1
|
Felli E, Nulan Y, Selicean S, Wang C, Gracia-Sancho J, Bosch J. Emerging Therapeutic Targets for Portal Hypertension. CURRENT HEPATOLOGY REPORTS 2023; 22:51-66. [PMID: 36908849 PMCID: PMC9988810 DOI: 10.1007/s11901-023-00598-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/18/2023] [Indexed: 02/13/2023]
Abstract
Purpose of Review Portal hypertension is responsible of the main complications of cirrhosis, which carries a high mortality. Recent treatments have improved prognosis, but this is still far from ideal. This paper reviews new potential therapeutic targets unveiled by advances of key pathophysiologic processes. Recent Findings Recent research highlighted the importance of suppressing etiologic factors and a safe lifestyle and outlined new mechanisms modulating portal pressure. These include intrahepatic abnormalities linked to inflammation, fibrogenesis, vascular occlusion, parenchymal extinction, and angiogenesis; impaired regeneration; increased hepatic vascular tone due to sinusoidal endothelial dysfunction with insufficient NO availability; and paracrine liver cell crosstalk. Moreover, pathways such as the gut-liver axis modulate splanchnic vasodilatation and systemic inflammation, exacerbate liver fibrosis, and are being targeted by therapy. We have summarized studies of new agents addressing these targets. Summary New agents, alone or in combination, allow acting in complementary mechanisms offering a more profound effect on portal hypertension while simultaneously limiting disease progression and favoring regression of fibrosis and of cirrhosis. Major changes in treatment paradigms are anticipated.
Collapse
Affiliation(s)
- Eric Felli
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
- Department for BioMedical Research, Hepatology, University of Bern, 3012 Bern, Switzerland
| | - Yelidousi Nulan
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
- Department for BioMedical Research, Hepatology, University of Bern, 3012 Bern, Switzerland
| | - Sonia Selicean
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
- Department for BioMedical Research, Hepatology, University of Bern, 3012 Bern, Switzerland
| | - Cong Wang
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
- Department for BioMedical Research, Hepatology, University of Bern, 3012 Bern, Switzerland
| | - Jordi Gracia-Sancho
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
- Department for BioMedical Research, Hepatology, University of Bern, 3012 Bern, Switzerland
- Liver Vascular Biology Research Group, CIBEREHD, IDIBAPS Research Institute, 08036 Barcelona, Spain
| | - Jaume Bosch
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
2
|
Detsika MG, Theochari E, Palamaris K, Gakiopoulou H, Lianos EA. Effect of Heme Oxygenase-1 Depletion on Complement Regulatory Proteins Expression in the Rat. Antioxidants (Basel) 2022; 12:61. [PMID: 36670923 PMCID: PMC9854825 DOI: 10.3390/antiox12010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Heme oxygenase has been implicated in the regulation of various immune responses including complement activation. Using a transgenic rat model of HO-1 depletion, the present study assessed the effect of HO-1 absence on the expression of complement regulatory proteins: decay accelerating factor (DAF), CR1-related gene/protein Y (Crry) and CD59, which act to attenuate complement activation. Protein expression was assessed by immunohistochemistry in kidney, liver, lung and spleen tissues. DAF protein was reduced in all tissues retrieved from rats lacking HO-1 (Hmox1-/-) apart from spleen tissue sections. Crry protein was also reduced, but only in Hmox1-/- kidney and liver tissue. C3b staining was augmented in the kidney and spleen from Hmox1-/- rats, suggesting that the decrease of DAF and Crry was sufficient to increase C3b deposition. The observations support an important role of HO-1 as a regulator of the complement system.
Collapse
Affiliation(s)
- Maria G. Detsika
- GP Livanos and M Simou Laboratories, 1st Department of Critical Care Medicine & Pulmonary Services, Evangelismos Hospital, National and Kapodistrian University of Athens, 10675 Athens, Greece
| | - Eirini Theochari
- Department of Pathology, School of Medicine, University of Athens, 11527 Athens, Greece
| | - Kostas Palamaris
- Department of Pathology, School of Medicine, University of Athens, 11527 Athens, Greece
| | - Harikleia Gakiopoulou
- Department of Pathology, School of Medicine, University of Athens, 11527 Athens, Greece
| | - Elias A. Lianos
- Veterans Affairs Medical Center and Virginia Tech, Carilion School of Medicine, Salem, VA 24153, USA
| |
Collapse
|
3
|
Basiglio CL, Crocenzi FA, Sánchez Pozzi EJ, Roma MG. Oxidative Stress and Localization Status of Hepatocellular Transporters: Impact on Bile Secretion and Role of Signaling Pathways. Antioxid Redox Signal 2021; 35:808-831. [PMID: 34293961 DOI: 10.1089/ars.2021.0021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Significance: Most hepatopathies are primarily or secondarily cholestatic in nature. Oxidative stress (OS) is a frequent trait among them, and impairs the machinery to generate bile by triggering endocytic internalization of hepatocellular transporters, thus causing cholestasis. This is critical, since it leads to accelerated transporter degradation, which could explain the common post-transcriptional downregulation of transporter expression in human cholestatic diseases. Recent Advances: The mechanisms involved in OS-induced hepatocellular transporter internalization are being revealed. Filamentous actin (F-actin) cytoskeleton disorganization and/or detachment of crosslinking actin proteins that afford transporter stability have been characterized as causal factors. Activation of redox-sensitive signaling pathways leading to changes in phosphorylation status of these structures is involved, including Ca2+-mediated activation of "classical" and "novel" protein kinase C (PKC) isoforms or redox-signaling cascades downstream of NADPH oxidase. Critical Issues: Despite the well-known occurrence of hepatocellular transporter internalization in human hepatopathies, the cholestatic implications of this phenomenon have been overlooked. Accordingly, no specific treatment has been established in the clinical practice for its prevention/reversion. Future Directions: We need to improve our knowledge on the pro-oxidant triggering factors and the multiple signaling pathways that mediate this oxidative injury in each cholestatic hepatopathy, so as to envisage tailor-made therapeutic strategies for each case. Meanwhile, administration of antioxidants or heme oxygenase-1 induction to elevate the hepatocellular levels of the endogenous scavenger bilirubin are promising alternatives that need to be re-evaluated and implemented. They may complement current treatments in cholestasis aimed to enhance transcriptional carrier expression, by providing membrane stability to the newly synthesized carriers. Antioxid. Redox Signal. 35, 808-831.
Collapse
Affiliation(s)
- Cecilia L Basiglio
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, U.N.R., Rosario, Argentina
| | - Fernando A Crocenzi
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, U.N.R., Rosario, Argentina
| | - Enrique J Sánchez Pozzi
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, U.N.R., Rosario, Argentina
| | - Marcelo G Roma
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, U.N.R., Rosario, Argentina
| |
Collapse
|
4
|
Sabang RL, Abu-Hishmeh M, Bodin R, Epelbaum O. Impact of Liver Transplantation on Carbon Monoxide Production as Measured by Arterial Carboxyhemoglobin Levels in Cirrhotic Patients with and without Hepatopulmonary Syndrome. Ann Transplant 2021; 26:e932009. [PMID: 34518507 PMCID: PMC8449510 DOI: 10.12659/aot.932009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Hepatic dysfunction is associated with increased production of carbon monoxide. End-stage liver disease patients with hepatopulmonary syndrome (HPS) have been shown to have higher blood carbon monoxide levels than those without HPS. The impact of liver transplantation on blood carbon monoxide levels is currently unknown. We assessed the impact of liver transplantation on blood carbon monoxide and whether this is affected by HPS. MATERIAL AND METHODS Eligible liver transplant recipients had room air arterial blood gas testing performed before and after liver transplantation. The carboxyhemoglobin fraction was obtained from arterial co-oximetry and used as a surrogate for carboxyhemoglobin production. Mean arterial carboxyhemoglobin fraction before transplantation was compared to that after transplantation. Mean absolute and median relative pre- to post-transplant within-patient change in carboxyhemoglobin fraction was compared between those with and without HPS. RESULTS Thirty-nine transplanted cirrhotic patients were analyzed, of whom 14 (36%) met criteria for hepatopulmonary syndrome. The mean pre-transplant carboxyhemoglobin fraction was higher than the post-transplant fraction (2.6 vs 1.8, difference 0.8 [95% CI 0.4-1.2]; P value 0.0002). Of the 14 patients with HPS, 11 (79%) experienced a decrease in their carboxyhemoglobin fraction after liver transplantation; among the 25 patients without HPS, 16 (64%) experienced such a decrease (P=0.48). Neither the absolute nor relative within-patient pre- to post-transplant change in carboxyhemoglobin fraction was significantly different between patients with and without HPS. CONCLUSIONS Blood carbon monoxide levels decreased significantly in cirrhotic patients following liver transplantation, but HPS did not affect the magnitude of this change.
Collapse
Affiliation(s)
- Ralph Llewel Sabang
- Department of Internal Medicine, Westchester Medical Center, Valhalla, NY, USA
| | - Mohammad Abu-Hishmeh
- Department of Pulmonary, Critical Care and Sleep Medicine, Baystate Medical Center, Springfield, MA, USA
| | - Roxana Bodin
- Division of Gastroenterology and Transplant Hepatology, Westchester Medical Center, Valhalla, NY, USA
| | - Oleg Epelbaum
- Division of Pulmonary, Critical Care and Sleep Medicine, Westchester Medical Center, Valhalla, NY, USA
| |
Collapse
|
5
|
Liu PMF, de Carvalho ST, Fradico PF, Cazumbá MLB, Campos RGB, Simões E Silva AC. Hepatorenal syndrome in children: a review. Pediatr Nephrol 2021; 36:2203-2215. [PMID: 33001296 PMCID: PMC7527294 DOI: 10.1007/s00467-020-04762-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/01/2020] [Accepted: 09/05/2020] [Indexed: 02/07/2023]
Abstract
Hepatorenal syndrome (HRS) occurs in patients with cirrhosis or fulminant hepatic failure and is a kind of pre-renal failure due to intense reduction of kidney perfusion induced by severe hepatic injury. While other causes of pre-renal acute kidney injury (AKI) respond to fluid infusion, HRS does not. HRS incidence is 5% in children with chronic liver conditions before liver transplantation. Type 1 HRS is an acute and rapidly progressive form that often develops after a precipitating factor, including gastrointestinal bleeding or spontaneous bacterial peritonitis, while type 2 is considered a slowly progressive form of kidney failure that often occurs spontaneously in chronic ascites settings. HRS pathogenesis is multifactorial. Cirrhosis causes portal hypertension; therefore, stasis and release of vasodilator substances occur in the hepatic vascular bed, leading to vasodilatation of splanchnic arteries and systemic hypotension. Many mechanisms seem to work together to cause this imbalance: splanchnic vasodilatation; vasoactive mediators; hyperdynamic circulation states and subsequent cardiac dysfunction; neuro-hormonal mechanisms; changes in sympathetic nervous system, renin-angiotensin system, and vasopressin. In patients with AKI and cirrhosis, fluid expansion therapy needs to be initiated as soon as possible and nephrotoxic drugs discontinued. Once HRS is diagnosed, pharmacological treatment with vasoconstrictors, mainly terlipressin plus albumin, should be initiated. If there is no response, other options can include surgical venous shunts and kidney replacement therapy. In this regard, extracorporeal liver support can be a bridge for liver transplantation, which remains as the ideal treatment. Further studies are necessary to investigate early biomarkers and alternative treatments for HRS.
