1
|
Yamada M, Mizuno S, Inaba M, Uehara T, Inagaki H, Suzuki H, Miya F, Takenouchi T, Kurahashi H, Kosaki K. Truncating variants of the sterol recognition region of SHH cause hypertelorism phenotype rather than hypotelorism-holoprosencephaly. Am J Med Genet A 2024; 194:e63614. [PMID: 38562108 DOI: 10.1002/ajmg.a.63614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/04/2024] [Accepted: 03/16/2024] [Indexed: 04/04/2024]
Abstract
Sonic hedgehog signaling molecule (SHH) is a key molecule in the cilia-mediated signaling pathway and a critical morphogen in embryogenesis. The association between loss-of-function variants of SHH and holoprosencephaly is well established. In mice experiments, reduced or increased signaling of SHH have been shown to be associated with narrowing or excessive expansion of the facial midline, respectively. Herein, we report two unrelated patients with de novo truncating variants of SHH presenting with hypertelorism rather than hypotelorism. The first patient was a 13-year-old girl. Her facial features included hypertelorism, strabismus, telecanthus, malocclusion, frontal bossing, and wide widow's peak. She had borderline developmental delay and agenesis of the corpus callosum. She had a nonsense variant of SHH: Chr7(GRCh38):g.155802987C > T, NM_000193.4:c.1302G > A, p.(Trp434*). The second patient was a 25-year-old girl. Her facial features included hypertelorism and wide widow's peak. She had developmental delay and agenesis of the corpus callosum. She had a frameshift variant of SHH: Chr7(GRCh38):g.155803072_155803074delCGGinsT, NM_000193.4:c.1215_1217delCCGinsA, p.(Asp405Glufs*92). The hypertelorism phenotype contrasts sharply with the prototypical hypotelorism-holoprosencephaly phenotype associated with loss-of-function of SHH. We concluded that a subset of truncating variants of SHH could be associated with hypertelorism rather than hypotelorism.
Collapse
Affiliation(s)
- Mamiko Yamada
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Seiji Mizuno
- Department of Pediatrics, Central Hospital, Aichi Developmental Disability Center, Kasugai, Japan
| | - Mie Inaba
- Department of Pediatrics, Central Hospital, Aichi Developmental Disability Center, Kasugai, Japan
| | - Tomoko Uehara
- Department of Pediatrics, Central Hospital, Aichi Developmental Disability Center, Kasugai, Japan
| | - Hidehito Inagaki
- Division of Molecular Genetics, Center for Medical Science, Fujita Health University, Toyoake, Japan
| | - Hisato Suzuki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Fuyuki Miya
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Toshiki Takenouchi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Hiroki Kurahashi
- Division of Molecular Genetics, Center for Medical Science, Fujita Health University, Toyoake, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Primak A, Bozov K, Rubina K, Dzhauari S, Neyfeld E, Illarionova M, Semina E, Sheleg D, Tkachuk V, Karagyaur M. Morphogenetic theory of mental and cognitive disorders: the role of neurotrophic and guidance molecules. Front Mol Neurosci 2024; 17:1361764. [PMID: 38646100 PMCID: PMC11027769 DOI: 10.3389/fnmol.2024.1361764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/04/2024] [Indexed: 04/23/2024] Open
Abstract
Mental illness and cognitive disorders represent a serious problem for the modern society. Many studies indicate that mental disorders are polygenic and that impaired brain development may lay the ground for their manifestation. Neural tissue development is a complex and multistage process that involves a large number of distant and contact molecules. In this review, we have considered the key steps of brain morphogenesis, and the major molecule families involved in these process. The review provides many indications of the important contribution of the brain development process and correct functioning of certain genes to human mental health. To our knowledge, this comprehensive review is one of the first in this field. We suppose that this review may be useful to novice researchers and clinicians wishing to navigate the field.
