1
|
Lazea C, Vulturar R, Chiș A, Encica S, Horvat M, Belizna C, Damian LO. Macrocephaly and Finger Changes: A Narrative Review. Int J Mol Sci 2024; 25:5567. [PMID: 38791606 PMCID: PMC11122644 DOI: 10.3390/ijms25105567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Macrocephaly, characterized by an abnormally large head circumference, often co-occurs with distinctive finger changes, presenting a diagnostic challenge for clinicians. This review aims to provide a current synthetic overview of the main acquired and genetic etiologies associated with macrocephaly and finger changes. The genetic cause encompasses several categories of diseases, including bone marrow expansion disorders, skeletal dysplasias, ciliopathies, inherited metabolic diseases, RASopathies, and overgrowth syndromes. Furthermore, autoimmune and autoinflammatory diseases are also explored for their potential involvement in macrocephaly and finger changes. The intricate genetic mechanisms involved in the formation of cranial bones and extremities are multifaceted. An excess in growth may stem from disruptions in the intricate interplays among the genetic, epigenetic, and hormonal factors that regulate human growth. Understanding the underlying cellular and molecular mechanisms is important for elucidating the developmental pathways and biological processes that contribute to the observed clinical phenotypes. The review provides a practical approach to delineate causes of macrocephaly and finger changes, facilitate differential diagnosis and guide for the appropriate etiological framework. Early recognition contributes to timely intervention and improved outcomes for affected individuals.
Collapse
Affiliation(s)
- Cecilia Lazea
- 1st Department of Pediatrics, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400370 Cluj-Napoca, Romania;
- 1st Pediatrics Clinic, Emergency Pediatric Clinical Hospital, 400370 Cluj-Napoca, Romania
| | - Romana Vulturar
- Department of Molecular Sciences, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400349 Cluj-Napoca, Romania;
- Cognitive Neuroscience Laboratory, University Babes-Bolyai, 400015 Cluj-Napoca, Romania
- Association for Innovation in Rare Inflammatory, Metabolic, Genetic Diseases INNOROG, 30E, Făgetului St., 400497 Cluj-Napoca, Romania;
| | - Adina Chiș
- Department of Molecular Sciences, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400349 Cluj-Napoca, Romania;
- Cognitive Neuroscience Laboratory, University Babes-Bolyai, 400015 Cluj-Napoca, Romania
- Association for Innovation in Rare Inflammatory, Metabolic, Genetic Diseases INNOROG, 30E, Făgetului St., 400497 Cluj-Napoca, Romania;
| | - Svetlana Encica
- Department of Pathology, “Niculae Stancioiu” Heart Institute Cluj-Napoca, 19-21 Calea Moților St., 400001 Cluj-Napoca, Romania;
| | - Melinda Horvat
- Department of Infectious Diseases and Epidemiology, The Clinical Hospital of Infectious Diseases, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, 400348 Cluj-Napoca, Romania;
| | - Cristina Belizna
- UMR CNRS 6015, INSERM U1083, University of Angers, 49100 Angers, France;
- Internal Medicine Department Clinique de l’Anjou, Vascular and Coagulation Department, University Hospital Angers, 49100 Angers, France
| | - Laura-Otilia Damian
- Association for Innovation in Rare Inflammatory, Metabolic, Genetic Diseases INNOROG, 30E, Făgetului St., 400497 Cluj-Napoca, Romania;
- Department of Rheumatology, Center for Rare Musculoskeletal Autoimmune and Autoinflammatory Diseases, Emergency Clinical County Hospital Cluj, 400006 Cluj-Napoca, Romania
- CMI Reumatologie Dr. Damian, 400002 Cluj-Napoca, Romania
| |
Collapse
|
2
|
Uribe-Carretero E, Rey V, Fuentes JM, Tamargo-Gómez I. Lysosomal Dysfunction: Connecting the Dots in the Landscape of Human Diseases. BIOLOGY 2024; 13:34. [PMID: 38248465 PMCID: PMC10813815 DOI: 10.3390/biology13010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024]
Abstract
Lysosomes are the main organelles responsible for the degradation of macromolecules in eukaryotic cells. Beyond their fundamental role in degradation, lysosomes are involved in different physiological processes such as autophagy, nutrient sensing, and intracellular signaling. In some circumstances, lysosomal abnormalities underlie several human pathologies with different etiologies known as known as lysosomal storage disorders (LSDs). These disorders can result from deficiencies in primary lysosomal enzymes, dysfunction of lysosomal enzyme activators, alterations in modifiers that impact lysosomal function, or changes in membrane-associated proteins, among other factors. The clinical phenotype observed in affected patients hinges on the type and location of the accumulating substrate, influenced by genetic mutations and residual enzyme activity. In this context, the scientific community is dedicated to exploring potential therapeutic approaches, striving not only to extend lifespan but also to enhance the overall quality of life for individuals afflicted with LSDs. This review provides insights into lysosomal dysfunction from a molecular perspective, particularly in the context of human diseases, and highlights recent advancements and breakthroughs in this field.
Collapse
Affiliation(s)
- Elisabet Uribe-Carretero
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Caceres, Spain; (E.U.-C.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativa, Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003 Caceres, Spain
| | - Verónica Rey
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Jose Manuel Fuentes
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Caceres, Spain; (E.U.-C.)
