provide potential immunotherapeutic targets.
Collapse
|
20
|
Elorza AA, Soffia JP. mtDNA Heteroplasmy at the Core of Aging-Associated Heart Failure. An Integrative View of OXPHOS and Mitochondrial Life Cycle in Cardiac Mitochondrial Physiology. Front Cell Dev Biol 2021; 9:625020. [PMID: 33692999 PMCID: PMC7937615 DOI: 10.3389/fcell.2021.625020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/25/2021] [Indexed: 12/17/2022] Open
Abstract
The most common aging-associated diseases are cardiovascular diseases which affect 40% of elderly people. Elderly people are prone to suffer aging-associated diseases which are not only related to health and medical cost but also to labor, household productivity and mortality cost. Aging is becoming a world problem and it is estimated that 21.8% of global population will be older than 65 years old in 2050; and for the first time in human history, there will be more elderly people than children. It is well accepted that the origin of aging-associated cardiovascular diseases is mitochondrial dysfunction. Mitochondria have their own genome (mtDNA) that is circular, double-stranded, and 16,569 bp long in humans. There are between 500 to 6000 mtDNA copies per cell which are tissue-specific. As a by-product of ATP production, reactive oxygen species (ROS) are generated which damage proteins, lipids, and mtDNA. ROS-mutated mtDNA co-existing with wild type mtDNA is called mtDNA heteroplasmy. The progressive increase in mtDNA heteroplasmy causes progressive mitochondrial dysfunction leading to a loss in their bioenergetic capacity, disruption in the balance of mitochondrial fusion and fission events (mitochondrial dynamics, MtDy) and decreased mitophagy. This failure in mitochondrial physiology leads to the accumulation of depolarized and ROS-generating mitochondria. Thus, besides attenuated ATP production, dysfunctional mitochondria interfere with proper cellular metabolism and signaling pathways in cardiac cells, contributing to the development of aging-associated cardiovascular diseases. In this context, there is a growing interest to enhance mitochondrial function by decreasing mtDNA heteroplasmy. Reduction in mtDNA heteroplasmy is associated with increased mitophagy, proper MtDy balance and mitochondrial biogenesis; and those processes can delay the onset or progression of cardiovascular diseases. This has led to the development of mitochondrial therapies based on the application of nutritional, pharmacological and genetic treatments. Those seeking to have a positive impact on mtDNA integrity, mitochondrial biogenesis, dynamics and mitophagy in old and sick hearts. This review covers the current knowledge of mitochondrial physiopathology in aging, how disruption of OXPHOS or mitochondrial life cycle alter mtDNA and cardiac cell function; and novel mitochondrial therapies to protect and rescue our heart from cardiovascular diseases.
Collapse
Affiliation(s)
- Alvaro A Elorza
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Juan Pablo Soffia
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| |
Collapse
|
21
|
Oliva-Vilarnau N, Vorrink SU, Ingelman-Sundberg M, Lauschke VM. A 3D Cell Culture Model Identifies Wnt/ β-Catenin Mediated Inhibition of p53 as a Critical Step during Human Hepatocyte Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000248. [PMID: 32775153 PMCID: PMC7404138 DOI: 10.1002/advs.202000248] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/01/2020] [Indexed: 05/14/2023]
Abstract
The liver is a highly regenerative organ. While mature hepatocytes under homeostatic conditions are largely quiescent, upon injury, they rapidly enter the cell cycle to recover the damaged tissue. In rodents, a variety of injury models have provided important insights into the molecular underpinnings that govern the proliferative activation of quiescent hepatocytes. However, little is known about the molecular mechanisms of human hepatocyte regeneration and experimental methods to expand primary human hepatocytes (PHH). Here, a 3D spheroid model of PHH is established to study hepatocyte regeneration and integrative time-lapse multi-omics analyses show that upon isolation from the native liver PHH acquire a regenerative phenotype, as seen in vivo upon partial hepatectomy. However, proliferation is limited. By analyzing global promoter motif activities, it is predicted that activation of Wnt/β-catenin and inhibition of p53 signaling are critical factors required for human hepatocyte proliferation. Functional validations reveal that activation of Wnt signaling through external cues alone is sufficient to inhibit p53 and its proliferative senescence-inducing target PAI1 (SERPINE1) and drive proliferation of >50% of all PHH. A scalable 3D culture model is established to study the molecular and cellular biology of human hepatocyte regeneration. By using this model, an essential role of Wnt/β-catenin signaling during human hepatocyte regeneration is identified.
