1
|
Sarel-Gallily R, Gunapala KM, Benvenisty N. Large-scale analysis of loss of chromosome Y in human pluripotent stem cells: Implications for Turner syndrome and ribosomopathies. Stem Cell Reports 2025; 20:102471. [PMID: 40185088 DOI: 10.1016/j.stemcr.2025.102471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 04/07/2025] Open
Abstract
Loss of chromosome Y (LOY) occurs in aging and cancers, but its extent and implications in human embryonic stem cells (hESCs) have not been studied. Here, we analyzed over 2,650 RNA sequencing (RNA-seq) samples from hESCs and their differentiated derivatives to detect LOY. We found that 12% of hESC samples have lost their chromosome Y and identified LOY in all three germ layers. Differential expression analysis revealed that LOY samples showed a decrease in expression of pluripotency markers and in ribosomal protein (RP) genes. Strikingly, significant RP transcription downregulation was observed in most RP genes, although there is only one expressed Y-linked RP gene. We further analyzed RP expression in Turner syndrome and Diamond-Blackfan anemia samples and observed overall downregulation of RP transcription. This broad analysis sheds light on the scope and effects of LOY in hESCs, suggesting a novel dosage-sensitive mechanism regulating RP gene transcription in LOY and autosomal ribosomopathies.
Collapse
Affiliation(s)
- Roni Sarel-Gallily
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Keith M Gunapala
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel; Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland.
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel.
| |
Collapse
|
2
|
Kim K, Lee H, Ahn S, Kim YH, Oh CK. Unveiling the role of RPS17 and SLC4A1 in diamond-Blackfan Anemia: A zebrafish-based study. Blood Cells Mol Dis 2025; 112:102912. [PMID: 40015014 DOI: 10.1016/j.bcmd.2025.102912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/01/2025]
Abstract
Diamond-Blackfan Anemia (DBA) is a rare congenital disorder characterized by macrocytic anemia, physical abnormalities, and growth delays. Although RPS19 mutations have been more extensively studied in DBA compared to other ribosomal protein genes, the pathological mechanisms of genes such as RPS17 remain largely unexplored. This study aimed to investigate the role of RPS17 haploinsufficiency in DBA, focusing on its downstream effects on erythropoiesis and the involvement of SLC4A1, a critical erythrocyte membrane protein essential for red blood cell stability. Transcriptomic analysis of publicly available RNA sequencing data from DBA patients revealed significant downregulation of SLC4A1 in RPS17-mutated cases. To validate these findings, we generated a zebrafish model of DBA by knocking down rps17 using morpholino injections. Zebrafish embryos with rps17 knockdown exhibited reduced erythropoiesis, impaired hemoglobin synthesis, consistent with DBA. Further analysis confirmed decreased slc4a1a expression in rps17-morphants. Independent knockdown of slc4a1a in zebrafish resulted in similar erythropoietic defects, highlighting its critical role in red blood cell membrane integrity and function. This study identifies slc4a1 as a key downstream target of RPS17 haploinsufficiency and provides novel insights into the molecular mechanisms of DBA. By establishing zebrafish as an effective in vivo model, this research offers potential therapeutic targets for treating DBA and related erythropoietic disorders.
Collapse
Affiliation(s)
- Kyeongmin Kim
- Department of Biochemistry, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Hyerin Lee
- Interdisciplinary Program of Genomic Science, Pusan National University, Yangsan 50612, Republic of Korea
| | - Soyul Ahn
- Department of Biochemistry, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; Department of Convergence Medical Sciences, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Yun Hak Kim
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; Department of Anatomy, School of Medicine, Pusan National, Republic of Korea
| | - Chang-Kyu Oh
- Department of Biochemistry, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; Department of Convergence Medical Sciences, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea.
| |
Collapse
|
3
|
Ahn S, Oh CK. RPS24 haploinsufficiency impairs erythropoiesis in the Diamond-Blackfan anemia zebrafish model via the STAT6-SATB1 pathway. Biochem Biophys Res Commun 2025; 756:151563. [PMID: 40054062 DOI: 10.1016/j.bbrc.2025.151563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 02/27/2025] [Indexed: 03/22/2025]
Abstract
Diamond-Blackfan anemia (DBA) is a rare bone marrow failure disorder primarily caused by mutations in ribosomal proteins (RPs), including RPS24, leading to impaired erythropoiesis. Despite advances in our understanding of the roles of other RPs, the mechanisms underlying RPS24-related DBA remain unclear. Therefore, in this study, we aimed to investigate the effect of RPS24 haploinsufficiency on erythropoiesis using a zebrafish model. RPS24 knockdown via morpholino injection significantly reduced the hemoglobin levels, as confirmed by O-dianisidine staining and whole-mount in situ hybridization. Further analysis revealed that RPS24 deficiency downregulated the expression of SATB homeobox 1a (satb1a), a key regulator of erythroid differentiation, by inhibiting the signal transducer and activator of transcription 6 (STAT6) signaling pathway. Western blotting analysis revealed decreased levels of pSTAT6 correlated with the decrease in downstream erythroid marker levels. satb1a knockdown further impaired erythropoiesis in zebrafish, reinforcing its critical role in DBA pathogenesis. Overall, our findings suggest that RPS24 haploinsufficiency leads to DBA by disrupting the STAT6-SATB1 axis, providing novel insights into the molecular mechanisms underlying erythropoietic failure in DBA. Furthermore, this study highlights the importance of zebrafish models for further exploration of therapeutic targets for DBA.
Collapse
Affiliation(s)
- Soyul Ahn
- Department of Convergence Medical Science, School of Medicine, Pusan National University, Yangsan, 50612, South Korea; Department of Biochemistry, School of Medicine, Pusan National University, Yangsan, 50612, South Korea
| | - Chang-Kyu Oh
- Department of Biochemistry, School of Medicine, Pusan National University, Yangsan, 50612, South Korea.
| |
Collapse
|
4
|
Yao Y, Zhou Z, Wang X, Liu Z, Zhai Y, Chi X, Du J, Luo L, Zhao Z, Wang X, Xue C, Rao S. SpRY-mediated screens facilitate functional dissection of non-coding sequences at single-base resolution. CELL GENOMICS 2024; 4:100583. [PMID: 38889719 PMCID: PMC11293580 DOI: 10.1016/j.xgen.2024.100583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/28/2024] [Accepted: 05/16/2024] [Indexed: 06/20/2024]
Abstract
CRISPR mutagenesis screens conducted with SpCas9 and other nucleases have identified certain cis-regulatory elements and genetic variants but at a limited resolution due to the absence of protospacer adjacent motif (PAM) sequences. Here, leveraging the broad targeting scope of the near-PAMless SpRY variant, we have demonstrated that saturated SpRY mutagenesis and base editing screens can faithfully identify functional regulatory elements and essential genetic variants for target gene expression at single-base resolution. We further extended this methodology to investigate a genome-wide association study (GWAS) locus at 10q22.1 associated with a red blood cell trait, where we identified potential enhancers regulating HK1 gene expression, despite not all of these enhancers exhibiting typical chromatin signatures. More importantly, our saturated base editing screens pinpoint multiple causal variants within this locus that would otherwise be missed by Bayesian statistical fine-mapping. Our approach is generally applicable to functional interrogation of all non-coding genomic elements while complementing other high-coverage CRISPR screens.
Collapse
Affiliation(s)
- Yao Yao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China.
| | - Zhiwei Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Xiaoling Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Zhirui Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Yixin Zhai
- Department of Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xiaolin Chi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Jingyi Du
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Liheng Luo
- Center for Bioinformatics, National Infrastructures for Translational Medicine, Institute of Clinical Medicine & Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Zhigang Zhao
- Department of Medical Oncology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China
| | - Xiaoyue Wang
- Center for Bioinformatics, National Infrastructures for Translational Medicine, Institute of Clinical Medicine & Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Chaoyou Xue
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Shuquan Rao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China.
| |
Collapse
|
5
|
Giménez Y, Palacios M, Sánchez-Domínguez R, Zorbas C, Peral J, Puzik A, Ugalde L, Alberquilla O, Villanueva M, Río P, Gálvez E, Da Costa L, Strullu M, Catala A, Ruiz-Llobet A, Segovia JC, Sevilla J, Strahm B, Niemeyer CM, Beléndez C, Leblanc T, Lafontaine DL, Bueren J, Navarro S. Lentivirus-mediated gene therapy corrects ribosomal biogenesis and shows promise for Diamond Blackfan anemia. JCI Insight 2024; 9:e171650. [PMID: 38775150 PMCID: PMC11141922 DOI: 10.1172/jci.insight.171650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 04/10/2024] [Indexed: 06/02/2024] Open
Abstract
This study lays the groundwork for future lentivirus-mediated gene therapy in patients with Diamond Blackfan anemia (DBA) caused by mutations in ribosomal protein S19 (RPS19), showing evidence of a new safe and effective therapy. The data show that, unlike patients with Fanconi anemia (FA), the hematopoietic stem cell (HSC) reservoir of patients with DBA was not significantly reduced, suggesting that collection of these cells should not constitute a remarkable restriction for DBA gene therapy. Subsequently, 2 clinically applicable lentiviral vectors were developed. In the former lentiviral vector, PGK.CoRPS19 LV, a codon-optimized version of RPS19 was driven by the phosphoglycerate kinase promoter (PGK) already used in different gene therapy trials, including FA gene therapy. In the latter one, EF1α.CoRPS19 LV, RPS19 expression was driven by the elongation factor alpha short promoter, EF1α(s). Preclinical experiments showed that transduction of DBA patient CD34+ cells with the PGK.CoRPS19 LV restored erythroid differentiation, and demonstrated the long-term repopulating properties of corrected DBA CD34+ cells, providing evidence of improved erythroid maturation. Concomitantly, long-term restoration of ribosomal biogenesis was verified using a potentially novel method applicable to patients' blood cells, based on ribosomal RNA methylation analyses. Finally, in vivo safety studies and proviral insertion site analyses showed that lentivirus-mediated gene therapy was nontoxic.