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativa, Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003 Caceres, Spain
| | - Isaac Tamargo-Gómez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
3
|
Kowalski T, Donoghue S, de Jong G, Mack HG. Novel chorioretinal findings in two siblings with mucopolysaccharidosis type VI. Ophthalmic Genet 2022; 43:693-698. [PMID: 35658818 DOI: 10.1080/13816810.2022.2083184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE To describe and compare the systemic and ocular findings in two siblings with mucopolysaccharidosis type VI (Maroteaux-Lamy syndrome), one treated with recombinant galsulfase, and one who was untreated. METHOD One female patient aged 33 years (case 1) who had received galsulfase enzyme replacement therapy for 11 years, and her younger male sibling by 3 years (case 2), who had declined systemic treatment, underwent clinical ophthalmic examination and retinal ocular coherence tomography. The female sibling underwent electrophysiology testing of visual function. RESULTS Case 1 had best corrected visual acuity right 6/4.8 and left 6/6. Case 2 had best corrected visual acuity of 6/6 in each eye. Case 1 had bilateral mild corneal haze and a clinically unremarkable posterior segment examination. Case 2 had bilateral very mild corneal haze and retinal striae on examination. Ocular coherence tomography showed choroidal folds at the maculae in both patients, more pronounced in Case 2, who also had retinal folds and epiretinal membrane. Electroretinography showed very mild involvement of the rods only in Case 1. CONCLUSION These two siblings with mucopolysaccharidosis type VI, one treated and one untreated, displayed variable levels of systemic, corneal, and chorioretinal involvement in their disease Further studies of choroidal changes in MPS VI may prove useful as a biomarker of ocular response to treatment outside the blood-retina barrier. Both patients have provided written consent to publish case details.
Collapse
Affiliation(s)
- Tanya Kowalski
- Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
| | - Sarah Donoghue
- Metabolic Diseases Unit, Royal Melbourne Hospital, Melbourne Health, Parkville, Australia.,Department of Biochemical Genetics, Victorian Clinical Genetic Services, Parkville, Australia
| | - Gerard de Jong
- Metabolic Diseases Unit, Royal Melbourne Hospital, Melbourne Health, Parkville, Australia.,Department of Medicine, Melbourne Medical School, University of Melbourne, Parkville, Australia
| | - Heather G Mack
- Centre for Eye Research Australia, East Melbourne, Australia.,Department of Surgery (Ophthalmology), University of Melbourne, Parkville, Australia.,Eye Surgery Associates, East Melbourne, Australia
| |
Collapse
|
4
|
Identification of eleven different mutations including six novel, in the arylsulfatase B gene in Iranian patients with mucopolysaccharidosis type VI. Mol Biol Rep 2019; 46:3417-3426. [PMID: 30982216 DOI: 10.1007/s11033-019-04804-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 04/08/2019] [Indexed: 01/05/2023]
Abstract
Mucopolysaccharidosis VI is a rare autosomal recessive disorder caused by the deficiency of enzyme Arylsulfatase B. The enzyme deficiency leads to the accumulation of dermatan sulfate in connective tissue which causes manifestations related to MPS VI. Up to now, three different disease causing variants are reported in Iranian patients. In this study, we scanned ARSB gene of 13 Iranian patients from 12 families in whom all parents were consanguineous and from the same ethnicity except one family that were not consanguineous but co-ethnic. We found six not previously reported disease causing variants. We extracted DNA from peripheral blood samples of patients that were previously confirmed as MPS VI by clinical, biochemical and enzymatic assays including berry-spot test and fluorimetry, followed by PCR and direct sequencing. Computational approaches were used to analyze novel variants in terms of their impact on the protein structure. 11 disease causing variants and 15 polymorphisms were found. Six disease causing variants were novel and five were previously reported of which three were in Iranian population. Four of patients, who were unrelated, two by two had the same disease causing variant and polymorphisms, which indicates a possible founder effect. Our study also implicates genotype-phenotype correlation. Computational structural modeling indicated these disease causing variants might affect structural stability and function of the protein. Data of this study confirms the existence of mutational heterogeneity in the ARSB between Iranian patients. Disease causing variants with high frequency can be used in the prenatal diagnosis and genetic counseling. Also, the existence of the same variants and polymorphisms in some of the unrelated patients indicates a possible founder effect.
Collapse
|
5
|
Zanetti A, Onenli-Mungan N, Elcioglu N, Ozbek MN, Kör D, Lenzini E, Scarpa M, Tomanin R. Molecular Analysis of Turkish Maroteaux-Lamy Patients and Identification of One Novel Mutation in the Arylsulfatase B (ARSB) Gene. JIMD Rep 2013; 14:1-9. [PMID: 24243352 DOI: 10.1007/8904_2013_276] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 10/02/2013] [Accepted: 10/07/2013] [Indexed: 12/20/2022] Open
Abstract
Mucopolysaccharidosis type VI (MPS VI, Maroteaux-Lamy syndrome) is an autosomal recessive disorder caused by the deficit of the arylsulfatase B (ARSB) enzyme, which leads to dermatan sulfate pathological storage, resulting in a wide spectrum of clinical phenotypes. To date more than 130 different mutations were reported, most of them being restricted to individual families. We here report the first study on the ARSB gene mutations in MPS VI patients of Turkish ethnogeographic origin. On the whole we analyzed 13 unrelated families recruited from 3 different Turkish clinical centers, for a total of 52 subjects, including patients, parents, and siblings. The molecular characterization of ARSB gene in these subjects lead to the identification of eight different mutations (6 missense mutations and two single-nucleotide deletions) one of which novel: c.532C>G (p.H178D). We characterized seven different genotypes, all homozygous except one. The analysis highlighted c.962T>C (p.L321P) as the most frequently detected mutation in the group of patients examined and the c.1072G>A (p.V358M) as the most frequent polymorphism. All parents and 50% of the healthy siblings analyzed carried in a heterozygous condition the mutation identified in the affected relative. The high number of homozygotes reported in this study reflects the high degree of consanguinity of the Turkish population, being the parents of most of the patients here examined, first-degree cousins. As consanguineous marriages are an integral part of the Turkish society, carriers identification accompanied by genetic counseling in families at risk is the eligible approach to minimize the effects of consanguinity in this population.