Collapse
Affiliation(s)
- Alexandra Primak
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Kirill Bozov
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Kseniya Rubina
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Stalik Dzhauari
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Elena Neyfeld
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Federal State Budgetary Educational Institution of the Higher Education “A.I. Yevdokimov Moscow State University of Medicine and Dentistry” of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Maria Illarionova
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina Semina
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitriy Sheleg
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Federal State Budgetary Educational Institution of the Higher Education “A.I. Yevdokimov Moscow State University of Medicine and Dentistry” of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Vsevolod Tkachuk
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Maxim Karagyaur
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
3
|
Xu J, Iyyanar PPR, Lan Y, Jiang R. Sonic hedgehog signaling in craniofacial development. Differentiation 2023; 133:60-76. [PMID: 37481904 PMCID: PMC10529669 DOI: 10.1016/j.diff.2023.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Mutations in SHH and several other genes encoding components of the Hedgehog signaling pathway have been associated with holoprosencephaly syndromes, with craniofacial anomalies ranging in severity from cyclopia to facial cleft to midfacial and mandibular hypoplasia. Studies in animal models have revealed that SHH signaling plays crucial roles at multiple stages of craniofacial morphogenesis, from cranial neural crest cell survival to growth and patterning of the facial primordia to organogenesis of the palate, mandible, tongue, tooth, and taste bud formation and homeostasis. This article provides a summary of the major findings in studies of the roles of SHH signaling in craniofacial development, with emphasis on recent advances in the understanding of the molecular and cellular mechanisms regulating the SHH signaling pathway activity and those involving SHH signaling in the formation and patterning of craniofacial structures.
Collapse
Affiliation(s)
- Jingyue Xu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| | - Paul P R Iyyanar
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Yu Lan
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Departments of Pediatrics and Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Rulang Jiang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Departments of Pediatrics and Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
4
|
Dilower I, Niloy AJ, Kumar V, Kothari A, Lee EB, Rumi MAK. Hedgehog Signaling in Gonadal Development and Function. Cells 2023; 12:358. [PMID: 36766700 PMCID: PMC9913308 DOI: 10.3390/cells12030358] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Three distinct hedgehog (HH) molecules, (sonic, desert, and indian), two HH receptors (PTCH1 and PTCH2), a membrane bound activator (SMO), and downstream three transcription factors (GLI1, GLI2, and GLI3) are the major components of the HH signaling. These signaling molecules were initially identified in Drosophila melanogaster. Later, it has been found that the HH system is highly conserved across species and essential for organogenesis. HH signaling pathways play key roles in the development of the brain, face, skeleton, musculature, lungs, and gastrointestinal tract. While the sonic HH (SHH) pathway plays a major role in the development of the central nervous system, the desert HH (DHH) regulates the development of the gonads, and the indian HH (IHH) acts on the development of bones and joints. There are also overlapping roles among the HH molecules. In addition to the developmental role of HH signaling in embryonic life, the pathways possess vital physiological roles in testes and ovaries during adult life. Disruption of DHH and/or IHH signaling results in ineffective gonadal steroidogenesis and gametogenesis. While DHH regulates the male gonadal functions, ovarian functions are regulated by both DHH and IHH. This review article focuses on the roles of HH signaling in gonadal development and reproductive functions with an emphasis on ovarian functions. We have acknowledged the original research work that initially reported the findings and discussed the subsequent studies that have further analyzed the role of HH signaling in testes and ovaries.
Collapse
Affiliation(s)
| | | | | | | | | | - M. A. Karim Rumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
5
|
Ciulla DA, Dranchak P, Pezzullo JL, Mancusi RA, Psaras AM, Rai G, Giner JL, Inglese J, Callahan BP. A cell-based bioluminescence reporter assay of human Sonic Hedgehog protein autoprocessing to identify inhibitors and activators. J Biol Chem 2022; 298:102705. [PMID: 36400200 PMCID: PMC9772569 DOI: 10.1016/j.jbc.2022.102705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
Abstract
The Sonic Hedgehog (SHh) precursor protein undergoes biosynthetic autoprocessing to cleave off and covalently attach cholesterol to the SHh signaling ligand, a vital morphogen and oncogenic effector protein. Autoprocessing is self-catalyzed by SHhC, the SHh precursor's C-terminal enzymatic domain. A method to screen for small molecule regulators of this process may be of therapeutic value. Here, we describe the development and validation of the first cellular reporter to monitor human SHhC autoprocessing noninvasively in high-throughput compatible plates. The assay couples intracellular SHhC autoprocessing using endogenous cholesterol to the extracellular secretion of the bioluminescent nanoluciferase enzyme. We developed a WT SHhC reporter line for evaluating potential autoprocessing inhibitors by concentration response-dependent suppression of extracellular bioluminescence. Additionally, a conditional mutant SHhC (D46A) reporter line was developed for identifying potential autoprocessing activators by a concentration response-dependent gain of extracellular bioluminescence. The D46A mutation removes a conserved general base that is critical for the activation of the cholesterol substrate. Inducibility of the D46A reporter was established using a synthetic sterol, 2-α carboxy cholestanol, designed to bypass the defect through intramolecular general base catalysis. To facilitate direct nanoluciferase detection in the cell culture media of 1536-well plates, we designed a novel anionic phosphonylated coelenterazine, CLZ-2P, as the nanoluciferase substrate. This new reporter system offers a long-awaited resource for small molecule discovery for cancer and for developmental disorders where SHh ligand biosynthesis is dysregulated.
