1
|
Bencivenga D, Stampone E, Azhar J, Parente D, Ali W, Del Vecchio V, Della Ragione F, Borriello A. p27 Kip1 and Tumors: Characterization of CDKN1B Variants Identified in MEN4 and Breast Cancer. Cells 2025; 14:188. [PMID: 39936980 PMCID: PMC11817124 DOI: 10.3390/cells14030188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/02/2025] [Accepted: 01/22/2025] [Indexed: 02/13/2025] Open
Abstract
p27Kip1 is a key cell cycle gatekeeper governing the timing of Cyclin-dependent kinase (CDK) activation/inactivation and, consequently, cell proliferation. Structurally, the protein is largely unfolded, a feature that strongly increases its plasticity and interactors and enhances the number of regulated cellular processes. p27Kip1, like other intrinsically unstructured proteins, is post-translationally modified on several residues. These modifications affect its cellular localization and address p27Kip1 for specific interactions/functions. Several germline or somatic CDKN1B (the p27Kip1 encoding gene) mutations have been demonstrated to be associated with multiple endocrine neoplasia type 4 (MEN4), hairy cell leukemia, small-intestine neuroendocrine tumors, and breast and prostate cancers. Here, we analyzed the effect of four CDKN1B missense and nonsense mutations found in patients affected by MEN4 or cancers, namely, c.349C>T, p.P117S; c.397C>A, p.P133T; c.487C>T, p.Q163*; and c.511G>T, p.E171*. By transfecting breast cancer cell lines, we observed increased growth and cell motility for all the investigated mutants compared to wild-type p27Kip1 transfected cells. Furthermore, we discovered that the mutant forms exhibited altered phosphorylation on key residues and different localization or degradation mechanisms in comparison to the wild-type protein and suggested a possible region as crucial for the lysosome-dependent degradation of the protein. Finally, the loss of p27Kip1 ability in blocking cell proliferation was in part explained through the different binding efficiency that mutant p27Kip1 forms exhibited with Cyclin/Cyclin-dependent Kinase complexes (or proteins involved indirectly in that binding) with respect to the WT.
Collapse
Affiliation(s)
- Debora Bencivenga
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Via Luigi De Crecchio, 7, 80138 Naples, Italy; (E.S.); (J.A.); (D.P.); (F.D.R.)
| | - Emanuela Stampone
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Via Luigi De Crecchio, 7, 80138 Naples, Italy; (E.S.); (J.A.); (D.P.); (F.D.R.)
| | - Jahanzaib Azhar
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Via Luigi De Crecchio, 7, 80138 Naples, Italy; (E.S.); (J.A.); (D.P.); (F.D.R.)
| | - Daniela Parente
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Via Luigi De Crecchio, 7, 80138 Naples, Italy; (E.S.); (J.A.); (D.P.); (F.D.R.)
| | - Waqar Ali
- Centre National de la Recherche Scientifique, University of Montpellier, UMR9002, 141 rue de la Cardonille, 34396 Montpellier, France;
| | - Vitale Del Vecchio
- Department of Experimental Medicine, Section of Human Histology and Embryology, University of Campania “L. Vanvitelli”, Via L. Armanni 5, 80128 Naples, Italy;
- Department of Life Sciences, Health and Health Professions, Link Campus University, 00165 Rome, Italy
| | - Fulvio Della Ragione
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Via Luigi De Crecchio, 7, 80138 Naples, Italy; (E.S.); (J.A.); (D.P.); (F.D.R.)
| | - Adriana Borriello
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Via Luigi De Crecchio, 7, 80138 Naples, Italy; (E.S.); (J.A.); (D.P.); (F.D.R.)
| |
Collapse
|
2
|
Sadaqat Z, Joseph S, Verma C, Muni Reddy J, Prakash A, Thomas T, Bharadwaj V, Vyas N. Real time-PCR a diagnostic tool for reporting copy number variation and relative gene-expression changes in pediatric B-cell acute lymphoblastic leukemia-a pilot study. Biol Methods Protoc 2024; 10:bpae098. [PMID: 39802454 PMCID: PMC11717350 DOI: 10.1093/biomethods/bpae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/12/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025] Open
Abstract
Real time-polymerase chain reaction (RT-PCR) is used routinely in clinical practice as a cost-effective method for molecular diagnostics. Research in pediatric B-cell Acute Lymphoblastic Leukemia (ped B-ALL) suggests that apart from cytogenetics and clinical features, there is a need to include Copy number variation (CNV) in select genes at diagnosis, for upfront stratification of patients. Using ped B-ALL as a model, we have developed a RT-PCR-based iterative probability scoring method for reporting CNVs, and relative gene-expression changes. Our work highlights that once genes of interest and hotspots of CNVs are identified in discovery phase, our proposed method can be used as a cost-effective and user-friendly diagnostic tool for the identification of changes at genomic or transcriptomic level. It has the potential to be incorporated in routine diagnostics in resource constrained settings and be tailored for different diseases as per need.
Collapse
Affiliation(s)
- Zoha Sadaqat
- Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
- Division of Molecular Medicine, St John’s Research Institute, St John’s National Academy of Health Sciences (a Unit of CBCI Society for Medical Education), Bangalore 560034, Karnataka, India
| | - Smitha Joseph
- Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
- Division of Epidemiology and Biostatistics, St John’s Research Institute, St John’s National Academy of Health Sciences (a Unit of CBCI Society for Medical Education), Bangalore 560034, Karnataka, India
| | - Chandrika Verma
- Division of Molecular Medicine, St John’s Research Institute, St John’s National Academy of Health Sciences (a Unit of CBCI Society for Medical Education), Bangalore 560034, Karnataka, India
| | - Jyothi Muni Reddy
- Department of Pediatric Hematology Oncology and Bone Marrow Transplantation, St John’s Medical College and Hospital, St John’s National Academy of Health Sciences (a Unit of CBCI Society for Medical Education), Bangalore 560034, Karnataka, India
| | - Anand Prakash
- Department of Pediatric Hematology Oncology and Bone Marrow Transplantation, St John’s Medical College and Hospital, St John’s National Academy of Health Sciences (a Unit of CBCI Society for Medical Education), Bangalore 560034, Karnataka, India
| | - Tinku Thomas
- Department of Biostatistics, St John’s Medical College and Hospital, St John’s National Academy of Health Sciences (a Unit of CBCI Society for Medical Education), Bangalore 560034, Karnataka, India
| | - Vandana Bharadwaj
- Department of Pediatric Hematology Oncology and Bone Marrow Transplantation, St John’s Medical College and Hospital, St John’s National Academy of Health Sciences (a Unit of CBCI Society for Medical Education), Bangalore 560034, Karnataka, India
| | - Neha Vyas
- Division of Molecular Medicine, St John’s Research Institute, St John’s National Academy of Health Sciences (a Unit of CBCI Society for Medical Education), Bangalore 560034, Karnataka, India
| |
Collapse
|
3
|
Fu Y, Francés R, Monge C, Desterke C, Marchio A, Pineau P, Chang-Marchand Y, Mata-Garrido J. Metabolic and Epigenetic Mechanisms in Hepatoblastoma: Insights into Tumor Biology and Therapeutic Targets. Genes (Basel) 2024; 15:1358. [PMID: 39596558 PMCID: PMC11593527 DOI: 10.3390/genes15111358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Hepatoblastoma, the most common pediatric liver malignancy, is characterized by significant molecular heterogeneity and poor prognosis in advanced stages. Recent studies highlight the importance of metabolic reprogramming and epigenetic dysregulation in hepatoblastoma pathogenesis. This review aims to explore the metabolic alterations and epigenetic mechanisms involved in hepatoblastoma and how these processes contribute to tumor progression and survival. METHODS Relevant literature on metabolic reprogramming, including enhanced glycolysis, mitochondrial dysfunction, and shifts in lipid and amino acid metabolism, as well as epigenetic mechanisms like DNA methylation, histone modifications, and non-coding RNAs, was reviewed. The interplay between these pathways and their potential as therapeutic targets were examined. RESULTS Hepatoblastoma exhibits metabolic shifts that support tumor growth and survival, alongside epigenetic changes that regulate gene expression and promote tumor progression. These pathways are interconnected, with metabolic changes influencing the epigenetic landscape and vice versa. CONCLUSIONS The dynamic interplay between metabolism and epigenetics in hepatoblastoma offers promising avenues for therapeutic intervention. Future research should focus on integrating metabolic and epigenetic therapies to improve patient outcomes, addressing current gaps in knowledge to develop more effective treatments.