Collapse
Affiliation(s)
- Alessandra Zanetti
- Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Department of Women's and Children's Health, University of Padova, Padova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Lysosomal storage diseases: Diagnostic confirmation and management of presymptomatic individuals. Genet Med 2011; 13:457-84. [DOI: 10.1097/gim.0b013e318211a7e1] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
7
|
Duffey TA, Sadilek M, Scott CR, Turecek F, Gelb MH. Tandem mass spectrometry for the direct assay of lysosomal enzymes in dried blood spots: application to screening newborns for mucopolysaccharidosis VI (Maroteaux-Lamy syndrome). Anal Chem 2010; 82:9587-91. [PMID: 20961069 PMCID: PMC2980560 DOI: 10.1021/ac102090v] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a new assay of N-acetylgalactosamine-4-sulfatase (aryl sulfatase B) activity in dried blood spots (DBS) for the early detection of mucopolysaccharidosis VI (Maroteaux-Lamy syndrome) in newborn screening. The assay uses a synthetic substrate consisting of N-acetylgalactosamine-4-sulfate moiety glycosidically linked to a hydrophobic residue and furnished with a tert-butyloxycarbamido group as a marker for specific mass spectrometric fragmentation. Incubation with aryl sulfatase B present in DBS converts the substrate to a desulfated product which is detected by electrospray tandem mass spectrometry and quantified using a homologous internal standard. Assay and workup procedures were optimized to be compatible with the work flow in newborn screening laboratories. Analysis of DBS from human newborns showed clear distinction of aryl sulfatase B activity from 89 healthy individuals where it ranged between 1.4 and 16.9 μmol/(h L of blood), with an average activity of 7.4 μmol/(h L of blood), and an MPS-VI patient that had an activity of 0.12 μmol/(h L of blood). Results are also reported for the aryl sulfatase B assay in DBS from groups of normal felines and felines affected with MPS-VI.
Collapse
Affiliation(s)
- Trisha A. Duffey
- Department of Chemistry, University of Washington, Seattle, Washington
| | - Martin Sadilek
- Department of Chemistry, University of Washington, Seattle, Washington
| | - C. Ronald Scott
- Department of Pediatrics, University of Washington, Seattle, Washington
| | - Frantisek Turecek
- Department of Chemistry, University of Washington, Seattle, Washington
| | - Michael H. Gelb
- Department of Chemistry, University of Washington, Seattle, Washington
- Department of Biochemistry, University of Washington, Seattle, Washington
| |
Collapse
|
8
|
Abstract
Mucopolysaccharidosis VI (MPS VI) is a lysosomal storage disease with progressive multisystem involvement, associated with a deficiency of arylsulfatase B leading to the accumulation of dermatan sulfate. Birth prevalence is between 1 in 43,261 and 1 in 1,505,160 live births. The disorder shows a wide spectrum of symptoms from slowly to rapidly progressing forms. The characteristic skeletal dysplasia includes short stature, dysostosis multiplex and degenerative joint disease. Rapidly progressing forms may have onset from birth, elevated urinary glycosaminoglycans (generally >100 microg/mg creatinine), severe dysostosis multiplex, short stature, and death before the 2nd or 3rd decades. A more slowly progressing form has been described as having later onset, mildly elevated glycosaminoglycans (generally <100 microg/mg creatinine), mild dysostosis multiplex, with death in the 4th or 5th decades. Other clinical findings may include cardiac valve disease, reduced pulmonary function, hepatosplenomegaly, sinusitis, otitis media, hearing loss, sleep apnea, corneal clouding, carpal tunnel disease, and inguinal or umbilical hernia. Although intellectual deficit is generally absent in MPS VI, central nervous system findings may include cervical cord compression caused by cervical spinal instability, meningeal thickening and/or bony stenosis, communicating hydrocephalus, optic nerve atrophy and blindness. The disorder is transmitted in an autosomal recessive manner and is caused by mutations in the ARSB gene, located in chromosome 5 (5q13-5q14). Over 130 ARSB mutations have been reported, causing absent or reduced arylsulfatase B (N-acetylgalactosamine 4-sulfatase) activity and interrupted dermatan sulfate and chondroitin sulfate degradation. Diagnosis generally requires evidence of clinical phenotype, arylsulfatase B enzyme activity <10% of the lower limit of normal in cultured fibroblasts or isolated leukocytes, and demonstration of a normal activity of a different sulfatase enzyme (to exclude multiple sulfatase deficiency). The finding of elevated urinary dermatan sulfate with the absence of heparan sulfate is supportive. In addition to multiple sulfatase deficiency, the differential diagnosis should also include other forms of MPS (MPS I, II IVA, VII), sialidosis and mucolipidosis. Before enzyme replacement therapy (ERT) with galsulfase (Naglazyme), clinical management was limited to supportive care and hematopoietic stem cell transplantation. Galsulfase is now widely available and is a specific therapy providing improved endurance with an acceptable safety profile. Prognosis is variable depending on the age of onset, rate of disease progression, age at initiation of ERT and on the quality of the medical care provided.