Collapse
Affiliation(s)
- Priscila Menezes Ferri Liu
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais, UFMG, Avenida Alfredo Balena, 190, 2nd floor, #281 room, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Sarah Tayná de Carvalho
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais, UFMG, Avenida Alfredo Balena, 190, 2nd floor, #281 room, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Pollyanna Faria Fradico
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais, UFMG, Avenida Alfredo Balena, 190, 2nd floor, #281 room, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Maria Luiza Barreto Cazumbá
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais, UFMG, Avenida Alfredo Balena, 190, 2nd floor, #281 room, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Ramon Gustavo Bernardino Campos
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais, UFMG, Avenida Alfredo Balena, 190, 2nd floor, #281 room, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Ana Cristina Simões E Silva
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais, UFMG, Avenida Alfredo Balena, 190, 2nd floor, #281 room, Belo Horizonte, Minas Gerais, 30130-100, Brazil.
| |
Collapse
|
6
|
Cao P, Zhang W, Kong X, Gao N, Zhao X, Xu R. Hyperhomocysteinemia-induced Nrf2/HO-1 pathway suppression aggravates cardiac remodeling of hypertensive rats. Biochem Biophys Res Commun 2021; 547:125-130. [PMID: 33610040 DOI: 10.1016/j.bbrc.2021.02.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 02/06/2021] [Indexed: 12/30/2022]
Abstract
ABJECTIVE Interaction of hypertension and hyperhomocysteinemia (HHcy) leads to enhanced cardiac remodeling in hypertensive heart disease. However, the mechanism of collagen accumulation and cardiac remodeling remains unclear. In this study, we attempted to evaluate the relationship between hypertension and HHcy in the context of cardiac remodeling and to explore its mechanism of action. METHODS Wistar Kyoto (WKY) and spontaneous hypertension rats (SHR) were randomly divided into four groups, namely WKY group, WKY + HHcy group, SHR group and SHR + HHcy group. We measured blood pressure (BP), plasma homocysteine (Hcy), serum superoxide dismutase (SOD) and serum malondialdehyde (MDA). We also examined cardiac histopathology and gene and protein expression levels of Nrf2 and HO-1. RESULTS Compared with the WKY group, myocardial interstitial and perivascular collagen deposition in the WKY + HHcy group, the SHR group and the SHR + HHcy group increased successively, indicating that cardiac remodeling gradually increased, and HHcy aggravated cardiac remodeling was more serious in hypertensive rats. SOD decreased gradually in the four groups, while MDA was on the contrary. WKY + HHcy and SHR + HHcy groups both suppressed Nrf2 and HO-1 expression and inhibited the translocation of Nrf2 from cytoplasm to nucleus compared with their control groups, and the SHR + HHcy group had a stronger inhibitory effect. CONCLUSION HHcy enhanced cardiac remodeling in rats by enhancing oxidative stress, suppressing the Nrf2/HO-1 pathway and Nrf2 nuclear transport, and this inhibitory effect was stronger in the context of hypertension.
Collapse
Affiliation(s)
- Ping Cao
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Geriatrics, Tai'an City Central Hospital, Taian, Shandong, China
| | - Wangmeng Zhang
- Department of Obstetrics, Tai'an City Central Hospital, Taian, Shandong, China
| | - Xue Kong
- Department of Radiology, Tai'an City Central Hospital, Taian, Shandong, China
| | - Ning Gao
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xuan Zhao
- Department of Cardiology, People's Hospital of Dongying, Dongying, Shandong, China
| | - Rui Xu
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
7
|
Barbosa J, Faria J, Garcez F, Leal S, Afonso LP, Nascimento AV, Moreira R, Queirós O, Carvalho F, Dinis-Oliveira RJ. Repeated Administration of Clinical Doses of Tramadol and Tapentadol Causes Hepato- and Nephrotoxic Effects in Wistar Rats. Pharmaceuticals (Basel) 2020; 13:149. [PMID: 32664348 PMCID: PMC7407499 DOI: 10.3390/ph13070149] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/18/2022] Open
Abstract
Tramadol and tapentadol are fully synthetic and extensively used analgesic opioids, presenting enhanced therapeutic and safety profiles as compared with their peers. However, reports of adverse reactions, intoxications and fatalities have been increasing. Information regarding the molecular, biochemical, and histological alterations underlying their toxicological potential is missing, particularly for tapentadol, owing to its more recent market authorization. Considering the paramount importance of liver and kidney for the metabolism and excretion of both opioids, these organs are especially susceptible to toxicological damage. In the present study, we aimed to characterize the putative hepatic and renal deleterious effects of repeated exposure to therapeutic doses of tramadol and tapentadol, using an in vivo animal model. Male Wistar rats were randomly divided into six experimental groups, composed of six animals each, which received daily single intraperitoneal injections of 10, 25 or 50 mg/kg tramadol or tapentadol (a low, standard analgesic dose, an intermediate dose and the maximum recommended daily dose, respectively). An additional control group was injected with normal saline. Following 14 consecutive days of administration, serum, urine and liver and kidney tissue samples were processed for biochemical, metabolic and histological analysis. Repeated administration of therapeutic doses of both opioids led to: (i) increased lipid and protein oxidation in liver and kidney, as well as to decreased total liver antioxidant capacity; (ii) decreased serum albumin, urea, butyrylcholinesterase and complement C3 and C4 levels, denoting liver synthesis impairment; (iii) elevated serum activity of liver enzymes, such as alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and γ-glutamyl transpeptidase, as well as lipid profile alterations, also reflecting hepatobiliary commitment; (iv) derangement of iron metabolism, as shown through increases in serum iron, ferritin, haptoglobin and heme oxygenase-1 levels. In turn, elevated serum cystatin C, decreased urine creatinine output and increased urine microalbumin levels were detected upon exposure to tapentadol only, while increased serum amylase and urine N-acetyl-β-D-glucosaminidase activities were observed for both opioids. Collectively, these results are compatible with kidney injury. Changes were also found in the expression levels of liver- and kidney-specific toxicity biomarker genes, upon exposure to tramadol and tapentadol, correlating well with alterations in lipid profile, iron metabolism and glomerular and tubular function. Histopathological analysis evidenced sinusoidal dilatation, microsteatosis, mononuclear cell infiltrates, glomerular and tubular disorganization, and increased Bowman's spaces. Although some findings are more pronounced upon tapentadol exposure, our study shows that, when compared with acute exposure, prolonged administration of both opioids smooths the differences between their toxicological effects, and that these occur at lower doses within the therapeutic range.
Collapse
Affiliation(s)
- Joana Barbosa
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
- UCIBIO, REQUIMTE—Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Juliana Faria
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
- UCIBIO, REQUIMTE—Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Fernanda Garcez
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
| | - Sandra Leal
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
- Department of Biomedicine, Unit of Anatomy, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- CINTESIS—Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
| | - Luís Pedro Afonso
- Department of Pathology, Portuguese Institute of Oncology of Porto, 4200-072 Porto, Portugal;
| | - Ana Vanessa Nascimento
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
| | - Roxana Moreira
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
| | - Odília Queirós
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
| | - Félix Carvalho
- UCIBIO, REQUIMTE—Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Ricardo Jorge Dinis-Oliveira
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
- UCIBIO, REQUIMTE—Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
8
|
Yuan Y, Naito H, Jia X, Kitamori K, Nakajima T. Combination of Hypertension Along with a High Fat and Cholesterol Diet Induces Severe Hepatic Inflammation in Rats via a Signaling Network Comprising NF-κB, MAPK, and Nrf2 Pathways. Nutrients 2017; 9:nu9091018. [PMID: 28906458 PMCID: PMC5622778 DOI: 10.3390/nu9091018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/29/2017] [Accepted: 09/11/2017] [Indexed: 02/07/2023] Open
Abstract
Populations with essential hypertension have a high risk of nonalcoholic steatohepatitis (NASH). In this study, we investigated the mechanism that underlies the progression of hypertension-associated NASH by comparing differences in the development of high fat and cholesterol (HFC) diet-induced NASH among three strains of rats, i.e., two hypertensive strains comprising spontaneously hypertensive rats and the stroke-prone spontaneously hypertensive 5/Dmcr, and the original Wistar Kyoto rats as the normotensive control. We investigated histopathological changes and molecular signals related to inflammation in the liver after feeding with the HFC diet for 8 weeks. The diet induced severe lobular inflammation and fibrosis in the livers of the hypertensive rats, whereas it only caused mild steatohepatitis in the normotensive rats. An increased activation of proinflammatory signaling (transforming growth factor-β1/mitogen-activated protein kinases pathway) was observed in the hypertensive strains fed with the HFC diet. In addition, the HFC diet suppressed the nuclear factor erythroid 2-related factor 2 pathway in the hypertensive rats and led to lower increases in the hepatic expression of heme oxygenase-1, which has anti-oxidative and anti-inflammatory activities. In conclusion, these signaling pathways might play crucial roles in the development of hypertension-associated NASH.
Collapse
Affiliation(s)
- Yuan Yuan
- College of Life and Health Sciences, Chubu University, 487-8501 Kasugai, Japan.
| | - Hisao Naito
- Department of Public Health, Fujita Health University School of Medicine, 470-1192 Toyoake, Japan.
| | - Xiaofang Jia
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 100050 Beijing, China.
| | - Kazuya Kitamori
- College of Human Life and Environment, Kinjo Gakuin University, 463-8521 Nagoya, Japan.
| | - Tamie Nakajima
- College of Life and Health Sciences, Chubu University, 487-8501 Kasugai, Japan.
| |
Collapse
|
9
|
Di Pascoli M, Sacerdoti D, Pontisso P, Angeli P, Bolognesi M. Molecular Mechanisms Leading to Splanchnic Vasodilation in Liver Cirrhosis. J Vasc Res 2017; 54:92-99. [PMID: 28402977 DOI: 10.1159/000462974] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/06/2017] [Indexed: 12/12/2022] Open
Abstract
In liver cirrhosis, portal hypertension is a consequence of enhanced intrahepatic vascular resistance and portal blood flow. Significant vasodilation in the arterial splanchnic district is crucial for an increase in portal flow. In this pathological condition, increased levels of circulating endogenous vasodilators, including nitric oxide, prostacyclin, carbon monoxide, epoxyeicosatrienoic acids, glucagon, endogenous cannabinoids, and adrenomedullin, and a decreased vascular response to vasoconstrictors are the main mechanisms underlying splanchnic vasodilation. In this review, the molecular pathways leading to splanchnic vasodilation will be discussed in detail.
Collapse
Affiliation(s)
- Marco Di Pascoli
- Unit of Internal Medicine and Hepatology (UIMH), Department of Medicine - DIMED, University of Padova, Padua, Italy
| | | | | | | | | |
Collapse
|
10
|
Qin J, He Y, Duan M, Luo M. Effects of Nuclear Factor-E2-related factor 2/Heme Oxygenase 1 on splanchnic hemodynamics in experimental cirrhosis with portal hypertension. Microvasc Res 2016; 111:12-19. [PMID: 28025064 DOI: 10.1016/j.mvr.2016.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 12/21/2016] [Accepted: 12/21/2016] [Indexed: 01/07/2023]
Abstract
OBJECTIVE We explored the effects of Nuclear Factor-E2-related factor 2 (Nrf2) and Heme Oxygenase 1 (HO-1) on splanchnic hemodynamics in portal hypertensive rats. METHODS Experimental cirrhosis with portal hypertension was induced by intraperitoneal injection of carbon tetrachloride. The expression of proteins was examined by immunoblotting. Hemodynamic studies were performed by radioactive microspheres. The vascular perfusion system was used to measure the contractile response of mesentery arterioles in rats. RESULTS Nrf2 expression in the nucleus and HO-1 expression in cytoplasm was significantly enhanced in portal hypertensive rats. Portal pressure, as well as regional blood flow, increased significantly in portal hypertension and can be blocked by tin protoporphyrin IX. The expression of endogenous nitric oxide synthase and vascular endothelial growth factors increased significantly compared to normal rats, while HO-1 inhibition decreased the expression of these proteins significantly. The contractile response of mesenteric arteries decreased in portal hypertension, but can be partially recovered through tin protoporphyrin IX treatment. CONCLUSIONS The expression of Nrf2/HO-1 increased in mesenteric arteries of portal hypertensive rats, which was related to oxidative stress. HO-1was involved in increased portal pressure and anomaly splanchnic hemodynamics in portal hypertensive rats.