Collapse
Affiliation(s)
- Yari Giménez
- Division of Hematopoietic Innovative Therapies, CIEMAT, Madrid, Spain
- Instituto Nacional de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Advanced Therapies Unit, IIS-Fundación Jimenez Diaz (IIS-FJD, UAM), Madrid, Spain
| | - Manuel Palacios
- Division of Hematopoietic Innovative Therapies, CIEMAT, Madrid, Spain
- Instituto Nacional de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Advanced Therapies Unit, IIS-Fundación Jimenez Diaz (IIS-FJD, UAM), Madrid, Spain
| | - Rebeca Sánchez-Domínguez
- Division of Hematopoietic Innovative Therapies, CIEMAT, Madrid, Spain
- Instituto Nacional de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Advanced Therapies Unit, IIS-Fundación Jimenez Diaz (IIS-FJD, UAM), Madrid, Spain
| | - Christiane Zorbas
- RNA Molecular Biology, Fonds de la Recherche Scientifique (FRS/FNRS), Université libre de Bruxelles (ULB), Biopark campus, Gosselies, Belgium
| | - Jorge Peral
- Division of Hematopoietic Innovative Therapies, CIEMAT, Madrid, Spain
- Instituto Nacional de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Advanced Therapies Unit, IIS-Fundación Jimenez Diaz (IIS-FJD, UAM), Madrid, Spain
| | - Alexander Puzik
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Laura Ugalde
- Division of Hematopoietic Innovative Therapies, CIEMAT, Madrid, Spain
- Instituto Nacional de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Advanced Therapies Unit, IIS-Fundación Jimenez Diaz (IIS-FJD, UAM), Madrid, Spain
| | - Omaira Alberquilla
- Division of Hematopoietic Innovative Therapies, CIEMAT, Madrid, Spain
- Instituto Nacional de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Advanced Therapies Unit, IIS-Fundación Jimenez Diaz (IIS-FJD, UAM), Madrid, Spain
| | - Mariela Villanueva
- Division of Hematopoietic Innovative Therapies, CIEMAT, Madrid, Spain
- Instituto Nacional de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Advanced Therapies Unit, IIS-Fundación Jimenez Diaz (IIS-FJD, UAM), Madrid, Spain
| | - Paula Río
- Division of Hematopoietic Innovative Therapies, CIEMAT, Madrid, Spain
- Instituto Nacional de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Advanced Therapies Unit, IIS-Fundación Jimenez Diaz (IIS-FJD, UAM), Madrid, Spain
| | | | - Lydie Da Costa
- AP-HP, Hematology diagnostic laboratory, Hôpital Robert-Debré, Paris, France
- University of Paris; Hematim, UR4666, UPJV; LABEX GR-EX, Paris, France
| | - Marion Strullu
- AP-HP, service Immuno-Hématologie pédiatique, Hôpital R. Debré, Paris, France
| | | | | | - Jose Carlos Segovia
- Division of Hematopoietic Innovative Therapies, CIEMAT, Madrid, Spain
- Instituto Nacional de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Advanced Therapies Unit, IIS-Fundación Jimenez Diaz (IIS-FJD, UAM), Madrid, Spain
| | | | - Brigitte Strahm
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Charlotte M. Niemeyer
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cristina Beléndez
- Instituto Nacional de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Sección de Hematología y Oncología Pediátricas, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Thierry Leblanc
- AP-HP, service Immuno-Hématologie pédiatique, Hôpital R. Debré, Paris, France
| | - Denis L.J. Lafontaine
- RNA Molecular Biology, Fonds de la Recherche Scientifique (FRS/FNRS), Université libre de Bruxelles (ULB), Biopark campus, Gosselies, Belgium
| | - Juan Bueren
- Division of Hematopoietic Innovative Therapies, CIEMAT, Madrid, Spain
- Instituto Nacional de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Advanced Therapies Unit, IIS-Fundación Jimenez Diaz (IIS-FJD, UAM), Madrid, Spain
| | - Susana Navarro
- Division of Hematopoietic Innovative Therapies, CIEMAT, Madrid, Spain
- Instituto Nacional de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Advanced Therapies Unit, IIS-Fundación Jimenez Diaz (IIS-FJD, UAM), Madrid, Spain
| |
Collapse
|
6
|
Wei Y, Shen X, Zhao X, He H, Zhang Y, Zhu Q, Yin H. Circular RNA circRPS19 promotes chicken granulosa cell proliferation and steroid hormone synthesis by interrupting the miR-218-5p/INHBB axis. Theriogenology 2024; 219:103-115. [PMID: 38422566 DOI: 10.1016/j.theriogenology.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
Ovarian follicle development is an important physiological activity for females and makes great significance in maintaining female health and reproduction performance. The development of ovarian follicle is mainly affected by the granulosa cells (GCs), whose growth is regulated by a variety of factors. Here, we identified a novel circular RNA (circRNA) derived from the Ribosomal protein S19 (RPS19) gene, named circRPS19, which is differentially expressed during chicken ovarian follicle development. Further explorations identified that circRPS19 promotes GCs proliferation and steroid hormone synthesis. Furthermore, circRPS19 was found to target and regulate miR-218-5p through a competitive manner with endogenous RNA (ceRNA). Functionals investigation revealed that miR-218-5p attenuates GCs proliferation and steroidogenesis, which is opposite to that of circRPS19. In addition, we also confirmed that circRPS19 upregulates the expression of Inhibin beta B subunit (INHBB) by binding with miR-218-5p to facilitate GCs proliferation and steroidogenesis. Overall, this study revealed that circRPS19 regulates GCs development by releasing the repression of miR-218-5p on INHBB, which suggests a novel mechanism in respect to circRNA and miRNA regulation in ovarian follicle development.
Collapse
Affiliation(s)
- Yuanhang Wei
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaoxu Shen
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiyu Zhao
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Haorong He
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yao Zhang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qing Zhu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Huadong Yin
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
7
|
Vu GT, Awad V, Norberto MF, Bowman TV, Trompouki E. Nucleic acid-induced inflammation on hematopoietic stem cells. Exp Hematol 2024; 131:104148. [PMID: 38151171 PMCID: PMC11061806 DOI: 10.1016/j.exphem.2023.104148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
Hematopoiesis, the process of generating blood cells, starts during development with the primitive, pro-definitive, and definitive hematopoietic waves. The first two waves will generate erythrocytes and myeloid cells, although the definitive wave will give rise to hematopoietic stem cells (HSCs) that are multipotent and can produce most of the blood cells in an adult. Although HSCs are highly proliferative during development, during adulthood they remain quiescent in the bone marrow. Inflammatory signaling in the form of interferons, interleukins, tumor necrosis factors, and others is well-established to influence both developmental and adult hematopoiesis. Here we discuss the role of specific inflammatory pathways that are induced by sensing nucleic acids. We discuss the role of RNA-sensing members of the Toll-like, Rig-I-like, nucleotide-binding oligomerization domain (NOD)-like, and AIM2-like protein kinase receptors and the DNA-sensing receptors, DEAD-Box helicase 41 (DDX41) and cGAS. The main downstream pathways of these receptors are discussed, as well as their influence on developmental and adult hematopoiesis, including hematopoietic pathologies.
Collapse
Affiliation(s)
- Giang To Vu
- IRCAN Institute for Research on Cancer and Aging, INSERM Unité 1081, CNRS UMR 7284, Université Côte d'Azur, Nice, France
| | - Valerie Awad
- Department of Developmental and Molecular Biology and Gottesman Institute of Stem Cell Biology and Regenerative Medicine Bronx, Albert Einstein College of Medicine, NY
| | - Maria Feliz Norberto
- Department of Developmental and Molecular Biology and Gottesman Institute of Stem Cell Biology and Regenerative Medicine Bronx, Albert Einstein College of Medicine, NY
| | - Teresa V Bowman
- Department of Developmental and Molecular Biology and Gottesman Institute of Stem Cell Biology and Regenerative Medicine Bronx, Albert Einstein College of Medicine, NY; Department of Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY.
| | - Eirini Trompouki
- IRCAN Institute for Research on Cancer and Aging, INSERM Unité 1081, CNRS UMR 7284, Université Côte d'Azur, Nice, France.
| |
Collapse
|
8
|
Pallavelangini S, Senguttuvan G, Bhatia P, Chhabra P, Singh M, Khadwal A, Jain A, Sharma P, Thakur R, Sreedharanunni S, Bansal D, Jain R, Peyam S, Mohapatra S, Jindal A, Suri D, Das R, Varma N, Malhotra P, Trehan A. A Well-Curated Cost-Effective Next-Generation Sequencing Panel Identifies a Diverse Landscape of Pathogenic and Novel Germline Variants in a Bone Marrow Failure Cohort in a Resource-Constraint Setting. J Mol Diagn 2023; 25:748-757. [PMID: 37474001 DOI: 10.1016/j.jmoldx.2023.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/03/2023] [Accepted: 06/21/2023] [Indexed: 07/22/2023] Open
Abstract
The current study is a 4-year experience in diagnosis and screening of inherited and immune bone marrow failure cases using a targeted sequencing panel. A total of 171 cases underwent targeted next-generation sequencing and were categorized as suspected inherited bone marrow failure syndrome (IBMFS) group (106; 62%) and immune/idiopathic aplastic anemia (IAA) group (65; 38%) based on clinical and laboratory criteria. A total of 110 (64%) were pediatric (aged 0 to 12 years) patients and 61 (36%) were adolescent and adult (aged 13 to 47 years) patients. In suspected IBMFS group, 47 (44%), and in IAA group, 8 (12%) revealed a likely germline pathogenic variation. Whole-exome sequencing performed in 15 of 59 suspected IBMFS group cases was negative on targeted panel, and revealed a clinically important variation in 3 (20%) cases. A total of 11 novel variants were identified. The targeted panel helped establish a diagnosis in 44% (27/61) of unclassified bone marrow failure syndrome cases and led to amendment of clinical diagnosis in 5 (4.7%) cases. Overall, diagnostic yield of this well-curated small panel was comparable to Western studies with larger gene panels. Moreover, this was achievable at a much lower cost, making it suitable for resource-constraint settings. In addition, high frequency (>10%) of cryptic pathogenic IBMFS gene variations in IAA cohort suggests routine incorporation of targeted next-generation sequencing screening in these cases.
Collapse
Affiliation(s)
- Swetha Pallavelangini
- Pediatric Hematology-Oncology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Gnanamani Senguttuvan
- Pediatric Hematology-Oncology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Prateek Bhatia
- Pediatric Hematology-Oncology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| | - Prashant Chhabra
- Department of Pediatrics, All India Institute of Medical Sciences, Bathinda, India
| | - Minu Singh
- Pediatric Hematology-Oncology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Alka Khadwal
- Department of Clinical Hematology and Medical Oncology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Arihant Jain
- Department of Clinical Hematology and Medical Oncology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pankaj Sharma
- Pediatric Hematology-Oncology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rozy Thakur
- Pediatric Hematology-Oncology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sreejesh Sreedharanunni
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Deepak Bansal
- Pediatric Hematology-Oncology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Richa Jain
- Pediatric Hematology-Oncology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Srinivasan Peyam
- Pediatric Hematology-Oncology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sonali Mohapatra
- Department of Pediatrics, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Ankur Jindal
- Pediatric Allergy Immunology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Deepti Suri
- Pediatric Allergy Immunology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Reena Das
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Neelam Varma
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pankaj Malhotra
- Department of Clinical Hematology and Medical Oncology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amita Trehan
- Pediatric Hematology-Oncology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
9
|
Iskander D, Roy NBA, Payne E, Drasar E, Hennessy K, Harrington Y, Christodoulidou C, Karadimitris A, Batkin L, de la Fuente J. Diamond-Blackfan anemia in adults: In pursuit of a common approach for a rare disease. Blood Rev 2023; 61:101097. [PMID: 37263874 DOI: 10.1016/j.blre.2023.101097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/19/2023] [Accepted: 05/07/2023] [Indexed: 06/03/2023]
Abstract
Diamond-Blackfan anemia (DBA) is a rare bone marrow failure syndrome, usually caused by loss-of function variants in genes encoding ribosomal proteins. The hallmarks of DBA are anemia, congenital anomalies and cancer predisposition. Although DBA usually presents in childhood, the prevalence in later life is increasing due to an expanding repertoire of implicated genes, improvements in genetic diagnosis and increasing life expectancy. Adult patients uniquely suffer the manifestations of end-organ damage caused by the disease and its treatment, and transition to adulthood poses specific issues in disease management. To standardize and optimize care for this rare disease, in this review we provide updated guidance on the diagnosis and management of DBA, with a specific focus on older adolescents and adults. Recommendations are based upon published literature and our pooled clinical experience from three centres in the United Kingdom (U·K.). Uniquely we have also solicited and incorporated the views of affected families, represented by the independent patient organization, DBA U.K.
Collapse
Affiliation(s)
- Deena Iskander
- Centre for Haematology, Department of Immunology & Inflammation, Imperial College London, London W12 0NN, UK.
| | - Noémi B A Roy
- Oxford University Hospitals NHS Foundation Trust and University of Oxford, OX3 9DU, UK
| | - Elspeth Payne
- UCL Cancer Institute, Dept of Hematology, London WC1 E6BT, UK; Dept of Hematology, University College Hospital London, NW1 2BU, UK
| | - Emma Drasar
- Whittington Health NHS Trust and University College Hospital London, N19 5NF, UK
| | - Kelly Hennessy
- Department of Paediatrics, St. Mary's Hospital, Imperial College Healthcare NHS Trust, London W2 1NY, UK
| | - Yvonne Harrington
- Department of Paediatrics, St. Mary's Hospital, Imperial College Healthcare NHS Trust, London W2 1NY, UK
| | - Chrysi Christodoulidou
- Centre for Haematology, Department of Immunology & Inflammation, Imperial College London, London W12 0NN, UK
| | - Anastasios Karadimitris
- Centre for Haematology, Department of Immunology & Inflammation, Imperial College London, London W12 0NN, UK
| | - Leisa Batkin
- DBA, UK 71-73 Main Street, Palterton, Chesterfield, S44 6UR, UK
| | - Josu de la Fuente
- Department of Paediatrics, St. Mary's Hospital, Imperial College Healthcare NHS Trust, London W2 1NY, UK.
| |
Collapse
|
10
|
Al-Mulla A, Austin F, Helou M. Utility of Whole Exome Sequencing in the Early Diagnosis of Atypical Diamond-Blackfan Anemia. J Pediatr Hematol Oncol 2023; 45:159-161. [PMID: 36706306 DOI: 10.1097/mph.0000000000002616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 12/07/2022] [Indexed: 01/28/2023]
Abstract
Diamond-Blackfan anemia (DBA) is a rare congenital bone marrow failure syndrome, with a hallmark of erythroblastopenia and congenital anomalies. DBA demonstrates genetic heterogeneity and variable phenotypic expression. We present two cases of atypical DBA harboring de novo mutations in the RPS-19 gene with c.49 G>C and c.357-1G>T allelic variants. The two cases presented confounding critical illness demonstrated by multiorgan failure, aplastic crisis, with case 2 meeting the criteria for hemophagocytic lymphohistiocytosis. We highlight the utility of genetic testing in the early diagnosis of DBA and the associated complexities and burden of disease in caring for DBA patients.