Collapse
|
9
|
Garrido E, Cormand B, Hopwood JJ, Chabás A, Grinberg D, Vilageliu L. Maroteaux-Lamy syndrome: functional characterization of pathogenic mutations and polymorphisms in the arylsulfatase B gene. Mol Genet Metab 2008; 94:305-12. [PMID: 18406185 DOI: 10.1016/j.ymgme.2008.02.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 02/27/2008] [Accepted: 02/27/2008] [Indexed: 11/19/2022]
Abstract
Mucopolysaccharidosis VI (MPS VI; Maroteaux-Lamy syndrome) is an autosomal recessive lysosomal disorder caused by deficiency of N-acetylgalactosamine-4-sulfatase (ARSB), which is required for the degradation of dermatan sulfate. We recently reported mutational screening of 12 Spanish and 4 Argentinian MPS VI patients. In the present study, seven missense mutations (c.245T>G [p.L82R], c.413A>G [p.Y138C], c.719C>T [p.S240F], c.922G>A [p.G308R], c.937C>G [p.P313A], c.1340G>T [p.C447F] and c.1415T>C [p.L472P]) were transiently expressed in COS-7 cells and 4-sulfatase activity was measured in cell extracts. All mutations resulted in less than 6% of wild-type enzyme activity, in most cases undetectable. Mutations were expressed in their original haplotype context with respect to two non-synonymous polymorphisms present in the ARSB protein, p.V358M and p.S384N. The three less frequent haplotype combinations yielded an ARSB activity of 16%, 57% and 70%, when compared to the most frequent haplotype (p.358V and p.384S). Western blot analyses showed that the expressed mutations significantly reduced the amount of mature protein. Sub-cellular localization studies of mutant ARSB proteins in fibroblasts of MPS VI patients were performed. RNA analysis confirmed that nonsense-mediated RNA decay had taken place for all mutant alleles (c.1143-1G>C, c.1143-8T>G, p.W322X, c.427delG and c.1142+2T>A) which were candidates for causing RNA degradation by this mechanism. In summary, all the ARSB mutations studied had a significant effect on enzyme activity, protein processing and/or mRNA stability.
Collapse
Affiliation(s)
- Elena Garrido
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
10
|
Garrido E, Chabás A, Coll MJ, Blanco M, Domínguez C, Grinberg D, Vilageliu L, Cormand B. Identification of the molecular defects in Spanish and Argentinian mucopolysaccharidosis VI (Maroteaux-Lamy syndrome) patients, including 9 novel mutations. Mol Genet Metab 2007; 92:122-30. [PMID: 17643332 DOI: 10.1016/j.ymgme.2007.06.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Revised: 06/07/2007] [Accepted: 06/07/2007] [Indexed: 11/22/2022]
Abstract
Maroteaux-Lamy syndrome, or mucopolysaccharidosis VI (MPS VI), is an autosomal recessive lysosomal storage disorder caused by a deficiency of N-acetylgalactosamine-4-sulfatase or arylsulfatase B (ARSB). We aimed to analyze the spectrum of mutations responsible for the disorder in Spanish and Argentinian patients, not previously studied. We identified all the ARSB mutant alleles, nine of them novel, in 12 Spanish and 4 Argentinian patients. The new changes were as follows: six missense mutations: c.245T>G [p.L82R], c.413A>G [p.Y138C], c.719C>T [p.S240F], c.922G>A [p.G308R], c.1340G>T [p.C447F] and c.1415T>C [p.L472P]; one nonsense mutation: c.966G>A [p.W322X]; and two intronic changes involving splice sites: c.1142+2T>A, in the donor splice site of intron 5, which promotes skipping of exon 5, and c.1143-1G>C, which disrupts the acceptor site of intron 5, resulting in skipping of exon 6. We also report 10 previously described mutations as well as several non-pathogenic polymorphisms. Haplotype analysis indicated a common origin for most of the mutations found more than once. Most of the patients were compound heterozygotes, whereas only four of them were homozygous. These observations confirm the broad allelic heterogeneity of the disease, with 19 different mutations in 16 patients. However, the two most frequent mutations, c.1143-1G>C and c.1143-8T>G, present in both populations, accounted for one-third of the mutant alleles in this group of patients.