Collapse
Affiliation(s)
- Jun Qin
- Department of General Surgery, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yue He
- Department of General Surgery, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ming Duan
- Department of General Surgery, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Meng Luo
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
11
|
Lee DS, Keo S, Cheng SK, Oh H, Kim YC. Protective effects of Cambodian medicinal plants on tert-butyl hydroperoxide-induced hepatotoxicity via Nrf2-mediated heme oxygenase-1. Mol Med Rep 2016; 15:451-459. [DOI: 10.3892/mmr.2016.6011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 09/13/2016] [Indexed: 11/06/2022] Open
|
12
|
Kaufmann KB, Gothwal M, Schallner N, Ulbrich F, Rücker H, Amslinger S, Goebel U. The anti-inflammatory effects of E-α-(p-methoxyphenyl)-2',3,4,4'-tetramethoxychalcone are mediated via HO-1 induction. Int Immunopharmacol 2016; 35:99-110. [PMID: 27044026 DOI: 10.1016/j.intimp.2016.03.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 03/12/2016] [Accepted: 03/15/2016] [Indexed: 10/24/2022]
Abstract
Inflammation plays a central role in the pathophysiology of many diseases. The inducible enzyme heme oxygenase-1 (HO-1) protects cells against inflammation and can be induced by electrophilic compounds like the chalcones (1,3-diphenylprop-2-enones) from the class of α,β-unsaturated carbonyl compounds. We hypothesized that the synthetic chalcone E-α-(p-methoxyphenyl)-2',3,4,4'-tetramethoxychalcone (E-α-p-OMe-C6H4-TMC) exerts anti-inflammatory effects in RAW264.7, Jurkat lymphocytes and HK-2 cells via HO-1 induction. RAW264.7 cells were treated with lipopolysaccharide prior to E-α-p-OMe-C6H4-TMC treatment. Subsequently, HO-1 protein induction and activity were analyzed, as well as expression of pro- and anti-inflammatory mediators, transcription factors and mitogen-activated protein kinases to evaluate the possible molecular mechanism. These results were confirmed in human cell lines (Jurkat T-lymphocytes and HK-2 epithelial cells). We found that the E-α-p-OMe-C6H4-TMC exerts significant anti-inflammatory effects in a dose dependent manner, showing no toxic effects in LPS-treated RAW264.7 macrophages. E-α-p-OMe-C6H4-TMC induced HO-1 and SOD-1 protein expression and HO-1 enzyme activity, reduced the upregulation of COX-2 and iNOS, while inducing the translocation of Nrf2. NF-κB activity was attenuated following E-α-p-OMe-C6H4-TMC treatment accompanied by the downregulation of proinflammatory cytokines IL-1β, IL-6 and MCP-1. Pretreatment with E-α-p-OMe-C6H4-TMC revealed significant changes in phosphorylation of ERK and p38, but not JNK. These anti-inflammatory effects of E-α-p-OMe-C6H4-TMC were approved in Jurkat and HK-2 cells, furthermore revealing a downregulation of IL-8 and IL-10. In conclusion, it is tempting to speculate about E-α-p-OMe-C6H4-TMC as a new and non-toxic agent, inducing HO-1 in cells. This opens up new opportunities regarding the development of therapeutic agents using beneficial effects of HO-1 and its products.
Collapse
Affiliation(s)
- Kai B Kaufmann
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Freiburg, Germany
| | - Monika Gothwal
- Department of Radiation Oncology, University Medical Center Freiburg, Germany
| | - Nils Schallner
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Freiburg, Germany
| | - Felix Ulbrich
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Freiburg, Germany
| | - Hannelore Rücker
- Institute of Organic Chemistry, University of Regensburg, Germany
| | - Sabine Amslinger
- Institute of Organic Chemistry, University of Regensburg, Germany.
| | - Ulrich Goebel
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Freiburg, Germany.
| |
Collapse
|
13
|
Fernandez M. Molecular pathophysiology of portal hypertension. Hepatology 2015; 61:1406-15. [PMID: 25092403 DOI: 10.1002/hep.27343] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 07/27/2014] [Indexed: 12/11/2022]
Abstract
Over the past two decades the advances in molecular cell biology have led to significant discoveries about the pathophysiology of portal hypertension (PHT). In particular, great progress has been made in the study of the molecular and cellular mechanisms that regulate the increased intrahepatic vascular resistance (IHVR) in cirrhosis. We now know that the increased IHVR is not irreversible, but that both the structural component caused by fibrosis and the active component caused by hepatic sinusoidal constriction can be, at least partially, reversed. Indeed, it is now apparent that the activation of perisinusoidal hepatic stellate cells, which is a key event mediating the augmented IHVR, is regulated by multiple signal transduction pathways that could be potential therapeutic targets for PHT treatment. Furthermore, the complexity of the molecular physiology of PHT can also be appreciated when one considers the complex signals capable of inducing vasodilatation and hyporesponsiveness to vasoconstrictors in the splanchnic vascular bed, with several vasoactive molecules, controlled at multiple levels, working together to mediate these circulatory abnormalities. Added to the complexity is the occurrence of pathological angiogenesis during the course of disease progression, with recent emphasis given to understanding its molecular machinery and regulation. Although much remains to be learned, with the current availability of reagents and new technologies and the exchange of concepts and data among investigators, our knowledge of the molecular basis of PHT will doubtless continue to grow, accelerating the transfer of knowledge generated by basic research to clinical practice. This will hopefully permit a better future for patients with PHT.
Collapse
Affiliation(s)
- Mercedes Fernandez
- Angiogenesis in Liver Disease Research Group, Institute of Biomedical Research IDIBAPS, CIBERehd, University of Barcelona, Barcelona, Spain
| |
Collapse
|
14
|
Ha DT, Oh J, Khoi NM, Dao TT, Dung LV, Do TNQ, Lee SM, Jang TS, Jeong GS, Na M. In vitro and in vivo hepatoprotective effect of ganodermanontriol against t-BHP-induced oxidative stress. JOURNAL OF ETHNOPHARMACOLOGY 2013; 150:875-885. [PMID: 24140584 DOI: 10.1016/j.jep.2013.09.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 09/09/2013] [Accepted: 09/11/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ganoderma lucidum (Fr.) Karst. (Ganodermataceae) is a mushroom which is used as a traditional remedy in the treatment of human diseases such as hepatitis, liver disorders, hypercholesterolemia, arthritis, bronchitis and tumorigenic diseases. This study targets the evaluation of hepatoprotective activity of ganodermanontriol, a sterol isolated from Ganoderma lucidum, and the investigation of its mechanism of action in Hepa1c1c7 and murine liver cells upon tert-butyl hydroperoxide (t-BHP)-induced inflammation. t-BHP was utilized to stimulate an anti-inflammatory reaction in the hepatic cell lines and murine hepatic tissue examined. Western blot and reverse transcription-quantitative polymerase chain reaction (RT-PCR) were used to estimate the expression of ganodermanontriol (GDT)-induced proteins, including heme oxidase-1 (HO-1) and mitogen-activated protein kinases (MAPKs) as well as the corresponding mRNA. Luciferase assays were conducted to evaluate the interaction between NF-E2-related factor-2 (Nrf-2), the antioxidant response element (ARE), and the promoter region of the HO-1 gene and subsequent gene expression. Biochemical markers for hepatotoxicity were monitored to assess whether GDT protected the cells from the t-BHP-mediated oxidative stimuli. RESULTS GDT induced HO-1 expression via the activation of Nrf-2 nuclear translocation and the subsequent transcription of the HO-1 gene in vitro and in vivo, which seemed to be regulated by phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) and p38 signaling pathways. GDT exhibited in vitro and in vivo hepatoprotective activity as determined by the lowered levels of hepatic enzymes and malondialdehydes and the elevated glutathione levels. CONCLUSIONS This study validates the ethnopharmacological application of Ganoderma lucidum as a treatment for hepatic disorders. GDT induced in vitro and in vivo anti-inflammatory activity in t-BHP-damaged hepatic cells through the expression of HO-1, and in which PI3K/Akt and p38 kinases are involved. Our study motivates further research in the exploration of potent hepatoprotective agents from Ganoderma lucidum.
Collapse
Affiliation(s)
- Do Thi Ha
- National Institute of Medicinal Materials (NIMM), 3B Quangtrung, Hoankiem, Hanoi, Vietnam; College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kobus K, Kopycinska J, Kozlowska-Wiechowska A, Urasinska E, Kempinska-Podhorodecka A, Haas TL, Milkiewicz P, Milkiewicz M. Angiogenesis within the duodenum of patients with cirrhosis is modulated by mechanosensitive Kruppel-like factor 2 and microRNA-126. Liver Int 2012; 32:1222-32. [PMID: 22574900 DOI: 10.1111/j.1478-3231.2012.02791.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 02/22/2012] [Indexed: 12/22/2022]
Abstract
BACKGROUND The mechanism involved in neovascularization in splanchnic circulation and the main trigger that induces angiogenesis in patients with cirrhosis are not fully recognized. AIMS To explore the involvement of flow sensitive lung Kruppel-like factor (KLF2), microRNA-126 (miR-126), angiopoietin-2 (Ang-2) and heme oxygenase-1 (HO-1) in modulation of vascular endothelial growth factor (VEGF) signalling that have a critical effect on growth of new blood vessels. METHODS Duodenal biopsies from 22 patients with cirrhosis and 10 controls were obtained during routine endoscopy. The process of angiogenesis was evaluated by a measurement of CD31 concentration, immunodetection of CD34 protein and estimation of capillary densities. Messenger RNA (mRNA) and protein expressions were analysed by real-time PCR, Western blot or ELISA respectively. RESULTS Markers of angiogenesis (both, CD31 and CD34) were significantly enhanced in cirrhotic patients. In comparison to healthy controls, levels of Ang-2 and KLF-2 mRNAs as well as Ang-2, KLF-2, HO-1, VEGF protein expressions were considerably increased. Levels of sCD163, a surrogate marker of portal hypertension, correlated with levels of Ang-2, (P = 0.021) and VEGF (P = 0.009). The expression of miR-126, a KLF2-mediated regulator of the VEGF signalling was enhanced in cirrhotic patients. CONCLUSIONS Our results demonstrate, for the first time in humans, that neovascularization is induced in duodenal tissue of patients with cirrhosis and proangiogenic factors such as KLF-2, Ang-2, miR-126 and VEGF can contribute to the angiogenesis induced by hemodynamic forces. Thus, cirrhosis-induced blood flow and pressure within splanchnic vessels may be important hemodynamic triggers that initiate the angiogenic signalling cascade.
