1
|
Thanh DD, Bich-Ngoc N, Paques C, Christian A, Herkenne S, Struman I, Muller M. The food dye Tartrazine disrupts vascular formation both in zebrafish larvae and in human primary endothelial cells. Sci Rep 2024; 14:30367. [PMID: 39639097 PMCID: PMC11621646 DOI: 10.1038/s41598-024-82076-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024] Open
Abstract
Tartrazine (E102) is a controversial coloring agent whose potential impacts on human health are not fully understood. Our study reveals the vascular disrupting effects of tartrazine (TTZ) on developing zebrafish embryos in vivo and on human umbilical vein endothelial cells in vitro. The dye was shown to cause dose-dependent hemorrhages in zebrafish embryos. Analyzing transgenic zebrafish harboring fluorescent endothelial cells revealed that TTZ treatment disrupted cell organization into vessels in both the sub-intestinal vein and the brain area. Assays on human umbilical vein endothelial cells demonstrated that TTZ inhibited endothelial proliferation, tube formation, and migration in a dose-dependent manner. Taken together, our results indicate for the first time that TTZ can affect endothelial cell properties, possibly by disrupting Rho family GTPase pathways which control the cytoskeleton. Our finding provides a credible explanation for many reported human health impacts and offers prospective applications for biomedicine.
Collapse
Affiliation(s)
- Dinh Duy Thanh
- Lab. for Organogenesis and Regeneration, GIGA-Institute, Université de Liège, Liège, 4000, Belgium
- Department of Cell Biology, Faculty of Biology, VNU University of Science, Hanoi, 100000, Vietnam
| | - Nguyen Bich-Ngoc
- VNU School of Interdisciplinary Sciences and Arts, Vietnam National University, Hanoi, 100000, Vietnam
| | - Cécile Paques
- Lab. of Molecular Angiogenesis, GIGA-Institute, Université de Liège, Liège, 4000, Belgium
| | - Aurélie Christian
- Lab. of Molecular Angiogenesis, GIGA-Institute, Université de Liège, Liège, 4000, Belgium
| | - Stéphanie Herkenne
- Lab. of Molecular Angiogenesis, GIGA-Institute, Université de Liège, Liège, 4000, Belgium
| | - Ingrid Struman
- Lab. of Molecular Angiogenesis, GIGA-Institute, Université de Liège, Liège, 4000, Belgium
| | - Marc Muller
- Lab. for Organogenesis and Regeneration, GIGA-Institute, Université de Liège, Liège, 4000, Belgium.
| |
Collapse
|
2
|
Cansby E, Caputo M, Andersson E, Saghaleyni R, Henricsson M, Xia Y, Asiedu B, Blüher M, Svensson LT, Hoy AJ, Mahlapuu M. GCKIII kinases control hepatocellular lipid homeostasis via shared mode of action. J Lipid Res 2024; 65:100669. [PMID: 39395791 PMCID: PMC11602991 DOI: 10.1016/j.jlr.2024.100669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/11/2024] [Accepted: 09/27/2024] [Indexed: 10/14/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease has emerged as a leading global cause of chronic liver disease. Our recent translational investigations have shown that the STE20-type kinases comprising the GCKIII subfamily-MST3, STK25, and MST4-associate with hepatic lipid droplets and regulate ectopic fat storage in the liver; however, the mode of action of these proteins remains to be resolved. By comparing different combinations of the silencing of MST3, STK25, and/or MST4 in immortalized human hepatocytes, we found that their single knockdown results in a similar reduction in hepatocellular lipid content and metabolic stress, without any additive or synergistic effects observed when all three kinases are simultaneously depleted. A genome-wide yeast two-hybrid screen of the human hepatocyte library identified several interaction partners contributing to the GCKIII-mediated regulation of liver lipid homeostasis, that is, PDCD10 that protects MST3, STK25, and MST4 from degradation, MAP4K4 that regulates their activity via phosphorylation, and HSD17B11 that controls their action via a conformational change. Finally, using in vitro kinase assays on microfluidic microarrays, we pinpointed various downstream targets that are phosphorylated by the GCKIII kinases, with known functions in lipogenesis, lipolysis, and lipid secretion, as well as glucose uptake, glycolysis, hexosamine synthesis, and ubiquitination. Together, this study demonstrates that the members of the GCKIII kinase subfamily regulate hepatocyte lipid metabolism via common pathways. The results shed new light on the role of MST3, STK25, and MST4, as well as their interactions with PDCD10, MAP4K4, and HSD17B11, in the control of liver lipid homeostasis and metabolic dysfunction-associated steatotic liver disease susceptibility.
Collapse
Affiliation(s)
- Emmelie Cansby
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mara Caputo
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Emma Andersson
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Rasool Saghaleyni
- Department of Life Sciences, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, Gothenburg, Sweden
| | - Marcus Henricsson
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ying Xia
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Bernice Asiedu
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity, and Vascular Research (HI-MAG) of the Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - L Thomas Svensson
- Department of Life Sciences, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, Gothenburg, Sweden
| | - Andrew J Hoy
- School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Margit Mahlapuu
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
3
|
Mahlapuu M, Caputo M, Xia Y, Cansby E. GCKIII kinases in lipotoxicity: Roles in NAFLD and beyond. Hepatol Commun 2022; 6:2613-2622. [PMID: 35641240 PMCID: PMC9512487 DOI: 10.1002/hep4.2013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/25/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is defined by excessive accumulation of lipid droplets within hepatocytes. The STE20-type kinases comprising the germinal center kinase III (GCKIII) subfamily - MST3, MST4, and STK25 - decorate intrahepatocellular lipid droplets and have recently emerged as critical regulators of the initiation and progression of NAFLD. While significant advancement has been made toward deciphering the role of GCKIII kinases in hepatic fat accumulation (i.e., steatosis) as well as the aggravation of NAFLD into its severe form nonalcoholic steatohepatitis (NASH), much remains to be resolved. This review provides a brief overview of the recent studies in patient cohorts, cultured human cells, and mouse models, which have characterized the function of MST3, MST4, and STK25 in the regulation of hepatic lipid accretion, meta-inflammation, and associated cell damage in the context of NAFLD/NASH. We also highlight the conflicting data and emphasize future research directions that are needed to advance our understanding of GCKIII kinases as potential targets in the therapy of NAFLD and its comorbidities. Conclusions: Several lines of evidence suggest that GCKIII proteins govern the susceptibility to hepatic lipotoxicity and that pharmacological inhibition of these kinases could mitigate NAFLD development and aggravation. Comprehensive characterization of the molecular mode-of-action of MST3, MST4, and STK25 in hepatocytes as well as extrahepatic tissues is important, especially in relation to their impact on carcinogenesis, to fully understand the efficacy as well as safety of GCKIII antagonism.
Collapse
Affiliation(s)
- Margit Mahlapuu
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| | - Mara Caputo
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| | - Ying Xia
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| | - Emmelie Cansby
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| |
Collapse
|
4
|
Dammann P, Santos AN, Wan XY, Zhu Y, Sure U. Cavernous Malformations. Neurosurg Clin N Am 2022; 33:449-460. [DOI: 10.1016/j.nec.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Fusco C, Nardella G, Di Filippo L, Dejana E, Cacchiarelli D, Petracca A, Micale L, Malinverno M, Castori M. Transcriptome Analysis Reveals Altered Expression of Genes Involved in Hypoxia, Inflammation and Immune Regulation in Pdcd10-Depleted Mouse Endothelial Cells. Genes (Basel) 2022; 13:genes13060961. [PMID: 35741725 PMCID: PMC9222422 DOI: 10.3390/genes13060961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
Cerebral cavernous malformations (CCM) are capillary malformations affecting the central nervous system and commonly present with headaches, epilepsy and stroke. Treatment of CCM is symptomatic, and its prevention is limited. CCM are often sporadic but sometimes may be multifocal and/or affect multiple family members. Heterozygous pathogenic variants in PDCD10 cause the rarest and apparently most severe genetic variant of familial CCM. We carried out an RNA-Seq and a Q-PCR validation analysis in Pdcd10-silenced and wild-type mouse endothelial cells in order to better elucidate CCM molecular pathogenesis. Ninety-four differentially expressed genes presented an FDR-corrected p-value < 0.05. A functionally clustered dendrogram showed that differentially expressed genes cluster in cell proliferation, oxidative stress, vascular processes and immune response gene-ontology functions. Among differentially expressed genes, the major cluster fell in signaling related to inflammation and pathogen recognition, including HIF1α and Nos2 signaling and immune regulation. Validation analysis performed on wild-type, Pdcd10-null and Pdcd10-null reconstituted cell lines was consistent with RNA-Seq data. This work confirmed previous mouse transcriptomic data in endothelial cells, which are recognized as a critical tissue for CCM formation and expands the potential molecular signatures of PDCD10-related familial CCM to alterations in inflammation and pathogen recognition pathways.
Collapse
Affiliation(s)
- Carmela Fusco
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, 71013 Foggia, Italy; (G.N.); (A.P.); (L.M.); (M.C.)
- Correspondence: ; Tel.: +39-0882-416350; Fax: +39-0882-411616
| | - Grazia Nardella
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, 71013 Foggia, Italy; (G.N.); (A.P.); (L.M.); (M.C.)
| | | | - Elisabetta Dejana
- Vascular Biology Unit, FIRC Institute of Molecular Oncology Foundation (IFOM), 20139 Milan, Italy; (E.D.); (M.M.)
| | - Davide Cacchiarelli
- Armenise/Harvard Laboratory of Integrative Genomics, Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy;
- Department of Translational Medicine, University of Naples “Federico II”, 80126 Naples, Italy
- School for Advanced Studies, Genomics and Experimental Medicine Program, University of Naples “Federico II”, 80126 Naples, Italy
| | - Antonio Petracca
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, 71013 Foggia, Italy; (G.N.); (A.P.); (L.M.); (M.C.)
| | - Lucia Micale
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, 71013 Foggia, Italy; (G.N.); (A.P.); (L.M.); (M.C.)
| | - Matteo Malinverno
- Vascular Biology Unit, FIRC Institute of Molecular Oncology Foundation (IFOM), 20139 Milan, Italy; (E.D.); (M.M.)
| | - Marco Castori
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, 71013 Foggia, Italy; (G.N.); (A.P.); (L.M.); (M.C.)
| |
Collapse
|
6
|
Phillips CM, Stamatovic SM, Keep RF, Andjelkovic AV. Cerebral Cavernous Malformation Pathogenesis: Investigating Lesion Formation and Progression with Animal Models. Int J Mol Sci 2022; 23:5000. [PMID: 35563390 PMCID: PMC9105545 DOI: 10.3390/ijms23095000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
Cerebral cavernous malformation (CCM) is a cerebromicrovascular disease that affects up to 0.5% of the population. Vessel dilation, decreased endothelial cell-cell contact, and loss of junctional complexes lead to loss of brain endothelial barrier integrity and hemorrhagic lesion formation. Leakage of hemorrhagic lesions results in patient symptoms and complications, including seizures, epilepsy, focal headaches, and hemorrhagic stroke. CCMs are classified as sporadic (sCCM) or familial (fCCM), associated with loss-of-function mutations in KRIT1/CCM1, CCM2, and PDCD10/CCM3. Identifying the CCM proteins has thrust the field forward by (1) revealing cellular processes and signaling pathways underlying fCCM pathogenesis, and (2) facilitating the development of animal models to study CCM protein function. CCM animal models range from various murine models to zebrafish models, with each model providing unique insights into CCM lesion development and progression. Additionally, these animal models serve as preclinical models to study therapeutic options for CCM treatment. This review briefly summarizes CCM disease pathology and the molecular functions of the CCM proteins, followed by an in-depth discussion of animal models used to study CCM pathogenesis and developing therapeutics.
