1
|
Abdel-Kawy HS. Effect of carvedilol versus propranolol on acute and chronic liver toxicity in rats. Drug Chem Toxicol 2021; 44:101-111. [PMID: 30810389 DOI: 10.1080/01480545.2019.1576718] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/06/2019] [Accepted: 01/16/2019] [Indexed: 12/27/2022]
Abstract
Non-selective β-blockers have largely been used for prophylaxis of bleeding from gastroesophageal varices, but their hepatic effects and their influence on the development of varices has yet to be clarified. This study examined whether carvedilol would reduce acute and chronic liver injury in rats in comparison to propranolol. Experiment (1) Investigated the effects of carvedilol (1.2 mg/kg) and propranolol (4.0 mg/kg) administered daily for 7 days by gavage on paracetamol (1500 mg/kg i.p.) -induced acute liver injury in rats. Experiment (2) Investigated the effects of carvedilol (1.2 mg/kg) and propranolol (4.0 mg/kg) by gavage daily for 8 weeks on CCl4 -induced chronic liver injury in rats. Biochemical markers and histopathology of the livers were studied. Liver perfusion studies were carried out on CCl4 treated rats. Experiment (1) Carvedilol significantly improved the functional state of the liver in paracetamol-induced acute toxic hepatitis to a greater extent than propranolol. This was evidenced by a greater reduction in elevated serum levels of ALT and AST, hepatic MDA and TNF-α, attenuation of the paracetamol-induced decrease in GSH, together with improvement in the histological architecture of the liver. Experiment (2) Carvedilol was superior to propranolol against CCl4-induced hepatic injury and fibrogenesis. It suppressed hepatic inflammation, attenuated hepatic oxidative stress, and inhibited HSC activation. Carvedilol also decreased portal perfusion pressure. These results suggest that carvedilol might be a therapeutic anti-fibrogenic candidate against hepatic fibrosis, protecting the liver from acute and chronic toxic injury, in addition to lowering portal pressure.
Collapse
Affiliation(s)
- Hala Salah Abdel-Kawy
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Gedahh, Saudi Arabia
- Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Häussinger D, Kordes C. Space of Disse: a stem cell niche in the liver. Biol Chem 2020; 401:81-95. [PMID: 31318687 DOI: 10.1515/hsz-2019-0283] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023]
Abstract
Recent evidence indicates that the plasticity of preexisting hepatocytes and bile duct cells is responsible for the appearance of intermediate progenitor cells capable of restoring liver mass after injury without the need of a stem cell compartment. However, mesenchymal stem cells (MSCs) exist in all organs and are associated with blood vessels which represent their perivascular stem cell niche. MSCs are multipotent and can differentiate into several cell types and are known to support regenerative processes by the release of immunomodulatory and trophic factors. In the liver, the space of Disse constitutes a stem cell niche that harbors stellate cells as liver resident MSCs. This perivascular niche is created by extracellular matrix proteins, sinusoidal endothelial cells, liver parenchymal cells and sympathetic nerve endings and establishes a microenvironment that is suitable to maintain stellate cells and to control their fate. The stem cell niche integrity is important for the behavior of stellate cells in the normal, regenerative, aged and diseased liver. The niche character of the space of Disse may further explain why the liver can become an organ of extra-medullar hematopoiesis and why this organ is frequently prone to tumor metastasis.