Collapse
Affiliation(s)
- Karolina Kobus
- Medical Biology Laboratory, Pomeranian Medical University, Szczecin, Poland
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Tarquini R, Masini E, La Villa G, Mazzoccoli G, Mastroianni R, Romanelli RG, Vizzutti F, Arena U, Santosuosso U, Laffi G. Hepato-systemic gradient of carbon monoxide in cirrhosis. Eur J Intern Med 2012; 23:e14-8. [PMID: 22153542 DOI: 10.1016/j.ejim.2011.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 09/25/2011] [Accepted: 10/10/2011] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND AIMS Experimental data suggest that in liver cirrhosis splanchnic and systemic vasculature exhibit marked endothelial Carbon monoxide (CO) overproduction, while recent data demonstrated heme oxygenase (HO) hyperactivity in the liver of rats with cirrhosis. No data are so far available on CO levels in the hepatic veins of cirrhotic patients. We aimed at evaluating whether plasma CO levels differ between systemic (peripheral vein) and hepatic (hepatic vein) circulation in patients with viral cirrhosis with and without ascites. METHODS We enrolled 31 consecutive non-smoking in- or outpatients with liver cirrhosis. We measured wedge (occluded, WHVP) and free hepatic venous pressures (FHVP) and hepatic-vein pressure gradient (HVPG) was the calculated. Plasma level of NO and plasma CO concentration were determined both in peripheral vein and in the hepatic vein in cirrhotics. RESULTS In cirrhotic patients plasma CO levels were significantly higher in the hepatic vein (16.66±10.71 p.p.m.) than in the peripheral vein (11.71±7.00 p.p.m). Plasma NO levels were significantly higher in peripheral vein (97.02±21.11 μmol/ml) than in the hepatic vein (60.76±22.93 μmol/ml). CONCLUSIONS In patients with liver cirrhosis we documented a hepato-systemic CO gradient as inferred by the higher CO values in the hepatic vein than in the peripheral vein. In cirrhotic patients, CO and NO exhibit opposite behavior in the liver, while both molecules show increased values in the systemic circulation. It can be speculated that increased intra-hepatic CO levels might represent a counterbalancing response to reduced NO intra-hepatic levels in human liver cirrhosis.
Collapse
Affiliation(s)
- Roberto Tarquini
- Department of Internal Medicine, University of Florence, School of Medicine, 50134 Florence, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Bolognesi M, Zampieri F, Di Pascoli M, Verardo A, Turato C, Calabrese F, Lunardi F, Pontisso P, Angeli P, Merkel C, Gatta A, Sacerdoti D. Increased myoendothelial gap junctions mediate the enhanced response to epoxyeicosatrienoic acid and acetylcholine in mesenteric arterial vessels of cirrhotic rats. Liver Int 2011; 31:881-90. [PMID: 21645220 DOI: 10.1111/j.1478-3231.2011.02509.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Cirrhotic portal hypertension is characterized by mesenteric arterial vasodilation and hyporeactivity to vasoconstrictors. AIM We evaluated the role of epoxyeicosatrienoic acid (EET) and of myoendothelial gap junctions (GJ) in the haemodynamic alterations of experimental cirrhosis. METHODS Thirty-five control rats and 35 rats with carbon tetrachloride (CCl(4))-induced cirrhosis were studied. Small resistance mesenteric arteries (diameter <350 μm) were connected to a pressure servo controller in a video-monitored perfusion system. Concentration-response curves to acetylcholine (ACh) were evaluated in mesenteric arteries pre-incubated with indomethacin, N(G)-nitro-L-arginine-methyl-ester and 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one before and after the epoxygenase inhibitor miconazole or 18α-glycyrrhetinic acid (18α-GA) (GJ inhibitor). EC(50) was calculated. Concentration-response curves to 11,12-EET were also evaluated. mRNA and protein expression of connexins (Cxs) in the mesenteric arteries was evaluated by real-time PCR and immunohistochemistry. RESULTS The ACh response was increased in cirrhotic rats (EC(50): -6.55±0.10 vs. -6.01±0.10 log[M]; P<0.01) and was blunted by miconazole only in cirrhotic animals. 18α-GA blunted the response to ACh more in cirrhotic than that in control rats (P<0.05). Concentration-response curves to 11,12-EET showed an increased endothelium-dependent vasodilating response in cirrhotic rats (P<0.05); the BK(Ca) inhibitor Iberiotoxin (25 nM) blocked the response in normal rats but not in cirrhotic rats, while 18α-GA blunted the response in cirrhotic rats but not in control rats. An increased mRNA and protein expression of Cx40 and Cx43 in cirrhotic arteries was detected (P<0.05). CONCLUSIONS The increased nitric oxide/PGI(2)-independent vasodilation of mesenteric arterial circulation in cirrhosis is because of, at least in part, hyperreactivity to 11,12-EET through an increased expression of myoendothelial GJs.
Collapse
Affiliation(s)
- Massimo Bolognesi
- Department of Clinical and Experimental Medicine, University of Padua, Padua, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Chen WG, Zheng Y, Song LX, Liu WG, Li WJ, Liu QH, Zhang N, Qi CH. Endogenous hydrogen sulfide attenuates portal hypertension in rats with experimental hepatic cirrhosis. Shijie Huaren Xiaohua Zazhi 2011; 19:467-471. [DOI: 10.11569/wcjd.v19.i5.467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of endogenous hydrogen sulfide (H2S) on portal vein pressure in rats with experimental hepatic cirrhosis-induced portal hypertension and to explore mechanisms involved.
METHODS: Forty Sprague-Dawley rats were randomly and equally divided into control group, cirrhosis group, sodium hydrogen sulfide (NaHS) group, L-arginine methyl ester (L-NAME) plus zinc protoporphyrin (ZnPP) group, and NaHS plus L-NAME plus ZnPP group. After treatment, portal vein pressure and the levels of H2S, NO, and CO in portal vein blood were measured, and the expression of cystathionine-γ-lyase (CSE), nitric oxide synthase (NOS), and heme oxygenase (HO-l) in liver tissue was determined by Western blot.
RESULTS: Compared with the control group, portal pressure was significantly elevated (all P < 0.05) and the levels of plasma H2S, NO, CO and hepatic CSE, iNOS, and HO-1 showed statistically significant differences in the other groups (H2S: 134.49 µmol/L ± 12.25 µmol/L, 151.19 µmol/L ± 8.75 µmol/L, 160.82 µmol/L ± 6.79 µmol/L, 170.58 µmol/L ± 4.38 µmol/L vs 180.33 µmol/L ± 11.71 µmol/L; NO: 160.12 µmol/L ± 4.18 µmol/L, 129.25 µmol/L ± 3.09 µmol/L, 100.24 µmol/L ± 3.80 µmol/L, 90.23 µmol/L ± 2.87 µmol/L vs 81.11 µmol/L ± 2.91 µmol/L; CO: 111.12 µmol/L ± 2.25 µmol/L, 100.43 µmol/L ± 1.42 µmol/L, 83.72 µmol/L ± 1.78 µmol/L, 77.58 µmol/L ± 8.17 µmol/L vs 70.51 µmol/L ± 3.09 µmol/L; CSE: 121.72 ± 1.61, 150.26 ± 1.04, 142.79 ± 1.13, 157.28 ± 0.90 vs 159.30 ± 1.37; HO-1: 155.79 ± 1.29, 149.89 ± 1.63, 139.88 ± 1.73, 135.49 ± 1.21 vs 125.44 ± 0.93; iNOS: 165.69 ± 1.17, 160.68 ± 1.28, 150.66 ± 1.42, 145.55 ± 1.04 vs 135.22 ± 0.54, all P < 0.05).
CONCLUSION: Endogenous H2S/CSE can regulate portal hypertension in rats with experimental hepatic cirrhosis perhaps via mechanisms associated with the changes in the NO/NOS and CO/HO-1 pathways.
Collapse
|
19
|
Van Landeghem L, Laleman W, Vander Elst I, Zeegers M, van Pelt J, Cassiman D, Nevens F. Carbon monoxide produced by intrasinusoidally located haem-oxygenase-1 regulates the vascular tone in cirrhotic rat liver. Liver Int 2009; 29:650-60. [PMID: 18795901 DOI: 10.1111/j.1478-3231.2008.01857.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND/OBJECTIVE Carbon monoxide (CO) produced by haem-oxygenase isoforms (HO-1 & HO-2) is involved in the regulation of systemic vascular tone. We aimed to elucidate the vasoregulatory role of CO in the microcirculation in normal and thioacetamide cirrhotic rat livers. METHODS Haem-oxygenase expression was examined by Western blot. Total HO enzymatic activity was measured spectrophotometrically. Sensitivity of hepatic stellate cells (HSCs) to CO-mediated relaxation was studied by a stress-relaxed-collagen-lattice model. To define the relative role of CO, the CO-releasing molecule CORM-2, the HO-inhibitor zinc protoporphyrin-IX and the HO-1 inducer hemin were added to an in situ liver perfusion set-up. The topography of vasoactive CO production was evaluated by applying different CO- and nitric oxide-trapping reagents in the liver perfusion set-up and by immunohistochemistry. RESULTS Western blot showed decreased expression of both HO isoenzymes (P<0.036 for HO-1; P<0.001 for HO-2) in cirrhotic vs normal rat livers, confirmed by the HO-activity assay (P=0.004). HSCs relaxed on exposure to CORM-2 (P=0.013). The increased intrahepatic vascular resistance (IHVR) of cirrhotic rats was attenuated by perfusion with CORM-2 (P=0.016) and pretreatment with hemin (P<0.001). Inhibition of HO caused a dose-related increase in IHVR in normal and cirrhotic liver. In normal liver, the haemodynamically relevant CO production occurred extrasinusoidally, while intrasinusoidally HO-1 predominantly regulated the microcirculation in cirrhotic livers. CONCLUSION We demonstrate a role for CO and HO in the regulation of normal and cirrhotic microcirculation. These findings are of importance in the pathophysiology of portal hypertension and establish CO/HO as novel treatment targets.
Collapse
Affiliation(s)
- Lien Van Landeghem
- Department of Hepatology, University Hospital Gasthuisberg, KU Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
20
|
Hower V, Mendes P, Torti FM, Laubenbacher R, Akman S, Shulaev V, Torti SV. A general map of iron metabolism and tissue-specific subnetworks. MOLECULAR BIOSYSTEMS 2009; 5:422-43. [PMID: 19381358 PMCID: PMC2680238 DOI: 10.1039/b816714c] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Iron is required for survival of mammalian cells. Recently, understanding of iron metabolism and trafficking has increased dramatically, revealing a complex, interacting network largely unknown just a few years ago. This provides an excellent model for systems biology development and analysis. The first step in such an analysis is the construction of a structural network of iron metabolism, which we present here. This network was created using CellDesigner version 3.5.2 and includes reactions occurring in mammalian cells of numerous tissue types. The iron metabolic network contains 151 chemical species and 107 reactions and transport steps. Starting from this general model, we construct iron networks for specific tissues and cells that are fundamental to maintaining body iron homeostasis. We include subnetworks for cells of the intestine and liver, tissues important in iron uptake and storage, respectively, as well as the reticulocyte and macrophage, key cells in iron utilization and recycling. The addition of kinetic information to our structural network will permit the simulation of iron metabolism in different tissues as well as in health and disease.
Collapse
Affiliation(s)
- Valerie Hower
- Department of Cancer Biology, Wake Forest University School of Medicine, Medical Center Blvd, Winston Salem, NC 27157, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Increased plasma carbon monoxide in patients with viral cirrhosis and hyperdynamic circulation. Am J Gastroenterol 2009; 104:891-7. [PMID: 19277027 DOI: 10.1038/ajg.2009.2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Our aim was to measure plasma carbon monoxide (CO) in patients with liver cirrhosis and portal hypertension. METHODS In 36 cirrhotic patients (24 with ascites) and 9 healthy volunteers, we evaluated CO plasma levels and systemic hemodynamics (using ultra-trace gas chromatography and echocardiography, respectively). Heme oxygenase (HO) activity and expression were measured in isolated polymorphonuclear (PMN) cells. RESULTS Plasma CO level (mean+/-s.d.) was 5.81+/-1.31 p.p.m. in healthy subjects (HS), significantly higher in non-ascitic patients (16.24+/-4.61 p.p.m., P<0.01), and even more high in ascitic patients (28.50+/-7.27 p.p.m., P<0.01 vs. the other two groups). HO activity in PMN cells was significantly greater in patients than in HS, with the highest levels being observed in patients with ascites. Western blot analysis showed enhanced expression of HO-1, but not HO-2. In the whole series of cirrhotic patients, plasma CO levels directly correlated with cardiac output, and inversely with systemic vascular resistance and mean arterial pressure. CONCLUSIONS The HO/CO system is activated in patients with liver cirrhosis. This could contribute to the hyperdynamic circulatory syndrome observed in this condition.