Collapse
Affiliation(s)
- Nuria Oliva-Vilarnau
- Department of Physiology and Pharmacology Karolinska Institutet Stockholm 171 77 Sweden
| | - Sabine U Vorrink
- Department of Physiology and Pharmacology Karolinska Institutet Stockholm 171 77 Sweden
| | | | - Volker M Lauschke
- Department of Physiology and Pharmacology Karolinska Institutet Stockholm 171 77 Sweden
| |
Collapse
|
22
|
Du L, Sun J, Zhang W, Wang Y, Zhu H, Liu T, Gao M, Zheng C, Zhang Y, Liu Y, Liu Y, Shao S, Zhang X, Leng Q, Auwerx J, Duan S. Macrophage NCOR1 Deficiency Ameliorates Myocardial Infarction and Neointimal Hyperplasia in Mice. J Am Heart Assoc 2020; 9:e015862. [PMID: 32720575 PMCID: PMC7792266 DOI: 10.1161/jaha.120.015862] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background NCOR1 (nuclear receptor corepressor 1) is an essential coregulator of gene transcription. It has been shown that NCOR1 in macrophages plays important roles in metabolic regulation. However, the function of macrophage NCOR1 in response to myocardial infarction (MI) or vascular wire injury has not been elucidated. Methods and Results Here, using macrophage Ncor1 knockout mouse in combination with a mouse model of MI, we demonstrated that macrophage NCOR1 deficiency significantly reduced infarct size and improved cardiac function after MI. In addition, macrophage NCOR1 deficiency markedly inhibited neointimal hyperplasia and vascular remodeling in a mouse model of arterial wire injury. Inflammation and macrophage proliferation were substantially attenuated in hearts and arteries of macrophage Ncor1 knockout mice after MI and arterial wire injury, respectively. Cultured primary macrophages from macrophage Ncor1 knockout mice manifested lower expression of inflammatory genes upon stimulation by interleukin‐1β, interleukin‐6, or lipopolysaccharide, together with much less activation of inflammatory signaling cascades including signal transducer and activator of transcription 1 and nuclear factor‐κB. Furthermore, macrophage Ncor1 knockout macrophages were much less proliferative in culture, with inhibited cell cycle progression compared with control cells. Conclusions Collectively, our data have demonstrated that NCOR1 is a critical regulator of macrophage inflammation and proliferation and that deficiency of NCOR1 in macrophages attenuates MI and neointimal hyperplasia. Therefore, macrophage NCOR1 may serve as a potential therapeutic target for MI and restenosis.