Collapse
Affiliation(s)
- Chelsea M. Phillips
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| | - Svetlana M. Stamatovic
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| | - Richard F. Keep
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
- Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Anuska V. Andjelkovic
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| |
Collapse
|
7
|
Sartages M, García-Colomer M, Iglesias C, Howell BW, Macía M, Peña P, Pombo CM, Zalvide J. GCKIII (Germinal Center Kinase III) Kinases STK24 and STK25 (Serine/Threonine Kinase 24 and 25) Inhibit Cavernoma Development. Stroke 2022; 53:976-986. [PMID: 35130716 DOI: 10.1161/strokeaha.121.036940] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cavernous cerebral malformations can arise because of mutations in the CCM1, CCM2, or CCM3 genes, and lack of Cdc42 has also been reported to induce these malformations in mice. However, the role of the CCM3 (cerebral cavernous malformation 3)-associated kinases in cavernoma development is not known, and we, therefore, have investigated their role in the process. METHODS We used a combination of an in vivo approach, using mice genetically modified to be deficient in the CCM3-associated kinases STK24 and STK25 (serine/threonine kinases 24 and 25), and the in vitro model of human endothelial cells in which expression of STK24 and STK25 was inhibited by RNA interference. RESULTS Mice deficient for both Stk24 and Stk25, but not for either of them individually, developed aggressive vascular lesions with the characteristics of cavernomas at an early age. Stk25 deficiency also gave rise to vascular anomalies in the context of Stk24 heterozygosity. Human endothelial cells deficient for both kinases phenocopied several of the consequences of CCM3 loss, and single STK25 deficiency also induced KLF2 expression, Golgi dispersion, altered distribution of β-catenin, and appearance of stress fibers. CONCLUSIONS The CCM3-associated kinases STK24 and STK25 play a major role in the inhibition of cavernoma development.
Collapse
Affiliation(s)
- Miriam Sartages
- Department of Physiology, Centro Singular de Medicina Molecular e Enfermedades Crónicas (CiMUS), Instituto Sanitario de Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Spain (M.S., M.G.-C., C.I., C.M.P., J.Z.)
| | - Mar García-Colomer
- Department of Physiology, Centro Singular de Medicina Molecular e Enfermedades Crónicas (CiMUS), Instituto Sanitario de Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Spain (M.S., M.G.-C., C.I., C.M.P., J.Z.)
| | - Cristina Iglesias
- Department of Physiology, Centro Singular de Medicina Molecular e Enfermedades Crónicas (CiMUS), Instituto Sanitario de Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Spain (M.S., M.G.-C., C.I., C.M.P., J.Z.)
| | - Brian W Howell
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY (B.W.H.)
| | - Manuel Macía
- Servicio de Obstetricia y Ginecología Hospital Clínico Universitario Santiago, Spain (M.M., P.P.)
| | - Patricia Peña
- Servicio de Obstetricia y Ginecología Hospital Clínico Universitario Santiago, Spain (M.M., P.P.)
| | - Celia M Pombo
- Department of Physiology, Centro Singular de Medicina Molecular e Enfermedades Crónicas (CiMUS), Instituto Sanitario de Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Spain (M.S., M.G.-C., C.I., C.M.P., J.Z.)
| | - Juan Zalvide
- Department of Physiology, Centro Singular de Medicina Molecular e Enfermedades Crónicas (CiMUS), Instituto Sanitario de Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Spain (M.S., M.G.-C., C.I., C.M.P., J.Z.)
| |
Collapse
|
8
|
Lin J, Liang J, Wen J, Luo M, Li J, Sun X, Xu X, Li J, Wang D, Wang J, Chen H, Lai R, Liang F, Li C, Ye F, Zhang J, Zeng J, Yang S, Sheng W. Mutations of RNF213 are responsible for sporadic cerebral cavernous malformation and lead to a mulberry-like cluster in zebrafish. J Cereb Blood Flow Metab 2021; 41:1251-1263. [PMID: 32248732 PMCID: PMC8142133 DOI: 10.1177/0271678x20914996] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although familial forms of cerebral cavernous malformation are mainly attributed to three CCM genes (KRIT1, CCM2 and PDCD10), no mutation is identified in sporadic cerebral cavernous malformation cases with a unique lesion, indicating additional genes for sporadic cerebral cavernous malformation. To screen the candidate genes, we conducted whole exome sequencing in 31 sporadic cerebral cavernous malformation patients and 32 healthy controls, and identified 5 affected individuals carrying 6 heterozygous deleterious mutations in RNF213 but no RNF213 mutation in healthy individuals. To further confirm RNF213 was associated with cerebral cavernous malformation, we generated rnf213a homozygous knockout zebrafish and found mutation of rnf213a in zebrafish led to a mulberry-like cluster of disordered-flow vascular channels which was reminiscent of human cerebral cavernous malformation. In addition, we revealed kbtbd7 and anxa6 were significantly downregulated due to rnf213a mutation through transcriptomic sequencing and RT-qPCR analysis. Based on the mulberry-like phenotype partly rescued by mRNA of kbtbd7 as well as anxa6, we suggested that rnf213a promoted mulberry-like cluster via downregulation of kbtbd7 and anxa6. Altogether, we firstly demonstrate RNF213is a novel candidate gene for sporadic cerebral cavernous malformation and the mutation of rnf213a is responsible for the mulberry-like cluster in zebrafish.
Collapse
Affiliation(s)
- Jing Lin
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Jie Liang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Jun Wen
- Department of Neurology, Jiangmen Central Hospital, Jiangmen, China
| | - Man Luo
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Jiaoxing Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Xunsha Sun
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Xiaowei Xu
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jianli Li
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Dongxian Wang
- Translational Medicine Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jie Wang
- Translational Medicine Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huimin Chen
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Rong Lai
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Fengyin Liang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Chuan Li
- Translational Medicine Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fei Ye
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jinsheng Zeng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Shulan Yang
- Translational Medicine Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenli Sheng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| |
Collapse
|
9
|
Detter MR, Shenkar R, Benavides CR, Neilson CA, Moore T, Lightle R, Hobson N, Shen L, Cao Y, Girard R, Zhang D, Griffin E, Gallione CJ, Awad IA, Marchuk DA. Novel Murine Models of Cerebral Cavernous Malformations. Angiogenesis 2020; 23:651-666. [PMID: 32710309 DOI: 10.1007/s10456-020-09736-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/06/2020] [Indexed: 12/21/2022]
Abstract
Cerebral cavernous malformations (CCMs) are ectatic capillary-venous malformations that develop in approximately 0.5% of the population. Patients with CCMs may develop headaches, focal neurologic deficits, seizures, and hemorrhages. While symptomatic CCMs, depending upon the anatomic location, can be surgically removed, there is currently no pharmaceutical therapy to treat CCMs. Several mouse models have been developed to better understand CCM pathogenesis and test therapeutics. The most common mouse models induce a large CCM burden that is anatomically restricted to the cerebellum and contributes to lethality in the early days of life. These inducible models thus have a relatively short period for drug administration. We developed an inducible CCM3 mouse model that develops CCMs after weaning and provides a longer period for potential therapeutic intervention. Using this new model, three recently proposed CCM therapies, fasudil, tempol, vitamin D3, and a combination of the three drugs, failed to substantially reduce CCM formation when treatment was administered for 5 weeks, from postnatal day 21 (P21) to P56. We next restricted Ccm3 deletion to the brain vasculature and provided greater time (121 days) for CCMs to develop chronic hemorrhage, recapitulating the human lesions. We also developed the first model of acute CCM hemorrhage by injecting mice harboring CCMs with lipopolysaccharide. These efficient models will enable future drug studies to more precisely target clinically relevant features of CCM disease: CCM formation, chronic hemorrhage, and acute hemorrhage.
Collapse
Affiliation(s)
- Matthew R Detter
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27705, USA
| | - Robert Shenkar
- Neurovascular Surgery Program, Department of Neurosurgery, University of Chicago Medicine and Biological Sciences, Chicago, IL, 60637, USA
| | - Christian R Benavides
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27705, USA
| | - Catherine A Neilson
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27705, USA
| | - Thomas Moore
- Neurovascular Surgery Program, Department of Neurosurgery, University of Chicago Medicine and Biological Sciences, Chicago, IL, 60637, USA
| | - Rhonda Lightle
- Neurovascular Surgery Program, Department of Neurosurgery, University of Chicago Medicine and Biological Sciences, Chicago, IL, 60637, USA
| | - Nicholas Hobson
- Neurovascular Surgery Program, Department of Neurosurgery, University of Chicago Medicine and Biological Sciences, Chicago, IL, 60637, USA
| | - Le Shen
- Neurovascular Surgery Program, Department of Neurosurgery, University of Chicago Medicine and Biological Sciences, Chicago, IL, 60637, USA
| | - Ying Cao
- Neurovascular Surgery Program, Department of Neurosurgery, University of Chicago Medicine and Biological Sciences, Chicago, IL, 60637, USA
| | - Romuald Girard
- Neurovascular Surgery Program, Department of Neurosurgery, University of Chicago Medicine and Biological Sciences, Chicago, IL, 60637, USA
| | - Dongdong Zhang
- Neurovascular Surgery Program, Department of Neurosurgery, University of Chicago Medicine and Biological Sciences, Chicago, IL, 60637, USA
| | - Erin Griffin
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27705, USA
| | - Carol J Gallione
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27705, USA
| | - Issam A Awad
- Neurovascular Surgery Program, Department of Neurosurgery, University of Chicago Medicine and Biological Sciences, Chicago, IL, 60637, USA
| | - Douglas A Marchuk
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27705, USA. .,James B Duke Professor, Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Box 3175, Durham, NC, 27710, USA.
| |
Collapse
|
10
|
Nerstedt A, Kurhe Y, Cansby E, Caputo M, Gao L, Vorontsov E, Ståhlman M, Nuñez-Durán E, Borén J, Marschall HU, Mashek DG, Saunders DN, Sihlbom C, Hoy AJ, Mahlapuu M. Lipid droplet-associated kinase STK25 regulates peroxisomal activity and metabolic stress response in steatotic liver. J Lipid Res 2019; 61:178-191. [PMID: 31857389 DOI: 10.1194/jlr.ra119000316] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/05/2019] [Indexed: 12/18/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are emerging as leading causes of liver disease worldwide and have been recognized as one of the major unmet medical needs of the 21st century. Our recent translational studies in mouse models, human cell lines, and well-characterized patient cohorts have identified serine/threonine kinase (STK)25 as a protein that coats intrahepatocellular lipid droplets (LDs) and critically regulates liver lipid homeostasis and progression of NAFLD/NASH. Here, we studied the mechanism-of-action of STK25 in steatotic liver by relative quantification of the hepatic LD-associated phosphoproteome from high-fat diet-fed Stk25 knockout mice compared with their wild-type littermates. We observed a total of 131 proteins and 60 phosphoproteins that were differentially represented in STK25-deficient livers. Most notably, a number of proteins involved in peroxisomal function, ubiquitination-mediated proteolysis, and antioxidant defense were coordinately regulated in Stk25 -/- versus wild-type livers. We confirmed attenuated peroxisomal biogenesis and protection against oxidative and ER stress in STK25-deficient human liver cells, demonstrating the hepatocyte-autonomous manner of STK25's action. In summary, our results suggest that regulation of peroxisomal function and metabolic stress response may be important molecular mechanisms by which STK25 controls the development and progression of NAFLD/NASH.