Collapse
Affiliation(s)
- Dieter Häussinger
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, Moorenstraße 5, D-40225 Düsseldorf, Germany
| | - Claus Kordes
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, Moorenstraße 5, D-40225 Düsseldorf, Germany
| |
Collapse
|
3
|
Lin XH, Liu HH, Hsu SJ, Zhang R, Chen J, Chen J, Gao DM, Cui JF, Ren ZG, Chen RX. Norepinephrine-stimulated HSCs secrete sFRP1 to promote HCC progression following chronic stress via augmentation of a Wnt16B/β-catenin positive feedback loop. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:64. [PMID: 32293507 PMCID: PMC7158101 DOI: 10.1186/s13046-020-01568-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/02/2020] [Indexed: 12/12/2022]
Abstract
Background Sustained adrenergic signaling secondary to chronic stress promotes cancer progression; however, the underlying mechanisms for this phenomenon remain unclear. Hepatocellular carcinoma (HCC) frequently develops within fibrotic livers rich in activated hepatic stellate cells (HSCs). Here, we examined whether the stress hormone norepinephrine (NE) could accelerate HCC progression by modulating HSCs activities. Methods HCC cells were exposed to conditioned medium (CM) from NE-stimulated HSCs. The changes in cell migration and invasion, epithelial-mesenchymal transition, parameters of cell proliferation, and levels of cancer stem cell markers were analyzed. Moreover, the in vivo tumor progression of HCC cells inoculated with HSCs was studied in nude mice subjected to chronic restraint stress. Results CM from NE-treated HSCs significantly promoted cell migration and invasion, epithelial-mesenchymal transition (EMT), and expression of cell proliferation-related genes and cancer stem cell markers in HCC cells. These pro-tumoral effects were markedly reduced by depleting secreted frizzled related protein 1 (sFRP1) in CM. The pro-tumoral functions of sFRP1 were dependent on β-catenin activation, and sFRP1 augmented the binding of Wnt16B to its receptor FZD7, resulting in enhanced β-catenin activity. Additionally, sFRP1 enhanced Wnt16B expression, reinforcing an autocrine feedback loop of Wnt16B/β-catenin signaling. The expression of sFRP1 in HSCs promoted HCC progression in an in vivo model under chronic restraint stress, which was largely attenuated by sFRP1 knockdown. Conclusions We identify a new mechanism by which chronic stress promotes HCC progression. In this model, NE activates HSCs to secrete sFRP1, which cooperates with a Wnt16B/β-catenin positive feedback loop. Our findings have therapeutic implications for the treatment of chronic stress-promoted HCC progression.
Collapse
Affiliation(s)
- Xia-Hui Lin
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, P.R. China
| | - Hua-Hua Liu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, P.R. China
| | - Shu-Jung Hsu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, P.R. China
| | - Rui Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, P.R. China
| | - Jie Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, P.R. China
| | - Jun Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, P.R. China
| | - Dong-Mei Gao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, P.R. China
| | - Jie-Feng Cui
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, P.R. China
| | - Zheng-Gang Ren
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, P.R. China
| | - Rong-Xin Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, P.R. China.
| |
Collapse
|
4
|
Abstract
Stem cell niches are special microenvironments that maintain stem cells and control their behavior to ensure tissue homeostasis and regeneration throughout life. The liver has a high regenerative capacity that involves stem/progenitor cells when the proliferation of hepatocytes is impaired. In recent years progress has been made in the identification of potential hepatic stem cell niches. There is evidence that hepatic progenitor cells can originate from niches in the canals of Hering; in addition, the space of Disse may also serve as a stem cell niche during fetal hematopoiesis and constitute a niche for stellate cells in adults.
Collapse
Affiliation(s)
- Claus Kordes
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | |
Collapse
|
5
|
Abstract
UNLABELLED It is well-accepted that hepatic stellate cells (HSCs) can develop into myofibroblast-like cells that synthesize extracellular matrix proteins and contribute to liver fibrosis. Recently, molecular markers of stem/progenitor cells were discovered in HSCs of rats. Moreover, the cells displayed the capacity to differentiate and to participate in liver regeneration. In addition, stellate cells possess signaling pathways important for maintenance of stemness and cell differentiation such as hedgehog and beta-catenin-dependent Wnt signaling. All these properties are congruently found in stem/progenitor cells. Stem cells require a special microenvironment, the so-called stem cell niche, to maintain their characteristics. Thus, we investigated if the space of Disse, where stellate cells reside in the liver innervated by the sympathetic nervous system and surrounded by sinusoidal endothelial cells and parenchymal cells, exhibits similarities with known stem cell niches. The present study describes the niche of stellate cells within the liver of rats that is composed of sinusoidal endothelial cells, which release stromal cell-derived factor-1 to attract stellate cells via the cysteine-X-cysteine receptor 4, basal lamina proteins (laminin and collagen type IV), and parenchymal cells, which synthesize beta-catenin-dependent Wnt ligands and Jagged1. CONCLUSION The space of Disse shows analogies to typical stem cell niches comprising of basal lamina components, sympathetic innervation, and adjacent cells that constitute a milieu by paracrine factors and direct physical interactions to retain HSCs at this site and to influence their cellular fate. The space of Disse serves as a niche of stellate cells, which is a novel function of this unique organ structure.