Collapse
Affiliation(s)
- Yuanji Fu
- CNRS, INSERM, Institut Necker Enfants Malades, Université Paris Cité, 75015 Paris, France; (Y.F.); (Y.C.-M.)
| | - Raquel Francés
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 75006 Paris, France;
| | - Claudia Monge
- INSERM U993, Unité Organisation Nucléaire et Oncogenèse, Institut Pasteur, Université Paris Cité, 75006 Paris, France; (C.M.); (A.M.); (P.P.)
| | - Christophe Desterke
- Faculté de Médecine du Kremlin Bicêtre, Université Paris-Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France;
| | - Agnès Marchio
- INSERM U993, Unité Organisation Nucléaire et Oncogenèse, Institut Pasteur, Université Paris Cité, 75006 Paris, France; (C.M.); (A.M.); (P.P.)
| | - Pascal Pineau
- INSERM U993, Unité Organisation Nucléaire et Oncogenèse, Institut Pasteur, Université Paris Cité, 75006 Paris, France; (C.M.); (A.M.); (P.P.)
| | - Yunhua Chang-Marchand
- CNRS, INSERM, Institut Necker Enfants Malades, Université Paris Cité, 75015 Paris, France; (Y.F.); (Y.C.-M.)
| | - Jorge Mata-Garrido
- INSERM U993, Unité Organisation Nucléaire et Oncogenèse, Institut Pasteur, Université Paris Cité, 75006 Paris, France; (C.M.); (A.M.); (P.P.)
| |
Collapse
|
4
|
Stampone E, Bencivenga D, Dassi L, Sarnelli S, Campagnolo L, Lacconi V, Della Ragione F, Borriello A. p57 Kip2 Phosphorylation Modulates Its Localization, Stability, and Interactions. Int J Mol Sci 2024; 25:11176. [PMID: 39456957 PMCID: PMC11508627 DOI: 10.3390/ijms252011176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
p57Kip2 is a member of the cyclin-dependent kinase (CDK) Interacting Protein/Kinase Inhibitory Protein (CIP/Kip) family that also includes p21Cip1/WAF1 and p27Kip1. Different from its siblings, few data are available about the p57Kip2 protein, especially in humans. Structurally, p57Kip2 is an intrinsically unstructured protein, a characteristic that confers functional flexibility with multiple transient interactions influencing the metabolism and roles of the protein. Being an IUP, its localization, stability, and binding to functional partners might be strongly modulated by post-translational modifications, especially phosphorylation. In this work, we investigated by two-dimensional analysis the phosphorylation pattern of p57Kip2 in different cellular models, revealing how the human protein appears to be extensively phosphorylated, compared to p21Cip1/WAF1 and p27Kip1. We further observed clear differences in the phosphoisoforms distributed in the cytosolic and nuclear compartments in asynchronous and synchronized cells. Particularly, the unmodified form is detectable only in the nucleus, while the more acidic forms are present in the cytoplasm. Most importantly, we found that the phosphorylation state of p57Kip2 influences the binding with some p57Kip2 partners, such as CDKs, LIMK1 and CRM1. Thus, it is necessary to completely identify the phosphorylated residues of the protein to fully unravel the roles of this CIP/Kip protein, which are still partially identified.
Collapse
Affiliation(s)
- Emanuela Stampone
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (L.D.); (S.S.); (F.D.R.)
| | - Debora Bencivenga
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (L.D.); (S.S.); (F.D.R.)
| | - Luisa Dassi
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (L.D.); (S.S.); (F.D.R.)
| | - Sara Sarnelli
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (L.D.); (S.S.); (F.D.R.)
| | - Luisa Campagnolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy (V.L.)
| | - Valentina Lacconi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy (V.L.)
| | - Fulvio Della Ragione
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (L.D.); (S.S.); (F.D.R.)
| | - Adriana Borriello
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (L.D.); (S.S.); (F.D.R.)
| |
Collapse
|
5
|
Fu MS, Pan SX, Cai XQ, Lv CT, Pan QC. ARHGAP4 Inhibits Proliferation and Growth of SW620 Colon Cancer Cells by Cell Cycle and Differentiation Pathways. SCIENTIFICA 2024; 2024:5791613. [PMID: 38938545 PMCID: PMC11208814 DOI: 10.1155/2024/5791613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/29/2024]
Abstract
The aim of this study is to explore the mechanism by which ARHGAP4 regulates the proliferation and growth of colon cancer cells, and it relates to the metastasis of colorectal cancer (CRC). Various techniques including western blot, CCK8, qRT-PCR, RNA seq assay, plate cloning, subcutaneous tumorigenesis assays, and bioinformatics tools were employed to identify genes that were upregulated or downregulated upon ARHGAP4 knockdown and their involvement in tumor cell proliferation and growth. The expression of ARHGAP4 in T and M stages of CRC uses immunohistochemistry. The expression levels of ARHGAP4 were found to be high in SW620, SW480, and HCT116 cell lines, while they were being low in HT29, LoVo, and NCM460 cell lines. Depletion of ARHGAP4 resulted in inhibited proliferation and growth in SW620 cells and inhibited subcutaneous tumorigenesis in nude mice, whereas overexpression of ARHGAP4 promoted proliferation and growth in HT29 cells and promoted subcutaneous tumorigenesis in nude mice. A total of 318 upregulated genes and 637 downregulated genes were identified in SW620 cells upon ARHGAP4 knockdown. The downregulated genes were primarily associated with cell cycle pathways, while the upregulated genes were enriched in differentiation-related pathways. Notable upregulated genes involved in cell differentiation included KRT10, KRT13, KRT16, IVL, and CD24, while significant downregulation was observed in genes related to the cell cycle such as CCNA2, CDKN2C, CDKN3, CENPA, and CENPF. ARHGAP4 expression is markedly elevated in the M1 stage of CRC compared to the M0 stage, suggesting ARHGAP4 linked to the metastatic in CRC. ARHGAP4 regulates the proliferation and growth of colon cancer cells by up- and downregulated cell cycle and differentiation-related molecules, which may be related to the metastasis of CRC.