Collapse
Affiliation(s)
- Annika Nerstedt
- Departments of Chemistry and Molecular Biology University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Yeshwant Kurhe
- Departments of Chemistry and Molecular Biology University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Emmelie Cansby
- Departments of Chemistry and Molecular Biology University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mara Caputo
- Departments of Chemistry and Molecular Biology University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lei Gao
- Departments of Chemistry and Molecular Biology University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Egor Vorontsov
- Proteomics Core Facility, University of Gothenburg, Gothenburg, Sweden
| | - Marcus Ståhlman
- Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Esther Nuñez-Durán
- Departments of Chemistry and Molecular Biology University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jan Borén
- Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Hanns-Ulrich Marschall
- Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Douglas G Mashek
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN
| | - Darren N Saunders
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Carina Sihlbom
- Proteomics Core Facility, University of Gothenburg, Gothenburg, Sweden
| | - Andrew J Hoy
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Margit Mahlapuu
- Departments of Chemistry and Molecular Biology University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
11
|
Lampugnani MG, Dejana E, Giampietro C. Vascular Endothelial (VE)-Cadherin, Endothelial Adherens Junctions, and Vascular Disease. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a029322. [PMID: 28851747 DOI: 10.1101/cshperspect.a029322] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Endothelial cell-cell adherens junctions (AJs) supervise fundamental vascular functions, such as the control of permeability and transmigration of circulating leukocytes, and the maintenance of existing vessels and formation of new ones. These processes are often dysregulated in pathologies. However, the evidence that links dysfunction of endothelial AJs to human pathologies is mostly correlative. In this review, we present an update of the molecular organization of AJ complexes in endothelial cells (ECs) that is mainly based on observations from experimental models. Furthermore, we report in detail on a human pathology, cerebral cavernous malformation (CCM), which is initiated by loss-of-function mutations in the genes that encode the three cytoplasmic components of AJs (CCM1, CCM2, and CCM3). At present, these represent a unique example of mutations in components of endothelial AJs that cause human disease. We describe also how studies into the defects of AJs in CCM are shedding light on the crucial regulatory mechanisms and signaling activities of these endothelial structures. Although these observations are specific for CCM, they support the concept that dysfunction of endothelial AJs can directly contribute to human pathologies.
Collapse
Affiliation(s)
- Maria Grazia Lampugnani
- Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute of Molecular Oncology, 20139 Milan, Italy.,Mario Negri Institute for Pharmacological Research, 20156 Milan, Italy
| | - Elisabetta Dejana
- Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute of Molecular Oncology, 20139 Milan, Italy.,Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden
| | - Costanza Giampietro
- Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute of Molecular Oncology, 20139 Milan, Italy
| |
Collapse
|
12
|
Abstract
Cerebral cavernous malformations (CCM) are manifested by microvascular lesions characterized by leaky endothelial cells with minimal intervening parenchyma predominantly in the central nervous system predisposed to hemorrhagic stroke, resulting in focal neurological defects. Till date, three proteins are implicated in this condition: CCM1 (KRIT1), CCM2 (MGC4607), and CCM3 (PDCD10). These multi-domain proteins form a protein complex via CCM2 that function as a docking site for the CCM signaling complex, which modulates many signaling pathways. Defects in the formation of this signaling complex have been shown to affect a wide range of cellular processes including cell-cell contact stability, vascular angiogenesis, oxidative damage protection and multiple biogenic events. In this review we provide an update on recent advances in structure and function of these CCM proteins, especially focusing on the signaling cascades involved in CCM pathogenesis and the resultant CCM cellular phenotypes in the past decade.
Collapse
Affiliation(s)
- Akhil Padarti
- Department of Biomedical Sciences, Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| | - Jun Zhang
- Department of Biomedical Sciences, Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Endothelial cells dysfunctions are crucial determinants of several human diseases. We review here the most recent reports on endothelial cell defects in cerebral cavernous malformations (CCMs), particularly focusing on adherens junctions. CCM is a vascular disease that affects specifically the venous microvessels of the central nervous system and which is caused by loss-of-function mutation in any one of the three CCM genes (CCM1, 2 or 3) in endothelial cells. The phenotypic result of these mutations are focal vascular malformations that are permeable and fragile causing neurological symptoms and occasionally haemorrhagic stroke. RECENT FINDINGS CCM is still an incurable disease, as no pharmacological treatment is available, besides surgery. The definition of the molecular alterations ensuing loss of function mutation of CCM genes is contributing to orientate the testing of targeted pharmacological tools.Several signalling pathways are altered in the three genotypes in a similar way and concur in the acquisition of mesenchymal markers in endothelial cells. However, also genotype-specific defects are reported, in particular for the CCM1 and CCM3 mutation. SUMMARY Besides the specific CCM disease, the characterization of endothelial alterations in CCM has the potentiality to shed light on basic molecular regulations as the acquisition and maintenance of organ and vascular site specificity of endothelial cells.
Collapse
|
14
|
Abstract
The disease known as cerebral cavernous malformations mostly occurs in the central nervous system, and their typical histological presentations are multiple lumen formation and vascular leakage at the brain capillary level, resulting in disruption of the blood-brain barrier. These abnormalities result in severe neurological symptoms such as seizures, focal neurological deficits and hemorrhagic strokes. CCM research has identified ‘loss of function’ mutations of three ccm genes responsible for the disease and also complex regulation of multiple signaling pathways including the WNT/β-catenin pathway, TGF-β and Notch signaling by the ccm genes. Although CCM research is a relatively new and small scientific field, as CCM research has the potential to regulate systemic blood vessel permeability and angiogenesis including that of the blood-brain barrier, this field is growing rapidly. In this review, I will provide a brief overview of CCM pathogenesis and function of ccm genes based on recent progress in CCM research. [BMB Reports 2016; 49(5): 255-262]
Collapse
Affiliation(s)
- Jaehong Kim
- Department of Biochemistry, School of Medicine, Gachon University, Incheon 21936; Department of Health Sciences and Technology, Gachon Advanced Institute for Health Science and Technology, Gachon University, Incheon 21999, Korea
| |
Collapse
|
15
|
Wetzel-Strong SE, Detter MR, Marchuk DA. The pathobiology of vascular malformations: insights from human and model organism genetics. J Pathol 2016; 241:281-293. [PMID: 27859310 DOI: 10.1002/path.4844] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 10/31/2016] [Accepted: 11/03/2016] [Indexed: 12/12/2022]
Abstract
Vascular malformations may arise in any of the vascular beds present in the human body. These lesions vary in location, type, and clinical severity of the phenotype. In recent years, the genetic basis of several vascular malformations has been elucidated. This review will consider how the identification of the genetic factors contributing to different vascular malformations, with subsequent functional studies in animal models, has provided a better understanding of these factors that maintain vascular integrity in vascular beds, as well as their role in the pathogenesis of vascular malformations. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sarah E Wetzel-Strong
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Matthew R Detter
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA.,Medical Scientist Training Program, Duke University School of Medicine, Durham, NC 27710, USA
| | - Douglas A Marchuk
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
16
|
Spiegler S, Kirchmaier B, Rath M, Korenke GC, Tetzlaff F, van de Vorst M, Neveling K, Acker-Palmer A, Kuss AW, Gilissen C, Fischer A, Schulte-Merker S, Felbor U. FAM222B Is Not a Likely Novel Candidate Gene for Cerebral Cavernous Malformations. Mol Syndromol 2016; 7:144-52. [PMID: 27587990 DOI: 10.1159/000446884] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2016] [Indexed: 12/11/2022] Open
Abstract
Cerebral cavernous malformations (CCMs) are prevalent slow-flow vascular lesions which harbour the risk to develop intracranial haemorrhages, focal neurological deficits, and epileptic seizures. Autosomal dominantly inherited CCMs were found to be associated with heterozygous inactivating mutations in 3 genes, CCM1 (KRIT1), CCM2 (MGC4607), and CCM3 (PDCD10) in 1999, 2003 and 2005, respectively. Despite the availability of high-throughput sequencing techniques, no further CCM gene has been published since. Here, we report on the identification of an autosomal dominantly inherited frameshift mutation in a gene of thus far unknown function, FAM222B (C17orf63), through exome sequencing of CCM patients mutation-negative for CCM1-3. A yeast 2-hybrid screen revealed interactions of FAM222B with the tubulin cytoskeleton and STAMBP which is known to be associated with microcephaly-capillary malformation syndrome. However, a phenotype similar to existing models was not found, neither in fam222bb/fam222ba double mutant zebrafish generated by transcription activator-like effector nucleases nor in an in vitro sprouting assay using human umbilical vein endothelial cells transfected with siRNA against FAM222B. These observations led to the assumption that aberrant FAM222B is not involved in the formation of CCMs.
Collapse
Affiliation(s)
- Stefanie Spiegler
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Bettina Kirchmaier
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Frankfurt am Main, Germany; Hubrecht Institute - KNAW & UMC Utrecht, Utrecht, The Netherlands
| | - Matthias Rath
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | | | - Fabian Tetzlaff
- Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Maartje van de Vorst
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Kornelia Neveling
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Amparo Acker-Palmer
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Frankfurt am Main, Germany
| | - Andreas W Kuss
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Andreas Fischer
- Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan Schulte-Merker
- Institute for Cardiovascular Organogenesis and Regeneration, Cells-in-Motion Cluster of Excellence, Faculty of Medicine, University of Münster, Münster, Germany; Hubrecht Institute - KNAW & UMC Utrecht, Utrecht, The Netherlands
| | - Ute Felbor
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| |
Collapse
|
17
|
Kim JW, Jeong JM, Bae JS, Cho DH, Jung SH, Hwang JY, Kwon MG, Seo JS, Baeck GW, Park CI. First description of programmed cell death10 (PDCD10) in rock bream (Oplegnathus fasciatus): Potential relations to the regulation of apoptosis by several pathogens. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 55:51-55. [PMID: 26472617 DOI: 10.1016/j.dci.2015.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/07/2015] [Accepted: 10/07/2015] [Indexed: 06/05/2023]
Abstract
In this study, we isolated and characterized programmed cell death10 (PDCD10), which is known to be related to apoptosis, from rock bream (Oplegnathus fasciatus). The full-length rock bream PDCD10 (RbPDCD10) cDNA (1459 bp) contains an open reading frame of 633 bp that encodes 210 amino acids. Furthermore, multiple alignments revealed that the six of the α-helix bundles were well conserved among the other PDCD10 sequences tested. RbPDCD10 was significantly expressed in the liver, RBC (red blood cell), gill, intestine, trunk kidney and spleen. RbPDCD10 gene expression was also examined in several tissues, including the kidney, spleen, liver, and gill, under bacterial and viral challenges. Generally, all of the examined tissues from the fish that were infected with Edwardsiella tarda and the red sea bream iridovirus (RSIV) exhibited significant up-regulations of RbPDCD10 expression compared to the controls. However, RbPDCD10 expression exhibited dramatic down-regulations in all of the examined tissues following injections of Streptococcus iniae, which is major bacterial pathogen that is responsible for mass mortality in rock bream. Our results revealed that rock bream PDCD10 may be involved in the apoptotic regulation of rock bream immune responses.