Collapse
Affiliation(s)
- Elena Garrido
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 645, edifici annex, 3a planta, E-08028 Barcelona, Catalonia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Karageorgos L, Brooks DA, Pollard A, Melville EL, Hein LK, Clements PR, Ketteridge D, Swiedler SJ, Beck M, Giugliani R, Harmatz P, Wraith JE, Guffon N, Leão Teles E, Sá Miranda MC, Hopwood JJ. Mutational analysis of 105 mucopolysaccharidosis type VI patients. Hum Mutat 2007; 28:897-903. [PMID: 17458871 DOI: 10.1002/humu.20534] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mucopolysaccharidosis type VI (MPS VI; Maroteaux-Lamy syndrome) is a lysosomal storage disorder caused by mutations in the N-acetylgalactosamine-4-sulfatase (arylsulfatase B, ARSB) gene. ARSB is a lysosomal enzyme involved in the degradation of the glycosaminoglycans (GAG) dermatan and chondroitin sulfate. ARSB mutations reduce enzyme function and GAG degradation, causing lysosomal storage and urinary excretion of these partially degraded substrates. Disease onset and rate of progression is variable, producing a spectrum of clinical presentation. In this study, 105 MPS VI patients-representing about 10% of the world MPS VI population-were studied for molecular genetic and biochemical parameters. Direct sequencing of patient genomic DNA was used to identify ARSB mutations. In total, 83 different disease-causing mutations were found, 62 of which were previously unknown. The novel sequence changes included: 38 missense mutations, five nonsense mutations, 11 deletions, one insertion, seven splice-site mutations, and four polymorphisms. ARSB mutant protein and residual activity were determined on fibroblast extracts for each patient. The identification of many novel mutations unique to individuals/their families highlighted the genetic heterogeneity of the disorder and provided an appropriate cohort to study the MPS VI phenotypic spectrum. This mutation analysis has identified a clear correlation between genotype and urinary GAG that can be used to predict clinical outcome.
Collapse
Affiliation(s)
- Litsa Karageorgos
- Lysosomal Diseases Research Unit, Department of Genetic Medicine, Children, Youth and Women's Health Service, North Adelaide, South Australia, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Karageorgos L, Brooks DA, Harmatz P, Ketteridge D, Pollard A, Melville EL, Parkinson-Lawrence E, Clements PR, Hopwood JJ. Mutational analysis of mucopolysaccharidosis type VI patients undergoing a phase II trial of enzyme replacement therapy. Mol Genet Metab 2007; 90:164-70. [PMID: 17161971 DOI: 10.1016/j.ymgme.2006.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 10/26/2006] [Accepted: 10/26/2006] [Indexed: 10/23/2022]
Abstract
Mucopolysaccharidosis type VI (MPS VI; Maroteaux-Lamy syndrome) is a lysosomal storage disorder caused by mutations in the N-acetylgalactosamine-4-sulfatase (ARSB) gene. These mutations result in a deficiency of ARSB activity. Ten MPS VI patients were involved in a phase II clinical study of enzyme replacement therapy. Direct sequencing of genomic DNA from these patients was used to identify ARSB mutations. Each individual exon of the ARSB gene was amplified by PCR and subsequently sequenced. Thirteen substitutions (c.215T>G [p.L72R] c.284G>A [p.R95Q], c.305G>A [p.R102H], c.323G>T [p.G108V], c.389C>T [p.P130L], c.511G>A [p.G171S], c.904G>A [p.G302R], c.944G>A [p.R315Q], c.1057T>C [p.W353R], c.1151G>A [p.S384N], c.1178A>C [p.H393P], c.1289A>G [p.H430R] and c.1336G>C [p.G446R]), one deletion (c.238delG), and two intronic mutations (c.1213+5G>A and c.1214-2A>G) were identified. Nine of the 16 mutations identified were novel (R102H, G108V, P130L, G171S, W353R, H430R, G446R, c.1213+5G>A and c.1214-2A>G). The two common polymorphisms c.1072G>A [p.V358M] and c.1126G>A [p.V376M] were identified in some of the patients, along with the silent mutations c.972A>G and c.1191A>G. Cultured fibroblast ARSB mutant protein and residual activity were determined for each patient and, together with genotype information, used to predict the expected clinical severity of each patient.
Collapse
Affiliation(s)
- Litsa Karageorgos
- Lysosomal Diseases Research Unit, Department of Genetic Medicine, Children, Youth and Women's Health Service, North Adelaide, SA 5006, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Petry MFG, Dieter T, Burin M, Giugliani R, Leistner S. Identification of a novel mutation in the ARSB gene that is frequent among Brazilian MPSVI patients. ACTA ACUST UNITED AC 2004; 7:347-9. [PMID: 15000815 DOI: 10.1089/109065703322783743] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mucopolysaccharidosis type VI, or Maroteaux-Lamy syndrome, is an autosomal recessive disease caused by the deficiency of arylsulfatase B (ARSB; N-acetyl-galactosamine-4-sulfatase, E.C.3.1.6.12), which is involved in the stepwise degradation of dermatan sulfate and chondroitin sulfate. The deficiency of this enzyme causes storage in the lysozomes and excretion in the urine of partially degraded dermatan sulfate. Twenty patients with MPSVI were analyzed, including 2 siblings. Genomic DNA from patients was extracted and amplified by PCR followed by analysis by single-strand conformation polymorphism (SSCP), which detects altered patterns in the single-stranded DNA. Amongst the patients analyzed for exon 8 of the ARSB gene, 5 patients presented an altered band pattern when compared to controls. After sequencing, we have detected a 23-bp deletion, extending from nucleotides 1,533 to 1,555, causing a frameshift and changing 2 amino acids before creating a premature stop codon at amino acid 514.