Collapse
Affiliation(s)
- Daniel A Ciulla
- Chemistry Department, Binghamton University, Binghamton, New York, USA
| | - Patricia Dranchak
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - John L Pezzullo
- State University of New York, College of Environmental Science and Forestry, Syracuse, New York, USA
| | - Rebecca A Mancusi
- Chemistry Department, Binghamton University, Binghamton, New York, USA
| | | | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - José-Luis Giner
- State University of New York, College of Environmental Science and Forestry, Syracuse, New York, USA.
| | - James Inglese
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA; National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | - Brian P Callahan
- Chemistry Department, Binghamton University, Binghamton, New York, USA.
| |
Collapse
|
6
|
Spadari F, Pulicari F, Pellegrini M, Scribante A, Garagiola U. Multidisciplinary approach to Gorlin-Goltz syndrome: from diagnosis to surgical treatment of jawbones. Maxillofac Plast Reconstr Surg 2022; 44:25. [PMID: 35843976 PMCID: PMC9288940 DOI: 10.1186/s40902-022-00355-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/06/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Gorlin syndrome, also known as Gorlin-Goltz syndrome (GGS) or basal cell nevus syndrome (BCNS) or nevoid basal cell carcinoma syndrome (NBCCS), is an autosomal dominant familial cancer syndrome. It is characterized by the presence of numerous basal cell carcinomas (BCCs), along with skeletal, ophthalmic, and neurological abnormalities. It is essential to anticipate the diagnosis by identifying the pathology through the available diagnostic tests, clinical signs, and radiological manifestations, setting up an adequate treatment plan. MAIN BODY In the first part, we searched recent databases including MEDLINE (PubMed), Embase, and the Cochrane Library by analyzing the etiopathogenesis of the disease, identifying the genetic alterations underlying them. Subsequently, we defined what are, to date, the major and minor clinical diagnostic criteria, the possible genetic tests to be performed, and the pathologies with which to perform differential diagnosis. The radiological investigations were reviewed based on the most recent literature, and in the second part, we performed a review regarding the existing jawbone protocols, treating simple enucleation, enucleation with bone curettage in association or not with topical use of cytotoxic chemicals, and "en bloc" resection followed by possible bone reconstruction, marsupialization, decompression, and cryotherapy. CONCLUSION To promote the most efficient and accurate management of GGS, this article summarizes the clinical features of the disease, pathogenesis, diagnostic criteria, differential diagnosis, and surgical protocols. To arrive at an early diagnosis of the syndrome, it would be advisable to perform radiographic and clinical examinations from the young age of the patient. The management of the patient with GGS requires a multidisciplinary approach ensuring an adequate quality of life and effective treatment of symptoms.