Collapse
|
22
|
Mejias M, Garcia-Pras E, Tiani C, Miquel R, Bosch J, Fernandez M. Beneficial effects of sorafenib on splanchnic, intrahepatic, and portocollateral circulations in portal hypertensive and cirrhotic rats. Hepatology 2009; 49:1245-56. [PMID: 19137587 DOI: 10.1002/hep.22758] [Citation(s) in RCA: 246] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UNLABELLED Portal hypertension, the most important complication in patients with cirrhosis of the liver, is a serious and life-threatening disease for which there are few therapeutic options. Because angiogenesis is a pathological hallmark of portal hypertension, the goal of this study was to determine the effects of sorafenib-a potent inhibitor of proangiogenic vascular endothelial growth factor receptor 2 (VEGFR-2), platelet-derived growth factor receptor beta (PDGFR-beta), and Raf kinases-on splanchnic, intrahepatic, systemic, and portosystemic collateral circulations in two different experimental models of portal hypertension: rats with prehepatic portal hypertension induced by partial portal vein ligation and rats with intrahepatic portal hypertension and secondary biliary cirrhosis induced by bile duct ligation. Such a comprehensive approach is necessary for any translational research directed toward defining the efficacy and potential clinical application of new therapeutic agents. Sorafenib administered orally once a day for 2 weeks in experimental models of portal hypertension and cirrhosis effectively inhibited VEGF, PDGF, and Raf signaling pathways, and produced several protective effects by inducing an approximately 80% decrease in splanchnic neovascularization and a marked attenuation of hyperdynamic splanchnic and systemic circulations, as well as a significant 18% decrease in the extent of portosystemic collaterals. In cirrhotic rats, sorafenib treatment also resulted in a 25% reduction in portal pressure, as well as a remarkable improvement in liver damage and intrahepatic fibrosis, inflammation, and angiogenesis. Notably, beneficial effects of sorafenib against tissue damage and inflammation were also observed in splanchnic organs. CONCLUSION Taking into account the limitations of translating animal study results into humans, we believe that our findings will stimulate consideration of sorafenib as an effective therapeutic agent in patients suffering from advanced portal hypertension.
Collapse
Affiliation(s)
- Marc Mejias
- Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clinic, Ciberehd, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
23
|
Sun YJ, Duan ZJ, Wang F. Effect of hemeoxygenase-1 inhibition on immune hepatic fibrosis in rats. Shijie Huaren Xiaohua Zazhi 2009; 17:560-565. [DOI: 10.11569/wcjd.v17.i6.560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To observe effects of hemeoxygenase-1 (HO-1) on immune hepatic-fibrosis in rats.
METHODS: The hepatic fibrosis model was induced by human serum albumin (HSA). Znpp group was administrated ZnPP intraperitoneally at attacking stage. The fibrous hyperplasia degree were observed by HE staining, VG staining and Foot's reticular fiber staining. The expressions of HO-1 protein in liver were measured by immunohistochemistry and Western blot.
RESULTS: The positive scores of immunohistochemistry in F group and Zn group were significantly higher than that of N group (4.00 ± 1.31, 2.33 ± 0.78 vs 0.80 ± 0.79, both P < 0.01). And the positive scores in F group was higher than Zn group (4.00 ± 1.31 vs 2.33 ± 0.78, P < 0.05). The proliferation of fibroblast, typeⅠand typeⅢ collagen was more apparent in F group than in N group (P < 0.01). However, proliferation of fibroblast, typeⅠand type Ⅲ collagen were even more apparent in Zn group than in F group (P < 0.01).
CONCLUSION: The expression of HO-1 protein increases significantly in immune hepatic fibrosis rat models, which may have a protective effect on liver.
Collapse
|
24
|
Tiani C, Garcia-Pras E, Mejias M, de Gottardi A, Berzigotti A, Bosch J, Fernandez M. Apelin signaling modulates splanchnic angiogenesis and portosystemic collateral vessel formation in rats with portal hypertension. J Hepatol 2009; 50:296-305. [PMID: 19070926 DOI: 10.1016/j.jhep.2008.09.019] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 09/19/2008] [Accepted: 09/23/2008] [Indexed: 01/22/2023]
Abstract
BACKGROUND/AIMS Angiogenesis is a pathological hallmark of portal hypertension. Although VEGF is considered to be the most important proangiogenic factor in neoangiogenesis, this process requires the coordinated action of a variety of factors. Identification of novel molecules involved in angiogenesis is highly relevant, since they may represent potential new targets to suppress pathological neovascularization in angiogenesis-related diseases like portal hypertension. The apelin/APJ signaling pathway plays a crucial role in angiogenesis. Therefore, we determined whether the apelin system modulates angiogenesis-driven processes in portal hypertension. METHODS Partial portal vein-ligated rats were treated with the APJ antagonist F13A for seven days. Splanchnic neovascularization and expression of angiogenesis mediators (Western blotting) was determined. Portosystemic collateral formation (microspheres), and hemodynamic parameters (flowmetry) were also assessed. RESULTS Apelin and its receptor APJ were overexpressed in the splanchnic vasculature of portal hypertensive rats. F13A effectively decreased, by 52%, splanchnic neovascularization and expression of proangiogenic factors VEGF, PDGF and angiopoietin-2 in portal hypertensive rats. F13A also reduced, by 35%, the formation of portosystemic collateral vessels. CONCLUSIONS This study provides the first experimental evidence showing that the apelin/APJ system contributes to portosystemic collateralization and splanchnic neovascularization in portal hypertensive rats, presenting a potential novel therapeutic target for portal hypertension.
Collapse
Affiliation(s)
- Carolina Tiani
- Hepatic Hemodynamic Laboratory, Liver Unit, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Hospital Clinic, Ciberehd, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
25
|
Colle I, Geerts AM, Van Steenkiste C, Van Vlierberghe H. Hemodynamic changes in splanchnic blood vessels in portal hypertension. Anat Rec (Hoboken) 2008; 291:699-713. [PMID: 18484617 DOI: 10.1002/ar.20667] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Portal hypertension (PHT) is associated with a hyperdynamic state characterized by a high cardiac output, increased total blood volume, and a decreased splanchnic vascular resistance. This splanchnic vasodilation is a result of an important increase in local and systemic vasodilators (nitric oxide, carbon monoxide, prostacyclin, endocannabinoids, and so on), the presence of a splanchnic vascular hyporesponsiveness toward vasoconstrictors, and the development of mesenteric angiogenesis. All these mechanisms will be discussed in this review. To decompress the portal circulation in PHT, portosystemic collaterals will develop. The presence of these portosystemic shunts are responsible for major complications of PHT, namely bleeding from gastrointestinal varices, encephalopathy, and sepsis. Until recently, it was accepted that the formation of collaterals was due to opening of preexisting vascular channels, however, recent data suggest also the role of vascular remodeling and angiogenesis. These points are also discussed in detail.
Collapse
Affiliation(s)
- Isabelle Colle
- Department of Hepatology and Gastroenterology, Ghent University Hospital, Ghent, Belgium.
| | | | | | | |
Collapse
|
26
|
Reynaert H, Urbain D, Geerts A. Regulation of sinusoidal perfusion in portal hypertension. Anat Rec (Hoboken) 2008; 291:693-8. [PMID: 18484616 DOI: 10.1002/ar.20669] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Portal hypertension, a major complication of cirrhosis, is caused by both increased portal blood flow and augmented intrahepatic vascular resistance. Even though the latter is primarily caused by anatomical changes, it has become clear that dynamic factors contribute to the increased hepatic vascular resistance. The hepatic sinusoid is the narrowest vascular structure within the liver and is the principal site of blood flow regulation. The anatomical location of hepatic stellate cells, which embrace the sinusoids, provides a favorable arrangement for sinusoidal constriction, and for control of sinusoidal vascular tone and blood flow. Hepatic stellate cells possess the essential contractile apparatus for cell contraction and relaxation. Moreover, the mechanisms of stellate cell contraction are better understood, and many substances which influence contractility have been identified, providing a rationale and opportunity for targeting these cells in the treatment of portal hypertension in cirrhosis.
Collapse
Affiliation(s)
- Hendrik Reynaert
- Department of Cell Biology, Vrije Universiteit Brussel, Brussel, Brussels, Belgium.
| | | | | |
Collapse
|
27
|
Sanyal AJ, Bosch J, Blei A, Arroyo V. Portal hypertension and its complications. Gastroenterology 2008; 134:1715-28. [PMID: 18471549 DOI: 10.1053/j.gastro.2008.03.007] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 03/04/2008] [Accepted: 03/06/2008] [Indexed: 12/12/2022]
Affiliation(s)
- Arun J Sanyal
- Division Of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA.
| | | | | | | |
Collapse
|
28
|
Duan ZJ, Liu J, Zhao G, Yang D, Li LL. Research progress in the relationship between HO-CO pathway and haemodynamic variation of cirrhotic portal hypertension. Shijie Huaren Xiaohua Zazhi 2008; 16:874-878. [DOI: 10.11569/wcjd.v16.i8.874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hyperkinetic circulation may present in patients with cirrhotic portal hypertension. Some papers about hemeoxygenase/endogenous carbon monoxide as HO-CO pathway, which significantly affects the regulation of blood vessel and correlates closely with the persistence of portal hypertension, variation of hepatic microcirculation and hyperkinetic circulatory state in cirrhotic portal hypertension, were published. This article gives a brief overview on the above respects in three parts, which were haemodynamic variation of cirrhotic portal hypertension, biologic activity of HO-CO pathway and their correlations.
Collapse
|
29
|
Mejias M, Garcia-Pras E, Tiani C, Bosch J, Fernandez M. The somatostatin analogue octreotide inhibits angiogenesis in the earliest, but not in advanced, stages of portal hypertension in rats. J Cell Mol Med 2008; 12:1690-9. [PMID: 18194463 PMCID: PMC3918085 DOI: 10.1111/j.1582-4934.2008.00218.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: Angiogenesis is an important determinant of the pathophysiology of portal hypertension contributing to the formation of portosystemic collateral vessels and the hyperdynamic splanchnic circulation associated to this syndrome. Somatostatin and its analogues, like octreotide, have been shown to be powerful inhibitors of experimental angiogenesis. Aim: To determine whether octreotide has angioinhibitory effects in portal hypertensive rats. Methods: Partial portal vein-ligated (PPVL) rats were treated with octreotide or vehicle during 4 or 7 days. Splanchnic neovascularization and VEGF expression were determined by histological analysis and western blotting. Expression of the somatostatin receptor subtype 2 (SSTR2), which mediates the anti-angiogenic effects of octreotide, was also analyzed. Formation of portosystemic collaterals (radioactive microspheres) and hemodynamic parameters were also measured. Results: Octreotide treatment during 4 days markedly and significantly decreased splanchnic neovascularization, VEGF expression by 63% and portal pressure by 15%, whereas portosystemic collateralization and splanchnic blood flow were not modified. After 1 week of octreotide injection, portal pressure was reduced by 20%, but inhibition of angiogenesis escaped from octreotide therapy, a phenomenon that could be related to the finding that expression of SSTR2 receptor decreased progressively (up to 78% reduction) during the evolution of portal hypertension. Conclusion: This study provides the first experimental evidence showing that octreotide may be an effective anti-angiogenic therapy early after induction of portal hypertension, but not in advanced stages most likely due to SSTR2 down-regulation during the progression of portal hypertension in rats. These findings shed light on new mechanisms of action of octreotide in portal hypertension.
