1
|
Xin X, Chen C, Xu X, Lv S, Sun Q, An Z, Chen Y, Xiong Z, Hu Y, Feng Q. Caffeine ameliorates metabolic-associated steatohepatitis by rescuing hepatic Dusp9. Redox Biol 2025; 80:103499. [PMID: 39879738 PMCID: PMC11815699 DOI: 10.1016/j.redox.2025.103499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/31/2025] Open
Abstract
Caffeine (CAFF) is abundant in black coffee. As one of the most widely consumed beverages globally, coffee has been the focus of increasing clinical and basic research, particularly regarding its benefits in alleviating metabolic dysfunction-associated steatotic liver disease (MASLD). However, the therapeutic effects of CAFF on metabolic-associated steatohepatitis (MASH) and the underlying mechanisms remain unclear. In this study, we demonstrated that CAFF potently reduced hepatic steatosis, inflammation, and early-stage liver fibrosis in MASH mice induced by prolonged (36 weeks) high-fat high-carbohydrate (HFHC) diets and high-fat diets combined with carbon tetrachloride (CCl4) injections. By using multiple target-identifying strategies, including surface plasmon resonance (SPR), cellular thermal shift assay (CETSA), and drug affinity responsive target stability (DARTS) assay, we identified dual-specificity phosphatase 9 (Dusp9) as a key therapeutic target, which was diminished by HFHC but restored with CAFF treatment. Dusp9 knockdown in vivo and in vitro exacerbated glycolipid metabolism disorders and stunningly counteracted the systemic therapeutic effects of CAFF in the MASH models. In addition, CAFF inactivated the ASK1-p38/JNK, a downstream signaling pathway of Dusp9, which regulates inflammation and apoptosis. Our study highlights the multifaceted benefits of CAFF in treating MASH by rescuing hepatic Dusp9 expression, thereby reversing glycolipid metabolism disorders, liver inflammation, and fibrosis. These findings provide experimental evidence supporting the clinical and daily use of CAFF and black coffee in managing MASH patients.
Collapse
Affiliation(s)
- Xin Xin
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Cheng Chen
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao Xu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Sheng Lv
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Qinmei Sun
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Ziming An
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Yi Chen
- Division of Hematology and Oncology, Department of Medicine, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, USA
| | - Zhekun Xiong
- Department of Spleen, Stomach and Hepatobiliary, Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan, China
| | - Yiyang Hu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China.
| | - Qin Feng
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
2
|
Liu M, Wang C, Liu R, Wang Y, Wei B. Association between cardiometabolic index and all-cause and cause-specific mortality among the general population: NHANES 1999-2018. Lipids Health Dis 2024; 23:425. [PMID: 39731068 DOI: 10.1186/s12944-024-02408-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/15/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND Cardiometabolic index (CMI) is a comprehensive clinical parameter which integrates overweight and abnormal lipid metabolism. However, its relationship with all-cause, cardiovascular disease (CVD), and cancer mortality is still obscure. Thus, a large-scale cohort study was conducted to illustrate the causal relation between CMI and CVD, cancer, and all-cause mortality among the common American population. METHODS Our research was performed on the basis of National Health and Nutrition Examination Survey (NHANES) database, involving 40,275 participants ranging from 1999 to 2018. The formula of CMI is [waist circumference (cm) / height (cm)] × [triglyceride (mg/dL) / high-density lipoprotein cholesterol (mg/dL)]. Outcome variables consisted of CVD, cancer, and all-cause mortality, which were identified by the International Classification of Diseases (ICD)-10. The correlation between CMI and mortality outcomes was analyzed utilizing the Kaplan-Meier survival modeling, univariate/multivariate Cox regression analysis, smooth curve fitting analysis, threshold effect analysis, and subgroup analysis. Stratification factors for subgroups included age, race/ethnicity, sex, smoking behavior, drinking behavior, BMI, hypertension, and diabetes. RESULTS The baseline characteristics table includes 4,569 all-cause-induced death cases, 1,113 CVD-induced death cases, and 1,066 cancer-induced death cases. Without adjustment for potential covariates, significantly positive causal correlation existed between CMI and all-cause mortality (HR = 1.03, 95% CI 1.02,1.04, P-value<0.05), CVD mortality (HR = 1.04, 95% CI 1.03, 1.05, P-value<0.05) and cancer mortality(HR = 1.03, 95% CI 1.02, 1.05, P-value<0.05); whereas, after confounding factors were completely adjusted, the relationship lost statistical significance in CMI subgroups (P for trend>0.05). Subgroup analysis found no specific subgroups. Under a fully adjusted model, a threshold effect analysis was performed combined with smooth curve fitting, and the findings suggested an L-shaped nonlinear association within CMI and all-cause mortality (the Inflection point was 0.98); in particular, when the baseline CMI was below 0.98, there existed a negative correlation with all-cause mortality with significance (HR 0.59, 95% CI 0.43, 0.82, P-value<0.05). A nonlinear relation was observed between CMI and CVD mortality. Whereas, the correlation between CMI and cancer mortality was linear. CONCLUSIONS Among the general American population, baseline CMI levels exhibited an L-shaped nonlinear relationship with all-cause mortality, and the threshold value was 0.98. What's more, CMI may become an effective indicator for CVD, cancer, and all-cause mortality prediction. Further investigation is essential to confirm our findings.
Collapse
Affiliation(s)
- Mingjie Liu
- Department of Oncology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Chendong Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Rundong Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Yan Wang
- Department of Oncology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Bai Wei
- Department of Oncology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China.
| |
Collapse
|
3
|
Biffo S, Ruggero D, Santoro MM. The crosstalk between metabolism and translation. Cell Metab 2024; 36:1945-1962. [PMID: 39232280 PMCID: PMC11586076 DOI: 10.1016/j.cmet.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/24/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024]
Abstract
Metabolism and mRNA translation represent critical steps involved in modulating gene expression and cellular physiology. Being the most energy-consuming process in the cell, mRNA translation is strictly linked to cellular metabolism and in synchrony with it. Indeed, several mRNAs for metabolic pathways are regulated at the translational level, resulting in translation being a coordinator of metabolism. On the other hand, there is a growing appreciation for how metabolism impacts several aspects of RNA biology. For example, metabolic pathways and metabolites directly control the selectivity and efficiency of the translational machinery, as well as post-transcriptional modifications of RNA to fine-tune protein synthesis. Consistently, alterations in the intricate interplay between translational control and cellular metabolism have emerged as a critical axis underlying human diseases. A better understanding of such events will foresee innovative therapeutic strategies in human disease states.
Collapse
Affiliation(s)
- Stefano Biffo
- National Institute of Molecular Genetics and Biosciences Department, University of Milan, Milan, Italy.
| | - Davide Ruggero
- Department of Cellular and Molecular Pharmacology, Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| | - Massimo Mattia Santoro
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padua, Padua, Italy.
| |
Collapse
|
4
|
Wang A, Zhang Y, Lv X, Liang G. Therapeutic potential of targeting protein tyrosine phosphatases in liver diseases. Acta Pharm Sin B 2024; 14:3295-3311. [PMID: 39220870 PMCID: PMC11365412 DOI: 10.1016/j.apsb.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 09/04/2024] Open
Abstract
Protein tyrosine phosphorylation is a post-translational modification that regulates protein structure to modulate demic organisms' homeostasis and function. This physiological process is regulated by two enzyme families, protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). As an important regulator of protein function, PTPs are indispensable for maintaining cell intrinsic physiology in different systems, as well as liver physiological and pathological processes. Dysregulation of PTPs has been implicated in multiple liver-related diseases, including chronic liver diseases (CLDs), hepatocellular carcinoma (HCC), and liver injury, and several PTPs are being studied as drug therapeutic targets. Therefore, given the regulatory role of PTPs in diverse liver diseases, a collated review of their function and mechanism is necessary. Moreover, based on the current research status of targeted therapy, we emphasize the inclusion of several PTP members that are clinically significant in the development and progression of liver diseases. As an emerging breakthrough direction in the treatment of liver diseases, this review summarizes the research status of PTP-targeting compounds in liver diseases to illustrate their potential in clinical treatment. Overall, this review aims to support the development of novel PTP-based treatment pathways for liver diseases.
Collapse
Affiliation(s)
- Ao Wang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
| | - Yi Zhang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Xinting Lv
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Guang Liang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
5
|
Chen J, Kuang S, Cen J, Zhang Y, Shen Z, Qin W, Huang Q, Wang Z, Gao X, Huang F, Lin Z. Multiomics profiling reveals VDR as a central regulator of mesenchymal stem cell senescence with a known association with osteoporosis after high-fat diet exposure. Int J Oral Sci 2024; 16:41. [PMID: 38777841 PMCID: PMC11111693 DOI: 10.1038/s41368-024-00309-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024] Open
Abstract
The consumption of a high-fat diet (HFD) has been linked to osteoporosis and an increased risk of fragility fractures. However, the specific mechanisms of HFD-induced osteoporosis are not fully understood. Our study shows that exposure to an HFD induces premature senescence in bone marrow mesenchymal stem cells (BMSCs), diminishing their proliferation and osteogenic capability, and thereby contributes to osteoporosis. Transcriptomic and chromatin accessibility analyses revealed the decreased chromatin accessibility of vitamin D receptor (VDR)-binding sequences and decreased VDR signaling in BMSCs from HFD-fed mice, suggesting that VDR is a key regulator of BMSC senescence. Notably, the administration of a VDR activator to HFD-fed mice rescued BMSC senescence and significantly improved osteogenesis, bone mass, and other bone parameters. Mechanistically, VDR activation reduced BMSC senescence by decreasing intracellular reactive oxygen species (ROS) levels and preserving mitochondrial function. Our findings not only elucidate the mechanisms by which an HFD induces BMSC senescence and associated osteoporosis but also offer new insights into treating HFD-induced osteoporosis by targeting the VDR-superoxide dismutase 2 (SOD2)-ROS axis.
Collapse
Affiliation(s)
- Jiayao Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Shuhong Kuang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Jietao Cen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yong Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Zongshan Shen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Wei Qin
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Qiting Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Zifeng Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xianling Gao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Fang Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.
| | - Zhengmei Lin
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
6
|
He J, Li S, Teng Y, Xiong H, Wang Z, Han X, Gong W, Gao Y. Increasing expression of dual-specificity phosphatase 12 mitigates oxygen-glucose deprivation/reoxygenation-induced neuronal apoptosis and inflammation through inactivation of the ASK1-JNK/p38 MAPK pathway. Autoimmunity 2024; 57:2345919. [PMID: 38721693 DOI: 10.1080/08916934.2024.2345919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 04/17/2024] [Indexed: 05/15/2024]
Abstract
Dual-specificity phosphatase 12 (DUSP12) is abnormally expressed under various pathological conditions and plays a crucial role in the pathological progression of disorders. However, the role of DUSP12 in cerebral ischaemia/reperfusion injury has not yet been investigated. This study explored the possible link between DUSP12 and cerebral ischaemia/reperfusion injury using an oxygen-glucose deprivation/reoxygenation (OGD/R) model. Marked decreases in DUSP12 levels have been observed in cultured neurons exposed to OGD/R. DUSP12-overexpressed neurons were resistant to OGD/R-induced apoptosis and inflammation, whereas DUSP12-deficient neurons were vulnerable to OGD/R-evoked injuries. Further investigation revealed that DUSP12 overexpression or deficiency affects the phosphorylation of apoptosis signal-regulating kinase 1 (ASK1), c-Jun NH2-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) in neurons under OGD/R conditions. Moreover, blockade of ASK1 diminished the regulatory effect of DUSP12 deficiency on JNK and p38 MAPK activation. In addition, DUSP12-deficiency-elicited effects exacerbating neuronal OGD/R injury were reversed by ASK1 blockade. In summary, DUSP12 protects against neuronal OGD/R injury by reducing apoptosis and inflammation through inactivation of the ASK1-JNK/p38 MAPK pathway. These findings imply a neuroprotective function for DUSP12 in cerebral ischaemia/reperfusion injury.
Collapse
Affiliation(s)
- Jiaxuan He
- Anesthesia & Comfort Medical Center, Xi'an International Medical Center Hospital, Xi'an, Shaanxi Province, China
- Department of Pediatric Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Siyuan Li
- Anesthesia & Comfort Medical Center, Xi'an International Medical Center Hospital, Xi'an, Shaanxi Province, China
| | - Yunpeng Teng
- Anesthesia & Comfort Medical Center, Xi'an International Medical Center Hospital, Xi'an, Shaanxi Province, China
| | - Hongfei Xiong
- Anesthesia & Comfort Medical Center, Xi'an International Medical Center Hospital, Xi'an, Shaanxi Province, China
| | - Zhuang Wang
- Anesthesia & Comfort Medical Center, Xi'an International Medical Center Hospital, Xi'an, Shaanxi Province, China
| | - Xiaoyao Han
- Anesthesia & Comfort Medical Center, Xi'an International Medical Center Hospital, Xi'an, Shaanxi Province, China
| | - Wei Gong
- Department of Pediatric Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Ya Gao
- Department of Pediatric Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
7
|
Luo J, Tian Z, Song F, Ren C, Liu W. Dual-specificity phosphatase 5-mediated fatty acid oxidation promotes Mycobacterium bovis BCG -induced inflammatory responses. Exp Cell Res 2024; 434:113869. [PMID: 38049081 DOI: 10.1016/j.yexcr.2023.113869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Mycobacterium tuberculosis (Mtb) reprograms FAs metabolism of macrophages during infection and affects inflammatory reaction eventually, however, the mechanism remains poorly understood. Here we show that Mycobacterium bovis (BCG) induces DUSP5 expression through TLR2-MAPKs signaling pathway and promotes fatty acid oxidation (FAO). Silencing DUSP5 by adeno-associated virus vector (AAV) ameliorates lung injury and DUSP5 knockdown reduces the expression of IL-1β, IL-6 and inactivated NF-κB signaling in BCG-infected macrophages. Of note, DUSP5 specific siRNA increases the content of free fatty acids (FFAs) and triglyceride (TG), but represses the expression of FAO associated enzymes such as CPT1A and PPARα, suggesting DUSP5 mediated FAO during BCG infection. Moreover, Inhibiting FAO by pharmacological manner suppresses IL-1β, IL-6, TNF-α expression and relieves lung damage. Taken together, our data indicates DUSP5 mediates FAO reprogramming and promotes inflammatory response to BCG infection.