Collapse
Affiliation(s)
- Ming-Sheng Fu
- Department of Gastroenterology, Shanghai Fifth People's Hospital Fudan University, No. 801, Heqing Road, Minhang District, Shanghai 200240, China
| | - Shu-Xian Pan
- Department of Anesthesiology, Shanghai Fifth People's Hospital Fudan University, Shanghai 200240, China
| | - Xun-Quan Cai
- Department of Gastroenterology, Shanghai Fifth People's Hospital Fudan University, No. 801, Heqing Road, Minhang District, Shanghai 200240, China
| | - Cui-Ting Lv
- Central Laboratory, Shanghai Fifth People's Hospital Fudan University, Shanghai 200240, China
| | - Qin-Cong Pan
- Department of Gastroenterology, Shanghai Fifth People's Hospital Fudan University, No. 801, Heqing Road, Minhang District, Shanghai 200240, China
| |
Collapse
|
6
|
Sumazin P, Peters TL, Sarabia SF, Kim HR, Urbicain M, Hollingsworth EF, Alvarez KR, Perez CR, Pozza A, Najaf Panah MJ, Epps JL, Scorsone K, Zorman B, Katzenstein H, O'Neill AF, Meyers R, Tiao G, Geller J, Ranganathan S, Rangaswami AA, Woodfield SE, Goss JA, Vasudevan SA, Heczey A, Roy A, Fisher KE, Alaggio R, Patel KR, Finegold MJ, López-Terrada DH. Hepatoblastomas with carcinoma features represent a biological spectrum of aggressive neoplasms in children and young adults. J Hepatol 2022; 77:1026-1037. [PMID: 35577029 PMCID: PMC9524481 DOI: 10.1016/j.jhep.2022.04.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 02/15/2022] [Accepted: 04/21/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS Hepatoblastoma (HB) and hepatocellular carcinoma (HCC) are the predominant liver cancers in children, though their respective treatment options and associated outcomes differ dramatically. Risk stratification using a combination of clinical, histological, and molecular parameters can improve treatment selection, but it is particularly challenging for tumors with mixed histological features, including those in the recently created hepatocellular neoplasm not otherwise specified (HCN NOS) provisional category. We aimed to perform the first molecular characterization of clinically annotated cases of HCN NOS. METHODS We tested whether these histological features are associated with genetic alterations, cancer gene dysregulation, and outcomes. Namely, we compared the molecular features of HCN NOS, including copy number alterations, mutations, and gene expression profiles, with those in other pediatric hepatocellular neoplasms, including HBs and HCCs, as well as HBs demonstrating focal atypia or pleomorphism (HB FPAs), and HBs diagnosed in older children (>8). RESULTS Molecular profiles of HCN NOS and HB FPAs revealed common underlying biological features that were previously observed in HCCs. Consequently, we designated these tumor types collectively as HBs with HCC features (HBCs). These tumors were associated with high mutation rates (∼3 somatic mutations/Mb) and were enriched with mutations and alterations in key cancer genes and pathways. In addition, recurrent large-scale chromosomal gains, including gains of chromosomal arms 2q (80%), 6p (70%), and 20p (70%), were observed. Overall, HBCs were associated with poor clinical outcomes. CONCLUSIONS Our study indicates that histological features seen in HBCs are associated with combined molecular features of HB and HCC, that HBCs are associated with poor outcomes irrespective of patient age, and that transplanted patients are more likely to have good outcomes than those treated with chemotherapy and surgery alone. These findings highlight the importance of molecular testing and early therapeutic intervention for aggressive childhood hepatocellular neoplasms. LAY SUMMARY We molecularly characterized a class of histologically aggressive childhood liver cancers and showed that these tumors are clinically aggressive and that their observed histological features are associated with underlying recurrent molecular features. We proposed a diagnostic algorithm to identify these cancers using a combination of histological and molecular features, and our analysis suggested that these cancers may benefit from specialized treatment strategies that may differ from treatment guidelines for other childhood liver cancers.
Collapse
Affiliation(s)
- Pavel Sumazin
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA.
| | - Tricia L Peters
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA; Department of Pathology & Immunology, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Stephen F Sarabia
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA; Department of Pathology & Immunology, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Hyunjae R Kim
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Martin Urbicain
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA; Department of Pathology & Immunology, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Emporia Faith Hollingsworth
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Karla R Alvarez
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Cintia R Perez
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Alice Pozza
- Department of Pathology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Mohammad Javad Najaf Panah
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Jessica L Epps
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Kathy Scorsone
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Barry Zorman
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Howard Katzenstein
- Nemours Children's Specialty Care and Wolfson Children's Hospital, Jacksonville, FL, USA
| | - Allison F O'Neill
- Dana-Farber Cancer Institute and Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Department of Pediatric Oncology, Boston, MA, USA
| | | | - Greg Tiao
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jim Geller
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Arun A Rangaswami
- Department of Pediatrics/Division of Hematology-Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Sarah E Woodfield
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA; Department of Surgery, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - John A Goss
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA; Department of Abdominal Transplantation, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Sanjeev A Vasudevan
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA; Department of Surgery, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Andras Heczey
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Angshumoy Roy
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA; Department of Pathology & Immunology, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Kevin E Fisher
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA; Department of Pathology & Immunology, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Rita Alaggio
- Department of Pathology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Kalyani R Patel
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA; Department of Pathology & Immunology, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Milton J Finegold
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA.
| | - Dolores H López-Terrada
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA; Department of Pathology & Immunology, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA.
| |
Collapse
|
7
|
Hu Q, Wang R, Ma H, Zhang Z, Xue Q. Cuproptosis predicts the risk and clinical outcomes of lung adenocarcinoma. Front Oncol 2022; 12:922332. [PMID: 36003780 PMCID: PMC9393616 DOI: 10.3389/fonc.2022.922332] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/12/2022] [Indexed: 12/12/2022] Open
Abstract
Copper is an essential microelement for the body and a necessary coregulator for enzymatic reactions, yet an unbalanced copper level promotes reactive oxidation and cytotoxicity, which ultimately induces cell death. Several small molecules targeting copper-induced cell death have been investigated, yet few showed promising therapeutic effects in clinical trials. In March 2022, Science first introduced the concept and mechanisms of cuproptosis, suggesting that copper-induced cell death targets the tricarboxylic acid (TCA) cycle via protein lipoylation. Does this novel form of cell death take part in tumorigenesis or tumor progression? Is cuproptosis related to clinical outcomes of diseases? Is there a cuproptosis-related panel for clinical practice in cancer treatment? Herein, based on 942 samples of lung adenocarcinoma (LUAD), we analyzed on gene set level the existence and predictive value of cuproptosis in disease diagnosis and treatment. We screened out and identified the “cupLA” panel which indicates the risk of LUAD occurrence, clinicopathological features of LUAD patients, and could guide clinicians to refine LUAD subtypes and make treatment choices.