Collapse
Affiliation(s)
- Marc Mejias
- Hepatic Hemodynamic Laboratory, Liver Unit, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | | | | |
Collapse
|
30
|
Abstract
Despite modern practices in critical care medicine, sepsis or systemic inflammatory response syndrome remains a leading cause of morbidity and mortality in the intensive care unit. Thus, the need to identify new therapeutic tools for the treatment of sepsis is urgent. In this context, carbon monoxide has become a promising therapeutic molecule that can potentially prevent uncontrolled inflammation in sepsis. In humans, carbon monoxide arises endogenously from the degradation of heme by heme oxygenase enzymes. Both endogenously synthesized and exogenously applied carbon monoxide can exert antiinflammatory and antiapoptotic effects in cells and tissues. Based on these properties, carbon monoxide, when applied at low concentration, conferred protection in a variety of cellular and rodent models of sepsis, and furthermore reduced morbidity and mortality in vivo. Therefore, application of carbon monoxide may have a major impact on the future of sepsis treatment. This review summarizes evidence for salutary effects of carbon monoxide in sepsis of various organs, including lung, heart, kidney, liver, and intestine, and discusses the potential translation of the data into human clinical trials.
Collapse
Affiliation(s)
- Alexander Hoetzel
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, The University of Pittsburgh School of Medicine, MUH 628 NW, 3459 Fifth Ave, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | |
Collapse
|
31
|
The molecules: mechanisms of arterial vasodilatation observed in the splanchnic and systemic circulation in portal hypertension. J Clin Gastroenterol 2007; 41 Suppl 3:S288-94. [PMID: 17975478 DOI: 10.1097/mcg.0b013e3181468b4c] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A hyperdynamic splanchnic and systemic circulation is typical of cirrhotic patients and has been observed in all experimental forms of portal hypertension. The hyperdynamic circulation is most likely initiated by arterial vasodilatation, leading to central hypovolemia, sodium retention, and an increased intravascular volume. Arterial vasodilatation is regulated by a complex interplay of various vasodilator molecules and factors that influence the production of those vasodilator molecules. Nitric oxide (NO) has been recognized as the most important vasodilator molecule that mediates the excessive arterial vasodilatation observed in portal hypertension. The aims of this review are (1) to categorize NO synthase isoforms involved in NO overproduction; (2) to explain the mechanisms of endothelial NO synthase up-regulation; and (3) to summarize other molecules involved in the arterial vasodilatation.
Collapse
|
32
|
Gatta A, Bolognesi M, Merkel C. Vasoactive factors and hemodynamic mechanisms in the pathophysiology of portal hypertension in cirrhosis. Mol Aspects Med 2007; 29:119-29. [PMID: 18036654 DOI: 10.1016/j.mam.2007.09.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 09/28/2007] [Indexed: 02/08/2023]
Abstract
Portal hypertension is primarily caused by the increase in resistance to portal outflow and secondly by an increase in splanchnic blood flow, which worsens and maintains the increased portal pressure. Increased portal inflow plays a role in the hyperdynamic circulatory syndrome, a characteristic feature of portal hypertensive patients. Almost all the known vasoactive systems/substances are activated in portal hypertension, but most authors stress the pathogenetic role of endothelial factors, such as COX-derivatives, nitric oxide, carbon monoxide. Endothelial dysfunction is differentially involved in different vascular beds and consists in alteration in response both to vasodilators and to vasoconstrictors. Understanding the pathogenesis of portal hypertension could be of great utility in preventing and curing the complications of portal hypertension, such as esophageal varices, hepatic encephalopathy, ascites.
Collapse
Affiliation(s)
- Angelo Gatta
- Department of Clinical and Experimental Medicine, University of Padova, Via Giustiniani 2, 35128 Padova, Italy.
| | | | | |
Collapse
|
33
|
Geerts AM, Colle I. Angiogenesis in portal hypertension: involvement in increased splanchnic blood flow and collaterals? Acta Clin Belg 2007; 62:271-5. [PMID: 18229459 DOI: 10.1179/acb.2007.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Wen F, Brown KE, Britigan BE, Schmidt WN. Hepatitis C core protein inhibits induction of heme oxygenase-1 and sensitizes hepatocytes to cytotoxicity. Cell Biol Toxicol 2007; 24:175-88. [PMID: 17721824 DOI: 10.1007/s10565-007-9027-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Accepted: 06/07/2007] [Indexed: 12/18/2022]
Abstract
Hepatitis C virus (HCV) core protein is a transcriptional modifier whose expression is associated with increased levels of prooxidants in hepatocytes in vivo and in vitro. We previously reported that HCV-infected liver biopsies and core protein-expressing hepatocytes show diminished levels of heme oxygenase-1 (HO-1), which is an important oxidative defense enzyme. The objective of these studies was to test the hypothesis that the expression of core protein sensitizes hepatocytes to toxic injury and inhibits the induction of HO-1 in response to stress. The effects of core protein were tested in two different human hepatocyte cell lines, HepG2 and Huh7, which show increased prooxidative activity and cytotoxicity after treatment with heme, heavy metals, and peroxides compared to control cells. HO-1 is upregulated in response to these treatments in control cells, while the induction is attenuated in core protein-expressing cells. The effects of core protein on HO-1 expression are not accounted for by differences in HO-1 mRNA turnover or by the known effects of core protein on cellular proliferation. Collectively, these data suggest that HCV core protein may contribute to hepatocellular injury by increasing both steady-state levels of prooxidants and the susceptibility of hepatocytes to damage by impairing their response to other sources of oxidative stress.
Collapse
Affiliation(s)
- Feng Wen
- Department of Internal Medicine, Roy G and Lucille A Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
35
|
Abstract
Endothelial dysfunction is regarded as an early key event in multiple diseases. The assessment of vascular nitric oxide (NO) level is an indicative of endothelial dysfunction. In liver cirrhosis, on one hand, endothelial dysfunction is known as impaired endothelium-dependent relaxation in the liver microcirculation and contributes to increased intra-hepatic vascular resistance, leading to portal hypertension. On the other, increased production of vasodilator molecules mainly NO contributes to increased endothelium-dependent relaxation in the arteries of the systemic and splanchnic circulation. The aims of this review are to summarize and discuss: (1) unique characteristics of sinusoidal endothelial cell (SECs) and SEC dysfunctions in cirrhosis, and (2) endothelial dysfunctions in the arterial splanchnic and systemic circulation in cirrhosis with portal hypertension.
Collapse
Affiliation(s)
- Yasuko Iwakiri
- Hepatic Hemodynamic Laboratory, VA Connecticut Healthcare System, West Haven, CT, USA
| | | |
Collapse
|
36
|
Abstract
Carbon monoxide (CO) is much more than just a toxic gas. Carbon monoxide is produced endogenously by the enzyme heme oxygenase and has important functions under physiological and pathophysiological conditions. Recent studies suggested antioxidative, anti-inflammatory, antiproliferative, anti-apoptotic, and vasodilating characteristics. Regarding clinically-relevant diseases in anesthesiology and critical care medicine, such as adult respiratory distress syndrome (ARDS), sepsis, or during organ transplantation, cytoprotective properties have been demonstrated by low-dose CO in experimental models. In view of a potential CO application in future human studies, this review discusses what is known to date about CO as it relates to functional, protective and toxic aspects.
Collapse
Affiliation(s)
- A Hoetzel
- Department of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, W640 Montefiore University Hospital, 3459 Fifth Avenue, Pittsburgh PA 15213, USA.
| | | |
Collapse
|
37
|
Ekse S, Clapp LH, Revhaug A, Ytrebø LM. Endothelium-derived hyperpolarization factor (EDHF) is up-regulated in a pig model of acute liver failure. Scand J Gastroenterol 2007; 42:356-65. [PMID: 17354116 DOI: 10.1080/00365520600930636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Acute liver failure (ALF) is hemodynamically characterized by hyperdynamic circulation, but the pathophysiologic mechanisms underlying these disturbances are not known. The purposes of the present experiments were: to study systemic and peripheral hemodynamics in vivo, to measure changes in vascular reactivity in vitro, and to determine the role of endothelium-dependent vasodilator pathways in a well-validated porcine model of ALF. METHODS Landrace pigs (24-29 kg) were allocated to sham operation (n=8) or ALF induced by hepatic devascularization (n=9). Systemic and regional hemodynamics were monitored. Femoral artery rings were prepared for isometric tension recordings 8 h after ALF induction. Contractile responses to phenylephrine were assessed in ring segments of endothelium-intact femoral arteries in the absence or presence of inhibitors of endothelium-derived hyperpolarizing factor, nitric oxide synthase, cyclooxygenase and heme oxygenase pathways. RESULTS Pigs with ALF developed a hyperdynamic circulation. Cardiac index increased (PGT<0.001), while mean arterial pressure (PGT=0.012) and systemic vascular resistance decreased (PGT<0.001) in this group. Femoral artery blood flow decreased in controls, while it remained unchanged in ALF (PGT=0.010). Accordingly, vascular resistance across the hind leg was significantly decreased (PGT<0.001) in ALF. The combination of Ca2+-activated potassium channel inhibitors charybdotoxin and apamin, which block the release of endothelium-derived hyperpolarizing factor, increased the contraction force (ANOVA, PGT=0.05) and Emax (P=0.01) to phenylephrine in ALF. In contrast, inhibitors of nitric oxide synthase, cyclooxygenase and heme oxygenase pathways did not increase isometric contraction force. CONCLUSIONS Endothelium dependent hyperpolarization of vascular smooth muscle contributes to the development of hyperdynamic circulation in ALF.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Apamin/pharmacology
- Biological Factors/metabolism
- Blood Pressure/drug effects
- Cardiac Output/drug effects
- Charybdotoxin/pharmacology
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Enzyme Inhibitors/pharmacology
- Female
- Femoral Artery/drug effects
- Femoral Artery/metabolism
- Femoral Artery/physiopathology
- Heme Oxygenase (Decyclizing)/drug effects
- Heme Oxygenase (Decyclizing)/metabolism
- Isometric Contraction/drug effects
- Liver Circulation/drug effects
- Liver Failure, Acute/metabolism
- Liver Failure, Acute/physiopathology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Nitric Oxide Synthase/drug effects
- Nitric Oxide Synthase/metabolism
- Phenylephrine/pharmacology
- Potassium Channel Blockers/pharmacology
- Potassium Channels, Calcium-Activated/drug effects
- Potassium Channels, Calcium-Activated/metabolism
- Prostaglandin-Endoperoxide Synthases/drug effects
- Prostaglandin-Endoperoxide Synthases/metabolism
- Swine
- Up-Regulation/drug effects
- Vascular Resistance/drug effects
- Vasoconstriction/drug effects
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- Sveinung Ekse
- Department of Anesthesiology and Intensive Care, University of Tromsø, University Hospital Northern Norway, Tromsø, Norway
| | | | | | | |
Collapse
|
38
|
Tran TT, Martin P, Ly H, Balfe D, Mosenifar Z. Carboxyhemoglobin and its correlation to disease severity in cirrhotics. J Clin Gastroenterol 2007; 41:211-5. [PMID: 17245222 DOI: 10.1097/01.mcg.0000225574.35267.32] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
GOAL To assess the correlation of serum carboxyhemoglobin (CO-Hb) to severity of liver disease as compared with Model for End Stage Liver Disease (MELD) score, Child Pugh score, and clinical parameters. BACKGROUND There are 2 sources of carbon monoxide (CO) in humans, exogenous sources include those such as tobacco smoke and inhaled motor vehicle exhaust. The endogenous source is via the heme-oxygenase pathway, in which a heme molecule is broken down into biliverdin with release of an iron (Fe) and CO molecule. Normal serum CO-Hb levels in nonsmokers is 0% to 1.5% and 4% to 9% in smokers. Activity of the heme-oxygenase pathway may be increased in the cirrhotic patient, as measured indirectly by exhaled CO and serum CO-Hb. This may be due to alterations in vascular tone in the splanchnic circulation in cirrhotics that may lead to elevated CO production. One published study also showed that those with spontaneous bacterial peritonitis had higher levels of both CO and CO-Hb. The MELD score uses prothrombin time (INR), creatinine, and bilirubin in the prediction of short-term mortality in decompensated cirrhotics while awaiting liver transplant. Measurement of endogenous CO-Hb may correlate to severity of liver disease. STUDY Retrospective analysis was done of 113 adult patients who were evaluated for liver transplantation between September 1996 and July 2003 and had pulmonary function testing with CO-Hb as part of their evaluation. We excluded any patients with a history of smoking. Clinical parameters used for comparison included grade of esophageal varices (n=75), spleen size (n=51) measured on abdominal ultrasound or computed tomography scan, aminotransferases, and disease duration. Serum CO-Hb levels were measured from whole blood, sent refrigerated to ARUP laboratories (Salt Lake City, UT) and analyzed via spectrophotometry. Bivariate analysis was performed by means of the Pearson product moment correlation. RESULTS The mean CO-Hb level was 2.1%, which is higher than the expected normal population controls. No correlation was found, however, with MELD score, Child Turcotte Pugh score, or other biochemical or clinical measurements of disease severity. CONCLUSIONS Although CO and CO-Hb production may be increased in the cirrhotic patient, in this study no correlation was found to disease severity as measured by the MELD score. Further studies are needed to assess the role of CO in other complications of cirrhosis including infection and circulatory dysfunction.