Collapse
Affiliation(s)
- Ju-Won Kim
- Department of Marine Biology and Aquaculture, College of Marine Science, Gyeongsang National University, 38 Cheondaegukchi-Gil, Tongyeong, Gyeongnam 650-160, Republic of Korea
| | - Ji-Min Jeong
- Department of Marine Biology and Aquaculture, College of Marine Science, Gyeongsang National University, 38 Cheondaegukchi-Gil, Tongyeong, Gyeongnam 650-160, Republic of Korea
| | - Jin-Sol Bae
- Department of Marine Biology and Aquaculture, College of Marine Science, Gyeongsang National University, 38 Cheondaegukchi-Gil, Tongyeong, Gyeongnam 650-160, Republic of Korea
| | - Dong-Hee Cho
- Department of Marine Biology and Aquaculture, College of Marine Science, Gyeongsang National University, 38 Cheondaegukchi-Gil, Tongyeong, Gyeongnam 650-160, Republic of Korea
| | - Sung Hee Jung
- Pathology Division, National Fisheries Research and Development Institute, Busan 619-900, Republic of Korea
| | - Jee-Youn Hwang
- Pathology Division, National Fisheries Research and Development Institute, Busan 619-900, Republic of Korea
| | - Mun-Gyeong Kwon
- Pathology Division, National Fisheries Research and Development Institute, Busan 619-900, Republic of Korea
| | - Jung Soo Seo
- Pathology Division, National Fisheries Research and Development Institute, Busan 619-900, Republic of Korea
| | - Gun-Wook Baeck
- Department of Marine Biology and Aquaculture, College of Marine Science, Gyeongsang National University, 38 Cheondaegukchi-Gil, Tongyeong, Gyeongnam 650-160, Republic of Korea
| | - Chan-Il Park
- Department of Marine Biology and Aquaculture, College of Marine Science, Gyeongsang National University, 38 Cheondaegukchi-Gil, Tongyeong, Gyeongnam 650-160, Republic of Korea.
| |
Collapse
|
18
|
Haasdijk RA, Den Dekker WK, Cheng C, Tempel D, Szulcek R, Bos FL, Hermkens DMA, Chrifi I, Brandt MM, Van Dijk C, Xu YJ, Van De Kamp EHM, Blonden LAJ, Van Bezu J, Sluimer JC, Biessen EAL, Van Nieuw Amerongen GP, Duckers HJ. THSD1 preserves vascular integrity and protects against intraplaque haemorrhaging in ApoE-/- mice. Cardiovasc Res 2016; 110:129-39. [PMID: 26822228 DOI: 10.1093/cvr/cvw015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 01/07/2016] [Indexed: 12/15/2022] Open
Abstract
AIMS Impairment of the endothelial barrier leads to microvascular breakdown in cardiovascular disease and is involved in intraplaque haemorrhaging and the progression of advanced atherosclerotic lesions that are vulnerable to rupture. The exact mechanism that regulates vascular integrity requires further definition. Using a microarray screen for angiogenesis-associated genes during murine embryogenesis, we identified thrombospondin type I domain 1 (THSD1) as a new putative angiopotent factor with unknown biological function. We sought to characterize the role of THSD1 in endothelial cells during vascular development and cardiovascular disease. METHODS AND RESULTS Functional knockdown of Thsd1 in zebrafish embryos and in a murine retina vascularization model induced severe haemorrhaging without affecting neovascular growth. In human carotid endarterectomy specimens, THSD1 expression by endothelial cells was detected in advanced atherosclerotic lesions with intraplaque haemorrhaging, but was absent in stable lesions, implying involvement of THSD1 in neovascular bleeding. In vitro, stimulation with pro-atherogenic factors (3% O2 and TNFα) decreased THSD1 expression in human endothelial cells, whereas stimulation with an anti-atherogenic factor (IL10) showed opposite effect. Therapeutic evaluation in a murine advanced atherosclerosis model showed that Thsd1 overexpression decreased plaque vulnerability by attenuating intraplaque vascular leakage, subsequently reducing macrophage accumulation and necrotic core size. Mechanistic studies in human endothelial cells demonstrated that THSD1 activates FAK-PI3K, leading to Rac1-mediated actin cytoskeleton regulation of adherens junctions and focal adhesion assembly. CONCLUSION THSD1 is a new regulator of endothelial barrier function during vascular development and protects intraplaque microvessels against haemorrhaging in advanced atherosclerotic lesions.
Collapse
Affiliation(s)
- Remco A Haasdijk
- Department of Cardiology, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Wijnand K Den Dekker
- Department of Cardiology, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Caroline Cheng
- Department of Cardiology, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands Regenerative Vascular Medicine Laboratory, Department of Nephrology and Hypertension, Division of Internal Medicine and Dermatology, University Medical Center Utrecht, Heidelberglaan 100, PO Box 85500, 3584 CX Utrecht, 3508 GA Utrecht, The Netherlands
| | - Dennie Tempel
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Robert Szulcek
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Frank L Bos
- Department of Cardiology, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands Hubrecht Institute, Utrecht, The Netherlands
| | - Dorien M A Hermkens
- Department of Cardiology, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands Hubrecht Institute, Utrecht, The Netherlands
| | - Ihsan Chrifi
- Department of Cardiology, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands Regenerative Vascular Medicine Laboratory, Department of Nephrology and Hypertension, Division of Internal Medicine and Dermatology, University Medical Center Utrecht, Heidelberglaan 100, PO Box 85500, 3584 CX Utrecht, 3508 GA Utrecht, The Netherlands
| | - Maarten M Brandt
- Department of Cardiology, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands Regenerative Vascular Medicine Laboratory, Department of Nephrology and Hypertension, Division of Internal Medicine and Dermatology, University Medical Center Utrecht, Heidelberglaan 100, PO Box 85500, 3584 CX Utrecht, 3508 GA Utrecht, The Netherlands
| | - Chris Van Dijk
- Regenerative Vascular Medicine Laboratory, Department of Nephrology and Hypertension, Division of Internal Medicine and Dermatology, University Medical Center Utrecht, Heidelberglaan 100, PO Box 85500, 3584 CX Utrecht, 3508 GA Utrecht, The Netherlands
| | - Yan Juan Xu
- Regenerative Vascular Medicine Laboratory, Department of Nephrology and Hypertension, Division of Internal Medicine and Dermatology, University Medical Center Utrecht, Heidelberglaan 100, PO Box 85500, 3584 CX Utrecht, 3508 GA Utrecht, The Netherlands
| | | | - Lau A J Blonden
- Department of Cardiology, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jan Van Bezu
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Judith C Sluimer
- Department of Pathology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Erik A L Biessen
- Department of Pathology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Geerten P Van Nieuw Amerongen
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Henricus J Duckers
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
19
|
van den Berg MCW, Burgering BMT. CCM1 and the second life of proteins in adhesion complexes. Cell Adh Migr 2015; 8:146-57. [PMID: 24714220 DOI: 10.4161/cam.28437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
It is well recognized that a number of proteins present within adhesion complexes perform discrete signaling functions outside these adhesion complexes, including transcriptional control. In this respect, β-catenin is a well-known example of an adhesion protein present both in cadherin complexes and in the nucleus where it regulates the TCF transcription factor. Here we discuss nuclear functions of adhesion complex proteins with a special focus on the CCM-1/KRIT-1 protein, which may turn out to be yet another adhesion complex protein with a second life.
Collapse
Affiliation(s)
- Maaike C W van den Berg
- Center for Molecular Medicine; Dept. Molecular Cancer Research; University Medical Center Utrecht; The Netherlands
| | - Boudewijn M T Burgering
- Center for Molecular Medicine; Dept. Molecular Cancer Research; University Medical Center Utrecht; The Netherlands
| |
Collapse
|
20
|
Lagendijk AK, Yap AS, Hogan BM. Endothelial cell-cell adhesion during zebrafish vascular development. Cell Adh Migr 2015; 8:136-45. [PMID: 24621476 DOI: 10.4161/cam.28229] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The vertebrate vasculature is an essential organ network with major roles in health and disease. The establishment of balanced cell-cell adhesion in the endothelium is crucial for the functionality of the vascular system. Furthermore, the correct patterning and integration of vascular endothelial cell-cell adhesion drives the morphogenesis of new vessels, and is thought to couple physical forces with signaling outcomes during development. Here, we review insights into this process that have come from studies in zebrafish. First, we describe mutants in which endothelial adhesion is perturbed, second we describe recent progress using in vivo cell biological approaches that allow the visualization of endothelial cell-cell junctions. These studies underline the profound potential of this model system to dissect in great detail the function of both known and novel regulators of endothelial cell-cell adhesion.
Collapse
Affiliation(s)
- Anne K Lagendijk
- Institute for Molecular Bioscience; The University of Queensland;Brisbane, QLD, Australia
| | - Alpha S Yap
- Institute for Molecular Bioscience; The University of Queensland;Brisbane, QLD, Australia
| | - Benjamin M Hogan
- Institute for Molecular Bioscience; The University of Queensland;Brisbane, QLD, Australia
| |
Collapse
|
21
|
Guerrero A, Iglesias C, Raguz S, Floridia E, Gil J, Pombo CM, Zalvide J. The cerebral cavernous malformation 3 gene is necessary for senescence induction. Aging Cell 2015; 14:274-83. [PMID: 25655101 PMCID: PMC4364839 DOI: 10.1111/acel.12316] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2014] [Indexed: 11/28/2022] Open
Abstract
Mutations in cerebral cavernous malformation 3 gene are known to result in development of vascular malformations and have recently been proposed to also give rise to meningiomas. We report in this study that lack of CCM3 unexpectedly impairs the senescence response of cells, and this is related to the inability of CCM3-deficient cells to induce the C/EBPβ transcription factor and implement the senescence-associated secretory phenotype. Induction of C/EBPβ and cytokines is also impaired in the absence of CCM3 in response to cytokines in nonsenescent cells, pointing to it being a primary defect and not secondary to impaired senescence. CCM3-deficient cells also have a defect in autophagy at late passages of culture, and this defect is also not dependent on impaired senescence, as it is evident in immortal cells after nutrient starvation. Further, these two defects may be related, as enforcing autophagy in CCM3-deficient late passage cells increases C/EBPβ cytokine expression. These results broaden our knowledge on the mechanisms by which CCM3 deficiency results in disease and open new avenues of research into both CCM3 and senescence biology.