Collapse
Affiliation(s)
- Márcia Fernanda Gomes Petry
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Serviço de Genética Médica, 90035-003, Porto Alegre, RS Brazil
| | | | | | | | | |
Collapse
|
14
|
Karageorgos L, Harmatz P, Simon J, Pollard A, Clements PR, Brooks DA, Hopwood JJ. Mutational analysis of mucopolysaccharidosis type VI patients undergoing a trial of enzyme replacement therapy. Hum Mutat 2004; 23:229-33. [PMID: 14974081 DOI: 10.1002/humu.10313] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mucopolysaccharidosis type VI (MPS VI), or Maroteaux-Lamy syndrome, is a lysosomal storage disorder caused by a deficiency of N-acetylgalactosamine-4-sulfatase (ARSB). Seven MPS VI patients were chosen for the initial clinical trial of enzyme replacement therapy. Direct sequencing of genomic DNA from these patients was used to identify ARSB mutations. Each individual exon of the ARSB gene was amplified by PCR and subsequently sequenced. Nine substitutions (c.289C>T [p.Q97X], c.629A>G [p.Y210C], c.707T>C [p.L236P], c.936G>T [p.W312C], c.944G>A [p.R315Q], c.962T>C [p.L321P], c.979C>T [p.R327X], c.1151G>A [p.S384N], and c.1450A>G [p.R484G]), two deletions (c.356_358delTAC [p.Y86del] and c.427delG), and one intronic mutation (c.1336+2T>G) were identified. A total of 7 out of the 12 mutations identified were novel (p.Y86del, p.Q97X, p.W312C, p.R327X, c.427delG, p.R484G, and c.1336+2T>G). Two of these novel mutations (p.Y86del and p.W312C) were expressed in Chinese hamster ovary cells and analyzed for residual ARSB activity and mutant ARSB protein. The two common polymorphisms c.1072G>A [p.V358M] and c.1126G>A [p.V376M] were identified among the patients, along with the silent mutation c.1191A>G. Cultured fibroblast ARSB mutant protein and residual activity were determined for each patient, and, together with genotype information, were used to predict the expected clinical severity of each MPS VI patient.
Collapse
Affiliation(s)
- L Karageorgos
- Lysosomal Diseases Research Unit, Department of Genetic Medicine, Women's and Children's Hospital, North Adelaide, Australia
| | | | | | | | | | | | | |
Collapse
|
15
|
Litjens T, Hopwood JJ. Mucopolysaccharidosis type VI: Structural and clinical implications of mutations in N-acetylgalactosamine-4-sulfatase. Hum Mutat 2001; 18:282-95. [PMID: 11668612 DOI: 10.1002/humu.1190] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mucopolysaccharidosis type VI (MPS-VI) is an autosomal recessive lysosomal storage disorder caused by the deficiency of N-acetylgalactosamine-4-sulfatase (4S; or ARSB). Mutations in the 4S gene are responsible for 4S deficiency, which leads to the intralysosomal storage of partially degraded glycosaminoglycans, dermatan sulfate, and chondroitin 4-sulfate. To date, a total of 45 clinically relevant mutations have been identified in the human 4S gene. Missense mutations are the largest group, with 31 identified mutations. Nonsense mutations and small insertions or deletions comprise the remainder, with seven mutations each. Six polymorphisms have also been reported: two amino acid substitutions and four silent transitions. Mapping of the missense mutations onto the 4S structure shows that they are distributed throughout the three subunits of the mature 4S polypeptide. Mutations have been identified in active site residues, in residues adjacent to the active site, in potential substrate binding residues, in residues exposed on the surface, and in residues buried within the protein core. Missense mutations have also been identified in disulfide crosslinks. Molecular modeling of MPS-VI mutations onto the 4S structure suggests that the majority cause 4S deficiency via destabilization and the consequent reduction of 4S protein concentration. The vast majority of MPS-VI mutant alleles are either unique to a patient or are present in a small number of patients. So far, no common mutations have been described. Therefore, screening of the general population for MPS-VI alleles will be difficult.
Collapse
Affiliation(s)
- T Litjens
- Lysosomal Diseases Research Unit, Department of Chemical Pathology, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | | |
Collapse
|
16
|
Villani GR, Balzano N, Di Natale P. Two novel mutations of the arylsulfatase B gene in two Italian patients with severe form of mucopolysaccharidosis. Mutations in brief no. 127. Online. Hum Mutat 2000; 11:410. [PMID: 10206678 DOI: 10.1002/(sici)1098-1004(1998)11:5<410::aid-humu9>3.0.co;2-q] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mucopolysaccharidosis type VI (MPS VI) or Maroteaux-Lamy syndrome, is a autosomal recessive disorder, due to the deficiency of the lysosomal enzyme N-acetylgalactosamine-4-sulfatase (arylsufatase B, ASB: EC 3.1.6.12). Three classical forms of the disease have been differentiated: severe, intermediate, mild. Mutational analysis of the ASB gene resulted in the identification of 30 ASB mutant alleles, each of which was found to be unique among unrelated patients, demonstrating a broad molecular heterogeneity of the disease. In this communication we present two novel mutant alleles in two severely affected subjects. Both alterations, the missense mutation G302R and the nonsense Q456X, were found in homozygosity and were confirmed by amplification refractory mutation system (ARMS) or restriction analysis. The missense G302R mutation concerns an amino acid which may be of special importance to the polypeptide, since 302 position is completely conserved in all the eukaryotic sulfatases aligned so far; the nonsense mutation Q456X leads to the translation of a putative mutant ASB protein lacking the last 78 amino acids with a loss of the 8 kD mature polypeptide, one of the two peptides generated by intralysosomal proteolytic processing of the 64kD precursor.