Collapse
Affiliation(s)
- Iris Sawitza
- Clinic of Gastroenterology, Hepatology and Infectiology, Heinrich-Heine-University, Düsseldorf, Germany
| | | | | | | |
Collapse
|
6
|
Sancho-Bru P, Bataller R, Colmenero J, Gasull X, Moreno M, Arroyo V, Brenner DA, Ginès P. Norepinephrine induces calcium spikes and proinflammatory actions in human hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 2006; 291:G877-84. [PMID: 16782692 DOI: 10.1152/ajpgi.00537.2005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Catecholamines participate in the pathogenesis of portal hypertension and liver fibrosis through alpha1-adrenoceptors. However, the underlying cellular and molecular mechanisms are largely unknown. Here, we investigated the effects of norepinephrine (NE) on human hepatic stellate cells (HSC), which exert vasoactive, inflammatory, and fibrogenic actions in the injured liver. Adrenoceptor expression was assessed in human HSC by RT-PCR and immunocytochemistry. Intracellular Ca2+ concentration ([Ca2+]i) was studied in fura-2-loaded cells. Cell contraction was studied by assessing wrinkle formation and myosin light chain II (MLC II) phosphorylation. Cell proliferation and collagen-alpha1(I) expression were assessed by [3H]thymidine incorporation and quantitative PCR, respectively. NF-kappaB activation was assessed by luciferase reporter gene and p65 nuclear translocation. Chemokine secretion was assessed by ELISA. Normal human livers expressed alpha(1A)-adrenoceptors, which were markedly upregulated in livers with advanced fibrosis. Activated human HSC expressed alpha(1A)-adrenoceptors. NE induced multiple rapid [Ca2+]i oscillations (Ca2+ spikes). Prazosin (alpha1-blocker) completely prevented NE-induced Ca2+ spikes, whereas propranolol (nonspecific beta-blocker) partially attenuated this effect. NE caused phosphorylation of MLC II and cell contraction. In contrast, NE did not affect cell proliferation or collagen-alpha1(I) expression. Importantly, NE stimulated the secretion of inflammatory chemokines (RANTES and interleukin-8) in a dose-dependent manner. Prazosin blocked NE-induced chemokine secretion. NE stimulated NF-kappaB activation. BAY 11-7082, a specific NF-kappaB inhibitor, blocked NE-induced chemokine secretion. We conclude that NE stimulates NF-kappaB and induces cell contraction and proinflammatory effects in human HSC. Catecholamines may participate in the pathogenesis of portal hypertension and liver fibrosis by targeting HSC.