Collapse
Affiliation(s)
- Abdulla Al-Mulla
- Department of Hematology and Oncology, Children's Hospital of Richmond at VCU, Richmond, VA
| | | | | |
Collapse
|
11
|
Ambrosini C, Destefanis E, Kheir E, Broso F, Alessandrini F, Longhi S, Battisti N, Pesce I, Dassi E, Petris G, Cereseto A, Quattrone A. Translational enhancement by base editing of the Kozak sequence rescues haploinsufficiency. Nucleic Acids Res 2022; 50:10756-10771. [PMID: 36165847 PMCID: PMC9561285 DOI: 10.1093/nar/gkac799] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 09/01/2022] [Accepted: 09/22/2022] [Indexed: 11/28/2022] Open
Abstract
A variety of single-gene human diseases are caused by haploinsufficiency, a genetic condition by which mutational inactivation of one allele leads to reduced protein levels and functional impairment. Translational enhancement of the spare allele could exert a therapeutic effect. Here we developed BOOST, a novel gene-editing approach to rescue haploinsufficiency loci by the change of specific single nucleotides in the Kozak sequence, which controls translation by regulating start codon recognition. We evaluated for translational strength 230 Kozak sequences of annotated human haploinsufficient genes and 4621 derived variants, which can be installed by base editing, by a high-throughput reporter assay. Of these variants, 149 increased the translation of 47 Kozak sequences, demonstrating that a substantial proportion of haploinsufficient genes are controlled by suboptimal Kozak sequences. Validation of 18 variants for 8 genes produced an average enhancement in an expression window compatible with the rescue of the genetic imbalance. Base editing of the NCF1 gene, whose monoallelic loss causes chronic granulomatous disease, resulted in the desired increase of NCF1 (p47phox) protein levels in a relevant cell model. We propose BOOST as a fine-tuned approach to modulate translation, applicable to the correction of dozens of haploinsufficient monogenic disorders independently of the causing mutation.
Collapse
Affiliation(s)
- Chiara Ambrosini
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Eliana Destefanis
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Eyemen Kheir
- Laboratory of Molecular Virology, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Francesca Broso
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Federica Alessandrini
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Sara Longhi
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Nicolò Battisti
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Isabella Pesce
- Cell Analysis and Separation Core Facility, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Erik Dassi
- Laboratory of RNA Regulatory Networks, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Gianluca Petris
- Medical Research Council Laboratory of Molecular Biology (MRC LMB), Cambridge CB2 0QH, UK
| | - Anna Cereseto
- Laboratory of Molecular Virology, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | - Alessandro Quattrone
- Laboratory of Translational Genomics, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| |
Collapse
|
12
|
Cole S, Giri N, Alter BP, Gianferante DM. Variable Clinical Features in a Large Family With Diamond Blackfan Anemia Caused by a Pathogenic Missense Mutation in RPS19. Front Genet 2022; 13:914141. [PMID: 35923690 PMCID: PMC9340065 DOI: 10.3389/fgene.2022.914141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction: Diamond Blackfan anemia (DBA) is an autosomal dominant ribosomopathy caused predominantly by pathogenic germline variants in ribosomal protein genes. It is characterized by failure of red blood cell production, and common features include congenital malformations and cancer predisposition. Mainstays of treatment are corticosteroids, red blood cell transfusions, and hematologic stem cell transplantation (HSCT). Despite a better understanding of the genotype of DBA, the biological mechanism resulting in the clinical phenotype remains poorly understood, and wide heterogeneity can be seen even within a single family as depicted here. Case Description: Thirty family members enrolled in the National Cancer Institute inherited bone marrow failure syndromes study were evaluated with detailed medical questionnaires and physical examinations, including 22 in the family bloodline and eight unrelated partners. Eight participants had been previously told they had DBA by clinical criteria. Targeted germline RPS19 testing was done on all family members. A pathogenic heterozygous missense mutation in RPS19 (p.R62Q, c.185G > A) was detected in ten family members, including one person previously presumed unaffected. Eight family members presented with macrocytic anemia in infancy; all of whom were responsive to prednisone. Four family members became treatment independent; however, one individual became transfusion-dependent 36 years later following an episode of pneumonia. One prednisone responsive individual electively discontinued steroid treatment, and lives with severe anemia. One prednisone responsive individual died at age 28 from a stroke. Two family members developed colorectal cancer in their fifties; one had never required treatment for anemia. None had major congenital anomalies. Discussion: This large family with DBA demonstrates the heterogeneity of phenotypes that can be seen within the same genotype. Most family members presented with steroid-responsive anemia in infancy and subtle congenital malformations, findings consistent with recent genotype-phenotype studies of RPS DBA. However, two family members were relatively unaffected, underscoring the importance of further studies to assess modifier genes, and epigenetic and/or environmental factors which may result in normal erythropoiesis despite underlying ribosome dysfunction. This large, multigenerational family highlights the need for individualized treatment, the importance of early cancer surveillance even in individuals with clinically mild phenotypes, and the benefit of long-term follow-up to identify late complications.
Collapse
Affiliation(s)
- Sarah Cole
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, United States
- Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Neelam Giri
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, United States
| | - Blanche P. Alter
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, United States
| | - D. Matthew Gianferante
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, United States
- *Correspondence: D. Matthew Gianferante,
| |
Collapse
|
13
|
Hiregange DG, Rivalta A, Yonath A, Zimmerman E, Bashan A, Yonath H. Mutations in RPS19 may affect ribosome function and biogenesis in Diamond Blackfan Anemia. FEBS Open Bio 2022; 12:1419-1434. [PMID: 35583751 PMCID: PMC9249338 DOI: 10.1002/2211-5463.13444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/04/2022] [Accepted: 05/17/2022] [Indexed: 11/12/2022] Open
Abstract
Ribosomes, the cellular organelles translating the genetic code to proteins, are assemblies of RNA chains and many proteins (RPs) arranged in precise fine-tuned interwoven structures. Mutated ribosomal genes cause ribosomopathies, including Diamond Blackfan Anemia (DBA, a rare heterogeneous red-cell aplasia connected to ribosome malfunction) or failed biogenesis. Combined bioinformatical, structural, and predictive analyses of potential consequences of possibly expressed mutations in eS19, the protein product of the highly mutated RPS19, suggests that mutations in its exposed surface could alter its positioning during assembly and consequently prevent biogenesis, implying a natural selective strategy to avoid malfunctions in ribosome assembly. A search for RPS19 pseudogenes indicated >90% sequence identity with the wild type, hinting at its expression in cases of absent or truncated gene products.
Collapse
Affiliation(s)
| | - Andre Rivalta
- The Department of Chemical and Structural Biology, Weizmann Institute of Science, Israel
| | - Ada Yonath
- The Department of Chemical and Structural Biology, Weizmann Institute of Science, Israel
| | - Ella Zimmerman
- The Department of Chemical and Structural Biology, Weizmann Institute of Science, Israel
| | - Anat Bashan
- The Department of Chemical and Structural Biology, Weizmann Institute of Science, Israel
| | - Hagith Yonath
- Internal Medicine A and Genetics Institute Sheba Medical Center, and Sackler School of Medicine, Tel Aviv University, Israel
| |
Collapse
|
14
|
Worthington AK, Forsberg EC. A CRISPR view of hematopoietic stem cells: Moving innovative bioengineering into the clinic. Am J Hematol 2022; 97:1226-1235. [PMID: 35560111 PMCID: PMC9378712 DOI: 10.1002/ajh.26588] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 12/14/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas genome engineering has emerged as a powerful tool to modify precise genomic sequences with unparalleled accuracy and efficiency. Major advances in CRISPR technologies over the last 5 years have fueled the development of novel techniques in hematopoiesis research to interrogate the complexities of hematopoietic stem cell (HSC) biology. In particular, high throughput CRISPR based screens using various "flavors" of Cas coupled with sequencing and/or functional outputs are becoming increasingly efficient and accessible. In this review, we discuss recent achievements in CRISPR-mediated genomic engineering and how these new tools have advanced the understanding of HSC heterogeneity and function throughout life. Additionally, we highlight how these techniques can be used to answer previously inaccessible questions and the challenges to implement them. Finally, we focus on their translational potential to both model and treat hematological diseases in the clinic.
Collapse
Affiliation(s)
- Atesh K. Worthington
- Institute for the Biology of Stem Cells University of California‐Santa Cruz Santa Cruz California USA
- Program in Biomedical Sciences and Engineering, Department of Molecular, Cell, and Developmental Biology University of California‐Santa Cruz Santa Cruz California USA
| | - E. Camilla Forsberg
- Institute for the Biology of Stem Cells University of California‐Santa Cruz Santa Cruz California USA
- Biomolecular Engineering University of California‐Santa Cruz Santa Cruz California USA
| |
Collapse
|
15
|
Brodie SA, Khincha PP, Giri N, Bouk AJ, Steinberg M, Dai J, Jessop L, Donovan FX, Chandrasekharappa SC, de Andrade KC, Maric I, Ellis SR, Mirabello L, Alter BP, Savage SA. Pathogenic germline IKZF1 variant alters hematopoietic gene expression profiles. Cold Spring Harb Mol Case Stud 2021; 7:mcs.a006015. [PMID: 34162668 PMCID: PMC8327879 DOI: 10.1101/mcs.a006015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/28/2021] [Indexed: 12/03/2022] Open
Abstract
IKZF1 encodes Ikaros, a zinc finger–containing transcription factor crucial to the development of the hematopoietic system. Germline pathogenic variants in IKZF1 have been reported in patients with acute lymphocytic leukemia and immunodeficiency syndromes. Diamond–Blackfan anemia (DBA) is a rare inherited bone marrow failure syndrome characterized by erythroid hypoplasia, associated with a spectrum of congenital anomalies and an elevated risk of certain cancers. DBA is usually caused by heterozygous pathogenic variants in genes that function in ribosomal biogenesis; however, in many cases the genetic etiology is unknown. We identified a germline IKZF1 variant, rs757907717 C > T, in identical twins with DBA-like features and autoimmune gastrointestinal disease. rs757907717 C > T results in a p.R381C amino acid change in the IKZF1 Ik-x isoform (p.R423C on isoform Ik-1), which we show is associated with altered global gene expression and perturbation of transcriptional networks involved in hematopoietic system development. These data suggest that this missense substitution caused a DBA-like syndrome in this family because of alterations in hematopoiesis, including dysregulation of networks essential for normal erythropoiesis and the immune system.
Collapse
Affiliation(s)
- Seth A Brodie
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland 20850, USA
| | - Payal P Khincha
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Neelam Giri
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Aaron J Bouk
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland 20850, USA
| | - Mia Steinberg
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland 20850, USA
| | - Jieqiong Dai
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland 20850, USA
| | - Lea Jessop
- Laboratory of Genetic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Frank X Donovan
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Settara C Chandrasekharappa
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kelvin C de Andrade
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Irina Maric
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Steven R Ellis
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky 40292, USA
| | - Lisa Mirabello
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Blanche P Alter
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
16
|
Hopes T, Norris K, Agapiou M, McCarthy CGP, Lewis PA, O'Connell MJ, Fontana J, Aspden JL. Ribosome heterogeneity in Drosophila melanogaster gonads through paralog-switching. Nucleic Acids Res 2021; 50:2240-2257. [PMID: 34283226 PMCID: PMC8887423 DOI: 10.1093/nar/gkab606] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/23/2021] [Accepted: 07/02/2021] [Indexed: 12/02/2022] Open
Abstract
Ribosomes have long been thought of as homogeneous macromolecular machines, but recent evidence suggests they are heterogeneous and could be specialised to regulate translation. Here, we have characterised ribosomal protein heterogeneity across 4 tissues of Drosophila melanogaster. We find that testes and ovaries contain the most heterogeneous ribosome populations, which occurs through a combination of paralog-enrichment and paralog-switching. We have solved structures of ribosomes purified from in vivo tissues by cryo-EM, revealing differences in precise ribosomal arrangement for testis and ovary 80S ribosomes. Differences in the amino acid composition of paralog pairs and their localisation on the ribosome exterior indicate paralog-switching could alter the ribosome surface, enabling different proteins to regulate translation. One testis-specific paralog-switching pair is also found in humans, suggesting this is a conserved site of ribosome heterogeneity. Overall, this work allows us to propose that mRNA translation might be regulated in the gonads through ribosome heterogeneity, providing a potential means of ribosome specialisation.