Collapse
Affiliation(s)
- Qin Hu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong University, Nantong, China
| | - Runtian Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huiyun Ma
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong University, Nantong, China
| | - Zhouwei Zhang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong University, Nantong, China
| | - Qun Xue
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Qun Xue,
| |
Collapse
|
8
|
Bencivenga D, Stampone E, Vastante A, Barahmeh M, Della Ragione F, Borriello A. An Unanticipated Modulation of Cyclin-Dependent Kinase Inhibitors: The Role of Long Non-Coding RNAs. Cells 2022; 11:cells11081346. [PMID: 35456025 PMCID: PMC9028986 DOI: 10.3390/cells11081346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/13/2022] Open
Abstract
It is now definitively established that a large part of the human genome is transcribed. However, only a scarce percentage of the transcriptome (about 1.2%) consists of RNAs that are translated into proteins, while the large majority of transcripts include a variety of RNA families with different dimensions and functions. Within this heterogeneous RNA world, a significant fraction consists of sequences with a length of more than 200 bases that form the so-called long non-coding RNA family. The functions of long non-coding RNAs range from the regulation of gene transcription to the changes in DNA topology and nucleosome modification and structural organization, to paraspeckle formation and cellular organelles maturation. This review is focused on the role of long non-coding RNAs as regulators of cyclin-dependent kinase inhibitors’ (CDKIs) levels and activities. Cyclin-dependent kinases are enzymes necessary for the tuned progression of the cell division cycle. The control of their activity takes place at various levels. Among these, interaction with CDKIs is a vital mechanism. Through CDKI modulation, long non-coding RNAs implement control over cellular physiology and are associated with numerous pathologies. However, although there are robust data in the literature, the role of long non-coding RNAs in the modulation of CDKIs appears to still be underestimated, as well as their importance in cell proliferation control.
Collapse
|
9
|
Stampone E, Bencivenga D, Barone C, Di Finizio M, Della Ragione F, Borriello A. A Beckwith-Wiedemann-Associated CDKN1C Mutation Allows the Identification of a Novel Nuclear Localization Signal in Human p57 Kip2. Int J Mol Sci 2021; 22:ijms22147428. [PMID: 34299047 PMCID: PMC8305445 DOI: 10.3390/ijms22147428] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/22/2022] Open
Abstract
p57Kip2 protein is a member of the CIP/Kip family, mainly localized in the nucleus where it exerts its Cyclin/CDKs inhibitory function. In addition, the protein plays key roles in embryogenesis, differentiation, and carcinogenesis depending on its cellular localization and interactors. Mutations of CDKN1C, the gene encoding human p57Kip2, result in the development of different genetic diseases, including Beckwith–Wiedemann, IMAGe and Silver–Russell syndromes. We investigated a specific Beckwith–Wiedemann associated CDKN1C change (c.946 C>T) that results in the substitution of the C-terminal amino acid (arginine 316) with a tryptophan (R316W-p57Kip2). We found a clear redistribution of R316W-p57Kip2, in that while the wild-type p57Kip2 mostly occurs in the nucleus, the mutant form is also distributed in the cytoplasm. Transfection of two expression constructs encoding the p57Kip2 N- and C-terminal domain, respectively, allows the mapping of the nuclear localization signal(s) (NLSs) between residues 220–316. Moreover, by removing the basic RKRLR sequence at the protein C-terminus (from 312 to 316 residue), p57Kip2 was confined in the cytosol, implying that this sequence is absolutely required for nuclear entry. In conclusion, we identified an unreported p57Kip2 NLS and suggest that its absence or mutation might be of relevance in CDKN1C-associated human diseases determining significant changes of p57Kip2 localization/regulatory roles.
Collapse
Affiliation(s)
| | | | | | | | - Fulvio Della Ragione
- Correspondence: (F.D.R.); (A.B.); Tel.: +39-(081)-5665812 (F.D.R.); +39-(081)-5667554 (A.B.)
| | - Adriana Borriello
- Correspondence: (F.D.R.); (A.B.); Tel.: +39-(081)-5665812 (F.D.R.); +39-(081)-5667554 (A.B.)
| |
Collapse
|
10
|
Shen G, Shen H, Zhang J, Yan Q, Liu H. DNA methylation in Hepatoblastoma-a literature review. Ital J Pediatr 2020; 46:113. [PMID: 32758256 PMCID: PMC7409486 DOI: 10.1186/s13052-020-00877-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022] Open
Abstract
Hepatoblastoma (HB) is the most common malignant liver tumor in children. Abnormal activation of the Wnt/β-catenin signaling pathway plays an important role in the formation and development of HB. Genes in HB show a global hypomethylation change, accompanied by hypermethylation of specific tumor suppressor genes (TSGs). This article reviews the hypermethylation changes in several TSGs, such as RASSF1A, SOCS1, APC, HHIP, and P16, and analyzes the pathways and mechanisms of TSGs regulating gene expression. The role of the methylation-regulating enzymes DNA methyltransferases (DNMTs) and ten-eleven translocation (TET) family members enzymes in the methylation changes of HB was analyzed, and it was speculated that the occurrence of HB is partly due to the obstruction of liver differentiation in the early stage of differentiation. The origin cells may be incompletely differentiated hepatocytes remaining in the liver of children after birth. Therefore, further studying the role of methylation regulating enzymes in methylation changes in HB is a promising future research direction.