Collapse
Affiliation(s)
- Ana Guerrero
- Department of Physiology; CIMUS; Instituto de Investigación Sanitaria IDIS; University of Santiago de Compostela; Santiago de Compostela A Coruña 15703 Spain
- Cell Proliferation Group; MRC Clinical Sciences Centre; Imperial College London; London W12 0NN UK
| | - Cristina Iglesias
- Department of Physiology; CIMUS; Instituto de Investigación Sanitaria IDIS; University of Santiago de Compostela; Santiago de Compostela A Coruña 15703 Spain
| | - Selina Raguz
- Cell Proliferation Group; MRC Clinical Sciences Centre; Imperial College London; London W12 0NN UK
- Quantitative Cell Biology; MRC Clinical Sciences Centre; Imperial College; London
| | - Ebel Floridia
- Department of Physiology; CIMUS; Instituto de Investigación Sanitaria IDIS; University of Santiago de Compostela; Santiago de Compostela A Coruña 15703 Spain
| | - Jesús Gil
- Cell Proliferation Group; MRC Clinical Sciences Centre; Imperial College London; London W12 0NN UK
| | - Celia M. Pombo
- Department of Physiology; CIMUS; Instituto de Investigación Sanitaria IDIS; University of Santiago de Compostela; Santiago de Compostela A Coruña 15703 Spain
| | - Juan Zalvide
- Department of Physiology; CIMUS; Instituto de Investigación Sanitaria IDIS; University of Santiago de Compostela; Santiago de Compostela A Coruña 15703 Spain
| |
Collapse
|
22
|
Madsen CD, Hooper S, Tozluoglu M, Bruckbauer A, Fletcher G, Erler JT, Bates PA, Thompson B, Sahai E. STRIPAK components determine mode of cancer cell migration and metastasis. Nat Cell Biol 2015; 17:68-80. [PMID: 25531779 PMCID: PMC5354264 DOI: 10.1038/ncb3083] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/11/2014] [Indexed: 12/15/2022]
Abstract
The contractile actomyosin cytoskeleton and its connection to the plasma membrane are critical for control of cell shape and migration. We identify three STRIPAK complex components, FAM40A, FAM40B and STRN3, as regulators of the actomyosin cortex. We show that FAM40A negatively regulates the MST3 and MST4 kinases, which promote the co-localization of the contractile actomyosin machinery with the Ezrin/Radixin/Moesin family proteins by phosphorylating the inhibitors of PPP1CB, PPP1R14A-D. Using computational modelling, in vitro cell migration assays and in vivo breast cancer metastasis assays we demonstrate that co-localization of contractile activity and actin-plasma membrane linkage reduces cell speed on planar surfaces, but favours migration in confined environments similar to those observed in vivo. We further show that FAM40B mutations found in human tumours uncouple it from PP2A and enable it to drive a contractile phenotype, which may underlie its role in human cancer.
Collapse
Affiliation(s)
- Chris D. Madsen
- Tumour Cell Biology Laboratory, Cancer Research UK London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3LY, UK
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Steven Hooper
- Tumour Cell Biology Laboratory, Cancer Research UK London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3LY, UK
| | - Melda Tozluoglu
- Biomolecular Modelling Laboratory, Cancer Research UK London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3LY, UK
| | - Andreas Bruckbauer
- Lymphocyte Interaction Laboratory, Cancer Research UK London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3LY, UK
| | - Georgina Fletcher
- Epithelial Biology Laboratory, Cancer Research UK London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3LY, UK
| | - Janine T. Erler
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Paul A. Bates
- Biomolecular Modelling Laboratory, Cancer Research UK London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3LY, UK
| | - Barry Thompson
- Epithelial Biology Laboratory, Cancer Research UK London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3LY, UK
| | - Erik Sahai
- Tumour Cell Biology Laboratory, Cancer Research UK London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3LY, UK
| |
Collapse
|
23
|
Yang YJ, Liu ZS, Lu SY, Li C, Hu P, Li YS, Liu NN, Tang F, Xu YM, Zhang JH, Li ZH, Feng XL, Zhou Y, Ren HL. Molecular cloning, expression and characterization of programmed cell death 10 from sheep (Ovis aries). Gene 2014; 558:65-74. [PMID: 25541025 DOI: 10.1016/j.gene.2014.12.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 11/27/2014] [Accepted: 12/19/2014] [Indexed: 11/30/2022]
Abstract
Programmed cell death 10 (PDCD10) is a highly conserved adaptor protein. Its mutations result in cerebral cavernous malformations (CCMs). In this study, PDCD10 cDNA from the buffy coat of Small Tail Han sheep (Ovis aries) was cloned from a suppression subtractive hybridization cDNA library, named OaPDCD10. The full-length cDNA of OaPDCD10 was 1343bp with a 639bp open reading frame (ORF) encoding 212 amino acid residues. Tissue distribution of OaPDCD10 mRNA determined that it was ubiquitously expressed in all tested tissue samples, and the highest expression was observed in the heart. The differential expression of OaPDCD10 between infected sheep (challenged with Brucella melitensis) and vaccinated sheep (vaccinated with Brucella suis S2) was also investigated. The results revealed that, compared to the control group, the expression of OaPDCD10 from infected and vaccinated sheep was both significantly up-regulated (p<0.05). Moreover, the expression levels of OaPDCD10 from the vaccinated sheep were significantly higher than the infected sheep (p<0.05) after 30days post-inoculation. The recombinant OaPDCD10 (rOaPDCD10) protein was expressed in Escherichia coli BL21 (DE3), and then purified by affinity chromatography. The rOaPDCD10 protein was demonstrated to induce apoptosis and promote cell proliferation. Our studies are intended to discover potential diagnostic biomarkers of brucellosis to discern infected sheep from vaccinated sheep, and OaPDCD10 could be considered as a potential diagnostic biomarker of brucellosis.
Collapse
Affiliation(s)
- Yong-Jie Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; Department of Food Science, College of Agriculture, Yanbian University, Yanji 133002, China
| | - Zeng-Shan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shi-Ying Lu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Chuang Li
- Department of Food Science, College of Agriculture, Yanbian University, Yanji 133002, China
| | - Pan Hu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yan-Song Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Nan-Nan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Feng Tang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; College of Animal Husbandry and Veterinary, Liaoning Medical University, Jinzhou 121001, China
| | - Yun-Ming Xu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; Department of Husbandry and Veterinary Medicine, Jiangsu Polytechnic College of Agriculture and Forestry, Jurong 212400, China
| | - Jun-Hui Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Zhao-Hui Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiao-Li Feng
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yu Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Hong-Lin Ren
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
24
|
PTEN/PI3K/Akt/VEGF signaling and the cross talk to KRIT1, CCM2, and PDCD10 proteins in cerebral cavernous malformations. Neurosurg Rev 2014; 38:229-36; discussion 236-7. [DOI: 10.1007/s10143-014-0597-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/08/2014] [Accepted: 11/01/2014] [Indexed: 01/09/2023]
|
25
|
Hwang J, Pallas DC. STRIPAK complexes: structure, biological function, and involvement in human diseases. Int J Biochem Cell Biol 2014; 47:118-48. [PMID: 24333164 PMCID: PMC3927685 DOI: 10.1016/j.biocel.2013.11.021] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 11/18/2013] [Accepted: 11/28/2013] [Indexed: 12/31/2022]
Abstract
The mammalian striatin family consists of three proteins, striatin, S/G2 nuclear autoantigen, and zinedin. Striatin family members have no intrinsic catalytic activity, but rather function as scaffolding proteins. Remarkably, they organize multiple diverse, large signaling complexes that participate in a variety of cellular processes. Moreover, they appear to be regulatory/targeting subunits for the major eukaryotic serine/threonine protein phosphatase 2A. In addition, striatin family members associate with germinal center kinase III kinases as well as other novel components, earning these assemblies the name striatin-interacting phosphatase and kinase (STRIPAK) complexes. Recently, there has been a great increase in functional and mechanistic studies aimed at identifying and understanding the roles of STRIPAK and STRIPAK-like complexes in cellular processes of multiple organisms. These studies have identified novel STRIPAK and STRIPAK-like complexes and have explored their roles in specific signaling pathways. Together, the results of these studies have sparked increased interest in striatin family complexes because they have revealed roles in signaling, cell cycle control, apoptosis, vesicular trafficking, Golgi assembly, cell polarity, cell migration, neural and vascular development, and cardiac function. Moreover, STRIPAK complexes have been connected to clinical conditions, including cardiac disease, diabetes, autism, and cerebral cavernous malformation. In this review, we discuss the expression, localization, and protein domain structure of striatin family members. Then we consider the diverse complexes these proteins and their homologs form in various organisms, emphasizing what is known regarding function and regulation. Finally, we explore possible roles of striatin family complexes in disease, especially cerebral cavernous malformation.
Collapse
Affiliation(s)
- Juyeon Hwang
- Department of Biochemistry and Winship Cancer Institute, and Biochemistry, Cell, Developmental Biology Graduate Program, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.
| | - David C Pallas
- Department of Biochemistry and Winship Cancer Institute, and Biochemistry, Cell, Developmental Biology Graduate Program, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.
| |
Collapse
|
26
|
Draheim KM, Fisher OS, Boggon TJ, Calderwood DA. Cerebral cavernous malformation proteins at a glance. J Cell Sci 2014; 127:701-7. [PMID: 24481819 DOI: 10.1242/jcs.138388] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Loss-of-function mutations in genes encoding KRIT1 (also known as CCM1), CCM2 (also known as OSM and malcavernin) or PDCD10 (also known as CCM3) cause cerebral cavernous malformations (CCMs). These abnormalities are characterized by dilated leaky blood vessels, especially in the neurovasculature, that result in increased risk of stroke, focal neurological defects and seizures. The three CCM proteins can exist in a trimeric complex, and each of these essential multi-domain adaptor proteins also interacts with a range of signaling, cytoskeletal and adaptor proteins, presumably accounting for their roles in a range of basic cellular processes including cell adhesion, migration, polarity and apoptosis. In this Cell Science at a Glance article and the accompanying poster, we provide an overview of current models of CCM protein function focusing on how known protein-protein interactions might contribute to cellular phenotypes and highlighting gaps in our current understanding.