Collapse
Affiliation(s)
- Tayah Hopes
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,LeedsOmics, University of Leeds, Leeds, UK
| | - Karl Norris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,LeedsOmics, University of Leeds, Leeds, UK.,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Michaela Agapiou
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,LeedsOmics, University of Leeds, Leeds, UK.,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Charley G P McCarthy
- School of Life Sciences, Faculty of Medicine and Health Sciences, The University of Nottingham, Nottingham NG7 2RD, UK
| | - Philip A Lewis
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Mary J O'Connell
- School of Life Sciences, Faculty of Medicine and Health Sciences, The University of Nottingham, Nottingham NG7 2RD, UK
| | - Juan Fontana
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Julie L Aspden
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,LeedsOmics, University of Leeds, Leeds, UK
| |
Collapse
|
17
|
An K, Zhou JB, Xiong Y, Han W, Wang T, Ye ZQ, Wu YD. Computational Studies of the Structural Basis of Human RPS19 Mutations Associated With Diamond-Blackfan Anemia. Front Genet 2021; 12:650897. [PMID: 34108988 PMCID: PMC8181406 DOI: 10.3389/fgene.2021.650897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/28/2021] [Indexed: 11/13/2022] Open
Abstract
Diamond-Blackfan Anemia (DBA) is an inherited rare disease characterized with severe pure red cell aplasia, and it is caused by the defective ribosome biogenesis stemming from the impairment of ribosomal proteins. Among all DBA-associated ribosomal proteins, RPS19 affects most patients and carries most DBA mutations. Revealing how these mutations lead to the impairment of RPS19 is highly demanded for understanding the pathogenesis of DBA, but a systematic study is currently lacking. In this work, based on the complex structure of human ribosome, we comprehensively studied the structural basis of DBA mutations of RPS19 by using computational methods. Main structure elements and five conserved surface patches involved in RPS19-18S rRNA interaction were identified. We further revealed that DBA mutations would destabilize RPS19 through disrupting the hydrophobic core or breaking the helix, or perturb the RPS19-18S rRNA interaction through destroying hydrogen bonds, introducing steric hindrance effect, or altering surface electrostatic property at the interface. Moreover, we trained a machine-learning model to predict the pathogenicity of all possible RPS19 mutations. Our work has laid a foundation for revealing the pathogenesis of DBA from the structural perspective.
Collapse
Affiliation(s)
- Ke An
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Jing-Bo Zhou
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yao Xiong
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Wei Han
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Tao Wang
- Shenzhen Bay Laboratory, Shenzhen, China
| | - Zhi-Qiang Ye
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
- Shenzhen Bay Laboratory, Shenzhen, China
| | - Yun-Dong Wu
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
- Shenzhen Bay Laboratory, Shenzhen, China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| |
Collapse
|
18
|
Eukaryotic protein uS19: a component of the decoding site of ribosomes and a player in human diseases. Biochem J 2021; 478:997-1008. [PMID: 33661277 DOI: 10.1042/bcj20200950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 11/17/2022]
Abstract
Proteins belonging to the universal ribosomal protein (rp) uS19 family are constituents of small ribosomal subunits, and their conserved globular parts are involved in the formation of the head of these subunits. The eukaryotic rp uS19 (previously known as S15) comprises a C-terminal extension that has no homology in the bacterial counterparts. This extension is directly implicated in the formation of the ribosomal decoding site and thereby affects translational fidelity in a manner that has no analogy in bacterial ribosomes. Another eukaryote-specific feature of rp uS19 is its essential participance in the 40S subunit maturation due to the interactions with the subunit assembly factors required for the nuclear exit of pre-40S particles. Beyond properties related to the translation machinery, eukaryotic rp uS19 has an extra-ribosomal function concerned with its direct involvement in the regulation of the activity of an important tumor suppressor p53 in the Mdm2/Mdmx-p53 pathway. Mutations in the RPS15 gene encoding rp uS19 are linked to diseases (Diamond Blackfan anemia, chronic lymphocytic leukemia and Parkinson's disease) caused either by defects in the ribosome biogenesis or disturbances in the functioning of ribosomes containing mutant rp uS19, likely due to the changed translational fidelity. Here, we review currently available data on the involvement of rp uS19 in the operation of the translational machinery and in the maturation of 40S subunits, on its extra-ribosomal function, and on relationships between mutations in the RPS15 gene and certain human diseases.
Collapse
|
19
|
Pediatric bone marrow failure: Clinical, hematological and targeted next generation sequencing data. Blood Cells Mol Dis 2020; 87:102510. [PMID: 33197791 DOI: 10.1016/j.bcmd.2020.102510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/14/2020] [Accepted: 10/18/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE In this study, clinico-hematological, genetic and outcome profile of children with BMF was evaluated to delineate the underlying genotype and phenotype. DESIGN Cases were evaluated as two groups: Group 1 (n = 56; DBA-23, FA-18, DC-2, UBMFS-13) included children with suspected IBMFS based on clinical phenotype and accessible lab investigations and Group 2 (n = 53) included children with IAA treated with IST. Targeted NGS was carried out in a subset of these children (n = 42) and supplemented with WES wherever required. RESULTS We identified causative mutation in overall 15 of 27 tested children (55.5%) in group 1 and 2 of 15 tested children (13.3%) in group 2. In DBA, a mutation was noted in 50% cases with involvement of RPS 19 (75%) and RPL5 (25%) genes. Phenotypic abnormalities were present in 69.5% and response to steroids in 68.4% of cases at a median follow up of 33 months. In children with IAA, overall response (complete + partial) was present in 51% at a median follow up of 23 months. The 3-year OS and FFS for the cohort of IAA were 68% and 48% respectively. Targeted sequencing could also pick up germline mutations in 50% of UBMFS cases and nearly 19% of IAA cases.
Collapse
|
20
|
Azam I, Rahul M, Tewari N, Bansal K. Dental considerations in a paediatric patient with Diamond-Blackfan anaemia. BMJ Case Rep 2020; 13:13/9/e237992. [PMID: 32928813 DOI: 10.1136/bcr-2020-237992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Diamond-Blackfan anaemia (DBA) is a rare genetic disorder characterised by a decrease in the production of red blood cells due to bone marrow malfunction. The estimation of disease occurrence is approximately 1 in 100 000-2 00 000 live births. This paper presents the case of a 7-year-old male child diagnosed with DBA at the age of 4 months. The diagnosis was established with haematological findings, bone marrow biopsy and molecular testing. The case was managed successfully for dental symptoms without any complication.
Collapse
Affiliation(s)
- Imam Azam
- Division of Pedodontics and Preventive Dentistry, Center for Dental Education and Research, AIIMS, New Delhi, India
| | - Morankar Rahul
- Division of Pedodontics and Preventive Dentistry, Center for Dental Education and Research, AIIMS, New Delhi, India
| | - Nitesh Tewari
- Division of Pedodontics and Preventive Dentistry, Center for Dental Education and Research, AIIMS, New Delhi, India
| | - Kalpana Bansal
- Division of Pedodontics and Preventive Dentistry, Center for Dental Education and Research, AIIMS, New Delhi, India
| |
Collapse
|
21
|
Da Costa L, Leblanc T, Mohandas N. Diamond-Blackfan anemia. Blood 2020; 136:1262-1273. [PMID: 32702755 PMCID: PMC7483438 DOI: 10.1182/blood.2019000947] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/30/2019] [Indexed: 12/15/2022] Open
Abstract
Diamond-Blackfan anemia (DBA) was the first ribosomopathy described and is a constitutional inherited bone marrow failure syndrome. Erythroblastopenia is the major characteristic of the disease, which is a model for ribosomal diseases, related to a heterozygous allelic variation in 1 of the 20 ribosomal protein genes of either the small or large ribosomal subunit. The salient feature of classical DBA is a defect in ribosomal RNA maturation that generates nucleolar stress, leading to stabilization of p53 and activation of its targets, resulting in cell-cycle arrest and apoptosis. Although activation of p53 may not explain all aspects of DBA erythroid tropism, involvement of GATA1/HSP70 and globin/heme imbalance, with an excess of the toxic free heme leading to reactive oxygen species production, account for defective erythropoiesis in DBA. Despite significant progress in defining the molecular basis of DBA and increased understanding of the mechanistic basis for DBA pathophysiology, progress in developing new therapeutic options has been limited. However, recent advances in gene therapy, better outcomes with stem cell transplantation, and discoveries of putative new drugs through systematic drug screening using large chemical libraries provide hope for improvement.
Collapse
MESH Headings
- Abnormalities, Multiple/genetics
- Adenosine Deaminase/blood
- Adenosine Deaminase/genetics
- Anemia, Diamond-Blackfan/diagnosis
- Anemia, Diamond-Blackfan/genetics
- Anemia, Diamond-Blackfan/metabolism
- Anemia, Diamond-Blackfan/therapy
- Child, Preschool
- Congenital Abnormalities/genetics
- Diagnosis, Differential
- Disease Management
- Drug Resistance
- Erythrocytes/enzymology
- Fetal Growth Retardation/etiology
- GATA1 Transcription Factor/genetics
- GATA1 Transcription Factor/physiology
- Genetic Heterogeneity
- Genetic Therapy
- Glucocorticoids/therapeutic use
- HSP70 Heat-Shock Proteins/metabolism
- Hematopoietic Stem Cell Transplantation
- Humans
- Infant
- Infant, Newborn
- Intercellular Signaling Peptides and Proteins/blood
- Intercellular Signaling Peptides and Proteins/genetics
- Models, Biological
- Mutation
- Neoplastic Syndromes, Hereditary/genetics
- Ribosomal Proteins/genetics
- Ribosomal Proteins/physiology
- Tumor Suppressor Protein p53/physiology
Collapse
Affiliation(s)
- Lydie Da Costa
- Service d'Hématologie Biologique, Hôpital Robert-Debré, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- U1134, Université Paris, Paris, France
- Laboratoire d'Excellence GR-Ex, Paris, France
| | - Thierry Leblanc
- Service d'Immuno-Hématologie Pédiatrique, Hôpital Robert-Debré, AP-HP, Paris, France; and
| | - Narla Mohandas
- Laboratory of Red Cell Physiology, New York Blood Center, New York, NY
| |
Collapse
|
22
|
Jahan D, Al Hasan MM, Haque M. Diamond-Blackfan anemia with mutation in RPS19: A case report and an overview of published pieces of literature. J Pharm Bioallied Sci 2020; 12:163-170. [PMID: 32742115 PMCID: PMC7373105 DOI: 10.4103/jpbs.jpbs_234_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 11/04/2022] Open
Abstract
Introduction Diamond-Blackfan anemia (DBA), one of a rare group of inherited bone marrow failure syndromes, is characterized by red cell failure, the presence of congenital anomalies, and cancer predisposition. It can be caused by mutations in the RPS19 gene (25% of the cases). Methods This case report describes a 10-month-old boy who presented with 2 months' history of gradually increasing weakness and pallor. Results The patient was diagnosed as a case of DBA based on peripheral blood finding, bone marrow aspiration with trephine biopsy reports, and genetic mutation analysis of the RPS19 gene. His father refused hematopoietic stem cell transplantation for financial constraints. Patient received prednisolone therapy with oral folic acid and iron supplements. Conclusion Hemoglobin raised from 6.7 to 9.8g/dL after 1 month of therapeutic intervention.