Collapse
Affiliation(s)
- Lin‐Juan Du
- Laboratory of Oral Microbiota and Systemic DiseasesShanghai Ninth People's HospitalCollege of StomatologyShanghai Jiao Tong University School of MedicineShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyShanghaiChina
| | - Jian‐Yong Sun
- Laboratory of Oral Microbiota and Systemic DiseasesShanghai Ninth People's HospitalCollege of StomatologyShanghai Jiao Tong University School of MedicineShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyShanghaiChina
| | - Wu‐Chang Zhang
- Laboratory of Oral Microbiota and Systemic DiseasesShanghai Ninth People's HospitalCollege of StomatologyShanghai Jiao Tong University School of MedicineShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyShanghaiChina
| | - Yong‐Li Wang
- Laboratory of Oral Microbiota and Systemic DiseasesShanghai Ninth People's HospitalCollege of StomatologyShanghai Jiao Tong University School of MedicineShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyShanghaiChina
| | - Hong Zhu
- Laboratory of Oral Microbiota and Systemic DiseasesShanghai Ninth People's HospitalCollege of StomatologyShanghai Jiao Tong University School of MedicineShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyShanghaiChina
| | - Ting Liu
- Laboratory of Oral Microbiota and Systemic DiseasesShanghai Ninth People's HospitalCollege of StomatologyShanghai Jiao Tong University School of MedicineShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyShanghaiChina
| | - Ming‐Zhu Gao
- Engineering Research Center of Cell & Therapeutic AntibodyMinistry of Education, and School of PharmacyShanghai Jiao Tong UniversityShanghaiChina
| | - Chen Zheng
- Department of StomatologyThe Children's HospitalZhejiang University School of MedicineHangzhouChina
| | - Yu‐Yao Zhang
- Laboratory of Oral Microbiota and Systemic DiseasesShanghai Ninth People's HospitalCollege of StomatologyShanghai Jiao Tong University School of MedicineShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyShanghaiChina
| | - Yuan Liu
- Laboratory of Oral Microbiota and Systemic DiseasesShanghai Ninth People's HospitalCollege of StomatologyShanghai Jiao Tong University School of MedicineShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyShanghaiChina
| | - Yan Liu
- Laboratory of Oral Microbiota and Systemic DiseasesShanghai Ninth People's HospitalCollege of StomatologyShanghai Jiao Tong University School of MedicineShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyShanghaiChina
| | - Shuai Shao
- Department of NeurosurgeryRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xue‐Qing Zhang
- Engineering Research Center of Cell & Therapeutic AntibodyMinistry of Education, and School of PharmacyShanghai Jiao Tong UniversityShanghaiChina
| | - Qibin Leng
- Key Laboratory of Molecular Virology and ImmunologyInstitut Pasteur of ShanghaiShanghai Institutes for Biological SciencesChinese Academy of SciencesUniversity of the Chinese Academy of SciencesShanghaiChina
| | - Johan Auwerx
- Laboratory of Integrative and Systems PhysiologyInstitute of BioengineeringÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Sheng‐Zhong Duan
- Laboratory of Oral Microbiota and Systemic DiseasesShanghai Ninth People's HospitalCollege of StomatologyShanghai Jiao Tong University School of MedicineShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyShanghaiChina
| |
Collapse
|
23
|
Kang Z, Fan R. PPARα and NCOR/SMRT corepressor network in liver metabolic regulation. FASEB J 2020; 34:8796-8809. [DOI: 10.1096/fj.202000055rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Zhanfang Kang
- Department of Basic Medical Research Qingyuan People's HospitalThe Sixth Affiliated Hospital of Guangzhou Medical University Qingyuan China
| | - Rongrong Fan
- Department of Biosciences and Nutrition Karolinska Institute Stockholm Sweden
| |
Collapse
|
24
|
Jiang D, Deng J, Dong C, Ma X, Xiao Q, Zhou B, Yang C, Wei L, Conran C, Zheng SL, Ng IOL, Yu L, Xu J, Sham PC, Qi X, Hou J, Ji Y, Cao G, Li M. Knowledge-based analyses reveal new candidate genes associated with risk of hepatitis B virus related hepatocellular carcinoma. BMC Cancer 2020; 20:403. [PMID: 32393195 PMCID: PMC7216662 DOI: 10.1186/s12885-020-06842-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Recent genome-wide association studies (GWASs) have suggested several susceptibility loci of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) by statistical analysis at individual single-nucleotide polymorphisms (SNPs). However, these loci only explain a small fraction of HBV-related HCC heritability. In the present study, we aimed to identify additional susceptibility loci of HBV-related HCC using advanced knowledge-based analysis. METHODS We performed knowledge-based analysis (including gene- and gene-set-based association tests) on variant-level association p-values from two existing GWASs of HBV-related HCC. Five different types of gene-sets were collected for the association analysis. A number of SNPs within the gene prioritized by the knowledge-based association tests were selected to replicate genetic associations in an independent sample of 965 cases and 923 controls. RESULTS The gene-based association analysis detected four genes significantly or suggestively associated with HBV-related HCC risk: SLC39A8, GOLGA8M, SMIM31, and WHAMMP2. The gene-set-based association analysis prioritized two promising gene sets for HCC, cell cycle G1/S transition and NOTCH1 intracellular domain regulates transcription. Within the gene sets, three promising candidate genes (CDC45, NCOR1 and KAT2A) were further prioritized for HCC. Among genes of liver-specific expression, multiple genes previously implicated in HCC were also highlighted. However, probably due to small sample size, none of the genes prioritized by the knowledge-based association analyses were successfully replicated by variant-level association test in the independent sample. CONCLUSIONS This comprehensive knowledge-based association mining study suggested several promising genes and gene-sets associated with HBV-related HCC risks, which would facilitate follow-up functional studies on the pathogenic mechanism of HCC.