Collapse
Affiliation(s)
- Kyle M Draheim
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520-8066, USA
| | | | | | | |
Collapse
|
27
|
Spiegler S, Najm J, Liu J, Gkalympoudis S, Schröder W, Borck G, Brockmann K, Elbracht M, Fauth C, Ferbert A, Freudenberg L, Grasshoff U, Hellenbroich Y, Henn W, Hoffjan S, Hüning I, Korenke GC, Kroisel PM, Kunstmann E, Mair M, Munk-Schulenburg S, Nikoubashman O, Pauli S, Rudnik-Schöneborn S, Sudholt I, Sure U, Tinschert S, Wiednig M, Zoll B, Ginsberg MH, Felbor U. High mutation detection rates in cerebral cavernous malformation upon stringent inclusion criteria: one-third of probands are minors. Mol Genet Genomic Med 2014; 2:176-85. [PMID: 24689081 PMCID: PMC3960060 DOI: 10.1002/mgg3.60] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 11/22/2013] [Accepted: 12/02/2013] [Indexed: 11/09/2022] Open
Abstract
Cerebral cavernous malformations (CCM) are prevalent vascular malformations occurring in familial autosomal dominantly inherited or isolated forms. Once CCM are diagnosed by magnetic resonance imaging, the indication for genetic testing requires either a positive family history of cavernous lesions or clinical symptoms such as chronic headaches, epilepsy, neurological deficits, and hemorrhagic stroke or the occurrence of multiple lesions in an isolated case. Following these inclusion criteria, the mutation detection rates in a consecutive series of 105 probands were 87% for familial and 57% for isolated cases. Thirty-one novel mutations were identified with a slight shift towards proportionally more CCM3 mutations carriers than previously published (CCM1: 60%, CCM2: 18%, CCM3: 22%). In-frame deletions and exonic missense variants requiring functional analyses to establish their pathogenicity were rare: An in-frame deletion within the C-terminal FERM domain of CCM1 resulted in decreased protein expression and impaired binding to the transmembrane protein heart of glass (HEG1). Notably, 20% of index cases carrying a CCM mutation were below age 10 and 33% below age 18 when referred for genetic testing. Since fulminant disease courses during the first years of life were observed in CCM1 and CCM3 mutation carriers, predictive testing of minor siblings became an issue.
Collapse
Affiliation(s)
- Stefanie Spiegler
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald Greifswald, Germany
| | - Juliane Najm
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald Greifswald, Germany
| | - Jian Liu
- Department of Medicine, University of California San Diego San Diego, California
| | - Stephanie Gkalympoudis
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald Greifswald, Germany
| | - Winnie Schröder
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald Greifswald, Germany
| | - Guntram Borck
- Institute of Human Genetics, University of Ulm Ulm, Germany
| | - Knut Brockmann
- Department of Paediatrics and Paediatric Neurology, University of Göttingen Göttingen, Germany
| | - Miriam Elbracht
- Institute of Human Genetics, University of Aachen Aachen, Germany
| | - Christine Fauth
- Division of Human Genetics, Medical University Innsbruck Innsbruck, Austria
| | - Andreas Ferbert
- Department of Neurology, Klinikum Kassel GmbH Kassel, Germany
| | - Leonie Freudenberg
- Department of Neuropaediatrics, University Hospital Dresden Dresden, Germany
| | - Ute Grasshoff
- Institute of Medical Genetics and Applied Genomics, Rare Disease Center Tübingen, University of Tübingen Tübingen, Germany
| | | | - Wolfram Henn
- Department of Human Genetics, Saarland University Homburg/Saar, Germany
| | - Sabine Hoffjan
- Department of Human Genetics, Ruhr-University Bochum, Germany
| | - Irina Hüning
- Institute of Human Genetics, University of Lübeck Lübeck, Germany
| | | | - Peter M Kroisel
- Institute of Human Genetics, Medical University Graz Graz, Austria
| | - Erdmute Kunstmann
- Institute of Human Genetics, University of Würzburg Würzburg, Germany
| | - Martina Mair
- Department of Human Genetics, Saarland University Homburg/Saar, Germany
| | | | - Omid Nikoubashman
- Department for Interventional and Diagnostic Neuroradiology, University Hospital Aachen Aachen, Germany
| | - Silke Pauli
- Institute of Human Genetics, University of Göttingen Göttingen, Germany
| | | | - Irene Sudholt
- Institute of Medical Genetics, University of Zürich Zürich, Switzerland
| | - Ulrich Sure
- Department of Neurosurgery, University Hospital Essen Essen, Germany
| | - Sigrid Tinschert
- Institute of Clinical Genetics, Technical University of Dresden Dresden, Germany
| | - Michaela Wiednig
- Department of Environmental Dermatology and Venereology, Medical University Graz Graz, Austria
| | - Barbara Zoll
- Institute of Human Genetics, University of Göttingen Göttingen, Germany
| | - Mark H Ginsberg
- Department of Medicine, University of California San Diego San Diego, California
| | - Ute Felbor
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald Greifswald, Germany
| |
Collapse
|
28
|
Zhang Y, Tang W, Zhang H, Niu X, Xu Y, Zhang J, Gao K, Pan W, Boggon TJ, Toomre D, Min W, Wu D. A network of interactions enables CCM3 and STK24 to coordinate UNC13D-driven vesicle exocytosis in neutrophils. Dev Cell 2014; 27:215-226. [PMID: 24176643 DOI: 10.1016/j.devcel.2013.09.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 09/14/2013] [Accepted: 09/22/2013] [Indexed: 12/15/2022]
Abstract
Neutrophil degranulation plays an important role in acute innate immune responses and is tightly regulated because the granule contents can cause tissue damage. However, this regulation remains poorly understood. Here, we identify the complex of STK24 and CCM3 as being an important regulator of neutrophil degranulation. Lack of either STK24 or CCM3 increases the release of a specific granule pool without affecting other neutrophil functions. STK24 appears to suppress exocytosis by interacting and competing with UNC13D C2B domain for lipid binding, whereas CCM3 has dual roles in exocytosis regulation. Although CCM3 stabilizes STK24, it counteracts STK24-mediated inhibition of exocytosis by recruiting STK24 away from the C2B domain through its Ca(2+)-sensitive interaction with UNC13D C2A domain. This STK24/CCM3-regulated exocytosis plays an important role in the protection of kidneys from ischemia-reperfusion injury. Together, these findings reveal a function of the STK24 and CCM3 complex in the regulation of ligand-stimulated exocytosis.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT 06520, USA
| | - Wenwen Tang
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT 06520, USA
| | - Haifeng Zhang
- Department of Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Xiaofeng Niu
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yingke Xu
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Jiasheng Zhang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Kun Gao
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT 06520, USA
| | - Weijun Pan
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Titus J Boggon
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Derek Toomre
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Wang Min
- Department of Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Dianqing Wu
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
29
|
Wilkinson RN, van Eeden FJ. The Zebrafish as a Model of Vascular Development and Disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 124:93-122. [DOI: 10.1016/b978-0-12-386930-2.00005-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
30
|
Fisher OS, Boggon TJ. Signaling pathways and the cerebral cavernous malformations proteins: lessons from structural biology. Cell Mol Life Sci 2013; 71:1881-92. [PMID: 24287896 DOI: 10.1007/s00018-013-1532-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/19/2013] [Accepted: 11/21/2013] [Indexed: 10/26/2022]
Abstract
Cerebral cavernous malformations (CCM) are neurovascular dysplasias that result in mulberry-shaped lesions predominantly located in brain and spinal tissues. Mutations in three genes are associated with CCM. These genes encode for the proteins KRIT1/CCM1 (krev interaction trapped 1/cerebral cavernous malformations 1), cerebral cavernous malformations 2, osmosensing scaffold for MEKK3 (CCM2/malcavernin/OSM), and cerebral cavernous malformations 3/programmed cell death 10 (CCM3/PDCD10). There have been many significant recent advances in our understanding of the structure and function of these proteins, as well as in their roles in cellular signaling. Here, we provide an update on the current knowledge of the structure of the CCM proteins and their functions within cellular signaling, particularly in cellular adhesion complexes and signaling cascades. We go on to discuss subcellular localization of the CCM proteins, the formation and regulation of the CCM complex signaling platform, and current progress towards targeted therapy for CCM disease. Recent structural studies have begun to shed new light on CCM protein function, and we focus here on how these studies have helped inform the current understanding of these roles and how they may aid future studies into both CCM-related biology and disease mechanisms.
Collapse
Affiliation(s)
- Oriana S Fisher
- Department of Pharmacology, Yale University School of Medicine, SHM B-316A, 333 Cedar Street, New Haven, CT, 06520, USA
| | | |
Collapse
|
31
|
SOcK, MiSTs, MASK and STicKs: the GCKIII (germinal centre kinase III) kinases and their heterologous protein-protein interactions. Biochem J 2013; 454:13-30. [PMID: 23889253 DOI: 10.1042/bj20130219] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The GCKIII (germinal centre kinase III) subfamily of the mammalian Ste20 (sterile 20)-like group of serine/threonine protein kinases comprises SOK1 (Ste20-like/oxidant-stress-response kinase 1), MST3 (mammalian Ste20-like kinase 3) and MST4. Initially, GCKIIIs were considered in the contexts of the regulation of mitogen-activated protein kinase cascades and apoptosis. More recently, their participation in multiprotein heterocomplexes has become apparent. In the present review, we discuss the structure and phosphorylation of GCKIIIs and then focus on their interactions with other proteins. GCKIIIs possess a highly-conserved, structured catalytic domain at the N-terminus and a less-well conserved C-terminal regulatory domain. GCKIIIs are activated by tonic autophosphorylation of a T-loop threonine residue and their phosphorylation is regulated primarily through protein serine/threonine phosphatases [especially PP2A (protein phosphatase 2A)]. The GCKIII regulatory domains are highly disorganized, but can interact with more structured proteins, particularly the CCM3 (cerebral cavernous malformation 3)/PDCD10 (programmed cell death 10) protein. We explore the role(s) of GCKIIIs (and CCM3/PDCD10) in STRIPAK (striatin-interacting phosphatase and kinase) complexes and their association with the cis-Golgi protein GOLGA2 (golgin A2; GM130). Recently, an interaction of GCKIIIs with MO25 has been identified. This exhibits similarities to the STRADα (STE20-related kinase adaptor α)-MO25 interaction (as in the LKB1-STRADα-MO25 heterotrimer) and, at least for MST3, the interaction may be enhanced by cis-autophosphorylation of its regulatory domain. In these various heterocomplexes, GCKIIIs associate with the Golgi apparatus, the centrosome and the nucleus, as well as with focal adhesions and cell junctions, and are probably involved in cell migration, polarity and proliferation. Finally, we consider the association of GCKIIIs with a number of human diseases, particularly cerebral cavernous malformations.
Collapse
|
32
|
Song Y, Eng M, Ghabrial AS. Focal defects in single-celled tubes mutant for Cerebral cavernous malformation 3, GCKIII, or NSF2. Dev Cell 2013; 25:507-19. [PMID: 23763949 DOI: 10.1016/j.devcel.2013.05.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 04/09/2013] [Accepted: 05/02/2013] [Indexed: 10/26/2022]
Abstract
Tubes of differing cellular architecture connect into networks. In the Drosophila tracheal system, two tube types connect within single cells (terminal cells); however, the genes that mediate this interconnection are unknown. Here we characterize two genes that are essential for this process: lotus, required for maintaining a connection between the tubes, and wheezy, required to prevent local tube dilation. We find that lotus encodes N-ethylmaleimide sensitive factor 2 (NSF2), whereas wheezy encodes Germinal center kinase III (GCKIII). GCKIIIs are effectors of Cerebral cavernous malformation 3 (CCM3), a protein mutated in vascular disease. Depletion of Ccm3 by RNA interference phenocopies wheezy; thus, CCM3 and GCKIII, which prevent capillary dilation in humans, prevent tube dilation in Drosophila trachea. Ectopic junctional and apical proteins are present in wheezy terminal cells, and we show that tube dilation is suppressed by reduction of NSF2, of the apical determinant Crumbs, or of septate junction protein Varicose.