Collapse
Affiliation(s)
- Pau Sancho-Bru
- Liver Unit, Institut Clínic de Malalties Digestives i Metabòliques, Hospital Clínic, Villarroel 170, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Warskulat U, Borsch E, Reinehr R, Heller-Stilb B, Mönnighoff I, Buchczyk D, Donner M, Flögel U, Kappert G, Soboll S, Beer S, Pfeffer K, Marschall HU, Gabrielsen M, Amiry-Moghaddam M, Ottersen OP, Dienes HP, Häussinger D. Chronic liver disease is triggered by taurine transporter knockout in the mouse. FASEB J 2006; 20:574-6. [PMID: 16421246 DOI: 10.1096/fj.05-5016fje] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Taurine is an abundant organic osmolyte with antioxidant and immunomodulatory properties. Its role in the pathogenesis of chronic liver disease is unknown. The liver phenotype was studied in taurine transporter knockout (taut-/-) mice. Hepatic taurine levels were ~21, 15 and 6 mumol/g liver wet weight in adult wild-type, heterozygous (taut+/-) and homozygous (taut-/-) mice, respectively. Immunoelectronmicroscopy revealed an almost complete depletion of taurine in Kupffer and sinusoidal endothelial cells, but not in parenchymal cells of (taut-/-) mice. Compared with wild-type mice, (taut-/-) and (taut+/-) mice developed moderate unspecific hepatitis and liver fibrosis with increased frequency of neoplastic lesions beyond 1 year of age. Liver disease in (taut-/-) mice was characterized by hepatocyte apoptosis, activation of the CD95 system, elevated plasma TNF-alpha levels, hepatic stellate cell and oval cell proliferation, and severe mitochondrial abnormalities in liver parenchymal cells. Mitochondrial dysfunction was suggested by a significantly lower respiratory control ratio in isolated mitochondria from (taut-/-) mice. Taut knockout had no effect on taurine-conjugated bile acids in bile; however, the relative amount of cholate-conjugates acid was decreased at the expense of 7-keto-cholate-conjugates. In conclusion, taurine deficiency due to defective taurine transport triggers chronic liver disease, which may involve mitochondrial dysfunction.
Collapse
Affiliation(s)
- Ulrich Warskulat
- Clinic for Gastroenterology, Hepatology, and Infectiology, Heinrich Heine University, Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Graupera M, March S, Engel P, Rodés J, Bosch J, García-Pagán JC. Sinusoidal endothelial COX-1-derived prostanoids modulate the hepatic vascular tone of cirrhotic rat livers. Am J Physiol Gastrointest Liver Physiol 2005; 288:G763-70. [PMID: 15550559 DOI: 10.1152/ajpgi.00300.2004] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
CCl(4) cirrhotic rat liver exhibits a hyperresponse to the alpha(1)-adrenergic agonist methoxamine (Mtx) that is associated with enhanced thromboxane A(2) (TXA(2)) production and is abrogated by indomethacin. To further elucidate the molecular mechanisms involved in the hyperresponse to vasoconstrictors, portal perfusion pressure dose-response curves to Mtx were performed in CCl(4) cirrhotic rats livers after preincubation with vehicle, the cyclooxygenase (COX)-1 selective inhibitor SC-560, and the COX-2 selective inhibitor SC-236. TXA(2) production was determined in samples of the perfusate. COX-1 expression was analyzed and quantified in hepatocytes, Kupffer cells, sinusoidal endothelial cells (SEC), and hepatic stellate cells (HSC) isolated from control and cirrhotic rat livers by double-immunofluorescence staining, with specific markers for each population using flow cytometry or Western blot analysis. COX-1 protein levels were not significantly increased in cirrhotic livers, but COX-2 protein expression was increased. COX-1 inhibition, but not COX-2, significantly attenuated the response to Mtx and prevented the increased production of TXA(2). Cirrhotic livers showed an increased expression of COX-1 in SEC and reduced expression in HSC compared with control livers, whereas COX-1 was similarly distributed in Kupffer cells. Despite abundant hepatic COX-2 expression, the increased response to Mtx of cirrhotic livers is mainly dependent of COX-1. Upregulation of COX-1 in cirrhotic SEC may be responsible for the hyperesponse to Mtx.