Collapse
Affiliation(s)
- Dilshad Jahan
- Department of Hematology, Apollo Hospitals, Dhaka, Bangladesh
| | | | - Mainul Haque
- Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kuala Lumpur, Malaysia
| |
Collapse
|
23
|
Outcome of colorectal cancer in Diamond-Blackfan syndrome with a ribosomal protein S19 mutation. Clin J Gastroenterol 2020; 13:1173-1177. [PMID: 32643123 DOI: 10.1007/s12328-020-01176-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/22/2020] [Indexed: 10/23/2022]
Abstract
Diamond-Blackfan anemia is an autosomal dominant syndrome, characterized by anemia and a predisposition for malignancies. Ribosomal proteins are responsible for this syndrome, and the incidence of colorectal cancer in patients with this syndrome is higher than the general population. This patient's Diamond-Blackfan anemia was caused by a novel ribosomal protein S19 gene mutation, and he received chemotherapy for colorectal cancer caused by it. In his cancer, ribosomal proteins S19 and TP53 were overexpressed. He received 5FU and cetuximab; however, his anemia made chemotherapy difficult, and he did not survive long. Patients with Diamond-Blackfan anemia should be screened earlier and more often for colorectal cancer than usual.
Collapse
|
24
|
Nonsense Suppression Therapy: New Hypothesis for the Treatment of Inherited Bone Marrow Failure Syndromes. Int J Mol Sci 2020; 21:ijms21134672. [PMID: 32630050 PMCID: PMC7369780 DOI: 10.3390/ijms21134672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022] Open
Abstract
Inherited bone marrow failure syndromes (IBMFS) are a group of cancer-prone genetic diseases characterized by hypocellular bone marrow with impairment in one or more hematopoietic lineages. The pathogenesis of IBMFS involves mutations in several genes which encode for proteins involved in DNA repair, telomere biology and ribosome biogenesis. The classical IBMFS include Shwachman–Diamond syndrome (SDS), Diamond–Blackfan anemia (DBA), Fanconi anemia (FA), dyskeratosis congenita (DC), and severe congenital neutropenia (SCN). IBMFS are associated with high risk of myelodysplastic syndrome (MDS), acute myeloid leukemia (AML), and solid tumors. Unfortunately, no specific pharmacological therapies have been highly effective for IBMFS. Hematopoietic stem cell transplantation provides a cure for aplastic or myeloid neoplastic complications. However, it does not affect the risk of solid tumors. Since approximately 28% of FA, 24% of SCN, 21% of DBA, 20% of SDS, and 17% of DC patients harbor nonsense mutations in the respective IBMFS-related genes, we discuss the use of the nonsense suppression therapy in these diseases. We recently described the beneficial effect of ataluren, a nonsense suppressor drug, in SDS bone marrow hematopoietic cells ex vivo. A similar approach could be therefore designed for treating other IBMFS. In this review we explain in detail the new generation of nonsense suppressor molecules and their mechanistic roles. Furthermore, we will discuss strengths and limitations of these molecules which are emerging from preclinical and clinical studies. Finally we discuss the state-of-the-art of preclinical and clinical therapeutic studies carried out for IBMFS.
Collapse
|
25
|
Daniels EG, Alders M, Lezzerini M, McDonald A, Peters M, Kuijpers TW, Lakeman P, Houtkooper RH, MacInnes AW. A uniparental isodisomy event introducing homozygous pathogenic variants drives a multisystem metabolic disorder. Cold Spring Harb Mol Case Stud 2019; 5:mcs.a004457. [PMID: 31653659 PMCID: PMC6913148 DOI: 10.1101/mcs.a004457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/07/2019] [Indexed: 01/08/2023] Open
Abstract
Uniparental isodisomy (UPiD) is a rare genetic event that occurs when two identical copies of a single chromosome are inherited from one parent. Here we report a patient with a severe, multisystem metabolic disorder who inherited two copies of Chromosome 12 from her father. He was a heterozygous carrier of a variant in the muscle-specific enzyme 6-phosphofructokinase (PFKM) gene and of a truncating variant in the pseudouridine synthase 1 (PUS1) gene (both on Chromosome 12), resulting in a homozygous state of these mutations in his daughter. The PFKM gene functions in glycolysis and is linked to Tarui syndrome. The PUS1 gene functions in mitochondrial tRNA processing and is linked to myopathy, lactic acidosis, and sideroblastic anemia (MLASA). Analysis of human dermal fibroblasts, which do not express PFKM, revealed a loss of PUS1 mRNA and PUS1 protein only in the patient cells compared to healthy controls. The patient cells also revealed a reduction of the mitochondrial-encoded protein MTCO1, whereas levels of the nuclear-encoded SDHA remained unchanged, suggesting a specific impairment of mitochondrial translation. Further destabilization of these cells is suggested by the altered levels of BAX, BCL-2, and TP53 proteins, alterations that become augmented upon exposure of the cells to DNA damage. The results illustrate the efficacy of UPiD events to reveal rare pathogenic variants in human disease and demonstrate how these events can lead to cellular destabilization.
Collapse
Affiliation(s)
- Eileen G Daniels
- Laboratory of Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | - Marielle Alders
- Department of Clinical Genetics, Amsterdam Gastroenterology and Metabolism, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | - Marco Lezzerini
- Laboratory of Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | - Andrew McDonald
- Laboratory of Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | - Marjolein Peters
- Department of Pediatric Hematology, Amsterdam Gastroenterology and Metabolism, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | - Taco W Kuijpers
- Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | - Phillis Lakeman
- Department of Clinical Genetics, Amsterdam Gastroenterology and Metabolism, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | - Riekelt H Houtkooper
- Laboratory of Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | - Alyson W MacInnes
- Laboratory of Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| |
Collapse
|
26
|
Qu X, Zhang S, Wang S, Wang Y, Li W, Huang Y, Zhao H, Wu X, An C, Guo X, Hale J, Li J, Hillyer CD, Mohandas N, Liu J, Yazdanbakhsh K, Vinchi F, Chen L, Kang Q, An X. TET2 deficiency leads to stem cell factor-dependent clonal expansion of dysfunctional erythroid progenitors. Blood 2018; 132:2406-2417. [PMID: 30254129 PMCID: PMC6265651 DOI: 10.1182/blood-2018-05-853291] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/14/2018] [Indexed: 12/12/2022] Open
Abstract
Myelodysplastic syndromes (MDSs) are clonal hematopoietic stem cell disorders characterized by ineffective hematopoiesis. Anemia is the defining cytopenia of MDS patients, yet the molecular mechanisms for dyserythropoiesis in MDSs remain to be fully defined. Recent studies have revealed that heterozygous loss-of-function mutation of DNA dioxygenase TET2 is 1 of the most common mutations in MDSs and that TET2 deficiency disturbs erythroid differentiation. However, mechanistic insights into the role of TET2 on disordered erythropoiesis are not fully defined. Here, we show that TET2 deficiency leads initially to stem cell factor (SCF)-dependent hyperproliferation and impaired differentiation of human colony-forming unit-erythroid (CFU-E) cells, which were reversed by a c-Kit inhibitor. We further show that this was due to increased phosphorylation of c-Kit accompanied by decreased expression of phosphatase SHP-1, a negative regulator of c-Kit. At later stages, TET2 deficiency led to an accumulation of a progenitor population, which expressed surface markers characteristic of normal CFU-E cells but were functionally different. In contrast to normal CFU-E cells that require only erythropoietin (EPO) for proliferation, these abnormal progenitors required SCF and EPO and exhibited impaired differentiation. We termed this population of progenitors "marker CFU-E" cells. We further show that AXL expression was increased in marker CFU-E cells and that the increased AXL expression led to increased activation of AKT and ERK. Moreover, the altered proliferation and differentiation of marker CFU-E cells were partially rescued by an AXL inhibitor. Our findings document an important role for TET2 in erythropoiesis and have uncovered previously unknown mechanisms by which deficiency of TET2 contributes to ineffective erythropoiesis.
Collapse
Affiliation(s)
- Xiaoli Qu
- Erythrocyte Biology Laboratory, School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Laboratory of Membrane Biology, New York Blood Center, New York, NY
| | - Shijie Zhang
- Erythrocyte Biology Laboratory, School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Shihui Wang
- Erythrocyte Biology Laboratory, School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yaomei Wang
- Erythrocyte Biology Laboratory, School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Laboratory of Membrane Biology, New York Blood Center, New York, NY
| | - Wei Li
- Erythrocyte Biology Laboratory, School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Laboratory of Membrane Biology, New York Blood Center, New York, NY
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yumin Huang
- Laboratory of Membrane Biology, New York Blood Center, New York, NY
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huizhi Zhao
- Erythrocyte Biology Laboratory, School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiuyun Wu
- Erythrocyte Biology Laboratory, School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Chao An
- Laboratory of Membrane Biology, New York Blood Center, New York, NY
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinhua Guo
- Laboratory of Membrane Biology, New York Blood Center, New York, NY
| | - John Hale
- Red Cell Physiology, New York Blood Center, New York, NY
| | - Jie Li
- Erythrocyte Biology Laboratory, School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Laboratory of Membrane Biology, New York Blood Center, New York, NY
| | | | - Narla Mohandas
- Red Cell Physiology, New York Blood Center, New York, NY
| | - Jing Liu
- The Province Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, China; and
| | | | | | - Lixiang Chen
- Erythrocyte Biology Laboratory, School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Qiaozhen Kang
- Erythrocyte Biology Laboratory, School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiuli An
- Erythrocyte Biology Laboratory, School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Laboratory of Membrane Biology, New York Blood Center, New York, NY
| |
Collapse
|
27
|
Rissone A, Burgess SM. Rare Genetic Blood Disease Modeling in Zebrafish. Front Genet 2018; 9:348. [PMID: 30233640 PMCID: PMC6127601 DOI: 10.3389/fgene.2018.00348] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/09/2018] [Indexed: 01/06/2023] Open
Abstract
Hematopoiesis results in the correct formation of all the different blood cell types. In mammals, it starts from specific hematopoietic stem and precursor cells residing in the bone marrow. Mature blood cells are responsible for supplying oxygen to every cell of the organism and for the protection against pathogens. Therefore, inherited or de novo genetic mutations affecting blood cell formation or the regulation of their activity are responsible for numerous diseases including anemia, immunodeficiency, autoimmunity, hyper- or hypo-inflammation, and cancer. By definition, an animal disease model is an analogous version of a specific clinical condition developed by researchers to gain information about its pathophysiology. Among all the model species used in comparative medicine, mice continue to be the most common and accepted model for biomedical research. However, because of the complexity of human diseases and the intrinsic differences between humans and other species, the use of several models (possibly in distinct species) can often be more helpful and informative than the use of a single model. In recent decades, the zebrafish (Danio rerio) has become increasingly popular among researchers, because it represents an inexpensive alternative compared to mammalian models, such as mice. Numerous advantages make it an excellent animal model to be used in genetic studies and in particular in modeling human blood diseases. Comparing zebrafish hematopoiesis to mammals, it is highly conserved with few, significant differences. In addition, the zebrafish model has a high-quality, complete genomic sequence available that shows a high level of evolutionary conservation with the human genome, empowering genetic and genomic approaches. Moreover, the external fertilization, the high fecundity and the transparency of their embryos facilitate rapid, in vivo analysis of phenotypes. In addition, the ability to manipulate its genome using the last genome editing technologies, provides powerful tools for developing new disease models and understanding the pathophysiology of human disorders. This review provides an overview of the different approaches and techniques that can be used to model genetic diseases in zebrafish, discussing how this animal model has contributed to the understanding of genetic diseases, with a specific focus on the blood disorders.
Collapse
Affiliation(s)
- Alberto Rissone
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
28
|
Abstract
Diamond–Blackfan anemia (DBA) is a rare congenital hypoplastic anemia characterized by a block in erythropoiesis at the progenitor stage, although the exact stage at which this occurs remains to be fully defined. DBA presents primarily during infancy with macrocytic anemia and reticulocytopenia with 50% of cases associated with a variety of congenital malformations. DBA is most frequently due to a sporadic mutation (55%) in genes encoding several different ribosomal proteins, although there are many cases where there is a family history of the disease with varying phenotypes. The erythroid tropism of the disease is still a matter of debate for a disease related to a defect in global ribosome biogenesis. Assessment of biological features in conjunction with genetic testing has increased the accuracy of the diagnosis of DBA. However, in certain cases, it continues to be difficult to firmly establish a diagnosis. This review will focus on the diagnosis of DBA along with a description of new advances in our understanding of the pathophysiology and treatment recommendations for DBA.