Collapse
Affiliation(s)
- Gang Shen
- Pediatric Surgery Department, Weifang Peoples' Hospital, Weifang, China
| | - Hongyu Shen
- Ultrasound Department, Weifang Haifushan Hospital, Weifang, China
| | - Jing Zhang
- Pediatric Surgery Department, Weifang Peoples' Hospital, Weifang, China
| | - Qingtao Yan
- Pediatric Surgery Department, Weifang Peoples' Hospital, Weifang, China
| | - Huixian Liu
- Dermatology Department, Weifang Peoples' Hospital, No. 151, Guangwen Street, Kuiwen District, Weifang, 261041, China.
| |
Collapse
|
11
|
Stampone E, Bencivenga D, Barone C, Aulitto A, Verace F, Della Ragione F, Borriello A. High Dosage Lithium Treatment Induces DNA Damage and p57 Kip2 Decrease. Int J Mol Sci 2020; 21:ijms21031169. [PMID: 32050593 PMCID: PMC7038110 DOI: 10.3390/ijms21031169] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/22/2022] Open
Abstract
Lithium salt is the first-line therapeutic option for bipolar disorder and has been proposed as a potential antitumoral drug. The effects of LiCl treatment were investigated in SH-SY5Y, a human neuroblastoma cell line and an in vitro model of dopaminergic neuronal differentiation. LiCl, at the dosage used in psychiatric treatment, does not affect cell proliferation, while at higher doses it delays the SH-SY5Y cell division cycle and for prolonged usage reduces cell viability. Moreover, the ion treatment affects DNA integrity as demonstrated by accumulation of p53 and γH2AX (the phosphorylated form of H2AX histone), two important markers of genome damage. p57Kip2, a CIP/Kip protein, is required for proper neuronal maturation and represents a main factor of response to stress including genotoxicity. We evaluated the effect of lithium on p57Kip2 levels. Unexpectedly, we found that lithium downregulates the level of p57Kip2 in a dose-dependent manner, mainly acting at the transcriptional level. A number of different approaches, mostly based on p57Kip2 content handling, confirmed that the CKI/Kip reduction plays a key role in the DNA damage activated by lithium and suggests the unanticipated view that p57Kip2 might be involved in DNA double-strand break responses. In conclusion, our study identified novel roles for p57Kip2 in the molecular mechanism of lithium at high concentration and, more in general, in the process of DNA repair.
Collapse
Affiliation(s)
| | | | | | | | | | - Fulvio Della Ragione
- Correspondence: (A.B.); (F.D.R.); Tel.: +39-0815667554 (A.B.); +39-0815665812 (F.D.R.)
| | - Adriana Borriello
- Correspondence: (A.B.); (F.D.R.); Tel.: +39-0815667554 (A.B.); +39-0815665812 (F.D.R.)
| |
Collapse
|
12
|
Reference Size Matching, Whole-Genome Amplification, and Fluorescent Labeling as a Method for Chromosomal Microarray Analysis of Clinically Actionable Copy Number Alterations in Formalin-Fixed, Paraffin-Embedded Tumor Tissue. J Mol Diagn 2018; 20:279-288. [DOI: 10.1016/j.jmoldx.2018.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 01/01/2018] [Accepted: 01/09/2018] [Indexed: 12/14/2022] Open
|
13
|
Genetic and Epigenetic Control of CDKN1C Expression: Importance in Cell Commitment and Differentiation, Tissue Homeostasis and Human Diseases. Int J Mol Sci 2018; 19:ijms19041055. [PMID: 29614816 PMCID: PMC5979523 DOI: 10.3390/ijms19041055] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 03/31/2018] [Accepted: 03/31/2018] [Indexed: 12/28/2022] Open
Abstract
The CDKN1C gene encodes the p57Kip2 protein which has been identified as the third member of the CIP/Kip family, also including p27Kip1 and p21Cip1. In analogy with these proteins, p57Kip2 is able to bind tightly and inhibit cyclin/cyclin-dependent kinase complexes and, in turn, modulate cell division cycle progression. For a long time, the main function of p57Kip2 has been associated only to correct embryogenesis, since CDKN1C-ablated mice are not vital. Accordingly, it has been demonstrated that CDKN1C alterations cause three human hereditary syndromes, characterized by altered growth rate. Subsequently, the p57Kip2 role in several cell phenotypes has been clearly assessed as well as its down-regulation in human cancers. CDKN1C lies in a genetic locus, 11p15.5, characterized by a remarkable regional imprinting that results in the transcription of only the maternal allele. The control of CDKN1C transcription is also linked to additional mechanisms, including DNA methylation and specific histone methylation/acetylation. Finally, long non-coding RNAs and miRNAs appear to play important roles in controlling p57Kip2 levels. This review mostly represents an appraisal of the available data regarding the control of CDKN1C gene expression. In addition, the structure and function of p57Kip2 protein are briefly described and correlated to human physiology and diseases.
Collapse
|
14
|
Ye C, Tao R, Cao Q, Zhu D, Wang Y, Wang J, Lu J, Chen E, Li L. Whole-genome DNA methylation and hydroxymethylation profiling for HBV-related hepatocellular carcinoma. Int J Oncol 2016; 49:589-602. [PMID: 27221337 DOI: 10.3892/ijo.2016.3535] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/13/2016] [Indexed: 11/06/2022] Open
|
15
|
Alhejaily A, Day AG, Feilotter HE, Baetz T, Lebrun DP. Inactivation of the CDKN2A tumor-suppressor gene by deletion or methylation is common at diagnosis in follicular lymphoma and associated with poor clinical outcome. Clin Cancer Res 2014; 20:1676-86. [PMID: 24449825 DOI: 10.1158/1078-0432.ccr-13-2175] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Follicular lymphoma, the most common indolent lymphoma, is clinically heterogeneous. CDKN2A encodes the tumor suppressors p16(INK4a) and p14(ARF) and frequently suffers deleterious alterations in cancer. We investigated the hypothesis that deletion or hypermethylation of CDKN2A might identify follicular lymphoma cases with distinct clinical or pathologic features potentially amenable to tailored clinical management. EXPERIMENTAL DESIGN Deletion of CDKN2A was detected in pretreatment biopsy specimens using a single nucleotide polymorphism-based approach or endpoint PCR, and methylation of CpG elements in CDKN2A was quantified by methylation-specific PCR. Correlations between CDKN2A status and pathologic or clinical characteristics, including overall survival (OS), were investigated in 106 cases using standard statistical methods. RESULTS Deletion of CDKN2A was detected in 9 of 111 samples (8%) and methylation was detectable in 22 of 113 (19%). CDKN2A was either deleted or methylated in 29 of 106 cases (27%) and this status was associated with inferior OS especially among patients treated with rituximab (P = 0.004). CDKN2A deletion or methylation was associated with more advanced age (P = 0.012) and normal hemoglobin (P = 0.05) but not with sex, FLIPI score, ECOG stage, LDH, performance status, number of involved nodal sites, B symptoms, histologic grade, the presence of a component of diffuse large B-cell lymphoma, proliferation index, or other pathologic factors. CONCLUSIONS Our results show that deletion or methylation of CDKN2A is relatively common in pretreatment follicular lymphoma biopsy specimens and defines a group of cases associated with reduced survival in the rituximab era presumably on the basis of more aggressive disease biology.