Collapse
Affiliation(s)
- G R Villani
- Department of Biochemistry and Medical Biotechnologies, Medical School, University of Naples Federico II, Naples, Italy
| | | | | |
Collapse
|
17
|
Villani GR, Balzano N, Vitale D, Saviano M, Pavone V, Di Natale P. Maroteaux-lamy syndrome: five novel mutations and their structural localization. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1453:185-92. [PMID: 10036316 DOI: 10.1016/s0925-4439(98)00099-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Maroteaux-Lamy syndrome (mucopolysaccharidosis type VI, MPS VI) is an autosomal recessive disorder due to the deficiency of the lysosomal enzyme N-acetylgalactosamine-4-sulfatase (arylsulfatase B, ASB). Mutation analysis in Maroteaux-Lamy syndrome resulted in the identification of approximately 40 molecular defects underlying a great genetic heterogeneity. Here we report five novel mutations in Italian subjects: S65F, P116H, R315Q, Q503X, P531R; each defect was confirmed by restriction enzyme or amplification refractory mutation system (ARMS) analysis. We also performed a three-dimensional (3-D) structure analysis of the alterations identified by us, and of an additional 22 point mutations reported by other groups, in an attempt to draw helpful information about their possible effects on protein conformation.
Collapse
Affiliation(s)
- G R Villani
- Dipartimento di Biochimica e Biotecnologie Mediche, Facoltà di Medicina e Chirurgia, Università di Napoli 'Federico II', Via S. Pansini n 5, 80131, Napoli, Italy
| | | | | | | | | | | |
Collapse
|
18
|
Karageorgos LE, Isaac EL, Brooks DA, Ravenscroft EM, Davey R, Hopwood JJ, Meikle PJ. Lysosomal biogenesis in lysosomal storage disorders. Exp Cell Res 1997; 234:85-97. [PMID: 9223373 DOI: 10.1006/excr.1997.3581] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Lysosomal biogenesis is an orchestration of the structural and functional elements of the lysosome to form an integrated organelle and involves the synthesis, targeting, functional residence, and turnover of the proteins that comprise the lysosome. We have investigated lysosomal biogenesis during the formation and dissipation of storage vacuoles in two model systems. One involves the formation of sucrosomes in normal skin fibroblasts and the other utilizes storage disorder-affected skin fibroblasts; both of these systems result in an increase in the size and the number of lysosomal vacuoles. Lysosomal proteins, beta-hexosaminidase, alpha-mannosidase, N-acetylgalactosamine-4-sulfatase, acid phosphatase, and the lysosome-associated membrane protein, LAMP-1, were shown to be elevated between 2- and 28-fold above normal during lysosomal storage. Levels of mRNA for the lysosome-associated membrane proteins LAMP-1 and LAMP-2, N-acetylgalactosamine-4-sulfatase, and the 46- and 300-kDa mannose-6-phosphate receptors were also elevated 2- to 8-fold. The up-regulation of protein and mRNA lagged 2-4 days behind the formation of lysosomal storage vacuoles. Correction of storage, in both systems, resulted in the rapid decline of the mRNA to basal levels, with a slower decrease in the levels of lysosomal proteins. Lysosomal biogenesis in storage disorders is shown to be a regulated process which is partially controlled at, or prior to, the level of mRNA. Although lysosomal proteins were differentially regulated, the coordination of these events in lysosomal biogenesis would suggest that a common mechanism(s) may be in operation.
Collapse
Affiliation(s)
- L E Karageorgos
- Department of Chemical Pathology, Women's and Children's Hospital, North Adelaide, South Australia
| | | | | | | | | | | | | |
Collapse
|
19
|
Isbrandt D, Hopwood JJ, von Figura K, Peters C. Two novel frameshift mutations causing premature stop codons in a patient with the severe form of Maroteaux-Lamy syndrome. Hum Mutat 1996; 7:361-3. [PMID: 8723688 DOI: 10.1002/(sici)1098-1004(1996)7:4<361::aid-humu12>3.0.co;2-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
20
|
Simonaro CM, Schuchman EH. N-acetylgalactosamine-4-sulfatase: identification of four new mutations within the conserved sulfatase region causing mucopolysaccharidosis type VI. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1272:129-32. [PMID: 8541342 DOI: 10.1016/0925-4439(95)00070-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mucopolysaccharidosis type VI (MPS VI; Maroteaux-Lamy syndrome) is the lysosomal storage disorder resulting from the deficient activity of N-acetylgalactosamine-4-sulfatase (arylsulfatase B; ASB). MPS VI has been described in man, cats and rats, and several mutations in the ASB gene have been identified in human patients and the animal models. Notably, ASB belongs to a family of sulfatases which are highly conserved, suggesting that they are related evolutionarily and functionally. In this manuscript, four new mutations causing MPS VI are described within the human ASB gene. Each of these mutations occurred in or near the hexapeptide 144GKWHLG149, one of the most highly conserved 'sulfatase' regions. In fact, three of the mutations occurred within the same codon, W146. Thus, these results provide new insights into the molecular lesions causing MPS VI and highlight the importance of this conserved sulfatase region.