Collapse
Affiliation(s)
- Lydie Da Costa
- Université Paris 7 Denis Diderot-Sorbonne, Paris, France.,AP-HP, Hematology laboratory, Robert Debré Hospital, Paris, France.,INSERM UMR1134, Paris, France.,Laboratory of Excellence for Red Cell, LABEX GR-Ex, Paris, France
| | - Anupama Narla
- Stanford University School of Medicine, Stanford, USA
| | | |
Collapse
|
29
|
Incomplete penetrance for isolated congenital asplenia in humans with mutations in translated and untranslated RPSA exons. Proc Natl Acad Sci U S A 2018; 115:E8007-E8016. [PMID: 30072435 DOI: 10.1073/pnas.1805437115] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Isolated congenital asplenia (ICA) is the only known human developmental defect exclusively affecting a lymphoid organ. In 2013, we showed that private deleterious mutations in the protein-coding region of RPSA, encoding ribosomal protein SA, caused ICA by haploinsufficiency with complete penetrance. We reported seven heterozygous protein-coding mutations in 8 of the 23 kindreds studied, including 6 of the 8 multiplex kindreds. We have since enrolled 33 new kindreds, 5 of which are multiplex. We describe here 11 new heterozygous ICA-causing RPSA protein-coding mutations, and the first two mutations in the 5'-UTR of this gene, which disrupt mRNA splicing. Overall, 40 of the 73 ICA patients (55%) and 23 of the 56 kindreds (41%) carry mutations located in translated or untranslated exons of RPSA. Eleven of the 43 kindreds affected by sporadic disease (26%) carry RPSA mutations, whereas 12 of the 13 multiplex kindreds (92%) carry RPSA mutations. We also report that 6 of 18 (33%) protein-coding mutations and the two (100%) 5'-UTR mutations display incomplete penetrance. Three mutations were identified in two independent kindreds, due to a hotspot or a founder effect. Finally, RPSA ICA-causing mutations were demonstrated to be de novo in 7 of the 23 probands. Mutations in RPSA exons can affect the translated or untranslated regions and can underlie ICA with complete or incomplete penetrance.
Collapse
|
30
|
Mirabello L, Khincha PP, Ellis SR, Giri N, Brodie S, Chandrasekharappa SC, Donovan FX, Zhou W, Hicks BD, Boland JF, Yeager M, Jones K, Zhu B, Wang M, Alter BP, Savage SA. Novel and known ribosomal causes of Diamond-Blackfan anaemia identified through comprehensive genomic characterisation. J Med Genet 2017; 54:417-425. [PMID: 28280134 DOI: 10.1136/jmedgenet-2016-104346] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/08/2017] [Accepted: 02/16/2017] [Indexed: 01/13/2023]
Abstract
BACKGROUND Diamond-Blackfan anaemia (DBA) is an inherited bone marrow failure syndrome (IBMFS) characterised by erythroid hypoplasia. It is associated with congenital anomalies and a high risk of developing specific cancers. DBA is caused predominantly by autosomal dominant pathogenic variants in at least 15 genes affecting ribosomal biogenesis and function. Two X-linked recessive genes have been identified. OBJECTIVES We aim to identify the genetic aetiology of DBA. METHODS Of 87 families with DBA enrolled in an institutional review board-approved cohort study (ClinicalTrials.gov Identifier:NCT00027274), 61 had genetic testing information available. Thirty-five families did not have a known genetic cause and thus underwent comprehensive genomic evaluation with whole exome sequencing, deletion and CNV analyses to identify their disease-associated pathogenic variant. Controls for functional studies were healthy mutation-negative individuals enrolled in the same study. RESULTS Our analyses uncovered heterozygous pathogenic variants in two previously undescribed genes in two families. One family had a non-synonymous variant (p.K77N) in RPL35; the second family had a non-synonymous variant (p. L51S) in RPL18. Both of these variants result in pre-rRNA processing defects. We identified heterozygous pathogenic variants in previously known DBA genes in 16 of 35 families. Seventeen families who underwent genetic analyses are yet to have a genetic cause of disease identified. CONCLUSIONS Overall, heterozygous pathogenic variants in ribosomal genes were identified in 44 of the 61 families (72%). De novo pathogenic variants were observed in 57% of patients with DBA. Ongoing studies of DBA genomics will be important to understand this complex disorder.
Collapse
Affiliation(s)
- Lisa Mirabello
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Payal P Khincha
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Steven R Ellis
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky, USA
| | - Neelam Giri
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Seth Brodie
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Settara C Chandrasekharappa
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Frank X Donovan
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Weiyin Zhou
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Belynda D Hicks
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA.,Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Joseph F Boland
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA.,Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA.,Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Kristine Jones
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Bin Zhu
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Mingyi Wang
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Blanche P Alter
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Sharon A Savage
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
31
|
Whole exome sequencing in the differential diagnosis of Diamond-Blackfan anemia: Clinical and molecular study of three patients with novel RPL5 and mosaic RPS19 mutations. Blood Cells Mol Dis 2017; 64:38-44. [PMID: 28376382 PMCID: PMC7129236 DOI: 10.1016/j.bcmd.2017.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/04/2017] [Accepted: 03/05/2017] [Indexed: 11/20/2022]
Abstract
Diamond-Blackfan anemia (DBA) is a rare congenital disorder presenting remarkable phenotypic overlap with other inherited bone marrow failure syndromes, making differential diagnosis challenging and its confirmation often reached with great delay. By whole exome sequencing, we unraveled the presence of pathogenic variants affecting genes already known to be involved in DBA pathogenesis (RPL5 and RPS19) in three patients with otherwise uncertain clinical diagnosis, and provided new insights on DBA genotype-phenotype correlations. Remarkably, the RPL5 c.482del frameshift mutation has never been reported before, whereas the RPS19 c.3G>T missense mutation, although previously described in a 2-month-old DBA patient without malformations and refractory to steroid therapy, was detected here in the mosaic state in different bodily tissues for the first time in DBA patients.
Collapse
|
32
|
Abstract
Macroautophagy/autophagy is a key catabolic process, essential for maintaining cellular homeostasis and survival through the removal and recycling of unwanted cellular material. Emerging evidence has revealed intricate connections between the RNA and autophagy research fields. While a majority of studies have focused on protein, lipid and carbohydrate catabolism via autophagy, accumulating data supports the view that several types of RNA and associated ribonucleoprotein complexes are specifically recruited to phagophores (precursors to autophagosomes) and subsequently degraded in the lysosome/vacuole. Moreover, recent studies have revealed a substantial number of novel autophagy regulators with RNA-related functions, indicating roles for RNA and associated proteins not only as cargo, but also as regulators of this process. In this review, we discuss widespread evidence of RNA catabolism via autophagy in yeast, plants and animals, reviewing the molecular mechanisms and biological importance in normal physiology, stress and disease. In addition, we explore emerging evidence of core autophagy regulation mediated by RNA-binding proteins and noncoding RNAs, and point to gaps in our current knowledge of the connection between RNA and autophagy. Finally, we discuss the pathological implications of RNA-protein aggregation, primarily in the context of neurodegenerative disease.
Collapse
Affiliation(s)
- Lisa B Frankel
- a Biotech Research and Innovation Centre , University of Copenhagen , Copenhagen , Denmark
| | - Michal Lubas
- a Biotech Research and Innovation Centre , University of Copenhagen , Copenhagen , Denmark
| | - Anders H Lund
- a Biotech Research and Innovation Centre , University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
33
|
D'Allard DL, Liu JM. Toward RNA Repair of Diamond Blackfan Anemia Hematopoietic Stem Cells. Hum Gene Ther 2016; 27:792-801. [PMID: 27550323 DOI: 10.1089/hum.2016.081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Diamond blackfan anemia (DBA) is a well-known inherited bone marrow failure syndrome mostly caused by mutations in ribosomal protein (RP) genes but also rarely in the hematopoietic transcription factor gene, GATA1, or TSR2, a ribosomal protein (Rps26) chaperone gene. About 25% of patients have heterozygous mutations in the RPS19 gene, which leads to haploinsufficiency of Rps19 protein in most cases. However, some RPS19 missense mutations appear to act in a dominant negative fashion. DBA typically leads to a hypoplastic anemia that becomes apparent during the first year of life, and standard treatment includes steroids or red blood cell transfusions, each modality having attendant side effects. The only curative therapy is allogeneic stem-cell transplantation, but this option is limited to patients with a histocompatible donor. DBA-mutant embryonic, induced pluripotent, and hematopoietic stem cells all exhibit growth abnormalities that can be corrected by DNA gene transfer, suggesting the possibility of ex vivo autologous gene therapy. The authors have been interested in the application of spliceosome-mediated mRNA trans-splicing (SMaRT) technology to RNA repair of DBA stem cells. Compared with gene replacement or other RNA re-programming approaches, SMaRT has several potential advantages. First, delivery of the entire normal cDNA is unnecessary, thus minimizing the overall size of the construct for packaging into a viral delivery vector. Second, RNA transcription of the corrected gene relies on the cell's endogenous transcriptional, processing, and regulatory machinery, thereby ensuring faithful and contextual expression. Third, RNA trans-splicing employs the endogenous spliceosome enzymatic machinery present in nearly all cells. Fourth, RNA trans-splicing converts mutant transcripts into therapeutically useful mRNA, and thus may be capable of treating disorders caused by dominant negative mutations. This review critically assesses prospects for both gene and RNA repair in DBA stem cells.
Collapse
Affiliation(s)
- Diane L D'Allard
- Les Nelkin Memorial Pediatric Oncology Laboratory, The Feinstein Institute for Medical Research , Manhasset, New York
| | - Johnson M Liu
- Les Nelkin Memorial Pediatric Oncology Laboratory, The Feinstein Institute for Medical Research , Manhasset, New York
| |
Collapse
|
34
|
Macrì S, Pavesi E, Crescitelli R, Aspesi A, Vizziello C, Botto C, Corti P, Quarello P, Notari P, Ramenghi U, Ellis SR, Dianzani I. Immunophenotypic Profiling of Erythroid Progenitor-Derived Extracellular Vesicles in Diamond-Blackfan Anaemia: A New Diagnostic Strategy. PLoS One 2015; 10:e0138200. [PMID: 26394034 PMCID: PMC4578940 DOI: 10.1371/journal.pone.0138200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 08/27/2015] [Indexed: 01/08/2023] Open
Abstract
Diamond-Blackfan Anaemia (DBA) is a rare inherited anaemia caused by heterozygous mutations in one of 13 ribosomal protein genes. Erythroid progenitors (BFU-E and CFU-E) in bone marrow (BM) show a proapoptotic phenotype. Suspicion of DBA is reached after exclusion of other forms of BM failure syndromes. To improve DBA diagnosis, which is confirmed by mutation analysis, we tested a new approach based on the study of extracellular vesicles (EVs) isolated from plasma by differential centrifugations and analysed by flow cytometry. We chose CD34, CD71 and CD235a markers to study erythroid EVs. We characterised the EVs immunophentoypic profiles of 13 DBA patients, 22 healthy controls and 16 patients with other haematological diseases. Among the three EVs clusters we found, only the CD34+/CD71low population showed statistically significant differences between DBA patients and controls (p< 0.05). The absence of this cluster is in agreement with the low levels of BFU-E found in DBA patients. The assessment of ROC curves demonstrated the potential diagnostic value of this population. We suggest that this assay may be useful to improve DBA diagnosis as a quicker and less invasive alternative to BM BFU-E culture analysis.