Collapse
Affiliation(s)
- Deke Jiang
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Institutes of Liver Diseases Research of Guangdong Province, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiaen Deng
- Department of Psychiatry, the University of Hong Kong, Pokfulam, Hong Kong
| | | | - Xiaopin Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Qianyi Xiao
- Center for Genomic Translational Medicine and Prevention, School of Public Health, Fudan University, Shanghai, China
| | - Bin Zhou
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Institutes of Liver Diseases Research of Guangdong Province, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chou Yang
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Institutes of Liver Diseases Research of Guangdong Province, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lin Wei
- Program of Computational Genomics & Medicine, NorthShore University HealthSystem, Evanston, IL, USA
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Carly Conran
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Pritzker School of Medicine, University of Chicago, Evanston, IL, USA
| | - S Lilly Zheng
- Program of Computational Genomics & Medicine, NorthShore University HealthSystem, Evanston, IL, USA
| | - Irene Oi-Lin Ng
- Department of Pathology, the University of Hong Kong, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, the University of Hong Kong, Pokfulam, Hong Kong
| | - Long Yu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Jianfeng Xu
- Program of Computational Genomics & Medicine, NorthShore University HealthSystem, Evanston, IL, USA
| | - Pak C Sham
- The Centre for Genomic Sciences, the University of Hong Kong, Pokfulam, Hong Kong
| | - Xiaolong Qi
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Institutes of Liver Diseases Research of Guangdong Province, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinlin Hou
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Institutes of Liver Diseases Research of Guangdong Province, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuan Ji
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Guangwen Cao
- Department of Epidemiology, Second Military Medical University, Shanghai, China.
| | - Miaoxin Li
- Department of Psychiatry, the University of Hong Kong, Pokfulam, Hong Kong.
- The Centre for Genomic Sciences, the University of Hong Kong, Pokfulam, Hong Kong.
- State Key Laboratory for Cognitive and Brain Sciences, the University of Hong Kong, Pokfulam, Hong Kong.
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
- Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.
| |
Collapse
|
25
|
Lin Z, Zhang X, Wang J, Liu W, Liu Q, Ye Y, Dai B, Guo D, Zhang P, Yang P, Zhang R, Wang L, Dou K. Translationally controlled tumor protein promotes liver regeneration by activating mTORC2/AKT signaling. Cell Death Dis 2020; 11:58. [PMID: 31974368 PMCID: PMC6978394 DOI: 10.1038/s41419-020-2231-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/29/2019] [Accepted: 01/07/2020] [Indexed: 12/17/2022]
Abstract
Translationally controlled tumor protein (TCTP), which is a protein characterized by its potent proliferation promoting activity, has been well studied in the area of growth and tumorigenesis. However, the specific role of TCTP in liver regeneration (LR) and its underlying mechanism remains unclear. In order to investigate the contribution of TCTP during LR, heterozygous TCTP mice were generated, and a mimic LR model was applied to TCTP-knockdown (KD) hepatic cell lines. The results revealed that TCTP-KD impaired LR in mice, and manifested as the following aspects: delayed proliferation of hepatocytes, accompanied by disruption of the mRNA expression of markers of the cell cycle, degenerated lipid metabolism, and abnormal immune response. Furthermore, it was found out that TCTP activated PI3K/AKT signaling by regulating mTORC2. Lastly, the increasing rate of serum TCTP positively correlated to the recovery of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) after liver resection in humans. In summary, the present study is the first to reveal the crucial role of intracellular TCTP in LR.