Collapse
Affiliation(s)
- Yanjun Song
- Department of Cell and Developmental Biology, Perelman School of Medicine, BRBII/III Room 1214, 421 Curie Boulevard, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
33
|
Structural Basis for the Unique Heterodimeric Assembly between Cerebral Cavernous Malformation 3 and Germinal Center Kinase III. Structure 2013; 21:1059-66. [DOI: 10.1016/j.str.2013.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/20/2013] [Accepted: 04/08/2013] [Indexed: 11/23/2022]
|
34
|
Predictive genetic testing of at-risk relatives requires analysis of all CCM genes after identification of an unclassified CCM1 variant in an individual affected with cerebral cavernous malformations. Neurosurg Rev 2013; 37:161-5. [DOI: 10.1007/s10143-013-0478-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 03/13/2013] [Accepted: 03/17/2013] [Indexed: 01/04/2023]
|
35
|
Zhang M, Dong L, Shi Z, Jiao S, Zhang Z, Zhang W, Liu G, Chen C, Feng M, Hao Q, Wang W, Yin M, Zhao Y, Zhang L, Zhou Z. Structural Mechanism of CCM3 Heterodimerization with GCKIII Kinases. Structure 2013; 21:680-8. [DOI: 10.1016/j.str.2013.02.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 02/04/2013] [Accepted: 02/11/2013] [Indexed: 11/26/2022]
|
36
|
Rosen JN, Sogah VM, Ye LY, Mably JD. ccm2-like is required for cardiovascular development as a novel component of the Heg-CCM pathway. Dev Biol 2013; 376:74-85. [PMID: 23328253 DOI: 10.1016/j.ydbio.2013.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 12/11/2012] [Accepted: 01/07/2013] [Indexed: 01/25/2023]
Abstract
The Heart of Glass-Cerebral Cavernous Malformation (Heg-CCM) pathway is essential for normal cardiovascular development in zebrafish and mouse. In zebrafish, the Heg-CCM pathway mutants santa(ccm1/san), valentine (ccm2/vtn), and heart of glass (heg) exhibit severely dilated hearts and inflow tracts and a complete absence of blood circulation. We identified a novel gene based on its sequence identity with ccm2, which we have named ccm2-like (ccm2l), and characterized its role in cardiovascular development. Disruption of ccm2l by morpholino injection causes dilation of the atrium and inflow tract and compromised blood circulation. Morpholino co-injection experiments identify ccm2l as an enhancer of the characteristic Heg-CCM dilated heart phenotype, and we find that ccm2 overexpression can partially rescue ccm2l morphant defects. Finally, we show that Ccm2l binds Ccm1 and perform deletion and mutational analyses to define the regions of Ccm1 that mediate its binding to Ccm2l and its previously established interactors Ccm2 and Heg. These genetic and biochemical data argue that ccm2l is a necessary component of the Heg-CCM pathway.
Collapse
Affiliation(s)
- Jonathan N Rosen
- Boston Children's Hospital, 320 Longwood Avenue, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
37
|
Zheng X, Xu C, Smith AO, Stratman AN, Zou Z, Kleaveland B, Yuan L, Didiku C, Sen A, Liu X, Skuli N, Zaslavsky A, Chen M, Cheng L, Davis GE, Kahn ML. Dynamic regulation of the cerebral cavernous malformation pathway controls vascular stability and growth. Dev Cell 2012; 23:342-55. [PMID: 22898778 DOI: 10.1016/j.devcel.2012.06.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 04/25/2012] [Accepted: 06/05/2012] [Indexed: 11/15/2022]
Abstract
Cardiovascular growth must balance stabilizing signals required to maintain endothelial connections and network integrity with destabilizing signals that enable individual endothelial cells to migrate and proliferate. The cerebral cavernous malformation (CCM) signaling pathway utilizes the adaptor protein CCM2 to strengthen endothelial cell junctions and stabilize vessels. Here we identify a CCM2 paralog, CCM2L, that is expressed selectively in endothelial cells during periods of active cardiovascular growth. CCM2L competitively blocks CCM2-mediated stabilizing signals biochemically, in cultured endothelial cells, and in developing mice. Loss of CCM2L reduces endocardial growth factor expression and impairs tumor growth and wound healing. Our studies identify CCM2L as a molecular mechanism by which endothelial cells coordinately regulate vessel stability and growth during cardiovascular development, as well as postnatal vessel growth.
Collapse
Affiliation(s)
- Xiangjian Zheng
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Lampugnani MG. Endothelial cell-to-cell junctions: adhesion and signaling in physiology and pathology. Cold Spring Harb Perspect Med 2012; 2:cshperspect.a006528. [PMID: 23028127 DOI: 10.1101/cshperspect.a006528] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Besides intercellular recognition and adhesion, which are primarily performed by the transmembrane components, many of the molecules associated in endothelial cell-to-cell junctions initiate or regulate signal transmission. Clustering of molecules at junctions has the consequence of allowing new local interactions to direct specific cellular responses with crucial effects on the physiology and pathology of the endothelium and, more generally, of the vascular system. The implication is that cell-to-cell junctions could be envisaged as molecular targets for different types of therapeutic intervention. These could be directed to "cure" the defects of endothelial junctions that accompany several pathologies or to reversibly open them in a controlled way for the efficient delivery of drugs to the tissues. These aims can become more and more approachable as the knowledge of the molecular organization and function of endothelial junctions increases and their organ and tissue specificities become understood.
Collapse
|
39
|
Staudt D, Stainier D. Uncovering the molecular and cellular mechanisms of heart development using the zebrafish. Annu Rev Genet 2012; 46:397-418. [PMID: 22974299 DOI: 10.1146/annurev-genet-110711-155646] [Citation(s) in RCA: 208] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over the past 20 years, the zebrafish has emerged as a powerful model organism for studying cardiac development. Its ability to survive without an active circulation and amenability to forward genetics has led to the identification of numerous mutants whose study has helped elucidate new mechanisms in cardiac development. Furthermore, its transparent, externally developing embryos have allowed detailed cellular analyses of heart development. In this review, we discuss the molecular and cellular processes involved in zebrafish heart development from progenitor specification to development of the valve and the conduction system. We focus on imaging studies that have uncovered the cellular bases of heart development and on zebrafish mutants with cardiac abnormalities whose study has revealed novel molecular pathways in cardiac cell specification and tissue morphogenesis.
Collapse
Affiliation(s)
- David Staudt
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, USA
| | | |
Collapse
|
40
|
Uebelhoer M, Boon LM, Vikkula M. Vascular anomalies: from genetics toward models for therapeutic trials. Cold Spring Harb Perspect Med 2012; 2:cshperspect.a009688. [PMID: 22908197 DOI: 10.1101/cshperspect.a009688] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Vascular anomalies are localized abnormalities that occur during vascular development. Several causative genes have been identified not only for inherited but also for some sporadic forms, and the molecular pathways involved are becoming understood. This gives us the opportunity to generate animals carrying the causative genetic defects, which we hope model the phenotype seen in human patients. These models would enable us not only to test known antiangiogenic drugs, but also to develop novel approaches for treatment, directly targeting the mutated protein or molecules implicated in the pathophysiological signaling pathways.
Collapse
Affiliation(s)
- Melanie Uebelhoer
- Laboratory of Human Molecular Genetics, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | | | | |
Collapse
|
41
|
Ccm3 functions in a manner distinct from Ccm1 and Ccm2 in a zebrafish model of CCM vascular disease. Dev Biol 2011; 362:121-31. [PMID: 22182521 DOI: 10.1016/j.ydbio.2011.12.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 11/25/2011] [Accepted: 12/02/2011] [Indexed: 12/31/2022]
Abstract
Cerebral cavernous malformations (CCMs) are vascular anomalies of the central nervous system that arise due to mutations in genes encoding three unrelated proteins: CCM1 (KRIT1); CCM2 (Malcavernin/OSM) and CCM3 (PDCD10). Both biochemical and mutant studies suggest that CCM1 and CCM2 act as part of a physical complex to regulate vascular morphogenesis and integrity. In contrast, mouse Ccm3 mutant and in vitro cell culture data suggests an independent role for Ccm3. In this study, we sought to use the zebrafish model system to examine for the first time the role of ccm3 in cranial vessel development. We report that inhibition of zebrafish ccm3a/b causes heart and circulation defects distinct from those seen in ccm1 (santa) and ccm2 (valentine) mutants, and leads to a striking dilation and mispatterning of cranial vessels reminiscent of the human disease pathology. ccm3, but not ccm2, defects can be rescued upon overexpression of stk25b, a GCKIII kinase previously shown to interact with CCM3. Morpholino knockdown of the GCKIII gene stk25b results in heart and vasculature defects similar to those seen in ccm3 morphants. Finally, additional loss of ccm3 in ccm2 mutants leads to a synergistic increase in cranial vessel dilation. These results support a model in which CCM3 plays a role distinct from CCM1/2 in CCM pathogenesis, and acts via GCKIII activity to regulate cranial vasculature integrity and development. CCM3/GCKIII activity provides a novel therapeutic target for CCMs, as well as for the modulation of vascular permeability.
Collapse
|
42
|
Cerebral cavernous malformations: from molecular pathogenesis to genetic counselling and clinical management. Eur J Hum Genet 2011; 20:134-40. [PMID: 21829231 DOI: 10.1038/ejhg.2011.155] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cerebral cavernous (or capillary-venous) malformations (CCM) have a prevalence of about 0.1-0.5% in the general population. Genes mutated in CCM encode proteins that modulate junction formation between vascular endothelial cells. Mutations lead to the development of abnormal vascular structures.In this article, we review the clinical features, molecular and genetic basis of the disease, and management.
Collapse
|
43
|
Li X, Ji W, Zhang R, Folta-Stogniew E, Min W, Boggon TJ. Molecular recognition of leucine-aspartate repeat (LD) motifs by the focal adhesion targeting homology domain of cerebral cavernous malformation 3 (CCM3). J Biol Chem 2011; 286:26138-47. [PMID: 21632544 DOI: 10.1074/jbc.m110.211250] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cerebral cavernous malformation (CCM) is a disease that affects between 0.1 and 0.5% of the human population, with mutations in CCM3 accounting for ~ 15% of the autosomal dominant form of the disease. We recently reported that CCM3 contains an N-terminal dimerization domain (CCM3D) and a C-terminal focal adhesion targeting (FAT) homology domain. Intermolecular protein-protein interactions of CCM3 are mediated by a highly conserved surface on the FAT homology domain and are affected by CCM3 truncations in the human disease. Here we report the crystal structures of CCM3 in complex with three different leucine-aspartate repeat (LD) motifs (LD1, LD2, and LD4) from the scaffolding protein paxillin, at 2.8, 2.7, and 2.5 Å resolution. We show that CCM3 binds LD motifs using the highly conserved hydrophobic patch 1 (HP1) and that this binding is similar to the binding of focal adhesion kinase and Pyk2 FAT domains to paxillin LD motifs. We further show by surface plasmon resonance that CCM3 binds paxillin LD motifs with affinities in the micromolar range, similar to FAK family FAT domains. Finally, we show that endogenous CCM3 and paxillin co-localize in mouse cerebral pericytes. These studies provide a molecular-level framework to investigate the protein-protein interactions of CCM3.