Collapse
Affiliation(s)
- Francesco Spadari
- Department of Biomedical Surgical and Dental Sciences, Maxillo-Facial and Odontostomatology Unit, School of Orthodontics, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Federica Pulicari
- Department of Biomedical Surgical and Dental Sciences, Maxillo-Facial and Odontostomatology Unit, School of Orthodontics, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Matteo Pellegrini
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences Section of Dentistry, University of Pavia, Pavia, Italy
| | - Andrea Scribante
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences Section of Dentistry, University of Pavia, Pavia, Italy
| | - Umberto Garagiola
- Department of Biomedical Surgical and Dental Sciences, Maxillo-Facial and Odontostomatology Unit, School of Orthodontics, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| |
Collapse
|
7
|
Awotoye W, Mossey PA, Hetmanski JB, Gowans LJJ, Eshete MA, Adeyemo WL, Alade A, Zeng E, Adamson O, Naicker T, Anand D, Adeleke C, Busch T, Li M, Petrin A, Aregbesola BS, Braimah RO, Oginni FO, Oladele AO, Oladayo A, Kayali S, Olotu J, Hassan M, Pape J, Donkor P, Arthur FKN, Obiri-Yeboah S, Sabbah DK, Agbenorku P, Plange-Rhule G, Oti AA, Gogal RA, Beaty TH, Taub M, Marazita ML, Schnieders MJ, Lachke SA, Adeyemo AA, Murray JC, Butali A. Whole-genome sequencing reveals de-novo mutations associated with nonsyndromic cleft lip/palate. Sci Rep 2022; 12:11743. [PMID: 35817949 PMCID: PMC9273634 DOI: 10.1038/s41598-022-15885-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/22/2022] [Indexed: 11/08/2022] Open
Abstract
The majority (85%) of nonsyndromic cleft lip with or without cleft palate (nsCL/P) cases occur sporadically, suggesting a role for de novo mutations (DNMs) in the etiology of nsCL/P. To identify high impact protein-altering DNMs that contribute to the risk of nsCL/P, we conducted whole-genome sequencing (WGS) analyses in 130 African case-parent trios (affected probands and unaffected parents). We identified 162 high confidence protein-altering DNMs some of which are based on available evidence, contribute to the risk of nsCL/P. These include novel protein-truncating DNMs in the ACTL6A, ARHGAP10, MINK1, TMEM5 and TTN genes; as well as missense variants in ACAN, DHRS3, DLX6, EPHB2, FKBP10, KMT2D, RECQL4, SEMA3C, SEMA4D, SHH, TP63, and TULP4. Many of these protein-altering DNMs were predicted to be pathogenic. Analysis using mouse transcriptomics data showed that some of these genes are expressed during the development of primary and secondary palate. Gene-set enrichment analysis of the protein-altering DNMs identified palatal development and neural crest migration among the few processes that were significantly enriched. These processes are directly involved in the etiopathogenesis of clefting. The analysis of the coding sequence in the WGS data provides more evidence of the opportunity for novel findings in the African genome.
Collapse
Affiliation(s)
- Waheed Awotoye
- Iowa Institute for Oral Health Research, University of Iowa, Iowa City, IA, USA.
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA.
| | - Peter A Mossey
- Department of Orthodontics, University of Dundee, Dundee, UK
| | - Jacqueline B Hetmanski
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Lord J J Gowans
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Mekonen A Eshete
- Surgical Department, School Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Wasiu L Adeyemo
- Department of Oral and Maxillofacial Surgery, University of Lagos, Lagos, Nigeria
| | - Azeez Alade
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Erliang Zeng
- Division of Biostatistics and Computational Biology, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Olawale Adamson
- Department of Oral and Maxillofacial Surgery, University of Lagos, Lagos, Nigeria
| | - Thirona Naicker
- Department of Pediatrics, University of KwaZulu-Natal, Durban, South Africa
| | - Deepti Anand
- Department of Biological Sciences, University of Delaware, Newark, USA
| | - Chinyere Adeleke
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Tamara Busch
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Mary Li
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Aline Petrin
- Iowa Institute for Oral Health Research, University of Iowa, Iowa City, IA, USA
- Department of Orthodontics, University of Iowa, Iowa City, IA, USA
| | - Babatunde S Aregbesola
- Department of Oral and Maxillofacial Surgery, Obafemi Awolowo University, Ile-Ife, Osun, A234, Nigeria
| | - Ramat O Braimah
- Department of Oral and Maxillofacial Surgery, Obafemi Awolowo University, Ile-Ife, Osun, A234, Nigeria
| | - Fadekemi O Oginni
- Department of Oral and Maxillofacial Surgery, Obafemi Awolowo University, Ile-Ife, Osun, A234, Nigeria
| | - Ayodeji O Oladele
- Department of Oral and Maxillofacial Surgery, Obafemi Awolowo University, Ile-Ife, Osun, A234, Nigeria
| | - Abimbola Oladayo
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Sami Kayali
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Joy Olotu
- Department of Anatomy, University of Port Harcourt, Choba, Nigeria
| | - Mohaned Hassan
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - John Pape
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Peter Donkor
- Department of Surgery, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Fareed K N Arthur
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Solomon Obiri-Yeboah
- Department of Maxillofacial Sciences, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Daniel K Sabbah
- Department of Child Oral Health and Orthodontics, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Pius Agbenorku
- Department of Surgery, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Gyikua Plange-Rhule
- Department of Child Health, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Alexander Acheampong Oti
- Department of Maxillofacial Sciences, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Rose A Gogal
- Center for Biocatalysis and Bioprocessing (CBB), University of Iowa, Iowa City, USA
| | - Terri H Beaty
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Margaret Taub
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Mary L Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, School of Dental Medicine, and Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael J Schnieders
- Center for Biocatalysis and Bioprocessing (CBB), University of Iowa, Iowa City, USA
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, USA
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, USA
| | | | - Jeffrey C Murray
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Azeez Butali
- Iowa Institute for Oral Health Research, University of Iowa, Iowa City, IA, USA.