Collapse
Affiliation(s)
- Zhibin Lin
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xuan Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jianlin Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wei Liu
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Qi Liu
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yuchen Ye
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Bin Dai
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Dongnan Guo
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Pengcheng Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Peijun Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ruohan Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| | - Kefeng Dou
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
26
|
Wu Z, Zhang Y, Gong X, Cheng G, Pu S, Cai S. The preventive effect of phenolic-rich extracts from Chinese sumac fruits against nonalcoholic fatty liver disease in rats induced by a high-fat diet. Food Funct 2020; 11:799-812. [PMID: 31930271 DOI: 10.1039/c9fo02262g] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The objective of this study is to investigate the preventive effect of phenolic-rich extracts from Chinese sumac (Rhus chinensis Mill.) fruits against NAFLD in rats induced by a high-fat diet and to clarify the underlying mechanisms.
Collapse
Affiliation(s)
- Zihuan Wu
- Faculty of Agriculture and Food
- Yunnan Institute of Food Safety
- Kunming University of Science and Technology
- Kunming
- People's Republic of China
| | - Yan Zhang
- The First People's Hospital of Yunnan Province and the Affiliated Kunhua Hospital of Kunming University of Science and Technology
- Kunming
- People's Republic of China
| | - Xiarong Gong
- The First People's Hospital of Yunnan Province and the Affiliated Kunhua Hospital of Kunming University of Science and Technology
- Kunming
- People's Republic of China
| | - Guiguang Cheng
- Faculty of Agriculture and Food
- Yunnan Institute of Food Safety
- Kunming University of Science and Technology
- Kunming
- People's Republic of China
| | - Shibiao Pu
- Chinese Materia Medica
- Yunnan University of Chinese Medicine
- Kunming
- People's Republic of China
| | - Shengbao Cai
- Faculty of Agriculture and Food
- Yunnan Institute of Food Safety
- Kunming University of Science and Technology
- Kunming
- People's Republic of China
| |
Collapse
|
27
|
Yin L, He N, Chen C, Zhang N, Lin Y, Xia Q. Identification of novel blood-based HCC-specific diagnostic biomarkers for human hepatocellular carcinoma. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1908-1916. [PMID: 31072138 DOI: 10.1080/21691401.2019.1613421] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) ranks fourth in global cancer mortality, accounting for 8.2% of all cancer deaths. Early detection of HCC has a significant impact on clinical outcomes. The aim of this study was to identify blood-based biomarkers which are HCC-specific. METHODS Comprehensive gene expression raw data of purified RNA of peripheral blood mononuclear cells (PBMC) was downloaded from GEO and was then analyzed. Differentially expressed genes (DEGs) in HCC were screened and the method of weighted gene co-expression network analysis was applied to identify candidate blood-based biomarkers associated with HCC. RESULTS Three modules closely related to HCC were screened using WGCNA. Nuclear localization signal (NLS)-bearing protein import into nucleus biological process was the most significant enriched physiological process identified by MCODE, and 3 genes (DICER1, GMPS and NCOR1) were selected as biomarkers. CONCLUSION In our study, three novel blood-based HCC-specific diagnostic biomarkers for human hepatocellular carcinoma were identified. These findings may contribute to the non-invasive detection of early HCC patients.