Collapse
Affiliation(s)
- Serena Macrì
- Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Elisa Pavesi
- Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | | | - Anna Aspesi
- Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Claudia Vizziello
- Chemical Clinical Analysis laboratory, SCDU, Azienda Universitaria Ospedaliera Maggiore della Carità, Novara, Italy
| | - Carlotta Botto
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Paola Corti
- Department of Pediatric Hematology, San Gerardo’s Hospital, Monza, Italy
| | - Paola Quarello
- Pediatric Onco-Hematology, Regina Margherita Children’s Hospital, Turin, Italy
| | - Patrizia Notari
- Chemical Clinical Analysis laboratory, SCDU, Azienda Universitaria Ospedaliera Maggiore della Carità, Novara, Italy
| | - Ugo Ramenghi
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Steven Robert Ellis
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky, United States of America
| | - Irma Dianzani
- Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
- * E-mail:
| |
Collapse
|
35
|
RAP-011 improves erythropoiesis in zebrafish model of Diamond-Blackfan anemia through antagonizing lefty1. Blood 2015; 126:880-90. [DOI: 10.1182/blood-2015-01-622522] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 06/09/2015] [Indexed: 11/20/2022] Open
Abstract
Key Points
Ribosome deficiency in zebrafish leads to defects in erythroid maturation and is reversed by RAP-011 treatment. Identification of lefty1 as a key mediator of erythropoiesis.
Collapse
|
36
|
de Las Heras-Rubio A, Perucho L, Paciucci R, Vilardell J, LLeonart ME. Ribosomal proteins as novel players in tumorigenesis. Cancer Metastasis Rev 2015; 33:115-41. [PMID: 24375388 DOI: 10.1007/s10555-013-9460-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ribosome biogenesis is the most demanding energetic and metabolic expenditure of the cell. The nucleolus, a nuclear compartment, coordinates rRNA transcription, maturation, and assembly into ribosome subunits. The transcription process is highly coordinated with ribosome biogenesis. In this context, ribosomal proteins (RPs) play a crucial role. In the last decade, an increasing number of studies have associated RPs with extraribosomal functions related to proliferation. Importantly, the expression of RPs appears to be deregulated in several human disorders due, at least in part, to genetic mutations. Although the deregulation of RPs in human malignancies is commonly observed, a more complex mechanism is believed to be involved, favoring the tumorigenic process, its progression and metastasis. This review explores the roles of the most frequently mutated oncogenes and tumor suppressor genes in human cancer that modulate ribosome biogenesis, including their interaction with RPs. In this regard, we propose a new focus for novel therapies.
Collapse
Affiliation(s)
- A de Las Heras-Rubio
- Oncology and Pathology Group, Institut de Recerca Hospital Vall d'Hebron, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | | | | | | | | |
Collapse
|
37
|
Thevenon J, Michot C, Bole C, Nitschke P, Nizon M, Faivre L, Munnich A, Lyonnet S, Bonnefont JP, Portes VD, Amiel J. RPL10 mutation segregating in a family with X-linked syndromic Intellectual Disability. Am J Med Genet A 2015; 167A:1908-12. [PMID: 25846674 DOI: 10.1002/ajmg.a.37094] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 03/16/2015] [Indexed: 11/12/2022]
Abstract
Intellectual disability is a neurodevelopmental disorder of impaired adaptive skills and low intelligence quotient. The overall prevalence is estimated at 2-3% in the general population with extreme clinical and genetic heterogeneity, and it has been associated with possibly causative mutations in more than 700 identified genes. In a recent review, among over 100 X-linked intellectual disability causative genes, eight were reported as "awaiting replication." Exome sequencing in a large family identified a missense mutation in RPL10 highly suggestive of X-linked intellectual disability. Herein, we report on the clinical description of four affected males. All patients presented apparent intellectual disability (4/4), psychomotor delay (4/4) with syndromic features including amniotic fluid excess (3/4), microcephaly (2/4), urogenital anomalies (3/4), cerebellar syndrome (2/4), and facial dysmorphism. In the literature, two mutations were reported in three families with affected males presenting with autism. This report confirms the implication of RPL10 mutations in neurodevelopmental disorders and extends the associated clinical spectrum from autism to syndromic intellectual disability.
Collapse
Affiliation(s)
- Julien Thevenon
- Service de Génétique, INSERM U781, Hôpital Necker-Enfants Malades, Institut Imagine, University Sorbonne-Paris-Cité, Paris, France.,FHU-TRANSLAD, Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'interrégion Est, CHU de Dijon, Dijon, France
| | - Caroline Michot
- Service de Génétique, INSERM U781, Hôpital Necker-Enfants Malades, Institut Imagine, University Sorbonne-Paris-Cité, Paris, France
| | - Christine Bole
- Plateforme de bioinformatique de l'Institut Imagine, Hôpital Necker, Paris, France
| | - Patrick Nitschke
- Plateforme de bioinformatique de l'Institut Imagine, Hôpital Necker, Paris, France
| | - Mathilde Nizon
- Laboratoire de Génétique Médicale, Hôpital Necker-Enfants Malades, APHP, Université Paris Descartes, Institut Imagine, Paris, France
| | - Laurence Faivre
- FHU-TRANSLAD, Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'interrégion Est, CHU de Dijon, Dijon, France
| | - Arnold Munnich
- Service de Génétique, INSERM U781, Hôpital Necker-Enfants Malades, Institut Imagine, University Sorbonne-Paris-Cité, Paris, France
| | - Stanislas Lyonnet
- Service de Génétique, INSERM U781, Hôpital Necker-Enfants Malades, Institut Imagine, University Sorbonne-Paris-Cité, Paris, France
| | - Jean-Paul Bonnefont
- Laboratoire de Génétique Médicale, Hôpital Necker-Enfants Malades, APHP, Université Paris Descartes, Institut Imagine, Paris, France
| | - Vincent Des Portes
- Service de Neurologie Pédiatrique, CHU Lyon, Hôpital Femme Mère Enfant, Bron, France
| | - Jeanne Amiel
- Service de Génétique, INSERM U781, Hôpital Necker-Enfants Malades, Institut Imagine, University Sorbonne-Paris-Cité, Paris, France
| |
Collapse
|
38
|
Zhou X, Liao WJ, Liao JM, Liao P, Lu H. Ribosomal proteins: functions beyond the ribosome. J Mol Cell Biol 2015; 7:92-104. [PMID: 25735597 DOI: 10.1093/jmcb/mjv014] [Citation(s) in RCA: 475] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/05/2014] [Indexed: 01/05/2023] Open
Abstract
Although ribosomal proteins are known for playing an essential role in ribosome assembly and protein translation, their ribosome-independent functions have also been greatly appreciated. Over the past decade, more than a dozen of ribosomal proteins have been found to activate the tumor suppressor p53 pathway in response to ribosomal stress. In addition, these ribosomal proteins are involved in various physiological and pathological processes. This review is composed to overview the current understanding of how ribosomal stress provokes the accumulation of ribosome-free ribosomal proteins, as well as the ribosome-independent functions of ribosomal proteins in tumorigenesis, immune signaling, and development. We also propose the potential of applying these pieces of knowledge to the development of ribosomal stress-based cancer therapeutics.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Wen-Juan Liao
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jun-Ming Liao
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Peng Liao
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Hua Lu
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
39
|
Delaporta P, Sofocleous C, Stiakaki E, Polychronopoulou S, Economou M, Kossiva L, Kostaridou S, Kattamis A. Clinical phenotype and genetic analysis of RPS19, RPL5, and RPL11 genes in Greek patients with Diamond Blackfan Anemia. Pediatr Blood Cancer 2014; 61:2249-55. [PMID: 25132370 DOI: 10.1002/pbc.25183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 06/23/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Diamond Blackfan Anemia (DBA) is a rare congenital, bone marrow failure syndrome characterized by normochromic macrocytic anemia, reticulocytopenia and absence or insufficiency of erythroid precursors in normocellular bone marrow, frequently associated with somatic malformations. Here, we present our findings from the study of 17 patients recorded in the Greek DBA registry. PROCEDURE Clinical evaluation of patients and data collection was performed followed by the molecular analysis of RPS19, RPL5, and RPL11 genes. Mutation screening included PCR amplification, ECMA analysis, and direct sequencing. RESULTS Congenital anomalies were observed in 71% of the patients. Six patients (35.2%) were found to carry mutations on either the RPS19 gene (three patients,) or the RPL5 gene (three patients). Mutations c.C390G (p.Y130X) and c.197_198insA (p.Y66X) detected in the RPL5 gene were novel. No mutations at the RPL11 gene were identified in Greek patients with DBA. CONCLUSIONS The clinical course of the patients was similar to previous reports. The occurrence of thyroid carcinoma in an adult patient with DBA is the first to be reported in DBA.
Collapse
|
40
|
Solomon J, Kamalammal R, Menezes GA, Sait MY, Lohith H, Ramalingam R. A Case of Diamond Blackfan Anemia (DBA) with Mutation in Ribosomal Protein S19. J Clin Diagn Res 2014; 8:179-80. [PMID: 24596764 DOI: 10.7860/jcdr/2014/7018.3899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/07/2013] [Indexed: 11/24/2022]
Abstract
Diamond Blackfan Anemia (DBA) is a rare disorder which presents with anemia in early infancy. This disorder is genetically and clinically heterogeneous in nature. The inheritance is mainly autosomal dominant. Approximately 25% of the cases are associated with craniofacial anomalies and some cases may end up in malignancy. The diagnosis is made by blood investigations, and bone marrow studies in which red cell precursors are reduced or absent. Screening for the mutations including those encoding for ribosomal proteins in the patient and the family members confirms the diagnosis. Human Leukocyte Antigen (HLA) matched hemopoietic stem cell transplantation is the treatment of choice. In other cases, corticosteroids and cyclosporine A have been tried. The haemoglobin level is maintained with packed red cell transfusion. We are presenting here a female baby who had anemia at birth and was brought to us at the age of 2 months. The diagnosis of DBA was made since the patient presented with anemia and showed reticulocytopenia, gross reduction in Red Blood Cell (RBC) count, and reduction in red cell precursors in the bone marrow. Genetic screening revealed mutation in ribosomal protein S19 (RPS19) gene in both the infant and the father.
Collapse
Affiliation(s)
- John Solomon
- Professor & Head, Department of Paediatrics, Sree Balaji Medical College & Hospital (Bharath University) , Chromepet, Chennai, India
| | - Rugmini Kamalammal
- Associate Professor, Department of Paediatrics, Sree Balaji Medical College & Hospital (Bharath University) , Chromepet, Chennai, India
| | - Godfred Antony Menezes
- Scientist & Incharge, Central Research Laboratory- CRL, Sree Balaji Medical College & Hospital (Bharath University) , Chromepet, Chennai, India
| | - Mohamed Yaseen Sait
- Postgraduate student, Department of Paediatrics, Sree Balaji Medical College & Hospital (Bharath University) , Chromepet, Chennai, India
| | - Harita Lohith
- Postgraduate student, Department of Paediatrics, Sree Balaji Medical College & Hospital (Bharath University) , Chromepet, Chennai, India
| | - Revathy Ramalingam
- Research Assistant, Central Research Laboratory- CRL, Sree Balaji Medical College & Hospital (Bharath University) , Chromepet, Chennai, India
| |
Collapse
|
41
|
Parrella S, Aspesi A, Quarello P, Garelli E, Pavesi E, Carando A, Nardi M, Ellis SR, Ramenghi U, Dianzani I. Loss of GATA-1 full length as a cause of Diamond-Blackfan anemia phenotype. Pediatr Blood Cancer 2014; 61:1319-21. [PMID: 24453067 PMCID: PMC4684094 DOI: 10.1002/pbc.24944] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/19/2013] [Indexed: 11/07/2022]
Abstract
Mutations in the hematopoietic transcription factor GATA-1 alter the proliferation/differentiation of hemopoietic progenitors. Mutations in exon 2 interfere with the synthesis of the full-length isoform of GATA-1 and lead to the production of a shortened isoform, GATA-1s. These mutations have been found in patients with Diamond-Blackfan anemia (DBA), a congenital erythroid aplasia typically caused by mutations in genes encoding ribosomal proteins. We sequenced GATA-1 in 23 patients that were negative for mutations in the most frequently mutated DBA genes. One patient showed a c.2T > C mutation in the initiation codon leading to the loss of the full-length GATA-1 isoform.