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
8
|
Delea M, Massara LS, Espeche LD, Bidondo MP, Barbero P, Oliveri J, Brun P, Fabro M, Galain M, Fernández CS, Taboas M, Bruque CD, Kolomenski JE, Izquierdo A, Berenstein A, Cosentino V, Martinoli C, Vilas M, Rittler M, Mendez R, Furforo L, Liascovich R, Groisman B, Rozental S, Dain L. Genetic Analysis Algorithm for the Study of Patients with Multiple Congenital Anomalies and Isolated Congenital Heart Disease. Genes (Basel) 2022; 13:1172. [PMID: 35885957 PMCID: PMC9317700 DOI: 10.3390/genes13071172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/16/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022] Open
Abstract
Congenital anomalies (CA) affect 3-5% of newborns, representing the second-leading cause of infant mortality in Argentina. Multiple congenital anomalies (MCA) have a prevalence of 2.26/1000 births in newborns, while congenital heart diseases (CHD) are the most frequent CA with a prevalence of 4.06/1000 births. The aim of this study was to identify the genetic causes in Argentinian patients with MCA and isolated CHD. We recruited 366 patients (172 with MCA and 194 with isolated CHD) born between June 2015 and August 2019 at public hospitals. DNA from peripheral blood was obtained from all patients, while karyotyping was performed in patients with MCA. Samples from patients presenting conotruncal CHD or DiGeorge phenotype (n = 137) were studied using MLPA. Ninety-three samples were studied by array-CGH and 18 by targeted or exome next-generation sequencing (NGS). A total of 240 patients were successfully studied using at least one technique. Cytogenetic abnormalities were observed in 13 patients, while 18 had clinically relevant imbalances detected by array-CGH. After MLPA, 26 patients presented 22q11 deletions or duplications and one presented a TBX1 gene deletion. Following NGS analysis, 12 patients presented pathogenic or likely pathogenic genetic variants, five of them, found in KAT6B, SHH, MYH11, MYH7 and EP300 genes, are novel. Using an algorithm that combines molecular techniques with clinical and genetic assessment, we determined the genetic contribution in 27.5% of the analyzed patients.
Collapse
Affiliation(s)
- Marisol Delea
- Centro Nacional de Genética Médica “Dr. Eduardo Castilla”- ANLIS “Dr. Carlos G. Malbrán”, Avda. Las Heras 2670, Buenos Aires 1425, Argentina; (M.D.); (L.D.E.); (M.P.B.); (P.B.); (M.T.); (C.D.B.); (R.M.); (R.L.); (B.G.); (S.R.)
| | - Lucia S. Massara
- Hospital de Alta Complejidad en Red El Cruce—SAMIC. Av. Calchaquí 5401, Florencio Varela 1888, Argentina; (L.S.M.); (J.O.); (P.B.)
| | - Lucia D. Espeche
- Centro Nacional de Genética Médica “Dr. Eduardo Castilla”- ANLIS “Dr. Carlos G. Malbrán”, Avda. Las Heras 2670, Buenos Aires 1425, Argentina; (M.D.); (L.D.E.); (M.P.B.); (P.B.); (M.T.); (C.D.B.); (R.M.); (R.L.); (B.G.); (S.R.)
| | - María Paz Bidondo
- Centro Nacional de Genética Médica “Dr. Eduardo Castilla”- ANLIS “Dr. Carlos G. Malbrán”, Avda. Las Heras 2670, Buenos Aires 1425, Argentina; (M.D.); (L.D.E.); (M.P.B.); (P.B.); (M.T.); (C.D.B.); (R.M.); (R.L.); (B.G.); (S.R.)