Collapse
Affiliation(s)
- Tram T Tran
- Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA, USA.
| | | | | | | | | |
Collapse
|
39
|
Homeostatic response under carcinogen withdrawal, heme oxygenase 1 expression and cell cycle association. BMC Cancer 2006; 6:286. [PMID: 17169158 PMCID: PMC1769509 DOI: 10.1186/1471-2407-6-286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 12/14/2006] [Indexed: 11/10/2022] Open
Abstract
Background Chronic injury deregulates cellular homeostasis and induces a number of alterations leading to disruption of cellular processes such as cell cycle checkpoints and apoptosis, driving to carcinogenesis. The stress protein heme oxygenase-1 (HO-1) catalyzes heme degradation producing biliverdin, iron and CO. Induction of HO-1 has been suggested to be essential for a controlled cell growth. The aim of this work was to analyze the in vivo homeostatic response (HR) triggered by the withdrawal of a potent carcinogen, p-dimethylaminoazobenzene (DAB), after preneoplastic lesions were observed. We analyzed HO-1 cellular localization and the expression of HO-1, Bcl-2 and cell cycle related proteins under these conditions comparing them to hepatocellular carcinoma (HC). Methods The intoxication protocol was designed based on previous studies demonstrating that preneoplastic lesions were evident after 89 days of chemical carcinogen administration. Male CF1 mice (n = 18) were used. HR group received DAB (0.5 % w/w) in the diet for 78 days followed by 11 days of carcinogen deprivation. The HC group received the carcinogen and control animals the standard diet during 89 days. The expression of cell cycle related proteins, of Bcl-2 and of HO-1 were analyzed by western blot. The cellular localization and expression of HO-1 were detected by immnunohistochemistry. Results Increased expression of cyclin E/CDK2 was observed in HR, thus implicating cyclin E/CDK2 in the liver regenerative process. p21cip1/waf1 and Bcl-2 induction in HC was restituted to basal levels in HR. A similar response profile was found for HO-1 expression levels, showing a lower oxidative status in the carcinogen-deprived liver. The immunohistochemical studies revealed the presence of macrophages surrounding foci of necrosis and nodular lesions in HR indicative of an inflammatory response. Furthermore, regenerative cells displayed changes in type, size and intensity of HO-1 immunostaining. Conclusion These results demonstrate that the regenerative capacity of the liver is still observed in the pre-neoplastic tissue after carcinogen withdrawal suggesting that reversible mechanism/s to compensate necrosis and to restitute homeostasis are involved.
Collapse
|
40
|
Aller MA, Arias J. Portal systemic collateral development: is it a trophic adaptation mechanism to hepatic deprivation? J Gastroenterol Hepatol 2006; 21:1643-5. [PMID: 16984582 DOI: 10.1111/j.1440-1746.2006.04508.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Shan Y, Lambrecht RW, Donohue SE, Bonkovsky HL. Role of Bach1 and Nrf2 in up-regulation of the heme oxygenase-1 gene by cobalt protoporphyrin. FASEB J 2006; 20:2651-3. [PMID: 17065227 DOI: 10.1096/fj.06-6346fje] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Heme oxygenase (HO) catalyzes the conversion of heme to biliverdin with the release of iron and carbon monoxide. HO-1 is highly inducible by a large number of physical and chemical factors. CoPP is known to be a potent and effective inducer of HO-1 activity in many tissues. Here we report that CoPP up-regulates HO-1 via Bach1 and Nrf2 in human liver cells. CoPP did not influence hepatic Bach1 or Nrf2 mRNA levels, but markedly reduced Bach1 protein levels by increasing degradation of Bach1 protein (t(1/2) from 19 h to 2.8 h), and increased Nrf2 by decreasing degradation of Nrf2 protein (t(1/2) from 2.5 h to 9 h). Silencing Bach1 by Bach1-siRNA significantly increased levels of HO-1 mRNA and protein, and addition of CoPP up-regulated HO-1 mRNA and protein further. However, silencing Nrf2 mRNA by Nrf2-siRNA did not significantly change baseline HO-1 mRNA or protein levels, but significantly decreased 5-10 microM CoPP-mediated up-regulation of HO-1 mRNA levels compared with CoPP alone. Transfection with equal amounts of non-Bach1 or non-Nrf2 related control siRNA did not reduce Bach1 or Nrf2 mRNA or protein, confirming the specificity of Bach1- and Nrf2-siRNA in Huh-7 cells. We conclude that the pathway of CoPP-mediated induction of HO-1 involves the repression of Bach1 and up-regulation of the Nrf2 protein by post-transcriptional site(s) of action. Because CoPP, unlike heme, is neither a prooxidant nor a substrate for HO-1, it might be considered as a potential therapeutic agent in situations where up-regulation of HO-1 is desired.
Collapse
Affiliation(s)
- Ying Shan
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut, USA.
| | | | | | | |
Collapse
|
42
|
Palma MD, Aller MA, Vara E, Nava MP, Garcia C, Arias-Diaz J, Balibrea JL, Arias J. Portal hypertension produces an evolutive hepato-intestinal pro- and anti-inflammatory response in the rat. Cytokine 2006; 31:213-26. [PMID: 15950486 DOI: 10.1016/j.cyto.2005.04.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Revised: 12/12/2004] [Accepted: 04/27/2005] [Indexed: 01/29/2023]
Abstract
An inflammatory etiopathogeny can be suggested in portal hypertensive enteropathy since infiltration of the intestinal wall by mononuclear cells has been described in this condition. This work was carried out with the intention of shedding light on this matter. Male Wistar rats were divided into 4 control groups and 4 groups with partial portal vein ligation at 1, 2, 3 and 15 months. TNF-alpha, IL-1beta and IL-10 were quantified in liver and ileum by ELISA. CO and NO were measured in splanchnic and systemic vein by spectrophotometry and Griess reaction, respectively. Expression of constitutive and inducible isoforms of NO and HO were assayed by Western blot in liver and ileum. An increased hepatic release of proinflammatory mediators (TNF-alpha, IL-1beta and NO) associated with intestinal release of anti-inflammatory mediators (IL-10, CO) occurs in an early evolutive phase (1 month) of experimental portal hypertension. On the contrary, in the long-term (15 months), the increase in the intestinal release of proinflammatory mediators (TNF-alpha, IL-1beta) is associated with an increase in the hepatic release of anti-inflammatory mediators (IL-10, CO). These results suggest that experimental prehepatic portal hypertension presents changes in the serum and tissular (liver and small bowel) concentrations of mediators which are considered as pro- and anti-inflammatory.
Collapse
|
43
|
Ghaziani T, Shan Y, Lambrecht RW, Donohue SE, Pietschmann T, Bartenschlager R, Bonkovsky HL. HCV proteins increase expression of heme oxygenase-1 (HO-1) and decrease expression of Bach1 in human hepatoma cells. J Hepatol 2006; 45:5-12. [PMID: 16530877 DOI: 10.1016/j.jhep.2005.12.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Revised: 10/19/2005] [Accepted: 12/08/2005] [Indexed: 01/08/2023]
Abstract
BACKGROUND/AIMS Hepatitis C infection induces hepatic oxidative stress. Heme oxygenase (HO), the rate-controlling enzyme of heme catabolism, plays a key role as a protector against oxidative, and other stresses. Other recent work has implicated Bach1, a heme binding protein that represses gene expression, in the regulation of HO-1 gene expression. METHODS We investigated the effects of HCV polyprotein expression on expression of HO-1 and Bach1 genes in human hepatoma cells (Huh-7 cells). RESULTS HO-1 was up-regulated in the cell line expressing HCV proteins from core up to the aminoterminal domain of NS3. Addition of increasing concentrations of N-acetylcysteine (NAC) led to down-regulation of HO-1 in cells expressing HCV proteins. In contrast, Bach1 was significantly down-regulated in these cells. Sodium arsenite, a strong inducer of oxidative stress and HO-1, reduced Bach1 expression in wild type Huh-7 cells, and NAC partially abrogated this decrease. CONCLUSIONS Huh-7 cells expressing HCV proteins show significant up-regulation of the HO-1 gene, and reciprocal down-regulation of the Bach1 gene. Exogenous oxidative stressors and anti-oxidants can modulate expression of these genes. These and other results suggest a key role of down-regulation of Bach1 and up-regulation of HO-1 in diminishing cytotoxic effects of HCV proteins in human hepatocytes.
Collapse
Affiliation(s)
- Tahereh Ghaziani
- Department of Medicine, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-1111, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Angermayr B, Mejias M, Gracia-Sancho J, Garcia-Pagan JC, Bosch J, Fernandez M. Heme oxygenase attenuates oxidative stress and inflammation, and increases VEGF expression in portal hypertensive rats. J Hepatol 2006; 44:1033-9. [PMID: 16458992 DOI: 10.1016/j.jhep.2005.09.021] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Revised: 09/06/2005] [Accepted: 09/21/2005] [Indexed: 02/08/2023]
Abstract
BACKGROUND/AIMS The pathophysiological significance of heme oxygenase-1 up-regulation in portal hypertension is not completely understood. In this study, we determined the role of heme oxygenase-1 on oxidative stress, inflammation, angiogenesis, and splanchnic hemodynamics in rats with portal hypertension induced by partial portal vein ligation. METHODS Rats were treated with the heme oxygenase inhibitor SnMP or vehicle for 7 days. Then, oxidative stress was quantified by superoxide anion production, and inflammatory response was assessed by immunofluorescence. Expression of angiogenesis mediators was determined by western blotting, and the extent of portosystemic collaterals by radioactive microspheres. Hemodynamic studies were performed by flowmetry. RESULTS Oxidative stress was significantly increased in the mesentery of portal hypertensive rats, as compared with sham-operated controls. In portal hypertensive rats, chronic heme oxygenase inhibition (1) potentiated oxidative stress and inflammation, (2) significantly decreased VEGF expression, without modifying the extent of collaterals or the splanchnic neovascularization, and (3) significantly decreased superior mesenteric artery blood flow and portal pressure. CONCLUSIONS This study demonstrates that heme oxygenase plays an important (beneficial) role attenuating oxidative stress and inflammation, but it also plays a detrimental role in stimulating VEGF production, and contributing to the development of hyperdynamic splanchnic circulation in rats with portal hypertension.