Collapse
Affiliation(s)
- Jia Luo
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China; General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Zengjian Tian
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Fuyang Song
- College of Life Science, Ningxia University, Yinchuan, Ningxia, 750021, China
| | - Chao Ren
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Wenmiao Liu
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China; The Center of Laboratory Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
| |
Collapse
|
8
|
Zaky YA, Rashad MW, Zaater MA, El Kerdawy AM. Discovery of dual rho-associated protein kinase 1 (ROCK1)/apoptosis signal-regulating kinase 1 (ASK1) inhibitors as a novel approach for non-alcoholic steatohepatitis (NASH) treatment. BMC Chem 2024; 18:2. [PMID: 38172941 PMCID: PMC10765837 DOI: 10.1186/s13065-023-01081-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/08/2023] [Indexed: 01/05/2024] Open
Abstract
In the current study we suggest a novel approach to curb non-alcoholic steatohepatitis (NASH) progression, and we suggest privileged scaffolds for the design of novel compounds for this aim. NASH is an advanced form of non-alcoholic fatty liver disease that can further progress into fibrosis, cirrhosis, and hepatocellular carcinoma. It is a widely emerging disease affecting 25% of the global population and has no current approved treatments. Protein kinases are key regulators of cellular pathways, of which, Rho-associated protein kinase 1 (ROCK1) and apoptosis signal-regulating kinase 1 (ASK1) play an important role in the progression of NASH and they stand out as promising targets for NASH therapy. Interestingly, their kinase domains are found to be similar in sequence and topology; therefore, dual inhibition of ROCK1 and ASK1 is expected to be amenable and could achieve a more favourable outcome. To reach this goal, a training set of ROCK1 and ASK1 protein structures co-crystalized with type 1 (ATP-competitive) inhibitors was constructed to manually generate receptor-based pharmacophore models representing ROCK1 and ASK1 inhibitors' common pharmacophoric features. The models produced were assessed using a test set of both ROCK1 and ASK1 actives and decoys, and their performance was evaluated using different assessment metrics. The best pharmacophore model obtained, showing a Mathew's correlation coefficient (MCC) of 0.71, was then used to screen the ZINC purchasable database retrieving 6178 hits that were filtered accordingly using several medicinal chemistry and pharmacokinetics filters returning 407 promising compounds. To confirm that these compounds are capable of binding to the target kinases, they were subjected to molecular docking simulations at both protein structures. The results were then assessed individually and filtered, setting the spotlight on various privileged scaffolds that could be exploited as the nucleus for designing novel ROCK1/ASK1 dual inhibitors.
Collapse
Affiliation(s)
- Yara A Zaky
- Department of Chemistry, School of Pharmacy, Newgiza University (NGU), Newgiza, Km 22 Cairo-Alexandria Desert Road, Cairo, Egypt.
| | - Mai W Rashad
- Department of Chemistry, School of Pharmacy, Newgiza University (NGU), Newgiza, Km 22 Cairo-Alexandria Desert Road, Cairo, Egypt
| | - Marwa A Zaater
- Master Postgraduate Program, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed M El Kerdawy
- Department of Chemistry, School of Pharmacy, Newgiza University (NGU), Newgiza, Km 22 Cairo-Alexandria Desert Road, Cairo, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- School of Pharmacy, College of Science, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, Lincolnshire, UK
| |
Collapse
|
9
|
Li YM, He HW, Zhang N. Targeting Protein Phosphatases for the Treatment of Chronic Liver Disease. Curr Drug Targets 2024; 25:171-189. [PMID: 38213163 DOI: 10.2174/0113894501278886231221092522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024]
Abstract
There exists a huge number of patients suffering from chronic liver disease worldwide. As a disease with high incidence and mortality worldwide, strengthening the research on the pathogenesis of chronic liver disease and the development of novel drugs is an important issue related to the health of all human beings. Phosphorylation modification of proteins plays a crucial role in cellular signal transduction, and phosphatases are involved in the development of liver diseases. Therefore, this article summarized the important role of protein phosphatases in chronic liver disease with the aim of facilitating the development of drugs targeting protein phosphatases for the treatment of chronic liver disease.
Collapse
Affiliation(s)
- Yi-Ming Li
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Hong-Wei He
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Na Zhang
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
10
|
Li Y, Gu L, Zhou J, Han C, Zang W. FOXP1‑induced DUSP12 alleviates vascular endothelial cell inflammation and oxidative stress injury induced by ox‑LDL via MAP3K5 signaling pathway. Exp Ther Med 2023; 26:450. [PMID: 37614418 PMCID: PMC10443057 DOI: 10.3892/etm.2023.12149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/16/2023] [Indexed: 08/25/2023] Open
Abstract
Atherosclerosis (AS) is a type of chronic inflammatory disease and the main pathological basis of cardiovascular and cerebrovascular diseases, which seriously threaten the health of patients. The dual specificity phosphatase 12 (DUSP12) protein is known as regulator of inflammatory diseases. Nonetheless, at present, there are only a few reports on the regulatory role of DUSP12 in AS. Human umbilical vein endothelial cells (HUVECs) were induced using oxidized low-density lipoprotein (ox-LDL). Subsequently, cell transfection experiments were performed to overexpress DUSP12 in ox-LDL-induced HUVECs. Cell Counting Kit-8, TUNEL western blotting, 2',7'-dichlorofluorescein diacetate assays, ELISA and other techniques were used to measure cell viability, apoptosis, inflammation, oxidative stress and endothelial function-related indicators. Subsequently, the relationship between DUSP12 and Forkhead box P1 (FOXP1) was predicted using the JASPAR database and verified using luciferase reporter and chromatin immunoprecipitation assays. Finally, the regulatory mechanism was investigated by simultaneously overexpressing DUSP12 and knocking down FOXP1 in ox-LDL-induced HUVECs and MAP3K5-related proteins of the DUSP12 downstream pathway were measured by western blotting. The expression of DUSP12 in ox-LDL-induced HUVECs was significantly decreased. Overexpression of DUSP12 inhibited apoptosis, inflammation and oxidative stress damage and alleviated endothelial dysfunction in ox-LDL-induced HUVECs. FOXP1 promoted the transcription of DUSP12. Moreover, FOXP1 alleviated ox-LDL-induced apoptosis, inflammation and oxidative stress damage in HUVECs by regulating the expression of DUSP12, probably acting through the MAP3K5 pathway. Collectively, the present study revealed that FOXP1-induced DUSP12 alleviated vascular endothelial cell inflammation and oxidative stress injury in ox-LDL-induced HUVECs via the MAP3K5 signaling pathway, which might shed novel insights into the targeted treatment for AS in the clinic.
Collapse
Affiliation(s)
- Yuanmin Li
- Department of Cardio-Thoracic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P.R. China
| | - Long Gu
- Department of Blood Transfusion, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P.R. China
| | - Jian Zhou
- Department of Cardio-Thoracic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P.R. China
| | - Chenjun Han
- Department of Cardio-Thoracic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P.R. China
| | - Wangfu Zang
- Department of Cardio-Thoracic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P.R. China
| |
Collapse
|
11
|
Zhu S, Wang S, Luo T. Exogenous galanin alleviates hepatic steatosis by promoting autophagy via the AMPK-mTOR pathway. Arch Biochem Biophys 2023:109689. [PMID: 37429535 DOI: 10.1016/j.abb.2023.109689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/12/2023]
Abstract
Defective autophagy-induced intracellular lipid degradation is causally associated with non-alcoholic fatty liver disease (NAFLD) development. Therefore, agents that can restore autophagy may have potential clinical application prospects on this public health issue. Galanin (GAL) is a pleiotropic peptide that regulates autophagy and is a potential drug for the treatment of NAFLD. In this study, we used an MCD-induced NAFLD mouse model in vivo and an FFA-induced HepG2 hepatocyte model in vitro to evaluate the anti-NAFLD effect of GAL. Exogenous GAL supplementation significantly attenuated lipid droplet accumulation and suppressed hepatocyte TG levels in mice and cell models. Mechanistically, Galanin-mediated reduction of lipid accumulation was positively correlated with upregulated p-AMPK, as evidenced by upregulated protein expressions of fatty acid oxidation-related gene markers (PPAR-α and CPT1A), upregulated expressions of the autophagy-related marker (LC3B), and downregulated autophagic substrate p62 levels. In FFA-treated HepG2 cells, activation of fatty acid oxidation and autophagy-related proteins by galanin was reversed by autophagy inhibitors, chloroquine, and the AMPK inhibitor. Galanin ameliorates hepatic fat accumulation by inducing autophagy and fatty acid oxidation via the AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Shuyuan Zhu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Shuai Wang
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Tao Luo
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
12
|
Yuan W, Zhan X, Liu W, Ma R, Zhou Y, Xu G, Ge Z. Mmu-miR-25-3p promotes macrophage autophagy by targeting DUSP10 to reduce mycobacteria survival. Front Cell Infect Microbiol 2023; 13:1120570. [PMID: 37256106 PMCID: PMC10225524 DOI: 10.3389/fcimb.2023.1120570] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/27/2023] [Indexed: 06/01/2023] Open
Abstract
Background The present study aimed to investigate the regulation of miR-25-3p on macrophage autophagy and its effect on macrophage clearance of intracellular Mycobacterium bovis Bacillus Calmette-Guerin (BCG) retention based on the previous findings on the differential expression of exosomal miRNA in macrophages infected with BCG. Methods Through enrichment analysis and Hub gene analysis, key differentially expressed miRNA and its target genes were selected. The targeted binding ability of the screened mmu-miR-25-3p and its predicted target gene DUSP10 was determined through the TargetScan database, and this was further verified by dual luciferase reporter gene assay. mmu-miR-25-3p mimics, mmu-miR-25-3p inhibitor, si-DUSP10, miR-NC,si-NC and PD98059 (ERK Inhibitor) were used to intervene macrophages Raw264.7. Rt-qPCR was used to detect the expression levels of mmu-miR-25-3p and DUSP10 mRNA. Western blot was used to detect the expression levels of DUSP10, LC3-II, p-ERK1/2, beclin1, Atg5 and Atg7. The autophagy flux of macrophage Raw264.7 in each group was observed by confocal laser microscopy, and the expression distribution of DUSP10 and the structure of autophagosomes were observed by transmission electron microscopy. Finally, the intracellular BCG load of macrophage Raw264.7 was evaluated by colony-forming unit (CFU) assay. Results Bioinformatics analysis filtered and identified the differentially expressed exosomal miRNAs. As a result, mmu-miR-25-3p expression was significantly increased, and dual specificity phosphatase 10 (DUSP10) was predicted as its target gene that was predominantly involved in autophagy regulation. The dual luciferase reporter gene activity assay showed that mmu-miR-25-3p was targeted to the 3'-untranslated region (UTR) of DUSP10. The infection of BCG induced the upregulation of mmu-miR-25-3p and downregulation of DUSP10 in RAW264.7 cells, which further increased the expression of LC3-II and promoted autophagy. Upregulated mmu-miR-25-3p expression decreased the level of DUSP10 and enhanced the phosphorylation of ERK1/2, which in turn upregulated the expression of LC3-II, Atg5, Atg7, and Beclin1. Immuno-electron microscopy, transmission electron microscopy, and autophagic flux analysis further confirmed that the upregulation of mmu-miR-25-3p promotes the autophagy of macrophages after BCG infection. The CFU number indicated that upregulated mmu-miR-25-3p expression decreased the mycobacterial load and accelerated residual mycobacteria clearance. Conclusion mmu-miR-25-3p promotes the phosphorylation of ERK1/2 by inhibiting the expression of DUSP10, thus enhancing the BCG-induced autophagy of macrophages. These phenomena reduce the bacterial load of intracellular Mycobacterium and facilitate the clearance of residual mycobacteria. mmu-miR-25-3p has great potential as a target for anti-tuberculosis immunotherapy and can be the optimal miRNA loaded into exosomal drug delivery system in future studies.