Collapse
Affiliation(s)
- Abdulmohsen Alhejaily
- Authors' Affiliations: Department of Pathology and Molecular Medicine, Queen's University; Clinical Research Centre; and Cancer Centre of Southeastern Ontario, Kingston General Hospital, Kingston, Ontario, Canada
| | | | | | | | | |
Collapse
|
16
|
Finegold MJ, López-Terrada DH. Hepatic Tumors in Childhood. PATHOLOGY OF PEDIATRIC GASTROINTESTINAL AND LIVER DISEASE 2014:547-614. [DOI: 10.1007/978-3-642-54053-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
17
|
Reduced expression of ELAVL4 in male meningioma patients. Brain Tumor Pathol 2012; 30:160-6. [PMID: 22965691 DOI: 10.1007/s10014-012-0117-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 08/23/2012] [Indexed: 12/20/2022]
Abstract
Meningioma is a frequently occurring tumor of the central nervous system. Among many genetic alternations, the loss of the short arm of chromosome 1 is the second most frequent chromosomal abnormality observed in these tumors. Here, we focused on the previously described and well-established minimal deletion regions of chromosome 1. In accordance with the Knudson suppressor theory, we designed an analysis of putative suppressor genes localized in the described minimal deletion regions. The purpose was to determine the molecular background of the gender-specific occurrence of meningiomas. A total of 149 samples were examined for loss of heterozygosity (LOH). In addition, 57 tumor samples were analyzed using real-time polymerase chain reaction. We examined the association between the expression of selected genes and patient age, gender, tumor grade and presence of 1p loss. Furthermore, we performed an analysis of the most stable internal control for real-time analysis in meningiomas. LOH analysis revealed gender-specific discrepancies in the frequency of 1p aberrations. Moreover, statistical correlation between the gene expression level and gender was significant for the ELAVL4 gene as we found it to be lower in males than in females. We conclude that meningiomas present different features depending on patient gender. We suggest that ELAVL4 can be involved in the pathogenesis of meningiomas in male patients.
Collapse
|
18
|
Khalid SS, Hamid S, Siddiqui AA, Qureshi A, Qureshi N. Gene profiling of early and advanced liver disease in chronic hepatitis C patients. Hepatol Int 2011; 5:782-788. [PMID: 21484131 DOI: 10.1007/s12072-011-9252-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 01/05/2011] [Indexed: 10/18/2022]
Abstract
PURPOSE Strong impact of hepatitis C virus (HCV) on normal regulation of cellular processes has been reported that could have significant implications for HCV pathogenesis. We aimed to determine the altered cellular processes during HCV infection with particular reference to advanced disease stages. METHODS Liver biopsy specimens of chronic hepatitis C patients classified on histological basis as early (fibrosis stage 1-2) or advanced (fibrosis stage 3-4) HCV disease were studied using microarray technology (Affymetrix GeneChip™ System). For comparison, liver specimens from patients with non-viral hepatitis (NV-hepatitis) were also analyzed by microarray. Expression data generated were analyzed using software Genespring GX and Ingenuity Pathway analysis to find the association with biological functions. We further validated the microarray results using quantitative reverse transcriptase-polymerase chain reaction. RESULTS Data analysis through Genespring software revealed that in advanced HCV (A-HCV) a total of 792 genes are differentially expressed when compared to early HCV (E-HCV) and 417 genes are differentially expressed when compared to NV-hepatitis. Most of these genes are involved in cancer, cellular growth and proliferation, and tissue morphology. Real time (RT) PCR analysis confirmed the differential expression of six of these genes. CONCLUSION The results of this study reflect the changes taking place during the transition from early to advanced liver fibrosis, when the liver function becomes impaired and extracellular matrix deposition increases. In addition, it showed altered expression of genes with functions in cancer development, cell growth, proliferation, and cell death that might indicate high risk of cell transformation and hepatocellular carcinoma (HCC) in A-HCV disease patients.
Collapse
Affiliation(s)
- Saira Sarfraz Khalid
- Department of Biological and Biomedical Sciences, Aga Khan University Hospital, Juma Research Building, Stadium Road, Karachi, Pakistan,
| | | | | | | | | |
Collapse
|
19
|
|
20
|
Luo J, Zheng W, Wang Y, Wu Z, Bai Y, Lu Z. Detection method for methylation density on microarray using methyl-CpG-binding domain protein. Anal Biochem 2009; 387:143-9. [DOI: 10.1016/j.ab.2008.11.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 11/02/2008] [Accepted: 11/06/2008] [Indexed: 01/06/2023]
|
21
|
Koch A, Waha A, Hartmann W, Hrychyk A, Schüller U, Waha A, Wharton KA, Fuchs SY, von Schweinitz D, Pietsch T. Elevated expression of Wnt antagonists is a common event in hepatoblastomas. Clin Cancer Res 2005; 11:4295-304. [PMID: 15958610 DOI: 10.1158/1078-0432.ccr-04-1162] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hepatoblastomas are the most frequent malignant liver tumors of childhood. A high frequency of activating beta-catenin mutations in hepatoblastomas indicates that the Wnt signaling pathway plays an important role in the development of this embryonic neoplasm. Stabilization of beta-catenin leads to an increased formation of nuclear beta-catenin-T-cell factor complexes and altered expression of Wnt-inducible target genes. In this study, we analyzed the mRNA expression levels of nine Wnt genes, including c-JUN, c-MYC, CYCLIN D1, FRA-1, NKD-1, ITF-2, MMP-7, uPAR, and beta-TRCP, by competitive reverse transcription-PCR. We analyzed 23 hepatoblastoma biopsies for which matching liver tissue was available, 6 hepatoblastoma cell lines, and 3 human fetal liver samples. beta-TRCP and NKD-1 were highly expressed in all hepatoblastoma samples, independent of the beta-catenin mutational status, in comparison with their nontumorous counterparts. beta-TRCP mRNA overexpression was associated with accumulation of intracytoplasmic and nuclear beta-TrCP protein. In human liver tumor cells without beta-catenin mutations, Nkd-1 inhibited the Wnt-3a-activated Tcf-responsive-luciferase reporter activity, whereas Nkd-1 in hepatoblastomas with beta-catenin mutations had no antagonistic effect. Our data emphasize the inhibitory effect of beta-TrCP and Nkd-1 on the Wnt signaling pathway in a manner analogous to Conductin (AXIN2) and Dkk-1, inhibitors shown previously to be up-regulated in hepatoblastomas. Our findings indicate that overexpression of the Wnt antagonists Nkd-1 and beta-TrCP reveals an activation of the Wnt signaling pathway as a common event in hepatoblastomas. We propose that Nkd-1 and beta-TrCP may be used as possible diagnostic markers for the activated Wnt signaling pathway in hepatoblastomas.