Collapse
Affiliation(s)
- Mariona Graupera
- Hepatic Hemodynamic Laboratory, Hospital Clínic, Villarroel 170, 08036 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
9
|
Häussinger D. Neural control of hepatic osmolytes and parenchymal cell hydration. ACTA ACUST UNITED AC 2004; 280:893-900. [PMID: 15382012 DOI: 10.1002/ar.a.20094] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Liver cell function is strongly influenced by cell hydration and osmolyte content via osmosensing and osmosignaling pathways. Electrical stimulation of hepatic nerves increases the hepatocellular hydration state via an alpha-adrenergic mechanism, promotes taurine release from parenchymal cells and myo-inositol release from hepatic stellate cells. Although changes in liver cell hydration and osmolyte content are known regulators of liver cell function, the functional relevance and integration of nerve-stimulation-dependent alterations of liver cell volume and osmolyte content in the overall hepatic response to towards signals from the nervous system remains to be established.
Collapse
Affiliation(s)
- Dieter Häussinger
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
10
|
Fiorucci S, Antonelli E, Morelli A. Nitric oxide and portal hypertension: a nitric oxide-releasing derivative of ursodeoxycholic acid that selectively releases nitric oxide in the liver. Dig Liver Dis 2003; 35 Suppl 2:S61-9. [PMID: 12846445 DOI: 10.1016/s1590-8658(03)00053-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Portal hypertension, a common consequence of chronic liver diseases, is directly responsible for most complications of cirrhosis. In liver microcirculation, nitric oxide is considered a major fine tuner of vascular tone by counterbalancing vasoconstrictors (sympathetic nervous activity, the renin-angiotensin system, and endothelin-1) in normal and cirrhotic livers. The deficiency of endothelial nitric oxide release is a key factor in the hemodynamic abnormalities associated with the dynamic component of portal hypertension. Conventional nitric oxide donors release nitric oxide into the blood stream, causing systemic hypotension and progression of vasodilatory syndrome in cirrhotic patients. NCX1000 is a nitric oxide-releasing derivative of ursodeoxycholic acid-derived compounds, being capable of selectively releasing nitric oxide into the liver circulation. Administration of NCX1000 to portal hypertensive rats decreases intrahepatic resistance providing a novel therapy for the treatment of portal hypertension.
Collapse
Affiliation(s)
- S Fiorucci
- Gastrointestinal and Liver Unit, Department of Internal Medicine, University of Perugia, Perugia, Italy.
| | | | | |
Collapse
|
11
|
Dubuisson L, Desmoulière A, Decourt B, Evadé L, Bedin C, Boussarie L, Barrier L, Vidaud M, Rosenbaum J. Inhibition of rat liver fibrogenesis through noradrenergic antagonism. Hepatology 2002; 35:325-31. [PMID: 11826405 DOI: 10.1053/jhep.2002.31166] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The effect of adrenergic innervation and/or circulating catecholamines on the function of liver fibrogenic cells is poorly understood. Our aim was to investigate the effects of noradrenergic antagonism on carbon tetrachloride (CCl4)-induced liver fibrosis in rats. Two weeks of CCl4 induced an approximately 5-fold increase in the area of fibrosis as compared with controls. The addition of 6-hydroxydopamine (OHDA), a toxin that destroys noradrenergic fibers, decreased fibrosis by 60%. After 6 weeks of CCl4, the area of fibrosis increased about 30-fold in CCl4-treated animals and was decreased by 36% with OHDA. At 2 weeks, OHDA abrogated the CCl4-induced increase in mRNA level of tissue inhibitor of matrix metalloproteinases-1 (TIMP-1), an inhibitor of extracellular matrix degradation, and it greatly reduced it at 6 weeks. Finally, when rats treated with CCl4 for 2 weeks also received prazosin, an antagonist of alpha1-adrenergic receptors, fibrosis was decreased by 83%. In conclusion, destruction of noradrenergic fibers or antagonism of noradrenergic signaling through alpha1 receptors inhibited the development of liver fibrosis. Because adrenoreceptor antagonists have a very sound safety profile, they appear as attractive drugs to reduce liver fibrogenesis.