Collapse
Affiliation(s)
- Wenqi Yuan
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xuehua Zhan
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Wei Liu
- Clinical Medicine School, Ningxia Medical University, Yinchuan, China
| | - Rong Ma
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yueyong Zhou
- Clinical Medicine School, Ningxia Medical University, Yinchuan, China
| | - Guangxian Xu
- The First Dongguan Affiliated Hospital, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Zhaohui Ge
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
13
|
Gamma-Muricholic Acid Inhibits Nonalcoholic Steatohepatitis: Abolishment of Steatosis-Dependent Peroxidative Impairment by FXR/SHP/LXRα/FASN Signaling. Nutrients 2023; 15:nu15051255. [PMID: 36904254 PMCID: PMC10005659 DOI: 10.3390/nu15051255] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) reflects the outcome of steatosis-based peroxidative impairment. Here, the effect and mechanism of γ-muricholic acid (γ-MCA) on NASH were investigated on the basis of its actions in hepatic steatosis, lipid peroxidation, peroxidative injury, hepatocyte apoptosis, and its NAFLD activity score (NAS). The agonist action of γ-MCA on farnesoid X receptor (FXR) upregulated the small heterodimer partner (SHP) expression of hepatocytes. An increase in SHP attenuated the triglyceride-dominated hepatic steatosis which was induced in vivo by a high-fat high-cholesterol (HFHC) diet and in vitro by free fatty acids depending on the inhibition of liver X receptor α (LXRα) and fatty acid synthase (FASN). In contrast, FXR knockdown abrogated the γ-MCA-dependent lipogenic inactivation. When compared to their excessive production in HFHC diet-induced rodent NASH, products of lipid peroxidation (MDA and 4-HNE) exhibited significant reductions upon γ-MCA treatment. Moreover, the decreased levels of serum alanine aminotransferases and aspartate aminotransferases demonstrated an improvement in the peroxidative injury of hepatocytes. By TUNEL assay, injurious amelioration protected the γ-MCA-treated mice against hepatic apoptosis. The abolishment of apoptosis prevented lobular inflammation, which downregulated the incidence of NASH by lowering NAS. Collectively, γ-MCA inhibits steatosis-induced peroxidative injury to ameliorate NASH by targeting FXR/SHP/LXRα/FASN signaling.
Collapse
|
14
|
Ding J, Wu L, Zhu G, Zhu J, Luo P, Li Y. HADHA alleviates hepatic steatosis and oxidative stress in NAFLD via inactivation of the MKK3/MAPK pathway. Mol Biol Rep 2023; 50:961-970. [PMID: 36376538 PMCID: PMC9889437 DOI: 10.1007/s11033-022-07965-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a liver metabolic syndrome and still lacks effective treatments because the molecular mechanism underlying the development of NAFLD is not completely understood. We investigated the role of Hydroxyl CoA dehydrogenase alpha subunit (HADHA) in the pathogenesis of NAFLD. METHODS HADHA expression was detected both in NAFLD cell and mice, and knockdown of HADHA in free fatty acids (FFA)-treated L02 or overexpression of HADHA in high fat diet (HFD)-fed mice was used to detected the influence of HADHA on hepatic steatosis, mitochondrial dysfunction, and oxidative stress by regulating of MKK3/MAPK signaling. RESULTS Our data revealed that HADHA expression was decreased in FFA-treated L02 cells and in HFD-fed mice. Knockdown of HADHA markedly aggravated hepatic steatosis, inflammation and oxidative stress in FFA-treated L02 cells, which was associated with the activation of MKK3/MAPK signalling pathways. Moreover, oxidative stress and liver lesions were improved in NAFLD mice by upregulation of HADHA. Importantly, we demonstrated that overexpression of HADHA inhibited the expression of p-MAPK in NAFLD mice, reducing lipid accumulation and steatosis. CONCLUSION HADHA may function as a protective factor in the progression of NAFLD by alleviating abnormal metabolism and oxidative stress by suppressing MKK3/MAPK signalling pathway activation, providing a new target for the treatment of NAFLD.
Collapse
Affiliation(s)
- Jiexia Ding
- Department of Infectious Diseases, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, 310003, Hangzhou, Zhejiang Province, China.
| | - Lili Wu
- Department of Oncology, Ruian City People's Hospital, 325200, Rui'an, China
| | - Guoxian Zhu
- Department of Infectious Diseases, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, 310003, Hangzhou, Zhejiang Province, China
| | - Jing Zhu
- Department of Infectious Diseases, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, 310003, Hangzhou, Zhejiang Province, China
| | - Pingping Luo
- Department of Infectious Diseases, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, 310003, Hangzhou, Zhejiang Province, China
| | - Youming Li
- Department of Gastroenterology, Zhejiang University School of Medicine First Affiliated Hospital, 310003, Hangzhou, China
| |
Collapse
|
15
|
Song Y, Li C, Luo Y, Guo J, Kang Y, Yin F, Ye L, Sun D, Yu J, Zhang X. CCN6 improves hepatic steatosis, inflammation, and fibrosis in non-alcoholic steatohepatitis. Liver Int 2023; 43:357-369. [PMID: 36156376 DOI: 10.1111/liv.15430] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/20/2022] [Accepted: 09/20/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND AND AIMS CCN6 is a secretory protein with functions of maintaining mitochondrial homeostasis and anti-oxidative stress; and yet, whether it is involved in the pathogenesis of non-alcoholic steatohepatitis (NASH) is still obscure. We investigated the role and mechanism of CCN6 in the development of NASH. METHODS Human liver tissue samples were collected to detect the expression profile of CCN6. High-fat-high-cholesterol (HFHC) and methionine choline-deficient (MCD) diet were applied to mice to establish NASH animal models. Liver-specific overexpression of CCN6 was induced in mice by tail vein injection of adeno-associated virus (AAV), and then the effect of CCN6 on the course of NASH was observed. Free fatty acid (FFA) was applied to HepG2 cells to construct the cell model of steatosis, and the effect of CCN6 was investigated by knocking down the expression of CCN6 through small interfering RNA (siRNA) transfection. RESULTS We found that CCN6 expression was significantly downregulated in the liver of NASH. We confirmed that liver-specific overexpression of CCN6 significantly attenuated hepatic steatosis, inflammation response and fibrosis in NASH mice. Based on RNA-seq analysis, we revealed that CCN6 significantly affected the MAPK pathway. Then, by interfering with apoptosis signal-regulating kinase 1 (ASK1), we identified the ASK1/MAPK pathway pairs as the targets of CCN6 action. CONCLUSIONS CCN6 protects against hepatic steatosis, inflammation response and fibrosis by inhibiting the activation of ASK1 along with its downstream MAPK signalling. CCN6 may be a potential therapeutic target for the treatment of NASH.
Collapse
Affiliation(s)
- Yiran Song
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chenyang Li
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuxin Luo
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jinbo Guo
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yaxing Kang
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Fengrong Yin
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lihong Ye
- Department of Pathology, Shijiazhuang Fifth Hospital, Shijiazhuang, China
| | - Donglei Sun
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jun Yu
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaolan Zhang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
16
|
CSAD Ameliorates Lipid Accumulation in High-Fat Diet-Fed Mice. Int J Mol Sci 2022; 23:ijms232415931. [PMID: 36555571 PMCID: PMC9783087 DOI: 10.3390/ijms232415931] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic metabolic disease manifested in hepatic steatosis, inflammation, fibrosis, etc., which affects over one-quarter of the population around the world. Since no effective therapeutic drugs are available to cope with this widespread epidemic, the functional research of genes with altered expression during NAFLD helps understand the pathogenesis of this disease and the development of new potential therapeutic targets for drugs. In the current work, we discovered via the analysis of the Gene Expression Omnibus (GEO) dataset that cysteine sulfinic acid decarboxylase (CSAD) decreased significantly in NAFLD patients, which was also confirmed in multiple NAFLD mouse models (HFD-fed C57BL/6J, db/db and HFHFrHC-fed C57BL/6J mice). Next, CSAD's function in the progression of NAFLD was explored using AAV-mediated liver-directed gene overexpression in an HFD-fed mouse model, where the overexpression of CSAD in the liver could alleviate NAFLD-associated pathologies, including body weight, liver/body weight ratio, hepatic triglyceride and total cholesterol, and the degree of steatosis. Mechanically, we found that the overexpression of CSAD could increase the expression of some genes related to fatty acid β-oxidation (Acad1, Ppara, and Acox1). Furthermore, we also detected that CSAD could improve mitochondrial injury in vitro and in vivo. Finally, we proposed that the effect of CSAD on lipid accumulation might be independent of the taurine pathway. In conclusion, we demonstrated that CSAD is involved in the development of NAFLD as a protective factor, which suggested that CSAD has the potential to become a new target for drug discovery in NAFLD.
Collapse
|
17
|
Li H, Yang Q, Huang Z, Liang C, Zhang DH, Shi HT, Du JQ, Du BB, Zhang YZ. Dual-specificity phosphatase 12 attenuates oxidative stress injury and apoptosis in diabetic cardiomyopathy via the ASK1-JNK/p38 signaling pathway. Free Radic Biol Med 2022; 192:13-24. [PMID: 36108935 DOI: 10.1016/j.freeradbiomed.2022.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/27/2022] [Accepted: 09/07/2022] [Indexed: 10/31/2022]
Abstract
Diabetic cardiomyopathy (DCM) is ventricular dysfunction that occurs in patients with diabetes mellitus (DM), independent of recognized risk factors, such as coronary artery disease, hypertension, and valvular heart disease. Dual-specificity phosphatase 12 (DUSP12) is a dual-specificity phosphatase expressed in all tissues. Genome-wide linkage studies have found an association between DUSP12 and type 2 diabetes (T2D). However, the role of DUSP12 in DCM remains largely unknown. Ubiquitously expressed DUSP12 is involved in nonalcoholic fatty liver disease, bacterial infection, and myocardial hypertrophy and plays a critical role in tumorigenesis. Herein, we observed an increased expression of DUSP12 in a hyperglycemia cell model and a high-fat diet (HFD) mouse model. Heart-specific DUSP12-deficient mice showed severe cardiac dysfunction and remodeling induced by an HFD. DUSP12 deficiency exacerbated oxidative stress injury and apoptosis, whereas DUSP12 overexpression had the opposite effect. At the molecular level, DUSP12 physically bound to apoptotic signal-regulated kinase 1 (ASK1), promoted its dephosphorylation, and inhibited its action on c-Jun N-terminal kinase and p38 mitogen-activated protein kinase. Rescue experiments have shown that oxidative stress injury and apoptosis, exacerbated by DUSP12 deficiency, are alleviated by ASK1 inhibition. Therefore, we consider DUSP12 an important signaling pathway in DCM.
Collapse
Affiliation(s)
- Huan Li
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
| | - Qin Yang
- Department of Cardiology, Huanggang Central Hospital, Huanggang, 438021, China
| | - Zhen Huang
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
| | - Cui Liang
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
| | - Dian-Hong Zhang
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
| | - Hui-Ting Shi
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
| | - Jia-Qi Du
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
| | - Bin-Bin Du
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China.
| | - Yan-Zhou Zhang
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
18
|
Hepatocyte phosphatase DUSP22 mitigates NASH-HCC progression by targeting FAK. Nat Commun 2022; 13:5945. [PMID: 36209205 PMCID: PMC9547917 DOI: 10.1038/s41467-022-33493-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/21/2022] [Indexed: 11/08/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH), a common clinical disease, is becoming a leading cause of hepatocellular carcinoma (HCC). Dual specificity phosphatase 22 (DUSP22, also known as JKAP or JSP-1) expressed in numerous tissues plays essential biological functions in immune responses and tumor growth. However, the effects of DUSP22 on NASH still remain unknown. Here, we find a significant decrease of DUSP22 expression in human and murine fatty liver, which is mediated by reactive oxygen species (ROS) generation. Hepatic-specific DUSP22 deletion particularly exacerbates lipid deposition, inflammatory response and fibrosis in liver, facilitating NASH and non-alcoholic fatty liver disease (NAFLD)-associated HCC progression. In contrast, transgenic over-expression, lentivirus or adeno-associated virus (AAV)-mediated DUSP22 gene therapy substantially inhibit NASH-related phenotypes and HCC development in mice. We provide mechanistic evidence that DUSP22 directly interacts with focal adhesion kinase (FAK) and restrains its phosphorylation at Tyr397 (Y397) and Y576 + Y577 residues, subsequently prohibiting downstream activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and nuclear factor-κB (NF-κB) cascades. The binding of DUSP22 to FAK and the dephosphorylation of FAK are indispensable for DUSP22-meliorated NASH progression. Collectively, our findings identify DUSP22 as a key suppressor of NASH-HCC, and underscore the DUSP22-FAK axis as a promising therapeutic target for treatment of the disease.
Collapse
|
19
|
Min RWM, Aung FWM, Liu B, Arya A, Win S. Mechanism and Therapeutic Targets of c-Jun-N-Terminal Kinases Activation in Nonalcoholic Fatty Liver Disease. Biomedicines 2022; 10:biomedicines10082035. [PMID: 36009582 PMCID: PMC9406172 DOI: 10.3390/biomedicines10082035] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Non-alcoholic fatty liver (NAFL) is the most common chronic liver disease. Activation of mitogen-activated kinases (MAPK) cascade, which leads to c-Jun N-terminal kinase (JNK) activation occurs in the liver in response to the nutritional and metabolic stress. The aberrant activation of MAPKs, especially c-Jun-N-terminal kinases (JNKs), leads to unwanted genetic and epi-genetic modifications in addition to the metabolic stress adaptation in hepatocytes. A mechanism of sustained P-JNK activation was identified in acute and chronic liver diseases, suggesting an important role of aberrant JNK activation in NASH. Therefore, modulation of JNK activation, rather than targeting JNK protein levels, is a plausible therapeutic application for the treatment of chronic liver disease.