- Unidad Académica de Histologia, Embriologia, Biologia Celular y Genética, Facultad de Medicina UBA, Paraguay 2155, Buenos Aires 1121, Argentina
| | - Pablo Barbero
- Centro Nacional de Genética Médica “Dr. Eduardo Castilla”- ANLIS “Dr. Carlos G. Malbrán”, Avda. Las Heras 2670, Buenos Aires 1425, Argentina; (M.D.); (L.D.E.); (M.P.B.); (P.B.); (M.T.); (C.D.B.); (R.M.); (R.L.); (B.G.); (S.R.)
| | - Jaen Oliveri
- Hospital de Alta Complejidad en Red El Cruce—SAMIC. Av. Calchaquí 5401, Florencio Varela 1888, Argentina; (L.S.M.); (J.O.); (P.B.)
| | - Paloma Brun
- Hospital de Alta Complejidad en Red El Cruce—SAMIC. Av. Calchaquí 5401, Florencio Varela 1888, Argentina; (L.S.M.); (J.O.); (P.B.)
| | - Mónica Fabro
- Novagen, Viamonte 1430, Buenos Aires 1055, Argentina; (M.F.); (M.G.); (C.S.F.)
| | - Micaela Galain
- Novagen, Viamonte 1430, Buenos Aires 1055, Argentina; (M.F.); (M.G.); (C.S.F.)
| | | | - Melisa Taboas
- Centro Nacional de Genética Médica “Dr. Eduardo Castilla”- ANLIS “Dr. Carlos G. Malbrán”, Avda. Las Heras 2670, Buenos Aires 1425, Argentina; (M.D.); (L.D.E.); (M.P.B.); (P.B.); (M.T.); (C.D.B.); (R.M.); (R.L.); (B.G.); (S.R.)
| | - Carlos D. Bruque
- Centro Nacional de Genética Médica “Dr. Eduardo Castilla”- ANLIS “Dr. Carlos G. Malbrán”, Avda. Las Heras 2670, Buenos Aires 1425, Argentina; (M.D.); (L.D.E.); (M.P.B.); (P.B.); (M.T.); (C.D.B.); (R.M.); (R.L.); (B.G.); (S.R.)
| | - Jorge E. Kolomenski
- Departamento de Fisiología, Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Facultad de Ciencias Exactas y Naturales-UBA, Intendente Güiraldes 2160, Buenos Aires 1428, Argentina;
| | - Agustín Izquierdo
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá”. Gallo 1330, Buenos Aires 1425, Argentina;
| | - Ariel Berenstein
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas, Gallo 1330, Buenos Aires 1425, Argentina;
| | - Viviana Cosentino
- Hospital Interzonal General de Agudos Luisa Cravenna de Gandulfo, Balcarce 351, Lomas de Zamora 1832, Argentina;
| | - Celeste Martinoli
- Hospital Sor Maria Ludovica, Calle 14 1631, La Plata 1904, Argentina;
| | - Mariana Vilas
- Hospital Materno Infantil Ramón Sardá, Esteban de Luca 2151, Buenos Aires 1246, Argentina; (M.V.); (M.R.); (L.F.)
| | - Mónica Rittler
- Hospital Materno Infantil Ramón Sardá, Esteban de Luca 2151, Buenos Aires 1246, Argentina; (M.V.); (M.R.); (L.F.)
| | - Rodrigo Mendez
- Centro Nacional de Genética Médica “Dr. Eduardo Castilla”- ANLIS “Dr. Carlos G. Malbrán”, Avda. Las Heras 2670, Buenos Aires 1425, Argentina; (M.D.); (L.D.E.); (M.P.B.); (P.B.); (M.T.); (C.D.B.); (R.M.); (R.L.); (B.G.); (S.R.)