Collapse
Affiliation(s)
- Xiaofeng Li
- Department of Pharmacology, Yale University School ofMedicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | |
Collapse
|
44
|
Ceccarelli DF, Laister RC, Mulligan VK, Kean MJ, Goudreault M, Scott IC, Derry WB, Chakrabartty A, Gingras AC, Sicheri F. CCM3/PDCD10 heterodimerizes with germinal center kinase III (GCKIII) proteins using a mechanism analogous to CCM3 homodimerization. J Biol Chem 2011; 286:25056-64. [PMID: 21561863 DOI: 10.1074/jbc.m110.213777] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CCM3 mutations give rise to cerebral cavernous malformations (CCMs) of the vasculature through a mechanism that remains unclear. Interaction of CCM3 with the germinal center kinase III (GCKIII) subfamily of Sterile 20 protein kinases, MST4, STK24, and STK25, has been implicated in cardiovascular development in the zebrafish, raising the possibility that dysregulated GCKIII function may contribute to the etiology of CCM disease. Here, we show that the amino-terminal region of CCM3 is necessary and sufficient to bind directly to the C-terminal tail region of GCKIII proteins. This same region of CCM3 was shown previously to mediate homodimerization through the formation of an interdigitated α-helical domain. Sequence conservation and binding studies suggest that CCM3 may preferentially heterodimerize with GCKIII proteins through a manner structurally analogous to that employed for CCM3 homodimerization.
Collapse
Affiliation(s)
- Derek F Ceccarelli
- Centre for Systems Biology, Samuel Lunenfeld Research Institute at Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Chan AC, Drakos SG, Ruiz OE, Smith ACH, Gibson CC, Ling J, Passi SF, Stratman AN, Sacharidou A, Revelo MP, Grossmann AH, Diakos NA, Davis GE, Metzstein MM, Whitehead KJ, Li DY. Mutations in 2 distinct genetic pathways result in cerebral cavernous malformations in mice. J Clin Invest 2011; 121:1871-81. [PMID: 21490399 DOI: 10.1172/jci44393] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 03/02/2011] [Indexed: 01/18/2023] Open
Abstract
Cerebral cavernous malformations (CCMs) are a common type of vascular malformation in the brain that are a major cause of hemorrhagic stroke. This condition has been independently linked to 3 separate genes: Krev1 interaction trapped (KRIT1), Cerebral cavernous malformation 2 (CCM2), and Programmed cell death 10 (PDCD10). Despite the commonality in disease pathology caused by mutations in these 3 genes, we found that the loss of Pdcd10 results in significantly different developmental, cell biological, and signaling phenotypes from those seen in the absence of Ccm2 and Krit1. PDCD10 bound to germinal center kinase III (GCKIII) family members, a subset of serine-threonine kinases, and facilitated lumen formation by endothelial cells both in vivo and in vitro. These findings suggest that CCM may be a common tissue manifestation of distinct mechanistic pathways. Nevertheless, loss of heterozygosity (LOH) for either Pdcd10 or Ccm2 resulted in CCMs in mice. The murine phenotype induced by loss of either protein reproduced all of the key clinical features observed in human patients with CCM, as determined by direct comparison with genotype-specific human surgical specimens. These results suggest that CCM may be more effectively treated by directing therapies based on the underlying genetic mutation rather than treating the condition as a single clinical entity.
Collapse
Affiliation(s)
- Aubrey C Chan
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Blood vessels perform the fundamental role of providing conduits for the circulation of oxygen and nutrients and the removal of waste products throughout the body. Disruption of tissue perfusion by ischemia or hemorrhage of blood vessels has a range of devastating consequences including stroke. Stroke is a complex trait that includes both genetic and environmental risk factors. The zebrafish is an attractive model for the study of hemorrhagic stroke due to the conservation of the molecular mechanisms of blood vascular development among vertebrates and the experimental advantages that can be applied to zebrafish embryos and larva. This chapter will focus on the maintenance of vascular integrity and some of the seminal experimentation carried out in the zebrafish.
Collapse
Affiliation(s)
- Matthew G Butler
- Program in the Genomics of Differentiation, National Institute of Child Health and Development, National Institutes of Health, Bethesda, Maryland, USA
| | | | | |
Collapse
|
47
|
Lin C, Meng S, Zhu T, Wang X. PDCD10/CCM3 acts downstream of {gamma}-protocadherins to regulate neuronal survival. J Biol Chem 2010; 285:41675-85. [PMID: 21041308 DOI: 10.1074/jbc.m110.179895] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
γ-Protocadherins (PCDH-γ) regulate neuronal survival in the vertebrate central nervous system. The molecular mechanisms of how PCDH-γ mediates this function are still not understood. In this study, we show that through their common cytoplasmic domain, different PCDH-γ isoforms interact with an intracellular adaptor protein named PDCD10 (programmed cell death 10). PDCD10 is also known as CCM3, a causative genetic defect for cerebral cavernous malformations in humans. Using RNAi-mediated knockdown, we demonstrate that PDCD10 is required for the occurrence of apoptosis upon PCDH-γ depletion in developing chicken spinal neurons. Moreover, overexpression of PDCD10 is sufficient to induce neuronal apoptosis. Taken together, our data reveal a novel function for PDCD10/CCM3, acting as a critical regulator of neuronal survival during development.
Collapse
Affiliation(s)
- Chengyi Lin
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | |
Collapse
|
48
|
Schleider E, Stahl S, Wüstehube J, Walter U, Fischer A, Felbor U. Evidence for anti-angiogenic and pro-survival functions of the cerebral cavernous malformation protein 3. Neurogenetics 2010; 12:83-6. [PMID: 20862502 PMCID: PMC3029799 DOI: 10.1007/s10048-010-0261-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 09/03/2010] [Indexed: 10/29/2022]
Abstract
Mutations in CCM1, CCM2, or CCM3 lead to cerebral cavernous malformations, one of the most common hereditary vascular diseases of the brain. Endothelial cells within these lesions are the main disease compartments. Here, we show that adenoviral CCM3 expression inhibits endothelial cell migration, proliferation, and tube formation while downregulation of endogenous CCM3 results in increased formation of tube-like structures. Adenoviral CCM3 expression does not induce apoptosis under normal endothelial cell culture conditions but protects endothelial cells from staurosporine-induced cell death. Tyrosine kinase activity profiling suggests that CCM3 supports PDPK-1/Akt-mediated endothelial cell quiescence and survival.
Collapse
Affiliation(s)
- Elisa Schleider
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Crystal structure of human programmed cell death 10 complexed with inositol-(1,3,4,5)-tetrakisphosphate: a novel adaptor protein involved in human cerebral cavernous malformation. Biochem Biophys Res Commun 2010; 399:587-92. [PMID: 20682288 DOI: 10.1016/j.bbrc.2010.07.119] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 07/29/2010] [Indexed: 11/23/2022]
Abstract
Programmed cell death 10 (PDCD10) is a novel adaptor protein involved in human cerebral cavernous malformation, a common vascular lesion mostly occurring in the central nervous system. By interacting with different signal proteins, PDCD10 could regulate various physiological processes in the cell. The crystal structure of human PDCD10 complexed with inositol-(1,3,4,5)-tetrakisphosphate has been determined at 2.3A resolution. The structure reveals an integrated dimer via a unique assembly that has never been observed before. Each PDCD10 monomer contains two independent domains: an N-terminal domain with a new fold involved in the tight dimer assembly and a C-terminal four-helix bundle domain that closely resembles the focal adhesion targeting domain of focal adhesion kinase. An eight-residue flexible linker connects the two domains, potentially conferring mobility onto the C-terminal domain, resulting in the conformational variability of PDCD10. A variable basic cleft on the top of the dimer interface binds to phosphatidylinositide and regulates the intracellular localization of PDCD10. Two potential sites, respectively located on the two domains, are critical for recruiting different binding partners, such as germinal center kinase III proteins and the focal adhesion protein paxillin.
Collapse
|
50
|
Dibble CF, Horst JA, Malone MH, Park K, Temple B, Cheeseman H, Barbaro JR, Johnson GL, Bencharit S. Defining the functional domain of programmed cell death 10 through its interactions with phosphatidylinositol-3,4,5-trisphosphate. PLoS One 2010; 5:e11740. [PMID: 20668527 PMCID: PMC2909203 DOI: 10.1371/journal.pone.0011740] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 07/01/2010] [Indexed: 11/25/2022] Open
Abstract
Cerebral cavernous malformations (CCM) are vascular abnormalities of the central nervous system predisposing blood vessels to leakage, leading to hemorrhagic stroke. Three genes, Krit1 (CCM1), OSM (CCM2), and PDCD10 (CCM3) are involved in CCM development. PDCD10 binds specifically to PtdIns(3,4,5)P3 and OSM. Using threading analysis and multi-template modeling, we constructed a three-dimensional model of PDCD10. PDCD10 appears to be a six-helical-bundle protein formed by two heptad-repeat-hairpin structures (alpha1-3 and alpha4-6) sharing the closest 3D homology with the bacterial phosphate transporter, PhoU. We identified a stretch of five lysines forming an amphipathic helix, a potential PtdIns(3,4,5)P3 binding site, in the alpha5 helix. We generated a recombinant wild-type (WT) and three PDCD10 mutants that have two (Delta2KA), three (Delta3KA), and five (Delta5KA) K to A mutations. Delta2KA and Delta3KA mutants hypothetically lack binding residues to PtdIns(3,4,5)P3 at the beginning and the end of predicted helix, while Delta5KA completely lacks all predicted binding residues. The WT, Delta2KA, and Delta3KA mutants maintain their binding to PtdIns(3,4,5)P3. Only the Delta5KA abolishes binding to PtdIns(3,4,5)P3. Both Delta5KA and WT show similar secondary and tertiary structures; however, Delta5KA does not bind to OSM. When WT and Delta5KA are co-expressed with membrane-bound constitutively-active PI3 kinase (p110-CAAX), the majority of the WT is co-localized with p110-CAAX at the plasma membrane where PtdIns(3,4,5)P3 is presumably abundant. In contrast, the Delta5KA remains in the cytoplasm and is not present in the plasma membrane. Combining computational modeling and biological data, we propose that the CCM protein complex functions in the PI3K signaling pathway through the interaction between PDCD10 and PtdIns(3,4,5)P3.
Collapse
Affiliation(s)
- Christopher F. Dibble
- Department of Pharmacology, School of Medicine, and the Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Jeremy A. Horst
- Department of Microbiology, School of Medicine, and Department of Oral Biology, School of Dentistry, University of Washington, Seattle, Washington, United States of America
| | - Michael H. Malone
- Department of Pharmacology, School of Medicine, and the Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Kun Park
- Department of Prosthodontics and the Dental Research Center, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Brenda Temple
- Department of Pharmacology, School of Medicine, and the Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Holly Cheeseman
- Department of Prosthodontics and the Dental Research Center, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Justin R. Barbaro
- Department of Prosthodontics and the Dental Research Center, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Gary L. Johnson
- Department of Pharmacology, School of Medicine, and the Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Sompop Bencharit
- Department of Pharmacology, School of Medicine, and the Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Prosthodontics and the Dental Research Center, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina, United States of America
| |
Collapse
|