Collapse
Affiliation(s)
| | | | - Bryant Liu
- Division of Gastrointestinal and Liver Disease, Department of Medicine, Keck School of Medicine, University of Southern California, 2011 Zonal Ave., HMR 612, Los Angeles, CA 90089, USA
| | - Aliza Arya
- Division of Gastrointestinal and Liver Disease, Department of Medicine, Keck School of Medicine, University of Southern California, 2011 Zonal Ave., HMR 612, Los Angeles, CA 90089, USA
| | - Sanda Win
- Division of Gastrointestinal and Liver Disease, Department of Medicine, Keck School of Medicine, University of Southern California, 2011 Zonal Ave., HMR 612, Los Angeles, CA 90089, USA
- Correspondence:
| |
Collapse
|
20
|
Xu J, He X, Huang X, Zhang F, Ren X, Asakiya C, Li Y, Huang K. Artemether Ameliorates Non-Alcoholic Steatohepatitis by Repressing Lipogenesis, Inflammation, and Fibrosis in Mice. Front Pharmacol 2022; 13:851342. [PMID: 35586049 PMCID: PMC9108288 DOI: 10.3389/fphar.2022.851342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/22/2022] [Indexed: 12/30/2022] Open
Abstract
Background: Non-alcoholic fatty liver disease (NAFLD) is a widespread disease, but no recognized drug treatment exists. Previous studies have shown that artemether (Art) can ameliorate carbon tetrachloride (CCl4)–induced liver fibrosis in mice. This study sets out to observe the therapeutic impact of Art on non-alcoholic steatohepatitis (NASH). Methods: Model mice were provided with a methionine- and choline-deficient (MCD) diet for 4 weeks or a high-fat diet (HFD) for 28 weeks, respectively, and then treated with Art. RNA sequencing (RNA-Seq) analyzed gene expression changes caused by Art treatment. The molecular mechanism of the therapeutic effects of Art on NASH was studied in the mouse liver and HepG2 cells. Results: Art treatment significantly attenuated hepatic lipid accumulation and liver damage in MCD diet– or HFD-induced NASH mice. The RNA-Seq analysis revealed lipid metabolism as a major pathway suppressed by Art administration, in addition to the regulation of inflammation pathways. Mechanistically, Art reduced lipid accumulation by repressing de novo lipogenesis of sterol regulatory element-binding protein-1c (SREBP-1c), acetyl-CoA carboxylase (ACC), fatty acid synthase (FASN), stearoyl-CoA desaturase (SCD1), promoting lipolysis of peroxisome proliferator–activated receptor-γ co-activator-1α (PGC1α), adipose triglyceride lipase (ATGL), and carnitine palmitoyltransferase I (CPT-1a) in NASH mouse liver and HepG2 cells. In addition, Art inhibited the secretion of pro-inflammatory factors and reduced inflammatory infiltration by effectively inhibiting M1 macrophage activation. Furthermore, Art inhibited transforming growth factor-beta 1 (TGF-β), and the SMAD signaling pathway mediates the development of liver fibrosis. Inclusion: Art improved fat deposition by repressing de novo lipogenesis and promoting lipolysis in vivo and in vitro. Furthermore, Art improved inflammation and fibrosis with a significant effect. It is a prospective therapeutic agent for NASH.
Collapse
Affiliation(s)
- Jia Xu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xiaoyun He
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xianghui Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Feng Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xinxin Ren
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Charles Asakiya
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yue Li
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yue Li, ; Kunlun Huang,
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs, Beijing, China
- *Correspondence: Yue Li, ; Kunlun Huang,
| |
Collapse
|
21
|
Zhang JL, Du BB, Zhang DH, Li H, Kong LY, Fan GJ, Li YP, Li PC, Liang C, Wang Z, Yang LL, Hao ZY, Wu LM, Huang Z, Dong JZ, Zhang JY, Yao R, Wang SJ, Zhang YZ. OTUB1 alleviates NASH through inhibition of the TRAF6-ASK1 signaling pathways. Hepatology 2022; 75:1218-1234. [PMID: 34591986 DOI: 10.1002/hep.32179] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/09/2021] [Accepted: 09/22/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND AIMS NAFLD is considered as the hepatic manifestation of the metabolic syndrome, which includes insulin resistance, obesity and hyperlipidemia. NASH is a progressive stage of NAFLD with severe hepatic steatosis, hepatocyte death, inflammation, and fibrosis. Currently, no pharmacological interventions specifically tailored for NASH are approved. Ovarian tumor domain, ubiquitin aldehyde binding 1 (OTUB1), the founding member of deubiquitinases, regulates many metabolism-associated signaling pathways. However, the role of OTUB1 in NASH is unclarified. METHODS AND RESULTS We demonstrated that mice with Otub1 deficiency exhibited aggravated high-fat diet-induced and high-fat high-cholesterol (HFHC) diet-induced hyperinsulinemia and liver steatosis. Notably, hepatocyte-specific overexpression of Otub1 markedly alleviated HFHC diet-induced hepatic steatosis, inflammatory responses, and liver fibrosis. Mechanistically, we identified apoptosis signal-regulating kinase 1 (ASK1) as a key candidate target of OTUB1 through RNA-sequencing analysis and immunoblot analysis. Through immunoprecipitation-mass spectrometry analysis, we further found that OTUB1 directly bound to tumor necrosis factor receptor-associated factor 6 (TRAF6) and suppressed its lysine 63-linked polyubiquitination, thus inhibiting the activation of ASK1 and its downstream pathway. CONCLUSIONS OTUB1 is a key suppressor of NASH that inhibits polyubiquitinations of TRAF6 and attenuated TRAF6-mediated ASK1 activation. Targeting the OTUB1-TRAF6-ASK1 axis may be a promising therapeutic strategy for NASH.
Collapse
Affiliation(s)
- Jie-Lei Zhang
- Department of Endocrinologythe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouChina
| | - Bin-Bin Du
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouChina
| | - Dian-Hong Zhang
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouChina
| | - Huan Li
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouChina
| | - Ling-Yao Kong
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouChina
| | - Guang-Jian Fan
- Precision Research Center for Refractory Diseases, Institute for Clinical ResearchShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ya-Peng Li
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouChina
| | - Peng-Cheng Li
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouChina
| | - Cui Liang
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouChina
| | - Zheng Wang
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouChina
| | - Lu-Lu Yang
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouChina
| | - Zheng-Yang Hao
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouChina
| | - Lei-Ming Wu
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouChina
| | - Zhen Huang
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouChina
| | - Jian-Zeng Dong
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouChina
| | - Jin-Ying Zhang
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouChina
| | - Rui Yao
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouChina
| | - Shou-Jun Wang
- Department of Endocrinologythe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouChina
| | - Yan-Zhou Zhang
- Cardiovascular Hospitalthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouChina
| |
Collapse
|
22
|
He X, Hu Y, Liu W, Zhu G, Zhang R, You J, Shao Y, Li Y, Zhang Z, Cui J, He Y, Ge G, Yang H. Deciphering the Effective Constituents and Mechanisms of Portulaca oleracea L. for Treating NASH via Integrating Bioinformatics Analysis and Experimental Pharmacology. Front Pharmacol 2022; 12:818227. [PMID: 35126150 PMCID: PMC8807659 DOI: 10.3389/fphar.2021.818227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/22/2021] [Indexed: 12/13/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a highly prevalent metabolic disorder. Currently, there are no effective pharmacotherapeutic options for preventing and treating NASH. Portulaca oleracea L. (POL) is an edible herb that has been used for preventing and treating some metabolic disorders in China, but the bioactive constituents in POL and the related mechanisms for treating NASH are still unclear. Here, a comprehensive research strategy was used to identify the core genes and the key constituents in POL for treating NASH, via integrating bioinformatics analysis and experimental pharmacology both in vitro and in vivo. The phenotypes and mechanisms of POL were carefully investigated by performing a set of in vivo and in vitro experiments. Bioinformatics analysis suggested that prostaglandin-endoperoxide synthase 2 (PTGS2) was the core target and myricetin (Myr) was the key constituent in POL for treating NASH. In NASH mice model induced by methionine choline deficiency diet, POL significantly alleviated hepatic steatosis and liver injury. In free fatty acids-induced hepatocytes, POL and Myr significantly down-regulated the expression of PTGS2, decreased the number of lipid droplets, and regulated the mRNA expression of lipid synthesis and homeostasis genes, including FASN, CPT1a, SERBP1c, ACC1, and SCD1. In lipopolysaccharide-induced macrophages, POL and Myr significantly reduced the expression of PTGS2 and blocked the secretion of inflammatory mediators TNF-α, IL-6, and IL-1β. Further investigations demonstrate that Myr acts as both suppressor and inhibitor of PTGS2. Collectively, POL and its major component Myr can ameliorate NASH via down-regulating and inhibiting PTGS2, suggesting that POL and Myr can be developed as novel medicines for treating NASH.
Collapse
Affiliation(s)
- Xiaoli He
- Department of Endocrinology, Research Laboratory of Pharmacy, Center of Experimental Animals, Clinical Research Institute of Integrative Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiren Hu
- Department of Endocrinology, Research Laboratory of Pharmacy, Center of Experimental Animals, Clinical Research Institute of Integrative Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guanghao Zhu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ruoxi Zhang
- Department of Endocrinology, Research Laboratory of Pharmacy, Center of Experimental Animals, Clinical Research Institute of Integrative Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiawen You
- Department of Endocrinology, Research Laboratory of Pharmacy, Center of Experimental Animals, Clinical Research Institute of Integrative Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanting Shao
- Department of Endocrinology, Research Laboratory of Pharmacy, Center of Experimental Animals, Clinical Research Institute of Integrative Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yunhao Li
- Department of Endocrinology, Research Laboratory of Pharmacy, Center of Experimental Animals, Clinical Research Institute of Integrative Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zeng Zhang
- Department of Endocrinology, Research Laboratory of Pharmacy, Center of Experimental Animals, Clinical Research Institute of Integrative Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingang Cui
- Department of Endocrinology, Research Laboratory of Pharmacy, Center of Experimental Animals, Clinical Research Institute of Integrative Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanming He
- Department of Endocrinology, Research Laboratory of Pharmacy, Center of Experimental Animals, Clinical Research Institute of Integrative Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guangbo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongjie Yang
- Department of Endocrinology, Research Laboratory of Pharmacy, Center of Experimental Animals, Clinical Research Institute of Integrative Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
23
|
Yang X, Sun D, Xiang H, Wang S, Huang Y, Li L, Cheng X, Liu H, Hu F, Cheng Y, Ma T, Hu M, Tian H, Tian S, Zhou Y, Zhang P, Zhang XJ, Ji YX, Hu Y, Li H, She ZG. Hepatocyte SH3RF2 Deficiency Is a Key Aggravator for NAFLD. Hepatology 2021; 74:1319-1338. [PMID: 33894019 DOI: 10.1002/hep.31863] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/27/2021] [Accepted: 04/08/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS NAFLD has become the most common liver disease worldwide but lacks a well-established pharmacological therapy. Here, we aimed to investigate the role of an E3 ligase SH3 domain-containing ring finger 2 (SH3RF2) in NAFLD and to further explore the underlying mechanisms. METHODS AND RESULTS In this study, we found that SH3RF2 was suppressed in the setting of NAFLD across mice, monkeys, and clinical individuals. Based on a genetic interruption model, we further demonstrated that hepatocyte SH3RF2 deficiency markedly deteriorates lipid accumulation in cultured hepatocytes and diet-induced NAFLD mice. Mechanistically, SH3RF2 directly binds to ATP citrate lyase, the primary enzyme promoting cytosolic acetyl-coenzyme A production, and promotes its K48-linked ubiquitination-dependent degradation. Consistently, acetyl-coenzyme A was significantly accumulated in Sh3rf2-knockout hepatocytes and livers compared with wild-type controls, leading to enhanced de novo lipogenesis, cholesterol production, and resultant lipid deposition. CONCLUSION SH3RF2 depletion in hepatocytes is a critical aggravator for NAFLD progression and therefore represents a promising therapeutic target for related liver diseases.