Collapse
Affiliation(s)
- Liliane Dubuisson
- Groupe de Recherches pour l'Etude du Foie, INSERM E9917, Université Victor Segalen Bordeaux 2, Bordeaux, France
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
vom Dahl S, Dombrowski F, Schmitt M, Schliess F, Pfeifer U, Häussinger D. Cell hydration controls autophagosome formation in rat liver in a microtubule-dependent way downstream from p38MAPK activation. Biochem J 2001; 354:31-6. [PMID: 11171076 PMCID: PMC1221625 DOI: 10.1042/0264-6021:3540031] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Autophagic proteolysis in rat liver is under the control of the cellular hydration state. Because the morphological site of swelling-dependent proteolysis regulation has not yet been identified, the formation of autophagosomes was investigated with transmission electron microscopy in slices from perfused livers. In livers from fed rats, hypo-osmotic exposure (185 mosmol/l) led within 30 min to a decrease in fractional cytoplasmic autophagosome volume that was sensitive to colchicine and p38(MAPK) inhibition. Similarly, the decrease in autophagosome volume, but not the increase in cell volume caused by insulin or glutamine/glycine, was strongly inhibited by colchicine and SB 203580, an inhibition of p38(MAPK) activation. Immune complex assays from perfused liver showed that hypo-osmotic activation of p38(MAPK) was not inhibited by colchicine. Further, experiments using confocal laser microscopy in cultivated hepatocytes incubated with mouse-derived anti-(alpha-tubulin) showed that microtubular structures were not influenced by the inhibition of p38(MAPK) by SB 203580. It is concluded that the sequestration of autophagic vacuoles is a major site of proteolysis regulation by cell hydration. Swelling-induced activation of p38(MAPK) is required for this process and occurs upstream of the putative microtubule regulation site.
Collapse
Affiliation(s)
- S vom Dahl
- Division of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, D-40225-Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Wettstein M, Peters-Regehr T, Kubitz R, Fischer R, Holneicher C, Mönnighoff I, Häussinger D. Release of osmolytes induced by phagocytosis and hormones in rat liver. Am J Physiol Gastrointest Liver Physiol 2000; 278:G227-33. [PMID: 10666046 DOI: 10.1152/ajpgi.2000.278.2.g227] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Betaine, taurine, and inositol participate as osmolytes in liver cell volume homeostasis and interfere with cell function. In this study we investigated whether osmolytes are also released from the intact liver independent of osmolarity changes. In the perfused rat liver, phagocytosis of carbon particles led to a four- to fivefold stimulation of taurine efflux into the effluent perfusate above basal release rates. This taurine release was inhibited by 70-80% by the anion exchange inhibitor DIDS or by pretreatment of the rats with gadolinium chloride. Administration of vasopressin, cAMP, extracellular ATP, and glucagon also increased release of betaine and/or taurine, whereas insulin, extracellular UTP, and adenosine were without effect. In isolated liver cells, it was shown that parenchymal cells and sinusoidal endothelial cells, but not Kupffer cells and hepatic stellate cells, release osmolytes upon hormone stimulation. This may be caused by a lack of hormone receptor expression in these cells, because single-cell fluorescence measurements revealed an increase of intracellular calcium concentration in response to vasopressin and glucagon in parenchymal cells and sinusoidal endothelial cells but not in Kupffer cells and hepatic stellate cells. The data show that Kupffer cells release osmolytes during phagocytosis via DIDS-sensitive anion channels. This mechanism may be used to compensate for the increase in cell volume induced by the ingestion of phagocytosable material. The physiological significance of hormone-induced osmolyte release remains to be evaluated.
Collapse
Affiliation(s)
- M Wettstein
- Clinic for Gastroenterology, Hepatology, and Infectious Disease, Heinrich Heine University, 40255 Düsseldorf, Germany.
| | | | | | | | | | | | | |
Collapse
|
14
|
Friedman SL. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem 2000; 275:2247-50. [PMID: 10644669 DOI: 10.1074/jbc.275.4.2247] [Citation(s) in RCA: 1594] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- S L Friedman
- Department of Medicine, Division of Liver Diseases, Mount Sinai School of Medicine, New York, New York 10029, USA.
| |
Collapse
|