Collapse
Affiliation(s)
- Arend Koch
- Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ragione FD, Cucciolla V, Criniti V, Indaco S, Borriello A, Zappia V. p21Cip1 gene expression is modulated by Egr1: a novel regulatory mechanism involved in the resveratrol antiproliferative effect. J Biol Chem 2003; 278:23360-8. [PMID: 12690110 DOI: 10.1074/jbc.m300771200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Epidemiological observations indicate that resveratrol, a natural antioxidant stilbene, exerts cardioprotective and chemopreventive effects. Moreover, the molecule induces in vitro cell growth inhibition and differentiation. Using human erythroleukemic K562 cells as model system, we demonstrated that resveratrol induces a remarkable gamma-globin synthesis, the erythroid differentiation being linked to impairment of cell proliferation, increased p21Cip1 expression and inhibition of cdk2 activity. The up-regulation of p21Cip1 transcription is prevented by cycloheximide, indicating the requirement of intermediate protein(s), which, in turn, regulate gene expression. The quantitative analysis of some transcription factors involved in the erythroid lineage, namely GATA-1, GATA-2, and Egr1, indicated that resveratrol selectively up-regulates Egr1 by an Erk1/2-dependent mechanism. The presence of an Egr1 consensus sequence in the p21Cip1 promoter suggested the hypothesis that this transcription factor directly regulates the expression of the cdk inhibitor. Transfection studies with deleted gene promoter constructs, as well as EMSA, pull-down, and chromatin immunoprecipitation experiments substantiated this view, demonstrating that Egr1 binds in vitro and in vivo to the identified consensus sequence of the p21Cip1 promoter. Moreover, an Egr1 phosphorothioate antisense hinders p21Cip1 accumulation and the antiproliferative effects of resveratrol. In conclusion, this is the first demonstration that Egr1 controls p21Cip1 expression by directly interacting with a specific sequence on its gene promoter. The identified regulatory mechanism also contributes to the clarification of the complex chemopreventive and antiproliferative properties of resveratrol.
Collapse
Affiliation(s)
- Fulvio Della Ragione
- Department of Biochemistry and Biophysics "F Cedrangolo," Second University of Naples, 80138, Naples, Italy.
| | | | | | | | | | | |
Collapse
|
23
|
Shim YH, Park HJ, Choi MS, Kim JS, Kim H, Kim JJ, Jang JJ, Yu E. Hypermethylation of the p16 gene and lack of p16 expression in hepatoblastoma. Mod Pathol 2003; 16:430-6. [PMID: 12748249 DOI: 10.1097/01.mp.0000066799.99032.a7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Hepatoblastoma is the most frequent pediatric liver tumor that develops mostly in young children. Abnormal regulation of cell cycle regulatory genes including p16 has been described, displaying no p16 mRNA and p16 protein in hepatoblastomas. The inactivation of p16, leading to the disruption of cell cycle control is involved in many types of human malignancies. However, the mechanism of the p16 inactivation in hepatoblastomas has not yet been elucidated. In this present study, we examined the methylation status of the p16 gene promoter by using methylation-specific PCR in 24 cases of hepatoblastomas and in 20 cases of corresponding non-neoplastic liver tissue. Aberrant methylation of 5' CpG islands of p16 was present in 12 of 24 (50.0%) cases of hepatoblastoma. Clinicopathologic parameters were not associated with the methylation status of p16. To correlate the methylation status of p16 with the expression of p16, immunohistochemical staining was done in tumors and non-neoplastic liver tissue. All non-neoplastic liver tissues displayed moderate, but heterogeneous immunoreactivity for p16. Eight of 12 (66.6%) methylation-positive hepatoblastomas showed a complete lack of immunoreactivity for p16. The other 4 methylation-positive hepatoblastomas had heterogeneous immunoreactivity. Nine of 12 (75.0%) unmethylated cases of hepatoblastoma displayed diffuse immunoreactivity, whereas 3 cases of unmethylated hepatoblastoma were not immunostained for p16. Our data indicate that the hypermethylation of p16 is a major mechanism of the transcriptional repression of p16 in hepatoblastomas, and we suggest that the inactivation of p16, leading to the lack of p16, may play an important role in the tumorigenesis of hepatoblastomas.
Collapse
Affiliation(s)
- Yhong-Hee Shim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Songpa-gu, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Moretti A, Borriello A, Monno F, Criscuolo M, Rosolen A, Esposito G, Dello Iacovo R, Della Ragione F, Iolascon A. Cell division cycle control in embryonal and alveolar rhabdomyosarcomas. Eur J Cancer 2002; 38:2290-9. [PMID: 12441266 DOI: 10.1016/s0959-8049(02)00454-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study, we investigated the mRNA level of several genes involved in cell cycle regulation in alveolar (ARMS) and embryonal rhabdomyosarcomas (ERMS). p21(Cip1), Cyclin D1, Cyclin D2, Cyclin D3, CDK2, and CDK4 were evaluated by RT-PCR. All (13 out of 13) ERMS expressed the p21(Cip1) gene compared with only 40% (4 out of 10) of the ARMS. Moreover, the amount of p21(Cip1) mRNA was noticeably higher in the ERMS samples than in the positive ARMS specimens. p27(Kip1) protein were analysed by immunohistochemical and immunoblotting. A noticeable difference was observed, in that ERMS had higher amounts of the cell cycle inhibitor compared with the ARMS. Finally, treatment of two rhabdomyosarcoma cell lines, RH-30 and RD, with butyrate, resulted in complete growth inhibition and in the upregulation of the p21(Cip1) and p27(Kip1) levels. Our results demonstrate that ERMS have a much higher level of p27(Kip1) and p21(Cip1) than the alveolar types, explaining, at least in part, the distinct features and outcomes (i.e. a poor prognosis of the alveolar type) of the two forms of this childhood solid cancer. Moreover, the data on butyrate-treated cell lines suggest that the two genes are potential novel therapeutic targets for the treatment of rhabdomyosarcomas.
Collapse
Affiliation(s)
- A Moretti
- Department of Evolutive Age, University of Bari, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Li KKW, Ng IOL, Fan ST, Albrecht JH, Yamashita K, Poon RYC. Activation of cyclin-dependent kinases CDC2 and CDK2 in hepatocellular carcinoma. LIVER 2002; 22:259-68. [PMID: 12100577 DOI: 10.1046/j.0106-9543.2002.01629.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND The cyclin-dependent kinases (CDKs) CDC2 and CDK2 are key regulators of the cell cycle. The expression of the CDK alone does not necessary reflect their true activities because they are highly regulated by post-translational mechanisms. Human hepatocellular carcinoma (HCC) is one of the most common cancers in the world, but the kinase activities of CDKs in HCC have not been examined. METHODS Here we examined the protein expression and kinase activities associated with CDC2 and CDK2 in HCC and the corresponding non-tumorous liver tissues. RESULTS CDC2 and CDK2 are activated in HCC in over 70% and 80% of the cases, respectively, but have little correlation with clinical parameters and PCNA expression. Interestingly, PCNA was readily detectable in extracts from non-tumorous liver, but more than 60% of samples contain higher concentration of PCNA in HCC than the corresponding non-tumorous tissues. CDC2 and CDK2 are generally activated in the same HCC samples, but the extent of their activation varied significantly, suggesting that the pathways leading to the activation of CDC2 and CDK2 can be regulated independently. Both positive regulators of CDK activity like cyclins and CDKs, and negative regulators of CDK activity like p21(CIP1/WAF1) and Thr14/Tyr15 phosphorylation were up-regulated in HCC. CONCLUSION CDC2 and CDK2 are activated in HCC, and this may be due to a complex interplay between the level of the cyclin, CDK, CDK inhibitors, and inhibitory phosphorylation.