| | - Lilian Furforo
- Hospital Materno Infantil Ramón Sardá, Esteban de Luca 2151, Buenos Aires 1246, Argentina; (M.V.); (M.R.); (L.F.)
| | - Rosa Liascovich
- Centro Nacional de Genética Médica “Dr. Eduardo Castilla”- ANLIS “Dr. Carlos G. Malbrán”, Avda. Las Heras 2670, Buenos Aires 1425, Argentina; (M.D.); (L.D.E.); (M.P.B.); (P.B.); (M.T.); (C.D.B.); (R.M.); (R.L.); (B.G.); (S.R.)
| | - Boris Groisman
- Centro Nacional de Genética Médica “Dr. Eduardo Castilla”- ANLIS “Dr. Carlos G. Malbrán”, Avda. Las Heras 2670, Buenos Aires 1425, Argentina; (M.D.); (L.D.E.); (M.P.B.); (P.B.); (M.T.); (C.D.B.); (R.M.); (R.L.); (B.G.); (S.R.)
| | - Sandra Rozental
- Centro Nacional de Genética Médica “Dr. Eduardo Castilla”- ANLIS “Dr. Carlos G. Malbrán”, Avda. Las Heras 2670, Buenos Aires 1425, Argentina; (M.D.); (L.D.E.); (M.P.B.); (P.B.); (M.T.); (C.D.B.); (R.M.); (R.L.); (B.G.); (S.R.)
| | - Liliana Dain
- Centro Nacional de Genética Médica “Dr. Eduardo Castilla”- ANLIS “Dr. Carlos G. Malbrán”, Avda. Las Heras 2670, Buenos Aires 1425, Argentina; (M.D.); (L.D.E.); (M.P.B.); (P.B.); (M.T.); (C.D.B.); (R.M.); (R.L.); (B.G.); (S.R.)
- Departamento de Fisiología, Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Facultad de Ciencias Exactas y Naturales-UBA, Intendente Güiraldes 2160, Buenos Aires 1428, Argentina;
| | | |
Collapse
|
9
|
Novel Genetic Diagnoses in Septo-Optic Dysplasia. Genes (Basel) 2022; 13:genes13071165. [PMID: 35885948 PMCID: PMC9320703 DOI: 10.3390/genes13071165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
Septo-optic dysplasia (SOD) is a developmental phenotype characterized by midline neuroradiological anomalies, optic nerve hypoplasia, and pituitary anomalies, with a high degree of variability and additional systemic anomalies present in some cases. While disruption of several transcription factors has been identified in SOD cohorts, most cases lack a genetic diagnosis, with multifactorial risk factors being thought to play a role. Exome sequencing in a cohort of families with a clinical diagnosis of SOD identified a genetic diagnosis in 3/6 families, de novo variants in SOX2, SHH, and ARID1A, and explored variants of uncertain significance in the remaining three. The outcome of this study suggests that investigation for a genetic etiology is warranted in individuals with SOD, particularly in the presence of additional syndromic anomalies and when born to older, multigravida mothers. The identification of causative variants in SHH and ARID1A further expands the phenotypic spectra associated with these genes and reveals novel pathways to explore in septo-optic dysplasia.
Collapse
|
10
|
Huang P, Wierbowski BM, Lian T, Chan C, García-Linares S, Jiang J, Salic A. Structural basis for catalyzed assembly of the Sonic hedgehog-Patched1 signaling complex. Dev Cell 2022; 57:670-685.e8. [PMID: 35231446 PMCID: PMC8932645 DOI: 10.1016/j.devcel.2022.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/13/2022] [Accepted: 02/04/2022] [Indexed: 01/04/2023]
Abstract
The dually lipidated Sonic hedgehog (SHH) morphogen signals through the tumor suppressor membrane protein Patched1 (PTCH1) to activate the Hedgehog pathway, which is fundamental in development and cancer. SHH engagement with PTCH1 requires the GAS1 coreceptor, but the mechanism is unknown. We demonstrate a unique role for GAS1, catalyzing SHH-PTCH1 complex assembly in vertebrate cells by direct SHH transfer from the extracellular SCUBE2 carrier to PTCH1. Structure of the GAS1-SHH-PTCH1 transition state identifies how GAS1 recognizes the SHH palmitate and cholesterol modifications in modular fashion and how it facilitates lipid-dependent SHH handoff to PTCH1. Structure-guided experiments elucidate SHH movement from SCUBE2 to PTCH1, explain disease mutations, and demonstrate that SHH-induced PTCH1 dimerization causes its internalization from the cell surface. These results define how the signaling-competent SHH-PTCH1 complex assembles, the key step triggering the Hedgehog pathway, and provide a paradigm for understanding morphogen reception and its regulation.