Collapse
Affiliation(s)
- Xia Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Model Anima, Wuhan University, Wuhan, China
| | - Dating Sun
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Model Anima, Wuhan University, Wuhan, China
| | - Hui Xiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Model Anima, Wuhan University, Wuhan, China
| | - Sichen Wang
- Institute of Model Anima, Wuhan University, Wuhan, China.,School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yongping Huang
- Institute of Model Anima, Wuhan University, Wuhan, China.,College of Life Sciences, Wuhan University, Wuhan, China
| | - Ling Li
- Institute of Model Anima, Wuhan University, Wuhan, China.,College of Life Sciences, Wuhan University, Wuhan, China
| | - Xu Cheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Model Anima, Wuhan University, Wuhan, China
| | - Hui Liu
- Institute of Model Anima, Wuhan University, Wuhan, China.,Department of Burns, Tongren Hospital of Wuhan University & Wuhan Third Hospital, Wuhan, China
| | - Fengjiao Hu
- Institute of Model Anima, Wuhan University, Wuhan, China.,Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yanjie Cheng
- Institute of Model Anima, Wuhan University, Wuhan, China.,Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tengfei Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Model Anima, Wuhan University, Wuhan, China
| | - Manli Hu
- Institute of Model Anima, Wuhan University, Wuhan, China.,Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Han Tian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Model Anima, Wuhan University, Wuhan, China
| | - Song Tian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Model Anima, Wuhan University, Wuhan, China
| | - Yan Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Model Anima, Wuhan University, Wuhan, China
| | - Peng Zhang
- Institute of Model Anima, Wuhan University, Wuhan, China.,School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xiao-Jing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Model Anima, Wuhan University, Wuhan, China.,School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yan-Xiao Ji
- Institute of Model Anima, Wuhan University, Wuhan, China.,Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yufeng Hu
- Institute of Model Anima, Wuhan University, Wuhan, China.,Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Model Anima, Wuhan University, Wuhan, China.,School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Model Anima, Wuhan University, Wuhan, China
| |
Collapse
|
24
|
Ju G, Zhou T, Zhang R, Pan X, Xue B, Miao S. DUSP12 regulates the tumorigenesis and prognosis of hepatocellular carcinoma. PeerJ 2021; 9:e11929. [PMID: 34414037 PMCID: PMC8344690 DOI: 10.7717/peerj.11929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/18/2021] [Indexed: 01/20/2023] Open
Abstract
Background Dual specificity protein phosphatase (DUSP)12 is an atypical member of the protein tyrosine phosphatase family, which are overexpressed in multiple types of malignant tumors. This protein family protect cells from apoptosis and promotes the proliferation and motility of cells. However, the pathological role of DUSP12 in hepatocellular carcinoma (HCC) is incompletely understood. Methods We analyzed mRNA expression of DUSP12 between HCC and normal liver tissues using multiple online databases, and explored the status of DUSP12 mutants using the cBioPortal database. The correlation between DUSP12 expression and tumor-infiltrating immune cells was demonstrated using the Tumor Immune Estimation Resource database and the Tumor and Immune System Interaction Database. Loss of function assay was utilized to evaluate the role of DUSP12 in HCC progression. Results DUSP12 had higher expression along with mRNA amplification in HCC tissues compared with those in normal liver tissues, which suggested that higher DUSP12 expression predicted shorter overall survival. Analyses of functional enrichment of differentially expressed genes suggested that DUSP12 regulated HCC tumorigenesis, and that knockdown of DUSP12 expression by short hairpin (sh)RNA decreased the proliferation and migration of HCC cells. Besides, DUSP12 expression was positively associated with the infiltration of cluster of differentiation (CD)4+ T cells (especially CD4+ regulatory T cells), macrophages, neutrophils and dendritic cells. DUSP12 expression was positively associated with immune-checkpoint moieties, and was downregulated in a C3 immune-subgroup of HCC (which had the longest survival). Conclusion These data suggest that DUSP12 may have a critical role in the tumorigenesis, infiltration of immune cells, and prognosis of HCC.
Collapse
Affiliation(s)
- Gaoda Ju
- Department of Medical Oncology, Beijing Cancer Hospital, Peking University, Beijing, China
| | - Tianhao Zhou
- Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Zhang
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Xiaozao Pan
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Bing Xue
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Sen Miao
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, China
| |
Collapse
|
25
|
Kojima K, Ichijo H, Naguro I. Molecular functions of ASK family in diseases caused by stress-induced inflammation and apoptosis. J Biochem 2021; 169:395-407. [PMID: 33377973 DOI: 10.1093/jb/mvaa145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/02/2020] [Indexed: 11/13/2022] Open
Abstract
VCells are constantly exposed to various types of stress, and disruption of the proper response leads to a variety of diseases. Among them, inflammation and apoptosis are important examples of critical responses and should be tightly regulated, as inappropriate control of these responses is detrimental to the organism. In several disease states, these responses are abnormally regulated, with adverse effects. Apoptosis signal-regulating kinase (ASK) family members are stress-responsive kinases that regulate inflammation and apoptosis after a variety of stimuli, such as oxidative stress and endoplasmic reticulum stress. In this review, we summarize recent reports on the ASK family in terms of their involvement in inflammatory diseases, focussing on upstream stimuli that regulate ASK family members.
Collapse
Affiliation(s)
- Kazuki Kojima
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Isao Naguro
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
26
|
DUSP12 acts as a novel endogenous protective signal against hepatic ischemia-reperfusion damage by inhibiting ASK1 pathway. Clin Sci (Lond) 2021; 135:161-166. [PMID: 33416082 PMCID: PMC7796299 DOI: 10.1042/cs20201091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/17/2020] [Accepted: 01/04/2021] [Indexed: 11/17/2022]
Abstract
Ischemia–reperfusion injury (IRI) consequent to major liver surgery is a still unmet clinical problem. The activation of endogenous systems of hepatoprotection can prevent the damaging effects of ischemia–reperfusion (IR) as shown by the phenomenon known as ‘ischemic preconditioning’. The identification of endogenous signal mediators of hepatoprotection is of main interest since they could be targeted in future therapeutic interventions. Qiu et al. recently reported in Clin. Sci. (Lond.) (2020) 134(17), 2279–2294, the discovery of a novel protective molecule against hepatic IR damage: dual-specificity phosphatase 12 (DUSP12). IR significantly decreased DUSP12 expression in liver whereas DUSP12 overexpression in hepatocytes protected IRI and DUSP12 deletion in DUSP12 KO mice exacerbated IRI. The protective effects of DUSP12 depended on apoptosis signal-regulating kinase 1 (ASK1) and acted through the inhibition of the ASK1-dependent kinases c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK). These results enlighten DUSP12 as a novel intermediate negative regulator of the pro-inflammatory and pro-apoptotic ASK1/JNK-p38 MAPK pathway activated during hepatic IR and identify DUSP12 as potential therapeutic target for IRI.
Collapse
|
27
|
Abstract
Non-alcoholic fatty liver disease (NAFLD) was defined in 1980 and has the same histological characteristics as alcoholic liver disease except for alcohol consumption. After 40 years, the understanding of this disease is still imperfect. Without specific drugs available for treatment, the number of patients with NAFLD is increasing rapidly, and NAFLD currently affects more than one-quarter of the global population. NAFLD is mostly caused by a sedentary lifestyle and excessive energy intake of fat and sugar. To ameliorate or avoid NAFLD, people commonly replace high-fat foods with high-carbohydrate foods (especially starchy carbohydrates) as a way to reduce caloric intake and reach satiety. However, there are few studies that concentrate on the effect of carbohydrate intake on liver metabolism in patients with NAFLD, much fewer than the studies on fat intake. Besides, most of these studies are not systematic, which has made identification of the mechanism difficult. In this review, we collected and analysed data from studies on human and animal models and, surprisingly, found that carbohydrates and liver steatosis could be linked by inflammation. This review not only describes the effects of carbohydrates on NAFLD and body lipid metabolism but also analyses and predicts possible molecular pathways of carbohydrates in liver lipid synthesis that involve inflammation. Furthermore, the limitations of recent research and possible targets for regulating inflammation and lipogenesis are discussed. This review describes the effects of starchy carbohydrates, a nutrient signal, on NAFLD from the perspective of inflammation.
Collapse
|
28
|
Jiang L, Ren L, Guo X, Zhao J, Zhang H, Chen S, Le S, Liu H, Ye P, Chen M, Xia J. Dual-specificity Phosphatase 9 protects against Cardiac Hypertrophy by targeting ASK1. Int J Biol Sci 2021; 17:2193-2204. [PMID: 34239349 PMCID: PMC8241718 DOI: 10.7150/ijbs.57130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/23/2021] [Indexed: 01/22/2023] Open
Abstract
The functions of dual-specificity phosphatase 9 (DUSP9) in hepatic steatosis and metabolic disturbance during nonalcoholic fatty liver disease were discussed in our prior study. However, its roles in the pathophysiology of pressure overload-induced cardiac hypertrophy remain to be illustrated. This study attempted to uncover the potential contributions and underpinning mechanisms of DUSP9 in cardiac hypertrophy. Utilizing the gain-and-loss-of-functional approaches of DUSP9 the cardiac phenotypes arising from the pathological, echocardiographic, and molecular analysis were quantified. The results showed increased levels of DUSP9 in hypertrophic mice heart and angiotensin II treated cardiomyocytes. In accordance with the results of cellular hypertrophy in response to angiotensin II, cardiac hypertrophy exaggeration, fibrosis, and malfunction triggered by pressure overload was evident in the case of cardiac-specific conditional knockout of DUSP9. In contrast, transgenic mice hearts with DUSP9 overexpression portrayed restoration of the hypertrophic phenotypes. Further explorations of molecular mechanisms indicated the direct interaction of DUSP9 with ASK1, which further repressed p38 and JNK signaling pathways. Moreover, blocking ASK1 with ASK1-specific inhibitor compensated the pro-hypertrophic effects induced by DUSP9 deficiency in cardiomyocytes. The main findings of this study suggest the potential of DUSP9 in alleviating cardiac hypertrophy at least partially by repressing ASK1, thereby looks promising as a prospective target against cardiac hypertrophy.
Collapse
Affiliation(s)
- Lang Jiang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingyun Ren
- Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology
| | - Xin Guo
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zhao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanshan Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Le
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Ye
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Manhua Chen
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
29
|
Hui Z, Jie H, Fan GH. Expression of DUSP12 Reduces Lung Vascular Endothelial Cell Damage in a Murine Model of Lipopolysaccharide-Induced Acute Lung Injury via the Apoptosis Signal-Regulating Kinase 1 (ASK1)-Jun N-Terminal Kinase Activation (JNK) Pathway. Med Sci Monit 2021; 27:e930429. [PMID: 33811209 PMCID: PMC8025659 DOI: 10.12659/msm.930429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/16/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Acute lung injury (ALI) results from damage to the alveolar capillary endothelial cells and can result in acute respiratory distress syndrome (ARDS). This study aimed to investigate murine lung vascular endothelial cells (MLECs) damage in a murine model of lipopolysaccharide (LPS)-induced ALI. MATERIAL AND METHODS Mice were injected with LPS to induce an acute lung injury model. An adenovirus transfection system was used to overexpress or knockdown DUSP12 in mice. MLECs were isolated, cultured and transfected with DUSP12-overexpressing adenovirus or with DUSP12 siRNA to knockdown DUSP12. LPS was used to establish a cell injury model. ELISA and RT-PCR were used to examine cell inflammation. LPS-induced oxidative stress was also evaluated using commercial kits. RESULTS A decreased level of DUSP12 was observed in MLECs treated with LPS. DUSP12 overexpression in mice attenuated LPS-induced lung inflammation and lung injury, as reflected by reduced levels of proinflammatory cytokines. Mice with DUSP12 knockdown exhibited worsened lung inflammation and injury. In vitro, DUSP12 overexpression in endothelial cells ameliorated LPS-induced inflammation, apoptosis, and oxidative stress. DUSP12 silencing in endothelial cells aggravated LPS-induced inflammation, apoptosis, and oxidative stress. Furthermore, we found that DUSP12 directly bound to apoptosis signal-regulating kinase 1 (ASK1) to inhibit Jun N-terminal kinase activation (JNK). A JNK1/2 inhibitor and ASK1 siRNA ameliorated the exacerbating effects of DUSP12 knockdown in vitro. CONCLUSIONS Our data demonstrated that DUSP12 suppressed MLEC injury in response to LPS insult by regulating the ASK1/JNK pathway.
Collapse
Affiliation(s)
- Zhao Hui
- Department of Interventional Radiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Huang Jie
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Guo-Hua Fan
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| |
Collapse
|
30
|
Abstract
One third of the western population suffers from nonalcoholic fatty liver disease (NAFLD), which may ultimately develop into hepatocellular carcinoma (HCC). The molecular event(s) that triggers the disease are not clear. Current understanding, known as the multiple hits model, suggests that NAFLD is a result of diverse events at several tissues (e.g., liver, adipose tissues, and intestine) combined with changes in metabolism and microbiome. In contrast to this prevailing concept, we report that fatty liver could be triggered by a single mutated protein expressed only in the liver. We established a transgenic system that allows temporally controlled activation of the MAP kinase p38α in a tissue-specific manner by induced expression of intrinsically active p38α allele. Here we checked the effect of exclusive activation in the liver. Unexpectedly, induction of p38α alone was sufficient to cause macrovesicular fatty liver. Animals did not become overweight, showing that fatty liver can be imposed solely by a genetic modification in liver per se and can be separated from obesity. Active p38α-induced fatty liver is associated with up-regulation of MUC13, CIDEA, PPARγ, ATF3, and c-jun mRNAs, which are up-regulated in human HCC. Shutting off expression of the p38α mutant resulted in reversal of symptoms. The findings suggest that p38α plays a direct causative role in fatty liver diseases and perhaps in other chronic inflammatory diseases. As p38α activity was induced by point mutations, it could be considered a proto-inflammatory gene (proto-inflammagene).
Collapse
|
31
|
DUSP12 protects against hepatic ischemia-reperfusion injury dependent on ASK1-JNK/p38 pathway in vitro and in vivo. Clin Sci (Lond) 2021; 134:2279-2294. [PMID: 32803262 DOI: 10.1042/cs20191272] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 08/02/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022]
Abstract
Hepatic ischemia-reperfusion (I/R) injury is an important risk factor resulting in liver failure during liver surgery. However, there is still lack of effective therapeutic methods to treat hepatic I/R injury. DUSP12 is a member of the dual specific phosphatase (DUSP) family. Some DUSPs have been identified as being involved in the regulation of hepatic I/R injury. However, the role of DUSP12 during hepatic I/R injury is still unclear. In the present study, we observed a significant decrease in DUSP12 expression in a hepatic I/R injury mouse model in vivo and in hypoxia/reoxygenation (H/R) model in vitro. Using hepatocyte-specific DUSP12 knockout mice and DUSP12 transgenic mice, we demonstrated that DUSP12 apparently relieved I/R-induced liver injury. Moreover, DUSP12 inhibited hepatic inflammatory responses and alleviated apoptosis both in vitro and in vivo. Furthermore, we demonstrated that JNK and p38 activity, but not ERK1/2, was increased in the DUSP12-deficient mice and decreased in the DUSP12 transgenic mice under I/R condition. ASK1 was required for DUSP12 function in hepatic I/R injury and inhibition of ASK1 prevented inflammation and apoptosis in DUSP12-deficient hepatocytes and mice. In conclusion, DUSP12 protects against hepatic I/R injury and related inflammation and apoptosis. This regulatory role of DUSP12 is primarily through ASK1-JNK/p38 signaling pathway. Taken together, DUSP12 could be a potential therapeutic target for hepatic I/R injury.