Collapse
Affiliation(s)
- Kay K W Li
- Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | | | | | | | | | | |
Collapse
|
26
|
Laurent-Puig P, Legoix P, Bluteau O, Belghiti J, Franco D, Binot F, Monges G, Thomas G, Bioulac-Sage P, Zucman-Rossi J. Genetic alterations associated with hepatocellular carcinomas define distinct pathways of hepatocarcinogenesis. Gastroenterology 2001; 120:1763-73. [PMID: 11375957 DOI: 10.1053/gast.2001.24798] [Citation(s) in RCA: 410] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS To evaluate how characterization of genetic alterations can help in the elucidation of liver carcinogenesis pathways, 137 tumors were analyzed. METHODS High-density allelotype, p53, Axin1, and beta-catenin gene mutations were determined. Alterations were analyzed according to clinical parameters. RESULTS Tumors could be divided into 2 groups according to chromosome stability status. In the first group, demonstrating a chromosome stability, beta-catenin mutation associated with chromosome 8p losses were frequently found as the single genetic alterations. beta-catenin mutations were associated with large tumor size and with negative hepatitis B virus status. In the second group, demonstrating a chromosome instability, the most frequent allelic losses were on chromosome 1p, 4q, 6q, 9p, 13q, 16p, 16q, and 17p; Axin1 and p53 were frequently mutated. All of these alterations, except losses on 6q and 9p, were associated with hepatitis B virus infection. P53 mutations, 17p, 13q losses, and a high value of the fractional allelic loss index were associated with poor differentiated tumors, independently of risk factors. Finally, in the whole series, chromosome 9p and 6q losses were associated with poor prognosis. CONCLUSIONS Two main pathways defined by genetic alterations show different risk factors and clinical characteristics. Furthermore, loss of chromosome 9p or 6q is an independent prognostic indicator.
Collapse
Affiliation(s)
- P Laurent-Puig
- INSERM U434, CEPH, Paris; Assistance Publique Hôpitaux de Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Parada LA, Limon J, Iliszko M, Czauderna P, Gisselsson D, Höglund M, Kullendorff CM, Wiebe T, Mertens F, Johansson B. Cytogenetics of hepatoblastoma: further characterization of 1q rearrangements by fluorescence in situ hybridization: an international collaborative study. MEDICAL AND PEDIATRIC ONCOLOGY 2000; 34:165-70. [PMID: 10696121 DOI: 10.1002/(sici)1096-911x(200003)34:3<165::aid-mpo1>3.0.co;2-t] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Hepatoblastoma (HBT) is the most common hepatic neoplasm in children. This notwithstanding, little is known about pathogenetic factors, such as genetic abnormalities, of importance for the development and progression of this tumor type. To date, only 33 cytogenetically abnormal HBT have been published, and trisomies for chromosomes 2 and 20 have been shown to be the most frequent aberrations. Recently, unbalanced translocations involving proximal 1q have been described in several HBT, suggesting that a pathogenetically important gene maps to 1q. PROCEDURE Six primary and one recurrent HBT were cytogenetically analyzed after short-term tissue culture. In addition, fluorescence in situ hybridization (FISH) studies, using locus-specific probes, were performed on three of these pediatric HBT as well as on one previously reported adult HBT. RESULTS Total or partial trisomy 8, gain of chromosome 20, and structural rearrangements of chromosome 1 were detected in three HBT, and overrepresentation of chromosome 2 material was found in two HBT. The adjacent chromosome bands 1q12 and 1q21 were involved in three translocations, t(1;2), t(1;4), and t(1;11), which were all unbalanced and resulted in gain of 1q material. The previously reported adult HBT displayed 1q deletions with breakpoints at 1q12-21. FISH analyses of the 1q rearrangements revealed that all breakpoints were within the heterochromatic region. CONCLUSIONS These findings provide further support for the importance of trisomies 2, 8, and 20 and rearrangements of 1q in the development of HBT. Furthermore, the consistent localization of breakpoints within the heterochromatic segment of chromosome 1 suggests that the important pathogenetic consequence of 1q abnormalities is the resulting genomic imbalance rather than a specific gene rearrangement.
Collapse
Affiliation(s)
- L A Parada
- Department of Clinical Genetics, University Hospital, Lund, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Iolascon A, Giordani L, Borriello A, Carbone R, Izzo A, Tonini GP, Gambini C, Della Ragione F. Reduced expression of transforming growth factor-beta receptor type III in high stage neuroblastomas. Br J Cancer 2000; 82:1171-6. [PMID: 10735501 PMCID: PMC2363349 DOI: 10.1054/bjoc.1999.1058] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Transforming growth factor beta (TGF-beta) is a powerful inhibitor of cell proliferation and a potent inducer of differentiation. Resistance to TGF-beta action is a characteristic of many malignancies and has been attributed to alterations of TGF-beta receptors as well as disturbance of downstream transduction pathways. To analyse the TGF-beta response in neuroblastoma, the expression of TGF-beta1 and TGF-beta type I, II and III receptor genes was investigated in 61 cancer samples by means of reverse transcription polymerase chain reaction. The specimens analysed belong to different stages, namely nine samples of stage 1, ten of stage 2, nine of stage 3 and 28 of stage 4. Moreover, five samples were of stage 4S, which represents a tumour form undergoing spontaneous regression. The results obtained show that TGF-beta1 and TGF-beta type I and II receptor genes appear to be almost equally expressed in neuroblastomas of all stages. Conversely, TGF-beta type III receptor gene expression, which is required for an efficacious TGF-beta binding and function, is strongly reduced exclusively in neuroblastomas of stages 3 and 4. These findings were directly confirmed by immunohistochemical analyses of ten neuroblastoma specimens. Our results suggest the occurrence of an altered TGF-beta response in advanced neuroblastomas which might be an important mechanism for escaping growth control and for developing invasiveness. Moreover, our findings allow the proposal of a novel mechanism, namely down-regulation of TGF-beta type III receptor gene expression, to avoid TGF-beta inhibitory activity.
Collapse
Affiliation(s)
- A Iolascon
- Department of Biomedicina dell'Età Evolutiva, University of Bari, Italy
| | | | | | | | | | | | | | | |
Collapse
|