Collapse
Affiliation(s)
- C M Simonaro
- Department of Human Genetics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
21
|
Affiliation(s)
- V Gieselmann
- Department of Biochemistry II, Georg August Universität, Göttingen, Germany
| |
Collapse
|
22
|
Brooks DA, Robertson DA, Bindloss C, Litjens T, Anson DS, Peters C, Morris CP, Hopwood JJ. Two site-directed mutations abrogate enzyme activity but have different effects on the conformation and cellular content of the N-acetylgalactosamine 4-sulphatase protein. Biochem J 1995; 307 ( Pt 2):457-63. [PMID: 7733883 PMCID: PMC1136670 DOI: 10.1042/bj3070457] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The sulphatase family of enzymes have regions of sequence similarity, but relatively little is known about either the structure-function relationships of sulphatases, or the role of highly conserved amino acids. The sequence of amino acids CTPSR at position 91-95 of 4-sulphatase has been shown to be highly conserved in all of the sequenced sulphatase enzymes. The cysteine at amino acid 91 of 4-sulphatase was selected for mutation analysis due to its potential role in either the active site, substrate-binding site or part of a key structural domain of 4-sulphatase and due to the absence of naturally occurring mutations in this residue in mucopolysaccharidosis type VI (MPS VI) patients. Two mutations, C91S and C91T, altering amino acid 91 of 4-sulphatase were generated and expressed in Chinese hamster ovary cells. Biochemical analysis of protein from a C91S cell line demonstrated no detectable 4-sulphatase enzyme activity but a relatively normal level of 4-sulphatase polypeptide (180% of the wild-type control protein level). Epitope detection, using a panel of ten monoclonal antibodies, demonstrated that the C91S polypeptide had a similar immunoreactivity to wild-type 4-sulphatase, suggesting that the C91S substitution does not induce a major structural change in the protein. Reduced catalytic activity associated with normal levels of 4-sulphatase protein have not been observed in any of the MPS VI patients tested and all show evidence of structural modification of 4-sulphatase protein with the same panel of antibodies [Brooks, McCourt, Gibson, Ashton, Shutter and Hopwood (1991) Am. J. Hum. Genet. 48, 710-719]. The loss of enzyme activity without a detectable protein conformation change suggests that Cys-91 may be a critical residue in the catalytic process. In contrast, analysis of protein from a C91T cell line revealed low levels of catalytically inactive 4-sulphatase polypeptide (0.37% of the wild-type control protein level) which had missing or masked epitopes, suggesting an altered protein structure or conformation. Subcellular fractionation studies of the C91T cell line demonstrated a high proportion of 4-sulphatase polypeptide content in organelles characteristic of microsomes. The aberrant intracellular localization and the reduced cellular content of 4-sulphatase polypeptide was consistent with the observed structural modification leading to retention and degradation of the protein within an early vacuolar compartment.
Collapse
Affiliation(s)
- D A Brooks
- Department of Chemical Pathology, Women's and Children's Hospital, North Adelaide, Australia
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Arlt G, Brooks D, Isbrandt D, Hopwood J, Bielicki J, Bradford T, Bindloss-Petherbridge C, von Figura K, Peters C. Juvenile form of mucopolysaccharidosis VI (Maroteaux-Lamy syndrome). A C-terminal extension causes instability but increases catalytic efficiency of arylsulfatase B. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36929-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
24
|
Voskoboeva E, Isbrandt D, von Figura K, Krasnopolskaya X, Peters C. Four novel mutant alleles of the arylsulfatase B gene in two patients with intermediate form of mucopolysaccharidosis VI (Maroteaux-Lamy syndrome). Hum Genet 1994; 93:259-64. [PMID: 8125475 DOI: 10.1007/bf00212019] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mucopolysaccharidosis type VI (MPSVI, Maroteaux-Lamy syndrome) is a lysosomal storage disease for which multiple clinical phenotypes have been described. A deficiency of the enzyme arylsulfatase B (ASB, N-acetylgalactosamine-4-sulfatase) is the cause of this autosomal recessively inherited disorder. The genotypes of two patients with an intermediate form of MPSVI have been determined by polymerase chain reaction (PCR) amplification of the entire open reading frame of the ASB gene and subsequent direct sequencing of both strands of the PCR fragments by an automated nonradioactive approach. In patient A, a C to T transition in allele I resulting in an exchange of the Arg codon 160 for a premature stop codon (R160*, exon 2), and a G to A transition in allele II leading to a Gln to Arg160 substitution (R160Q, exon 2) were detected. Patient B exhibited a 7-bp deletion in exon 1 of allele I resulting in a frame shift and a premature stop codon 33 triplets 3' of the site of deletion (delta G237-C243), and a C to T transition in allele II giving rise to a Trp to Arg152 substitution (R152W, exon 2). None of these four mutant alleles was present among 60 alleles of the ASB gene in unrelated controls, indicating that the former are not polymorphisms. These results emphasize the broad molecular heterogeneity of Maroteaux-Lamy syndrome and contribute to the establishment of a genotype/phenotype correlation in this disease.
Collapse
Affiliation(s)
- E Voskoboeva
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow
| | | | | | | | | |
Collapse
|
25
|
Fensom AH, Benson PF. Recent advances in the prenatal diagnosis of the mucopolysaccharidoses. Prenat Diagn 1994; 14:1-12. [PMID: 8183831 DOI: 10.1002/pd.1970140102] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- A H Fensom
- Supraregional Laboratory for Genetic Enzyme Defects, UMDS, Guy's Hospital, London, U.K
| | | |
Collapse
|