Collapse
Affiliation(s)
- Li Yin
- a Laboratory of Tropical Biomedicine and Biotechnology, School of Tropical Medicine and Laboratory Medicine , Hainan Medical University , Haikou , Hainan , China
| | - Na He
- a Laboratory of Tropical Biomedicine and Biotechnology, School of Tropical Medicine and Laboratory Medicine , Hainan Medical University , Haikou , Hainan , China
| | - Chuizhe Chen
- a Laboratory of Tropical Biomedicine and Biotechnology, School of Tropical Medicine and Laboratory Medicine , Hainan Medical University , Haikou , Hainan , China
| | - Nan Zhang
- a Laboratory of Tropical Biomedicine and Biotechnology, School of Tropical Medicine and Laboratory Medicine , Hainan Medical University , Haikou , Hainan , China
| | - Yingzi Lin
- a Laboratory of Tropical Biomedicine and Biotechnology, School of Tropical Medicine and Laboratory Medicine , Hainan Medical University , Haikou , Hainan , China
| | - Qianfeng Xia
- a Laboratory of Tropical Biomedicine and Biotechnology, School of Tropical Medicine and Laboratory Medicine , Hainan Medical University , Haikou , Hainan , China
| |
Collapse
|
28
|
Liang N, Jakobsson T, Fan R, Treuter E. The Nuclear Receptor-Co-repressor Complex in Control of Liver Metabolism and Disease. Front Endocrinol (Lausanne) 2019; 10:411. [PMID: 31293521 PMCID: PMC6606711 DOI: 10.3389/fendo.2019.00411] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/07/2019] [Indexed: 12/21/2022] Open
Abstract
Hepatocytes are the major cell-type in the liver responsible for the coordination of metabolism in response to multiple signaling inputs. Coordination occurs primarily at the level of gene expression via transcriptional networks composed of transcription factors, in particular nuclear receptors (NRs), and associated co-regulators, including chromatin-modifying complexes. Disturbance of these networks by genetic, environmental or nutritional factors can lead to metabolic dysregulation and has been linked to the progression of non-alcoholic fatty liver disease (NAFLD) toward steatohepatitis and even liver cancer. Since there are currently no approved therapies, major efforts are dedicated to identify the critical factors that can be employed for drug development. Amongst the identified factors with clinical significance are currently lipid-sensing NRs including PPARs, LXRs, and FXR. However, major obstacles of NR-targeting are the undesired side effects associated with the genome-wide NR activities in multiple cell-types. Thus, of particular interest are co-regulators that determine NR activities, context-selectivity, and associated chromatin states. Current research on the role of co-regulators in hepatocytes is still premature due to the large number of candidates, the limited number of available mouse models, and the technical challenges in studying their chromatin occupancy. As a result, how NR-co-regulator networks in hepatocytes are coordinated by extracellular signals, and how NR-pathway selectivity is achieved, remains currently poorly understood. We will here review a notable exception, namely a fundamental transcriptional co-repressor complex that during the past decade has become the probably most-studied and best-understood physiological relevant co-regulator in hepatocytes. This multiprotein complex contains the core subunits HDAC3, NCOR, SMRT, TBL1, TBLR1, and GPS2 and is referred to as the "NR-co-repressor complex." We will particularly discuss recent advances in characterizing hepatocyte-specific loss-of-function mouse models and in applying genome-wide sequencing approaches including ChIP-seq. Both have been instrumental to uncover the role of each of the subunits under physiological conditions and in disease models, but they also revealed insights into the NR target range and genomic mechanisms of action of the co-repressor complex. We will integrate a discussion of translational aspects about the role of the complex in NAFLD pathways and in particular about the hypothesis that patient-specific alterations of specific subunits may determine NAFLD susceptibility and the therapeutic outcomes of NR-directed treatments.