Collapse
Affiliation(s)
- Bernhard Angermayr
- Liver Unit, Hepatic Hemodynamic Laboratory, Institut d'Investigacions Biomediques August Pi i Sunyer, Hospital Clinic, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
45
|
Oh HM, Kang YJ, Lee YS, Park MK, Kim SH, Kim HJ, Seo HG, Lee JH, Chang KC. Protein kinase G-dependent heme oxygenase-1 induction by Agastache rugosa leaf extract protects RAW264.7 cells from hydrogen peroxide-induced injury. JOURNAL OF ETHNOPHARMACOLOGY 2006; 103:229-35. [PMID: 16185832 DOI: 10.1016/j.jep.2005.08.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 06/08/2005] [Accepted: 08/06/2005] [Indexed: 05/04/2023]
Abstract
It has been proposed that the inducible isoform of heme oxygenase (HO) protects cells against oxidant-mediated injury. Although components of Agastache rugosa showed antioxidant effect, it is unclear this effect is related with HO-1 activity. Thus, we investigated the effects of Agastache rugosa leaf extract (ALE) on HO-1 protein expression and enzyme activity, and its protective effect against H(2)O(2)-induced oxidative damage was also investigated using RAW264.7 macrophage cells. Results showed that ALE concentration dependently increased HO-1 protein and enzyme activity, and protected cells from H(2)O(2)-induced cytotoxicity, with an IC(50) of 0.526 mg/ml. Hemin, a HO-1 inducer, also showed similar effect to ALE. Furthermore, the protective effect of both ALE and hemin was inhibited by a HO inhibitor, zinc protoporphyrin IX. The expression of HO-1 protein by ALE was reduced by pretreatment with LY83583 and ODQ, specific inhibitors of guanylate cyclase, but not by PKA inhibitors, H89 and KT5720, indicating that PKG signaling pathway regulates HO-1 induction by ALE. Taken together, it is concluded that PKG-dependent HO-1 induction is one of the important antioxidant mechanisms by which ALE protects RAW264.7 cells from H(2)O(2). Thus, ALE along with other actions may be beneficial for the treatment of oxidant-induced cellular injuries.
Collapse
Affiliation(s)
- Hwa Min Oh
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, 92 Chilam-dong, Jinju 660-751, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Koshy A, De Gottardi A, Ledermann M, Saegesser H, Shaw SG, Zimmermann A, Reichen J. Endothelial nitric oxide synthase is not essential for the development of fibrosis and portal hypertension in bile duct ligated mice. Liver Int 2005; 25:1044-52. [PMID: 16162165 DOI: 10.1111/j.1478-3231.2005.01146.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
BACKGROUND/AIMS It is postulated that nitric oxide (NO) is responsible for the hyperdynamic circulation of portal hypertension. Therefore, we investigated induction of fibrosis and hyperdynamic circulation in endothelial NO synthase knock-out (KO) mice. METHODS Fibrosis was induced by bile duct ligation. Hemodynamic studies were performed after portal vein ligation. All studies were performed in wild-type (WT) and KO mice. RESULTS Three to 4 weeks after bile duct ligation (BDL), both WT and KO groups had similar degrees of portal hypertension, 12 (9-14) and 11(8-15) mmHg, median (range), and liver function. Fibrosis increased from 0.0% in sham operated to 1.0 and 1.1% in WT and KO mice, respectively. Cardiac output was similar after portal vein ligation (20 and 17 ml/min in WT and KO mice, respectively). There was no difference in liver of mRNA for endothelin 1, inducible NO synthase (iNOS) and hem-oxygenase 1 (HO1); proteins of iNOS, HO1 and HO2; nor in endothelin A and B (EtA and EtB) receptor density between WT and KO mice after BDL. CONCLUSIONS These results suggest that endothelial NO synthase is neither essential for the development of fibrosis and portal hypertension in bile duct ligated mice, nor for the hyperdynamic circulation associated with portal hypertension in the portal vein ligated mice.
Collapse
Affiliation(s)
- Abraham Koshy
- Institute for Clinical Pharmacology, University of Bern, Murtenstrasse 35, 3010 Bern, Switzerland
| | | | | | | | | | | | | |
Collapse
|
47
|
Erario MA, Gonzales S, Romay S, Eizayaga FX, Castro JL, Lemberg A, Tomaro ML. Role of heme oxygenase/carbon monoxide pathway on the vascular response to noradrenaline in portal hypertensive rats. Clin Exp Pharmacol Physiol 2005; 32:196-201. [PMID: 15743403 DOI: 10.1111/j.1440-1681.2005.04171.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
1. Portal hypertension (PH), a major syndrome in cirrhosis, producing hyperdynamic splanchnic circulation and hyperaemia. In order to elucidate the contribution of heme oxygenase to the vascular hyporeactivity, we assessed the activity of heme oxygenase-1 (HO-1), measured the in vivo pressure response to noradrenaline (NA) and investigated the effects of blocking the carbon monoxide (CO) and nitric oxide (NO) pathways in a prehepatic model of PH in rats. 2. Portal hypertension was induced by partial portal vein ligation (PPVL). Noradrenaline was injected intravenously. Liver, spleen and mesentery homogenates were prepared for measurement of HO-1 activity and expression. Four groups of rats were used: (i) a sham group; (ii) a PPVL group; (iii) a sham group pretreated with Zn-protoporphyrin IX (ZnPPIX); and (iv) a PPVL group pretreated with ZnPPIX. Each group was studied before and after treatment with the NO synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME). 3. For basal pressures and the pressure response to NA, inhibition of CO and NO pathways by ZnPPIX and L-NAME, respectively, produced an increase in mean arterial pressure (MAP) in sham-operated and in PH rats. Similarly, when both inhibitors were used together in either sham or PPVL rats, a greater increase in MAP was observed. 4. These results, together with the increased HO-1 activity and expression only in the PH group, have led us to suggest that the heme oxygenase/CO pathway is involved in the vascular response to NA in PH rats.
Collapse
Affiliation(s)
- M A Erario
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
48
|
Angeli P, Fernández-Varo G, Dalla Libera V, Fasolato S, Galioto A, Arroyo V, Sticca A, Guarda S, Gatta A, Jiménez W. The role of nitric oxide in the pathogenesis of systemic and splanchnic vasodilation in cirrhotic rats before and after the onset of ascites. Liver Int 2005; 25:429-37. [PMID: 15780069 DOI: 10.1111/j.1478-3231.2005.01092.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The role of nitric oxide (NO) in the pathogenesis of splanchnic arterial vasodilation in cirrhosis has been recently debated by some experimental studies. AIMS We investigated the role of NO in the pathogenesis of the splanchnic arterial vasodilation along the course of CCl(4)-induced experimental cirrhosis. METHODS We analyzed the effect on mean arterial pressure (MAP), cardiac output (CO), total peripheral resistance (TPR), and resistance in the superior mesenteric artery (RSMA), before and after the administration of a unspecific NO synthase (NOS) inhibitor (Nomega-nitro-L-arginine-methyl-ester, L-NAME) and a specific NOS2 inhibitor (L-N-(1-iminoethyl)-lysine, L-NIL) to cirrhotic rats with and without ascites, and to control rats. NOS2 and NOS3 protein expression was also assessed in systemic and splanchnic arteries of these animals. RESULTS L-NAME in cirrhotic rats markedly improved MAP, and TPR and decreased CO regardless of whether they had ascites or not. L-NIL did not produce any significant effect on systemic haemodynamics in control and cirrhotic rats. NOS3 overexpression in the aorta of cirrhotic animals paralleled the progression of the liver disease. L-NAME increased RSMA in cirrhotic rats, but this effect was much less intense in rats with ascites. L-NIL had an effect only on RSMA in rats with ascites, which was of a similar extent to that produced by L-NAME. Western blot experiment showed a faint overexpression of NOS3 in the mesenteric artery of cirrhotic rats with and without ascites and a clear induction of NOS2 only in the mesenteric artery of rats with ascites. CONCLUSIONS These results indicate that NO contributes significantly to the pathogenesis of arterial splanchnic circulation in the early stages of experimental cirrhosis but has only a minor role in its maintenance after the development of ascites. Furthermore, the expression of the different NOS isoforms varies along the course of the liver disease.
Collapse
Affiliation(s)
- Paolo Angeli
- Department of Clinical and Experimental Medicine, University of Padua, Via Giustiniani 2, Padova 35100, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
The initial factor leading to portal hypertension is an increase in hepatic resistance. Later, an increase in portal blood flow contributes to maintain and exacerbate portal hypertension despite the development of portosystemic collaterals. The critical step in the development and acceptance of these concepts, which proved crucial for the management of patients with portal hypertension, was the development of animal models. These allowed the full characterization of the profound hemodynamic abnormalities in the systemic and splanchnic circulation associated with portal hypertension, and the elucidation of the molecular mechanisms implicated in these disturbances. This review traces how seminal clinical observations in the 1950s raised meaningful questions that were subsequently answered at the bench, leading to our current understanding of the pathophysiology of portal hypertension and of the pathogenesis of severe complications of cirrhosis, such as variceal bleeding or ascites.
Collapse
|
50
|
Tron K, Novosyadlyy R, Dudas J, Samoylenko A, Kietzmann T, Ramadori G. Upregulation of heme oxygenase-1 gene by turpentine oil-induced localized inflammation: involvement of interleukin-6. J Transl Med 2005; 85:376-87. [PMID: 15640832 DOI: 10.1038/labinvest.3700228] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Heme oxygenase-1 (HO-1) is the inducible isoform of an enzyme family responsible for heme degradation and was suggested to be involved in the acute phase response in the liver. However, the mechanisms of the HO-1 regulation under inflammatory conditions are poorly understood. Therefore, the purpose of the current work was to study the expression of HO-1 in the liver and other organs of rats with a localized inflammation after intramuscular injection of turpentine oil (TO). Since interleukin-6 (IL-6) is known to be a principal mediator of inflammation, the levels of this cytokine were also estimated in the animal model used. HO-1 and IL-6 expression was evaluated by Northern blot, in situ hybridization, Western blot, immunohistochemistry and enzyme-linked immunosorbent assay. In the liver and injured muscle, the HO-1 mRNA levels were dramatically increased 4-6 h after TO administration. HO-1 protein levels in the liver were elevated starting from 6-12 h after the treatment. In other internal organs such as the heart, kidney and large intestine, only a slight induction of HO-1 mRNA was observed. IL-6-specific transcripts appeared only in the injured muscle and were in accordance with serum levels of IL-6. In turn, temporal expression of IL-6 in the muscle and circulatory IL-6 levels correlated well with HO-1 expression in the liver and injured muscle. In the liver of control rats HO-1 protein was detected in Kupffer cells, while in TO-injected rats also hepatocytes became strongly HO-1 positive. Conversely, in the injured muscle, HO-1 immunoreactivity was attributed only to macrophages. Our data demonstrate that during localized inflammation HO-1 expression was rapidly and strongly induced in macrophages of injured muscle and in hepatocytes, and IL-6 derived from injured muscle seems to be responsible for the HO-1 induction in the liver.
Collapse
Affiliation(s)
- Kyrylo Tron
- University Hospital, Department of Internal Medicine, Division of Gastroenterology and Endocrinology, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|