Collapse
Affiliation(s)
- Sara Parrella
- Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Anna Aspesi
- Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Paola Quarello
- Onco-Hematologic Center, Regina Margherita Children’s Hospital, Turin, Italy
| | - Emanuela Garelli
- Department of Pediatric and Public Health, University of Turin, Turin, Italy
| | - Elisa Pavesi
- Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Adriana Carando
- Department of Pediatric and Public Health, University of Turin, Turin, Italy
| | - Margherita Nardi
- Onco-Hematologic Pediatric Center, University Hospital of Pisa, Pisa, Italy
| | - Steven R. Ellis
- Department of Biochemistry and Molecular Biology, University of Louisville, Kentucky
| | - Ugo Ramenghi
- Department of Pediatric and Public Health, University of Turin, Turin, Italy
| | - Irma Dianzani
- Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
,Correspondence to: Irma Dianzani, Department of Health Sciences, University of Eastern Piedmont, Via Solaroli, 17, Novara 28100, Italy.
| |
Collapse
|
42
|
Sondalle SB, Baserga SJ. Human diseases of the SSU processome. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1842:758-64. [PMID: 24240090 PMCID: PMC4058823 DOI: 10.1016/j.bbadis.2013.11.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/31/2013] [Accepted: 11/05/2013] [Indexed: 12/18/2022]
Abstract
Ribosomes are the cellular machines responsible for protein synthesis. Ribosome biogenesis, the production of ribosomes, is a complex process involving pre-ribosomal RNA (rRNA) cleavages and modifications as well as ribosomal protein assembly around the rRNAs to create the functional ribosome. The small subunit (SSU) processome is a large ribonucleoprotein (RNP) in eukaryotes required for the assembly of the SSU of the ribosome as well as for the maturation of the 18S rRNA. Despite the fundamental nature of the SSU processome to the survival of any eukaryotic cell, mutations in SSU processome components have been implicated in human diseases. Three SSU processome components and their related human diseases will be explored in this review: hUTP4/Cirhin, implicated in North American Indian childhood cirrhosis (NAIC); UTP14, implicated in infertility, ovarian cancer, and scleroderma; and EMG1, implicated in Bowen-Conradi syndrome (BCS). Diseases with suggestive, though inconclusive, evidence for the involvement of the SSU processome in their pathogenesis are also discussed, including a novel putative ribosomopathy. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease.
Collapse
Affiliation(s)
- Samuel B Sondalle
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Susan J Baserga
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
43
|
Whole-exome sequencing and functional studies identify RPS29 as a novel gene mutated in multicase Diamond-Blackfan anemia families. Blood 2014; 124:24-32. [PMID: 24829207 DOI: 10.1182/blood-2013-11-540278] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Diamond-Blackfan anemia (DBA) is a cancer-prone inherited bone marrow failure syndrome. Approximately half of DBA patients have a germ-line mutation in a ribosomal protein gene. We used whole-exome sequencing to identify disease-causing genes in 2 large DBA families. After filtering, 1 nonsynonymous mutation (p.I31F) in the ribosomal protein S29 (RPS29[AUQ1]) gene was present in all 5 DBA-affected individuals and the obligate carrier, and absent from the unaffected noncarrier parent in 1 DBA family. A second DBA family was found to have a different nonsynonymous mutation (p.I50T) in RPS29. Both mutations are amino acid substitutions in exon 2 predicted to be deleterious and resulted in haploinsufficiency of RPS29 expression compared with wild-type RPS29 expression from an unaffected control. The DBA proband with the p.I31F RPS29 mutation had a pre-ribosomal RNA (rRNA) processing defect compared with the healthy control. We demonstrated that both RPS29 mutations failed to rescue the defective erythropoiesis in the rps29(-/-) mutant zebra fish DBA model. RPS29 is a component of the small 40S ribosomal subunit and essential for rRNA processing and ribosome biogenesis. We uncovered a novel DBA causative gene, RPS29, and showed that germ-line mutations in RPS29 can cause a defective erythropoiesis phenotype using a zebra fish model.
Collapse
|
44
|
Chiabrando D, Vinchi F, Fiorito V, Mercurio S, Tolosano E. Heme in pathophysiology: a matter of scavenging, metabolism and trafficking across cell membranes. Front Pharmacol 2014; 5:61. [PMID: 24782769 PMCID: PMC3986552 DOI: 10.3389/fphar.2014.00061] [Citation(s) in RCA: 308] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/18/2014] [Indexed: 01/19/2023] Open
Abstract
Heme (iron-protoporphyrin IX) is an essential co-factor involved in multiple biological processes: oxygen transport and storage, electron transfer, drug and steroid metabolism, signal transduction, and micro RNA processing. However, excess free-heme is highly toxic due to its ability to promote oxidative stress and lipid peroxidation, thus leading to membrane injury and, ultimately, apoptosis. Thus, heme metabolism needs to be finely regulated. Intracellular heme amount is controlled at multiple levels: synthesis, utilization by hemoproteins, degradation and both intracellular and intercellular trafficking. This review focuses on recent findings highlighting the importance of controlling intracellular heme levels to counteract heme-induced oxidative stress. The contributions of heme scavenging from the extracellular environment, heme synthesis and incorporation into hemoproteins, heme catabolism and heme transport in maintaining adequate intracellular heme content are discussed. Particular attention is put on the recently described mechanisms of heme trafficking through the plasma membrane mediated by specific heme importers and exporters. Finally, the involvement of genes orchestrating heme metabolism in several pathological conditions is illustrated and new therapeutic approaches aimed at controlling heme metabolism are discussed.
Collapse
Affiliation(s)
- Deborah Chiabrando
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin Turin, Italy
| | - Francesca Vinchi
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin Turin, Italy
| | - Veronica Fiorito
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin Turin, Italy
| | - Sonia Mercurio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin Turin, Italy
| | - Emanuela Tolosano
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin Turin, Italy
| |
Collapse
|
45
|
Ribosomal protein mutations in Korean patients with Diamond-Blackfan anemia. Exp Mol Med 2014; 46:e88. [PMID: 24675553 PMCID: PMC3972785 DOI: 10.1038/emm.2013.159] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/23/2013] [Accepted: 11/05/2013] [Indexed: 01/28/2023] Open
Abstract
Diamond-Blackfan anemia (DBA) is a congenital bone marrow failure syndrome characterized by hypoproliferative anemia, associated physical malformations and a predisposition to cancer. DBA has been associated with mutations and deletions in the large and small ribosomal protein genes, and genetic aberrations have been detected in ∼50–60% of patients. In this study, nine Korean DBA patients were screened for mutations in eight known DBA genes (RPS19, RPS24, RPS17, RPS10, RPS26, RPL35A, RPL5 and RPL11) using the direct sequencing method. Mutations in RPS19, RPS26 and RPS17 were detected in four, two and one patient, respectively. Among the mutations detected in RPS19, two mutations were novel (c.26T>A, c.357-2A>G). For the mutation-negative cases, array-CGH analysis was performed to identify copy-number variations, and no deletions involving the known DBA gene regions were identified. The relative mRNA expression of RPS19 estimated using real-time quantitative PCR analysis revealed two- to fourfold reductions in RPS19 mRNA expression in three patients with RPS19 mutations, and p53 protein expression analysis by immunohistochemistry showed variable but significant nuclear staining in the DBA patients. In conclusion, heterozygous mutations in the known DBA genes RPS19, RPS26 and RPS17 were detected in seven out of nine Korean DBA patients. Among these patients, RPS19 was the most frequently mutated gene. In addition, decreased RPS19 mRNA expression and p53 overexpression were observed in the Korean DBA patients, which supports the hypothesis that haploinsufficiency and p53 hyperactivation represent a central pathway underlying the pathogenesis of DBA.
Collapse
|
46
|
Caterino M, Corbo C, Imperlini E, Armiraglio M, Pavesi E, Aspesi A, Loreni F, Dianzani I, Ruoppolo M. Differential proteomic analysis in human cells subjected to ribosomal stress. Proteomics 2013; 13:1220-7. [PMID: 23412928 DOI: 10.1002/pmic.201200242] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 12/10/2012] [Accepted: 01/25/2013] [Indexed: 12/17/2022]
Abstract
The biochemical phenotype of cells affected by ribosomal stress has not yet been studied in detail. Here we report a comparative proteomic analysis of cell lines silenced for the RPS19 gene versus cell lines transfected with scramble shRNA cells performed using the DIGE technology integrated to bioinformatics tools. Importantly, to achieve the broadest possible understanding of the outcome, we carried out two independent DIGE experiments using two different pH ranges, thus, allowing the identification of 106 proteins. Our data revealed the deregulation of proteins involved in cytoskeleton reorganization, PTMs, and translation process. A subset (26.9%) of these proteins is translated from transcripts that include internal ribosome entry site motifs. This supports the hypothesis that during ribosomal stress translation of specific messenger RNAs is altered.
Collapse
|
47
|
Clinical utility gene card for: Diamond-Blackfan anemia--update 2013. Eur J Hum Genet 2013; 21:ejhg201334. [PMID: 23463023 DOI: 10.1038/ejhg.2013.34] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
48
|
Reduced rRNA expression and increased rDNA promoter methylation in CD34+ cells of patients with myelodysplastic syndromes. Blood 2012; 120:4812-8. [PMID: 23071274 DOI: 10.1182/blood-2012-04-423111] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are clonal disorders of hematopoietic stem cells characterized by ineffective hematopoiesis. The DNA-hypomethylating agents 5-azacytidine and 5-aza-2'-deoxycytidine are effective treatments for patients with MDS, increasing the time to progression to acute myelogenous leukemia and improving overall response rates. Although genome-wide increases in DNA methylation have been documented in BM cells from MDS patients, the methylation signatures of specific gene promoters have not been correlated with the clinical response to these therapies. Recently, attention has been drawn to the potential etiologic role of decreased expression of specific ribosomal proteins in MDS and in other BM failure states. Therefore, we investigated whether rRNA expression is dysregulated in MDS. We found significantly decreased rRNA expression and increased rDNA promoter methylation in CD34(+) hematopoietic progenitor cells from the majority of MDS patients compared with normal controls. Treatment of myeloid cell lines with 5-aza-2'-deoxycytidine resulted in a significant decrease in the methylation of the rDNA promoter and an increase in rRNA levels. These observations suggest that an increase in rDNA promoter methylation can result in decreased rRNA synthesis that may contribute to defective hematopoiesis and BM failure in some patients with MDS.
Collapse
|
49
|
Reduced expression of ribosomal proteins relieves microRNA-mediated repression. Mol Cell 2012; 46:171-86. [PMID: 22541556 DOI: 10.1016/j.molcel.2012.04.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 02/16/2012] [Accepted: 04/05/2012] [Indexed: 01/16/2023]
Abstract
MicroRNAs (miRNAs) regulate physiological and pathological processes by inducing posttranscriptional repression of target messenger RNAs (mRNAs) via incompletely understood mechanisms. To discover factors required for human miRNA activity, we performed an RNAi screen using a reporter cell line of miRNA-mediated repression of translation initiation. We report that reduced expression of ribosomal protein genes (RPGs) dissociated miRNA complexes from target mRNAs, leading to increased polysome association, translation, and stability of miRNA-targeted mRNAs relative to untargeted mRNAs. RNA sequencing of polysomes indicated substantial overlap in sets of genes exhibiting increased or decreased polysomal association after Argonaute or RPG knockdowns, suggesting similarity in affected pathways. miRNA profiling of monosomes and polysomes demonstrated that miRNAs cosediment with ribosomes. RPG knockdowns decreased miRNAs in monosomes and increased their target mRNAs in polysomes. Our data show that most miRNAs repress translation and that the levels of RPGs modulate miRNA-mediated repression of translation initiation.
Collapse
|
50
|
Reticulophagy and ribophagy: regulated degradation of protein production factories. Int J Cell Biol 2012; 2012:182834. [PMID: 22481944 PMCID: PMC3299282 DOI: 10.1155/2012/182834] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 12/19/2011] [Indexed: 12/11/2022] Open
Abstract
During autophagy, cytosol, protein aggregates, and organelles are sequestered into double-membrane vesicles called autophagosomes and delivered to the lysosome/vacuole for breakdown and recycling of their basic components. In all eukaryotes this pathway is important for adaptation to stress conditions such as nutrient deprivation, as well as to regulate intracellular homeostasis by adjusting organelle number and clearing damaged structures. For a long time, starvation-induced autophagy has been viewed as a nonselective transport pathway; however, recent studies have revealed that autophagy is able to selectively engulf specific structures, ranging from proteins to entire organelles. In this paper, we discuss recent findings on the mechanisms and physiological implications of two selective types of autophagy: ribophagy, the specific degradation of ribosomes, and reticulophagy, the selective elimination of portions of the ER.
Collapse
|