Collapse
|
32
|
Jacques S, Arjomand A, Perée H, Collins P, Mayer A, Lavergne A, Wéry M, Mni M, Hego A, Thuillier V, Becker G, Bahri MA, Plenevaux A, Di Valentin E, Oury C, Moutschen M, Delvenne P, Paquot N, Rahmouni S. Dual-specificity phosphatase 3 deletion promotes obesity, non-alcoholic steatohepatitis and hepatocellular carcinoma. Sci Rep 2021; 11:5817. [PMID: 33712680 PMCID: PMC7954796 DOI: 10.1038/s41598-021-85089-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/25/2021] [Indexed: 01/31/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic hepatic pathology in Western countries. It encompasses a spectrum of conditions ranging from simple steatosis to more severe and progressive non-alcoholic steatohepatitis (NASH) that can lead to hepatocellular carcinoma (HCC). Obesity and related metabolic syndrome are important risk factors for the development of NAFLD, NASH and HCC. DUSP3 is a small dual-specificity protein phosphatase with a poorly known physiological function. We investigated its role in metabolic syndrome manifestations and in HCC using a mouse knockout (KO) model. While aging, DUSP3-KO mice became obese, exhibited insulin resistance, NAFLD and associated liver damage. These phenotypes were exacerbated under high fat diet (HFD). In addition, DEN administration combined to HFD led to rapid HCC development in DUSP3-KO compared to wild type (WT) mice. DUSP3-KO mice had more serum triglycerides, cholesterol, AST and ALT compared to control WT mice under both regular chow diet (CD) and HFD. The level of fasting insulin was higher compared to WT mice, though, fasting glucose as well as glucose tolerance were normal. At the molecular level, HFD led to decreased expression of DUSP3 in WT mice. DUSP3 deletion was associated with increased and consistent phosphorylation of the insulin receptor (IR) and with higher activation of the downstream signaling pathway. In conclusion, our results support a new role for DUSP3 in obesity, insulin resistance, NAFLD and liver damage.
Collapse
Affiliation(s)
- Sophie Jacques
- Laboratory of Animal Genomics, GIGA-Medical Genomics, GIGA-Institute, University of Liège, B34, 1, Avenue de l'hôpital, 4000, Liège, Belgium
| | - Arash Arjomand
- Laboratory of Animal Genomics, GIGA-Medical Genomics, GIGA-Institute, University of Liège, B34, 1, Avenue de l'hôpital, 4000, Liège, Belgium
| | - Hélène Perée
- Laboratory of Animal Genomics, GIGA-Medical Genomics, GIGA-Institute, University of Liège, B34, 1, Avenue de l'hôpital, 4000, Liège, Belgium
| | - Patrick Collins
- Department of Pathology, Liège University Hospital, Liège, Belgium
| | - Alice Mayer
- GIGA-Genomics Core Facility, GIGA-Institute, University of Liège, Liège, Belgium
| | - Arnaud Lavergne
- GIGA-Genomics Core Facility, GIGA-Institute, University of Liège, Liège, Belgium
| | - Marie Wéry
- Laboratory of Animal Genomics, GIGA-Medical Genomics, GIGA-Institute, University of Liège, B34, 1, Avenue de l'hôpital, 4000, Liège, Belgium
| | - Myriam Mni
- Laboratory of Animal Genomics, GIGA-Medical Genomics, GIGA-Institute, University of Liège, B34, 1, Avenue de l'hôpital, 4000, Liège, Belgium
| | - Alexandre Hego
- GIGA-Imaging Core Facility, GIGA-Institute, University of Liège, Liège, Belgium
| | - Virginie Thuillier
- Laboratory of Animal Genomics, GIGA-Medical Genomics, GIGA-Institute, University of Liège, B34, 1, Avenue de l'hôpital, 4000, Liège, Belgium
| | - Guillaume Becker
- GIGA-CRC-In Vivo Imaging, GIGA-Institute, University of Liège, Liège, Belgium
| | - Mohamed Ali Bahri
- GIGA-CRC-In Vivo Imaging, GIGA-Institute, University of Liège, Liège, Belgium
| | - Alain Plenevaux
- GIGA-CRC-In Vivo Imaging, GIGA-Institute, University of Liège, Liège, Belgium
| | - Emmanuel Di Valentin
- GIGA-Viral Vectors Core Facility, GIGA-Institute, University of Liège, Liège, Belgium
| | - Cécile Oury
- Laboratory of Cardiology, GIGA-Cardiovascular Sciences, GIGA-Institute, University of Liège, Liège, Belgium
| | - Michel Moutschen
- Infectious Diseases Department, Liège University Hospital, Liège, Belgium
| | | | - Nicolas Paquot
- Division of Diabetes, Nutrition and Metabolic Diseases, Department of Medicine, CHU Sart-Tilman and GIGA-I3, Immunometabolism and Nutrition Unit, University of Liège, Liège, Belgium
| | - Souad Rahmouni
- Laboratory of Animal Genomics, GIGA-Medical Genomics, GIGA-Institute, University of Liège, B34, 1, Avenue de l'hôpital, 4000, Liège, Belgium.
| |
Collapse
|
33
|
Cicuéndez B, Ruiz-Garrido I, Mora A, Sabio G. Stress kinases in the development of liver steatosis and hepatocellular carcinoma. Mol Metab 2021; 50:101190. [PMID: 33588102 PMCID: PMC8324677 DOI: 10.1016/j.molmet.2021.101190] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/31/2020] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an important component of metabolic syndrome and one of the most prevalent liver diseases worldwide. This disorder is closely linked to hepatic insulin resistance, lipotoxicity, and inflammation. Although the mechanisms that cause steatosis and chronic liver injury in NAFLD remain unclear, a key component of this process is the activation of stress-activated kinases (SAPKs), including p38 and JNK in the liver and immune system. This review summarizes findings which indicate that the dysregulation of stress kinases plays a fundamental role in the development of steatosis and are important players in inducing liver fibrosis. To avoid the development of steatohepatitis and liver cancer, SAPK activity must be tightly regulated not only in the hepatocytes but also in other tissues, including cells of the immune system. Possible cellular mechanisms of SAPK actions are discussed. Hepatic JNK triggers steatosis and insulin resistance, decreasing lipid oxidation and ketogenesis in HFD-fed mice. Decreased liver expression of p38α/β in HFD increases lipogenesis. Hepatic p38γ/δ drive insulin resistance and inhibit autophagy, which may lead to steatosis. Macrophage p38α/β promote cytokine production and M1 polarization, leading to lipid accumulation in hepatocytes. Myeloid p38γ/δ contribute to cytokine production and neutrophil migration, protecting against steatosis, diabetes and NAFLD. JNK1 and p38γ induce HCC while p38α blocks it. However, deletion of hepatic JNK1/2 induces cholangiocarcinoma. SAPK are potential therapeutic target for metabolic disorders, steatohepatitis and liver cancer.
Collapse
Affiliation(s)
- Beatriz Cicuéndez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Irene Ruiz-Garrido
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Alfonso Mora
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain.
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain.
| |
Collapse
|
34
|
Thompson EM, Stoker AW. A Review of DUSP26: Structure, Regulation and Relevance in Human Disease. Int J Mol Sci 2021; 22:ijms22020776. [PMID: 33466673 PMCID: PMC7828806 DOI: 10.3390/ijms22020776] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 01/10/2023] Open
Abstract
Dual specificity phosphatases (DUSPs) play a crucial role in the regulation of intracellular signalling pathways, which in turn influence a broad range of physiological processes. DUSP malfunction is increasingly observed in a broad range of human diseases due to deregulation of key pathways, most notably the MAP kinase (MAPK) cascades. Dual specificity phosphatase 26 (DUSP26) is an atypical DUSP with a range of physiological substrates including the MAPKs. The residues that govern DUSP26 substrate specificity are yet to be determined; however, recent evidence suggests that interactions with a binding partner may be required for DUSP26 catalytic activity. DUSP26 is heavily implicated in cancer where, akin to other DUSPs, it displays both tumour-suppressive and -promoting properties, depending on the context. Here we review DUSP26 by evaluating its transcriptional patterns, protein crystallographic structure and substrate binding, as well as its physiological role(s) and binding partners, its role in human disease and the development of DUSP26 inhibitors.
Collapse
|
35
|
Abstract
Obesity is a health condition that has reached pandemic levels and is implicated in the development and progression of type 2 diabetes mellitus, cancer and heart failure. A key characteristic of obesity is the activation of stress-activated protein kinases (SAPKs), such as the p38 and JNK stress kinases, in several organs, including adipose tissue, liver, skeletal muscle, immune organs and the central nervous system. The correct timing, intensity and duration of SAPK activation contributes to cellular metabolic adaptation. By contrast, uncontrolled SAPK activation has been proposed to contribute to the complications of obesity. The stress kinase signalling pathways have therefore been identified as potential targets for the development of novel therapeutic approaches for metabolic syndrome. The past few decades have seen intense research efforts to determine how these kinases are regulated in a cell-specific manner and to define their contribution to the development of obesity and insulin resistance. Several studies have uncovered new and unexpected functions of the non-classical members of both pathways. Here, we provide an overview of the role of SAPKs in metabolic control and highlight important discoveries in the field.
Collapse
Affiliation(s)
- Ivana Nikolic
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Magdalena Leiva
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| |
Collapse
|
36
|
Zhang DH, Zhang JL, Huang Z, Wu LM, Wang ZM, Li YP, Tian XY, Kong LY, Yao R, Zhang YZ. Deubiquitinase Ubiquitin-Specific Protease 10 Deficiency Regulates Sirt6 signaling and Exacerbates Cardiac Hypertrophy. J Am Heart Assoc 2020; 9:e017751. [PMID: 33170082 PMCID: PMC7763723 DOI: 10.1161/jaha.120.017751] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Cardiac hypertrophy (CH) is a physiological response that compensates for blood pressure overload. Under pathological conditions, hypertrophy can progress to heart failure as a consequence of the disorganized growth of cardiomyocytes and cardiac tissue. USP10 (ubiquitin‐specific protease 10) is a member of the ubiquitin‐specific protease family of cysteine proteases, which are involved in viral infection, oxidative stress, lipid drop formation, and heat shock. However, the role of USP10 in CH remains largely unclear. Here, we investigated the roles of USP10 in CH. Methods and Results Cardiac‐specific USP10 knockout (USP10‐CKO) mice and USP10‐transgenic (USP10‐TG) mice were used to examined the role of USP10 in CH following aortic banding. The specific functions of USP10 were further examined in isolated cardiomyocytes. USP10 expression was increased in murine hypertrophic hearts following aortic banding and in isolated cardiomyocytes in response to hypertrophic agonist. Mice deficient in USP10 in the heart exhibited exaggerated cardiac hypertrophy and fibrosis following pressure overload stress, which resulted in worsening of cardiac contractile function. In contrast, cardiac overexpression of USP10 protected against pressure overload‐induced maladaptive CH. Mechanistically, we demonstrated that USP10 activation and interaction with Sirt6 in response to angiotensin II led to a marked increase in the ubiquitination of Sirt6 and resulted in Akt signaling downregulation and attenuation of cardiomyocyte hypertrophy. Accordingly, inactivation of USP10 reduced Sirt6 abundance and stability and diminished Sirt6‐induced downstream signaling in cardiomyocytes. Conclusions USP10 functions as a Sirt6 deubiquitinase that induces cardiac myocyte hypertrophy and triggers maladaptive CH.
Collapse
Affiliation(s)
- Dian-Hong Zhang
- Cardiovascular Hospital the First Affiliated Hospital of Zhengzhou University Zhengzhou University Zhengzhou China
| | - Jie-Lei Zhang
- Department of Endocrinology the First Affiliated Hospital of Zhengzhou University Zhengzhou University Zhengzhou China
| | - Zhen Huang
- Cardiovascular Hospital the First Affiliated Hospital of Zhengzhou University Zhengzhou University Zhengzhou China
| | - Lei-Ming Wu
- Cardiovascular Hospital the First Affiliated Hospital of Zhengzhou University Zhengzhou University Zhengzhou China
| | - Zhong-Min Wang
- Department of Cardiology FuWai Central China Cardiovascular Hospital Zhengzhou China
| | - Ya-Peng Li
- Cardiovascular Hospital the First Affiliated Hospital of Zhengzhou University Zhengzhou University Zhengzhou China
| | - Xin-Yu Tian
- Cardiovascular Hospital the First Affiliated Hospital of Zhengzhou University Zhengzhou University Zhengzhou China
| | - Ling-Yao Kong
- Cardiovascular Hospital the First Affiliated Hospital of Zhengzhou University Zhengzhou University Zhengzhou China
| | - Rui Yao
- Cardiovascular Hospital the First Affiliated Hospital of Zhengzhou University Zhengzhou University Zhengzhou China
| | - Yan-Zhou Zhang
- Cardiovascular Hospital the First Affiliated Hospital of Zhengzhou University Zhengzhou University Zhengzhou China
| |
Collapse
|
37
|
Abstract
Nonalcoholic hepatitis (NASH) is the progressive inflammatory form of nonalcoholic fatty liver disease. Although the mechanisms of hepatic inflammation in NASH remain incompletely understood, emerging literature implicates the proinflammatory environment created by toxic lipid-induced hepatocyte injury, termed lipotoxicity. Interestingly, numerous NASH-promoting kinases in hepatocytes, immune cells, and adipocytes are activated by the lipotoxic insult associated with obesity. In the current review, we discuss recent advances in NASH-promoting kinases as disease mediators and therapeutic targets. The focus of the review is mainly on the mitogen-activated protein kinases including mixed lineage kinase 3, apoptosis signal-regulating kinase 1, c-Jun N-terminal kinase, and p38 MAPK; the endoplasmic reticulum (ER) stress kinases protein kinase RNA-like ER kinase and inositol-requiring protein-1α; as well as the Rho-associated protein kinase 1. We also discuss various pharmacological agents targeting these stress kinases in NASH that are under different phases of development.