Collapse
Affiliation(s)
- Ning Liang
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Tomas Jakobsson
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Rongrong Fan
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Eckardt Treuter
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- *Correspondence: Eckardt Treuter
| |
Collapse
|
29
|
Dharanipragada P, Seelam SR, Parekh N. SeqVItA: Sequence Variant Identification and Annotation Platform for Next Generation Sequencing Data. Front Genet 2018; 9:537. [PMID: 30487811 PMCID: PMC6247818 DOI: 10.3389/fgene.2018.00537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/23/2018] [Indexed: 12/20/2022] Open
Abstract
The current trend in clinical data analysis is to understand how individuals respond to therapies and drug interactions based on their genetic makeup. This has led to a paradigm shift in healthcare; caring for patients is now 99% information and 1% intervention. Reducing costs of next generation sequencing (NGS) technologies has made it possible to take genetic profiling to the clinical setting. This requires not just fast and accurate algorithms for variant detection, but also a knowledge-base for variant annotation and prioritization to facilitate tailored therapeutics based on an individual's genetic profile. Here we show that it is possible to provide a fast and easy access to all possible information about a variant and its impact on the gene, its protein product, associated pathways and drug-variant interactions by integrating previously reported knowledge from various databases. With this objective, we have developed a pipeline, Sequence Variants Identification and Annotation (SeqVItA) that provides end-to-end solution for small sequence variants detection, annotation and prioritization on a single platform. Parallelization of the variant detection step and with numerous resources incorporated to infer functional impact, clinical relevance and drug-variant associations, SeqVItA will benefit the clinical and research communities alike. Its open-source platform and modular framework allows for easy customization of the workflow depending on the data type (single, paired, or pooled samples), variant type (germline and somatic), and variant annotation and prioritization. Performance comparison of SeqVItA on simulated data and detection, interpretation and analysis of somatic variants on real data (24 liver cancer patients) is carried out. We demonstrate the efficacy of annotation module in facilitating personalized medicine based on patient's mutational landscape. SeqVItA is freely available at https://bioinf.iiit.ac.in/seqvita.
Collapse
Affiliation(s)
- Prashanthi Dharanipragada
- Center for Computational Natural Science and Bioinformatics, International Institute of Information Technology, Hyderabad, India
| | - Sampreeth Reddy Seelam
- Center for Computational Natural Science and Bioinformatics, International Institute of Information Technology, Hyderabad, India
| | - Nita Parekh
- Center for Computational Natural Science and Bioinformatics, International Institute of Information Technology, Hyderabad, India
| |
Collapse
|
30
|
Müller L, Hainberger D, Stolz V, Ellmeier W. NCOR1-a new player on the field of T cell development. J Leukoc Biol 2018; 104:1061-1068. [PMID: 30117609 DOI: 10.1002/jlb.1ri0418-168r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/18/2018] [Accepted: 07/21/2018] [Indexed: 12/27/2022] Open
Abstract
Nuclear receptor corepressor 1 (NCOR1) is a transcriptional corepressor that links chromatin-modifying enzymes with gene-specific transcription factors. Although identified more than 20 years ago as a corepressor of nuclear receptors, the role of NCOR1 in T cells remained only poorly understood. However, recent studies indicate that the survival of developing thymocytes is regulated by NCOR1, revealing an essential role for NCOR1 in the T cell lineage. In this review, we will briefly summarize basic facts about NCOR1 structure and functions. We will further summarize studies demonstrating an essential role for NCOR1 in controlling positive and negative selection of thymocytes during T cell development. Finally, we will discuss similarities and differences between the phenotypes of mice with a T cell-specific deletion of NCOR1 or histone deacetylase 3 (HDAC3), because HDAC3 is the predominant member of the HDAC family that interacts with NCOR1 corepressor complexes. With this review we aim to introduce NCOR1 as a new player in the team of transcriptional coregulators that control T cell development and thus the generation of the peripheral T cell pool.
Collapse
Affiliation(s)
- Lena Müller
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Daniela Hainberger
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Valentina Stolz
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|