Collapse
Affiliation(s)
- Samar H. Ibrahim
- Division of Gastroenterology & Hepatology in the Department of Pediatrics, Rochester, Minnesota.,Division of Gastroenterology & Hepatology in the Department of Medicine Mayo Clinic, Rochester, Minnesota
| | - Petra Hirsova
- Division of Gastroenterology & Hepatology in the Department of Medicine Mayo Clinic, Rochester, Minnesota
| | - Harmeet Malhi
- Division of Gastroenterology & Hepatology in the Department of Medicine Mayo Clinic, Rochester, Minnesota
| | - Gregory J. Gores
- Division of Gastroenterology & Hepatology in the Department of Medicine Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
38
|
Zhang Q, Cai Z, Lhomme M, Sahana G, Lesnik P, Guerin M, Fredholm M, Karlskov-Mortensen P. Inclusion of endophenotypes in a standard GWAS facilitate a detailed mechanistic understanding of genetic elements that control blood lipid levels. Sci Rep 2020; 10:18434. [PMID: 33116219 PMCID: PMC7595098 DOI: 10.1038/s41598-020-75612-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022] Open
Abstract
Dyslipidemia is the primary cause of cardiovascular disease, which is a serious human health problem in large parts of the world. Therefore, it is important to understand the genetic and molecular mechanisms that regulate blood levels of cholesterol and other lipids. Discovery of genetic elements in the regulatory machinery is often based on genome wide associations studies (GWAS) focused on end-point phenotypes such as total cholesterol level or a disease diagnosis. In the present study, we add endophenotypes, such as serum levels of intermediate metabolites in the cholesterol synthesis pathways, to a GWAS analysis and use the pig as an animal model. We do this to increase statistical power and to facilitate biological interpretation of results. Although the study population was limited to ~ 300 individuals, we identify two genome-wide significant associations and ten suggestive associations. Furthermore, we identify 28 tentative associations to loci previously associated with blood lipids or dyslipidemia associated diseases. The associations with endophenotypes may inspire future studies that can dissect the biological mechanisms underlying these previously identified associations and add a new level of understanding to previously identified associations.
Collapse
Affiliation(s)
- Qianqian Zhang
- Bioinformatics Research Centre (BiRC), Aarhus University, C.F.Møllers Allé 8, 8000, Aarhus C, Denmark
| | - Zexi Cai
- Center for Quantitativ Genetics and Genomics, Aarhus University, Blichers Allé 20, 8830, Tjele, Danmark
| | - Marie Lhomme
- ICANalytics, Institute of Cardiometabolism and Nutrition (ICAN), 47-83 boulevard de l'hôpital, 75013, Paris, France
| | - Goutam Sahana
- Center for Quantitativ Genetics and Genomics, Aarhus University, Blichers Allé 20, 8830, Tjele, Danmark
| | - Philippe Lesnik
- Unité de Recherche sur les maladies cardiovasculaires, le métabolisme et la nutrition, INSERM UMR_S 1166, ICAN Institute of Cardiometabolism & Nutrition, Faculté de Médecine Sorbonne Université, Sorbonne Université, 4ème étage, Bureau 421,91, boulevard de l'Hôpital, 75634, Paris Cedex 13, France
| | - Maryse Guerin
- Unité de Recherche sur les maladies cardiovasculaires, le métabolisme et la nutrition, INSERM UMR_S 1166, ICAN Institute of Cardiometabolism & Nutrition, Faculté de Médecine Sorbonne Université, Sorbonne Université, 4ème étage, Bureau 421,91, boulevard de l'Hôpital, 75634, Paris Cedex 13, France
| | - Merete Fredholm
- Animal Genetics, Bioinformatics and Breeding, Department of Veterinary and Animal Sciences, University of Copenhagen, Gronnegaardsvej 3, 1870, Frederikgsberg C, Denmark
| | - Peter Karlskov-Mortensen
- Animal Genetics, Bioinformatics and Breeding, Department of Veterinary and Animal Sciences, University of Copenhagen, Gronnegaardsvej 3, 1870, Frederikgsberg C, Denmark.
| |
Collapse
|
39
|
Kassouf T, Sumara G. Impact of Conventional and Atypical MAPKs on the Development of Metabolic Diseases. Biomolecules 2020; 10:biom10091256. [PMID: 32872540 PMCID: PMC7563211 DOI: 10.3390/biom10091256] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
The family of mitogen-activated protein kinases (MAPKs) consists of fourteen members and has been implicated in regulation of virtually all cellular processes. MAPKs are divided into two groups, conventional and atypical MAPKs. Conventional MAPKs are further classified into four sub-families: extracellular signal-regulated kinases 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK1, 2 and 3), p38 (α, β, γ, δ), and extracellular signal-regulated kinase 5 (ERK5). Four kinases, extracellular signal-regulated kinase 3, 4, and 7 (ERK3, 4 and 7) as well as Nemo-like kinase (NLK) build a group of atypical MAPKs, which are activated by different upstream mechanisms than conventional MAPKs. Early studies identified JNK1/2 and ERK1/2 as well as p38α as a central mediators of inflammation-evoked insulin resistance. These kinases have been also implicated in the development of obesity and diabetes. Recently, other members of conventional MAPKs emerged as important mediators of liver, skeletal muscle, adipose tissue, and pancreatic β-cell metabolism. Moreover, latest studies indicate that atypical members of MAPK family play a central role in the regulation of adipose tissue function. In this review, we summarize early studies on conventional MAPKs as well as recent findings implicating previously ignored members of the MAPK family. Finally, we discuss the therapeutic potential of drugs targeting specific members of the MAPK family.
Collapse
|
40
|
DUSP5 (dual-specificity protein phosphatase 5) suppresses BCG-induced autophagy via ERK 1/2 signaling pathway. Mol Immunol 2020; 126:101-109. [PMID: 32795663 DOI: 10.1016/j.molimm.2020.07.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 12/17/2022]
Abstract
Autophagy is considered as an effective strategy for host cells to eliminate intracellular Mycobacterium tuberculosis (Mtb). Dual-specificity phosphatase 5 (DUSP5) is an endogenous phosphatase of ERK1/2, and plays an important role in host innate immune responses, its function in autophagy regulation however remains unexplored. In the present study, the function of DUSP5 in autophagy in Mycobacterium bovis Bacillus Calmette-Guerin (BCG)-infected RAW264.7 cells, a murine macrophage-like cell line, was examined by assessing the alteration of the cell morphology, expression of autophagy markers, and ERK1/2 signaling activation. The results demonstrated that the BCG infection could induce DUSP5 expression and activate ERK1/2 signaling in RAW264.7 cells; an activation of ERK1/2 signaling contributed to autophagic process in RAW264.7 cells. Moreover, DUSP5 knockdown increased the expression of autophagy-related proteins (Atgs), including LC3-II, Beclin1, Atg5 and Atg7. However, an overexpression of DUSP5 exhibited an opposite effect. Mechanistically, DUSP5 could inhibit the formation of autophagosome by suppressing the phosphorylation of signaling molecules in ERK1/2 signaling cascade. This study thus demonstrated a novel role of DUSP5 in modulating autophagy inRAW264.7 cells in response to BCG infection in particular, and autophagy macrophage to Mtb in general.
Collapse
|
41
|
Jiang M, Li D, Piao J, Li J, Sun H, Chen L, Chen S, Pi J, Zhang R, Chen R, Leng S, Chen W, Zheng Y. Real-ambient exposure to air pollution exaggerates excessive growth of adipose tissue modulated by Nrf2 signal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 730:138652. [PMID: 32416500 DOI: 10.1016/j.scitotenv.2020.138652] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/06/2020] [Accepted: 04/10/2020] [Indexed: 05/24/2023]
Abstract
Air pollution was becoming a global threat to the public health, which was primarily mediated by PM2.5 induced cardiovascular diseases and pulmonary diseases. Recently, observational epidemiologic studies proposed the link between PM2.5 and obesity. Consistently, the link was also supported by limited animal researches. However, the potential mechanism mediating the harmful effects of PM2.5 was still elusive. In this study, we applied the "real-ambient exposure" system to conduct the experiments, which was closer to the status of ambient air pollution compared with the method of intratracheal instillation and concentrated air particles (CAPs) exposure system. Nuclear factor E2-related factor 2 (Nrf2) was previously reported to protect against inflammation and oxidative stress when exposed to PM2.5. Here, we reported that Nrf2-/- mice developed overgrowth of adipose tissue after "real-ambient exposure" to PM2.5, compared to filtered air (FA) group. Consistently, compared to FA group, adipocytes from subcutaneous (sWAT) and gonadal (gWAT) white adipose tissue of Nrf2-/- mice exhibited enlarged cell size in PM2.5 exposure group. Furthermore, the levels of high-density lipoprotein (HDL) and low-density lipoprotein (LDL) in serum and liver of Nrf2-/- mice were also altered statistically in PM2.5 exposure group. Importantly, when the expression of lipogenic enzymes was analyzed, the levels of the related specific genes in adipose tissue and liver of Nrf2-/- mice were altered in PM2.5 exposure group. Interestingly, the key transcription factors modulating expression of lipogenic enzymes in liver of Nrf2-/- mice were also found altered in PM2.5 exposure group, such as peroxisome proliferator-activated receptor (PPARα, PPARγ). Taken together, our study mimicked the status of ambient air pollution, revealed new insights into the adverse effect of PM2.5 exposure, provided new link between air pollution and overgrowth of adipose tissue, and supported the vital role of Nrf2 in mediating the side effects of PM2.5.
Collapse
Affiliation(s)
- Menghui Jiang
- School of Public Health, Qingdao University, Qingdao, China
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jinmei Piao
- School of Public Health, Qingdao University, Qingdao, China
| | - Jianyu Li
- School of Public Health, Qingdao University, Qingdao, China
| | - Hao Sun
- School of Public Health, Capital Medical University, Beijing, China
| | - Liping Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Shen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jingbo Pi
- School of Public Health, China Medical University, Shenyang, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Rui Chen
- School of Public Health, Capital Medical University, Beijing, China
| | - Shuguang Leng
- School of Public Health, Qingdao University, Qingdao, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
42
|
Guo C, Xue H, Guo T, Zhang W, Xuan WQ, Ren YT, Wang D, Chen YH, Meng YH, Gao HL, Zhao P. Recombinant human lactoferrin attenuates the progression of hepatosteatosis and hepatocellular death by regulating iron and lipid homeostasis in ob/ob mice. Food Funct 2020; 11:7183-7196. [PMID: 32756704 DOI: 10.1039/d0fo00910e] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lactoferrin (Lf), an iron-binding glycoprotein, has been shown to possess antioxidant and anti-inflammatory properties and exert modulatory effects on lipid homeostasis and non-alcoholic fatty liver disease (NAFLD), but our understanding of its regulatory mechanisms is limited and inconsistent. We used leptin-deficient (ob/ob) mice as the rodent model of NAFLD, and administered recombinant human Lf (4 mg per kg body weight) or control vehicle by intraperitoneal injection to evaluate the hepatoprotective effects of Lf. After 40 days of treatment with Lf, insulin sensitivity and hepatic steatosis in ob/ob mice were significantly improved with the down-regulation of sterol regulatory element binding protein-2 (SREBP2), indicating an improvement in hepatic lipid metabolism and function. We further explored the mechanism, and found that Lf may increase the hepatocellular iron output by targeting the hepcidin-ferroportin (FPn) axis, and then maintains the liver oxidative balance through a nonenzymatic antioxidant system, ultimately suppressing the death of hepatocytes. In addition, the cytoprotective role of Lf may be associated with the inhibition of endoplasmic reticulum (ER) stress and inflammation, promotion of autophagy of damaged hepatocytes and induction of up-regulation of hypoxia inducible factor-1α/vascular endothelial growth factor (HIF-lα/VEGF) to facilitate liver function recovery. These findings suggest that recombinant human Lf might be a potential therapeutic agent for mitigating or delaying the pathological process of NAFLD.
Collapse
Affiliation(s)
- Chuang Guo
- College of Life and Health Sciences, Northeastern University, No. 195, Chuangxin Road, Hunnan District, Shenyang, 110169, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ma J, Cao H, Rodrigues RM, Xu M, Ren T, He Y, Hwang S, Feng D, Ren R, Yang P, Liangpunsakul S, Sun J, Gao B. Chronic-plus-binge alcohol intake induces production of proinflammatory mtDNA-enriched extracellular vesicles and steatohepatitis via ASK1/p38MAPKα-dependent mechanisms. JCI Insight 2020; 5:136496. [PMID: 32544093 DOI: 10.1172/jci.insight.136496] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022] Open
Abstract
Alcohol-associated liver disease is a spectrum of liver disorders with histopathological changes ranging from simple steatosis to steatohepatitis, cirrhosis, and hepatocellular carcinoma. Recent data suggest that chronic-plus-binge ethanol intake induces steatohepatitis by promoting release by hepatocytes of proinflammatory mitochondrial DNA-enriched (mtDNA-enriched) extracellular vesicles (EVs). The aim of the present study was to investigate the role of the stress kinase apoptosis signal-regulating kinase 1 (ASK1) and p38 mitogen-activated protein kinase (p38) in chronic-plus-binge ethanol-induced steatohepatitis and mtDNA-enriched EV release. Microarray analysis revealed the greatest hepatic upregulation of metallothionein 1 and 2 (Mt1/2), which encode 2 of the most potent antioxidant proteins. Genetic deletion of the Mt1 and Mt2 genes aggravated ethanol-induced liver injury, as evidenced by elevation of serum ALT, neutrophil infiltration, oxidative stress, and ASK1/p38 activation in the liver. Inhibition or genetic deletion of Ask1 or p38 ameliorated ethanol-induced liver injury, inflammation, ROS levels, and expression of phagocytic oxidase and ER stress markers in the liver. In addition, inhibition of ASK1 or p38 also attenuated ethanol-induced mtDNA-enriched EV secretion from hepatocytes. Taken together, these findings indicate that induction of hepatic mtDNA-enriched EVs by ethanol is dependent on ASK1 and p38, thereby promoting alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Jing Ma
- State Key Laboratory of Organ Failure Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| | - Haixia Cao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| | - Robim M Rodrigues
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| | - Mingjiang Xu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| | - Tianyi Ren
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| | - Yong He
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| | - Seonghwan Hwang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| | - Ruixue Ren
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| | - Peixin Yang
- Department of Obstetrics and Gynecology Science, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, and.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA
| | - Jian Sun
- State Key Laboratory of Organ Failure Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| |
Collapse
|
44
|
Brys R, Gibson K, Poljak T, Van Der Plas S, Amantini D. Discovery and development of ASK1 inhibitors. PROGRESS IN MEDICINAL CHEMISTRY 2020; 59:101-179. [PMID: 32362327 DOI: 10.1016/bs.pmch.2020.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aberrant activation of mitogen-activated protein kinases (MAPKs) like c-Jun N-terminal kinase (JNK) and p38 is an event involved in the pathophysiology of numerous human diseases. The apoptosis signal-regulating kinase 1 (ASK1) is an upstream target that gets activated only under pathological conditions and as such is a promising target for therapeutic intervention. In the first part of this review the molecular mechanisms leading to ASK1 activation and regulation will be described as well as the evidences supporting a pathogenic role for ASK1 in human disease. In the second part, an update on drug discovery efforts towards the discovery and development of ASK1-targeting therapies will be provided.
Collapse
Affiliation(s)
| | - Karl Gibson
- Sandexis Medicinal Chemistry Ltd, Innovation House Discovery ParkSandwich, Kent, United Kingdom
| | | | | | | |
Collapse
|
45
|
Zhang Y, Ma Y, Liang N, Liang Y, Lu C, Xiao F. Blockage of ROS-ERK-DLP1 signaling and mitochondrial fission alleviates Cr(VI)-induced mitochondrial dysfunction in L02 hepatocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 186:109749. [PMID: 31622878 DOI: 10.1016/j.ecoenv.2019.109749] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/23/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
Hexavalent chromium [Cr(VI)] is a common heavy metal pollutant widely used in various industrial fields. It is well known that mitochondria are the most vulnerable targets of heavy metals, but the key molecule/event that directly mediated mitochondrial dysfunction after Cr(VI) exposure is still unclear. The present study was aimed to explore whether Cr(VI) exposure could affect the mitochondrial fission/fusion process, and whether the related abnormal mitochondrial dynamics have been implicated in Cr(VI)-induced mitochondrial dysfunction. We found that the mitochondrial dysfunction caused by Cr(VI) exposure was characterized by decreased mitochondrial respiratory chain complex (MRCC) I/II activities and levels, collapsed mitochondrial membrane potential (MMP), depleted ATP, and increased reactive oxygen species (ROS) level. Cr(VI) induced abnormal mitochondrial fission/fusion events, the antioxidant Nacetyl-L-cysteine (NAC) restored the abnormal mitochondrial function as well as the fission/fusion dynamics. ROS was the up-stream regulator of extracellular regulated protein kinases (ERK) signaling, and the application of a specific ERK1/2 inhibitor PD98059 confirmed that activation of ERK1/2 signaling was associated with the abnormal mitochondrial fission/fusion and mitochondrial dysfunction. We also demonstrated that treatment with dynamic-like protein 1 (DLP1)-siRNA rescued mitochondrial dysfunction in Cr(VI)-exposed L02 hepatocytes. We reached the conclusion that blockage of ROS-ERK-DLP1 signaling and mitochondrial fission alleviates Cr(VI)-induced mitochondrial dysfunction in L02 hepatocytes, which may provide the new avenue for developing effective strategies to protect against Cr(VI)-induced hepatotoxicity.
Collapse
Affiliation(s)
- Yujing Zhang
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, 410078, PR China
| | - Yu Ma
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, 410078, PR China
| | - Ningjuan Liang
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, 410078, PR China
| | - Yuehui Liang
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, 410078, PR China
| | - Chan Lu
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, 410078, PR China
| | - Fang Xiao
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, 410078, PR China.
| |
Collapse
|
46
|
Phosphorylation Dynamics of JNK Signaling: Effects of Dual-Specificity Phosphatases (DUSPs) on the JNK Pathway. Int J Mol Sci 2019; 20:ijms20246157. [PMID: 31817617 PMCID: PMC6941053 DOI: 10.3390/ijms20246157] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/30/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023] Open
Abstract
Protein phosphorylation affects conformational change, interaction, catalytic activity, and subcellular localization of proteins. Because the post-modification of proteins regulates diverse cellular signaling pathways, the precise control of phosphorylation states is essential for maintaining cellular homeostasis. Kinases function as phosphorylating enzymes, and phosphatases dephosphorylate their target substrates, typically in a much shorter time. The c-Jun N-terminal kinase (JNK) signaling pathway, a mitogen-activated protein kinase pathway, is regulated by a cascade of kinases and in turn regulates other physiological processes, such as cell differentiation, apoptosis, neuronal functions, and embryonic development. However, the activation of the JNK pathway is also implicated in human pathologies such as cancer, neurodegenerative diseases, and inflammatory diseases. Therefore, the proper balance between activation and inactivation of the JNK pathway needs to be tightly regulated. Dual specificity phosphatases (DUSPs) regulate the magnitude and duration of signal transduction of the JNK pathway by dephosphorylating their substrates. In this review, we will discuss the dynamics of phosphorylation/dephosphorylation, the mechanism of JNK pathway regulation by DUSPs, and the new possibilities of targeting DUSPs in JNK-related diseases elucidated in recent studies.
Collapse
|
47
|
Li DJ, Tong J, Li YH, Meng HB, Ji QX, Zhang GY, Zhu JH, Zhang WJ, Zeng FY, Huang G, Hua X, Shen FM, Wang P. Melatonin safeguards against fatty liver by antagonizing TRAFs-mediated ASK1 deubiquitination and stabilization in a β-arrestin-1 dependent manner. J Pineal Res 2019; 67:e12611. [PMID: 31541591 DOI: 10.1111/jpi.12611] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/17/2019] [Accepted: 09/14/2019] [Indexed: 12/15/2022]
Abstract
Melatonin has been previously shown to prevent nonalcoholic fatty liver disease (NAFLD), yet the underlying mechanisms are poorly understood. Here, we identified a previously unknown regulatory action of melatonin on apoptosis signal-regulating kinase 1 (ASK1) signaling pathway in the pathogenesis and development of NAFLD. Although melatonin administration did not alter food intake, it significantly alleviated fatty liver phenotypes, including the body weight gain, insulin resistance, hepatic lipid accumulation, steatohepatitis, and fibrosis in a high-fat diet (HFD)-induced NAFLD mouse model (in vivo). The protection of melatonin against NAFLD was not affected by inactivation of Kupffer cell in this model. In NAFLD mice liver, ASK1 signal cascade was substantially activated, evidence by the enhancement of total ASK1, phospho-ASK1, phospho-MKK3/6, phospho-p38, phospho-MKK4/7, and phospho-JNK. Melatonin treatment significantly suppressed the ASK1 upregulation and the phosphorylation of ASK1, MKK3/6, MKK4/7, p38, and JNK. Mechanistically, we found that lipid stress triggered the interaction between ASK1 and TNF receptor-associated factors (TRAFs), including TRAF1, TRAF2, and TRAF6, which resulted in ASK1 deubiquitination and thereby increased ASK1 protein stability. Melatonin did not alter ASK1 mRNA level; however, it activated a scaffold protein β-arrestin-1 and enabled it to bind to ASK1, which antagonized the TRAFs-mediated ASK1 deubiquitination, and thus reduced ASK1 protein stability. Consistent with these findings, knockout of β-arrestin-1 in mice partly abolished the protection of melatonin against NAFLD. Taken together, our results for the first time demonstrate that melatonin safeguards against NAFLD by eliminating ASK1 activation via inhibiting TRAFs-mediated ASK1 deubiquitination and stabilization in a β-arrestin-1 dependent manner.
Collapse
Affiliation(s)
- Dong-Jie Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, China
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Jie Tong
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Yong-Hua Li
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Hong-Bo Meng
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qing-Xin Ji
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Guo-Yan Zhang
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Jia-Hui Zhu
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Wen-Jing Zhang
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Fei-Yan Zeng
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Gang Huang
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xia Hua
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Fu-Ming Shen
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Pei Wang
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Tongji University School of Medicine, Tongji University, Shanghai, China
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
48
|
Endoplasmic Reticulum Stress Increases DUSP5 Expression via PERK-CHOP Pathway, Leading to Hepatocyte Death. Int J Mol Sci 2019; 20:ijms20184369. [PMID: 31491992 PMCID: PMC6770509 DOI: 10.3390/ijms20184369] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/03/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocyte death is critical for the pathogenesis of liver disease progression, which is closely associated with endoplasmic reticulum (ER) stress responses. However, the molecular basis for ER stress-mediated hepatocyte injury remains largely unknown. This study investigated the effect of ER stress on dual-specificity phosphatase 5 (DUSP5) expression and its role in hepatocyte death. Analysis of Gene Expression Omnibus (GEO) database showed that hepatic DUSP5 levels increased in the patients with liver fibrosis, which was verified in mouse models of liver diseases with ER stress. DUSP5 expression was elevated in both fibrotic and acutely injured liver of mice treated with liver toxicants. Treatment of ER stress inducers enhanced DUSP5 expression in hepatocytes, which was validated in vivo condition. The induction of DUSP5 by ER stress was blocked by either treatment with a chemical inhibitor of the protein kinase RNA-like endoplasmic reticulum kinase (PERK) pathway, or knockdown of C/EBP homologous protein (CHOP), whereas it was not affected by the silencing of IRE1 or ATF6. In addition, DUSP5 overexpression decreased extracellular-signal-regulated kinase (ERK) phosphorylation, but increased cleaved caspase-3 levels. Moreover, the reduction of cell viability under ER stress condition was attenuated by DUSP5 knockdown. In conclusion, DUSP5 expression is elevated in hepatocytes by ER stress through the PERK-CHOP pathway, contributing to hepatocyte death possibly through ERK inhibition.
Collapse
|
49
|
Lang R, Raffi FAM. Dual-Specificity Phosphatases in Immunity and Infection: An Update. Int J Mol Sci 2019; 20:ijms20112710. [PMID: 31159473 PMCID: PMC6600418 DOI: 10.3390/ijms20112710] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 12/26/2022] Open
Abstract
Kinase activation and phosphorylation cascades are key to initiate immune cell activation in response to recognition of antigen and sensing of microbial danger. However, for balanced and controlled immune responses, the intensity and duration of phospho-signaling has to be regulated. The dual-specificity phosphatase (DUSP) gene family has many members that are differentially expressed in resting and activated immune cells. Here, we review the progress made in the field of DUSP gene function in regulation of the immune system during the last decade. Studies in knockout mice have confirmed the essential functions of several DUSP-MAPK phosphatases (DUSP-MKP) in controlling inflammatory and anti-microbial immune responses and support the concept that individual DUSP-MKP shape and determine the outcome of innate immune responses due to context-dependent expression and selective inhibition of different mitogen-activated protein kinases (MAPK). In addition to the canonical DUSP-MKP, several small-size atypical DUSP proteins regulate immune cells and are therefore also reviewed here. Unexpected and complex findings in DUSP knockout mice pose new questions regarding cell type-specific and redundant functions. Another emerging question concerns the interaction of DUSP-MKP with non-MAPK binding partners and substrate proteins. Finally, the pharmacological targeting of DUSPs is desirable to modulate immune and inflammatory responses.
Collapse
Affiliation(s)
- Roland Lang
- Institute of Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | - Faizal A M Raffi
- Institute of Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| |
Collapse
|