Collapse
Affiliation(s)
- Pengxiang Huang
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Tengfei Lian
- Laboratory of Membrane Proteins and Structural Biology, Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Charlene Chan
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Jiansen Jiang
- Laboratory of Membrane Proteins and Structural Biology, Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Adrian Salic
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Patel TN, Dhanyamraju PK. Role of aberrant Sonic hedgehog signaling pathway in cancers and developmental anomalies. J Biomed Res 2021; 36:1-9. [PMID: 34963676 PMCID: PMC8894283 DOI: 10.7555/jbr.35.20210139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Development is a sophisticated process maintained by various signal transduction pathways, including the Hedgehog (Hh) pathway. Several important functions are executed by the Hh signaling cascade such as organogenesis, tissue regeneration, and tissue homeostasis, among various others. Considering the multiple functions carried out by this pathway, any mutation causing aberrant Hh signaling may lead to myriad developmental abnormalities besides cancers. In the present review article, we explored a wide range of diseases caused by aberrant Hh signaling, including developmental defects and cancers. Finally, we concluded this mini-review with various treatment strategies for Hh-induced diseases.
Collapse
Affiliation(s)
- Trupti N Patel
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore Campus, Vellore, Tamil Nadu 632014, India
| | - Pavan Kumar Dhanyamraju
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033, USA.,Penn State Cancer Institute, Hershey, PA 17033, USA
| |
Collapse
|
12
|
de Castro VF, Mattos D, de Carvalho FM, Cavalcanti DP, Duenas-Roque MM, Llerena J, Cosentino VR, Honjo RS, Leite JCL, Sanseverino MT, de Souza MPA, Bernardi P, Bolognese AM, Santana da Silva LC, Barbero P, Correia PS, Bueno LSM, Savastano CP, Orioli IM. New SHH and Known SIX3 Variants in a Series of Latin American Patients with Holoprosencephaly. Mol Syndromol 2021; 12:219-233. [PMID: 34421500 DOI: 10.1159/000515044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 02/04/2021] [Indexed: 11/19/2022] Open
Abstract
Holoprosencephaly (HPE) is the failure of the embryonic forebrain to develop into 2 hemispheres promoting midline cerebral and facial defects. The wide phenotypic variability and causal heterogeneity make genetic counseling difficult. Heterozygous variants with incomplete penetrance and variable expressivity in the SHH, SIX3, ZIC2, and TGIF1 genes explain ∼25% of the known causes of nonchromosomal HPE. We studied these 4 genes and clinically described 27 Latin American families presenting with nonchromosomal HPE. Three new SHH variants and a third known SIX3 likely pathogenic variant found by Sanger sequencing explained 15% of our cases. Genotype-phenotype correlation in these 4 families and published families with identical or similar driver gene, mutated domain, conservation of residue in other species, and the type of variant explain the pathogenicity but not the phenotypic variability. Nine patients, including 2 with SHH pathogenic variants, presented benign variants of the SHH, SIX3, ZIC2, and TGIF1 genes with potential alteration of splicing, a causal proposition in need of further studies. Finding more families with the same SIX3 variant may allow further identification of genetic or environmental modifiers explaining its variable phenotypic expression.
Collapse
Affiliation(s)
- Viviane Freitas de Castro
- ECLAMC at Departamento de Genética, UFRJ, Rio de Janeiro, Brazil.,Instituto Nacional de Genética Médica Populacional INAGEMP, Porto Alegre, Brazil
| | - Daniel Mattos
- ECLAMC at Departamento de Genética, UFRJ, Rio de Janeiro, Brazil.,Instituto Nacional de Genética Médica Populacional INAGEMP, Porto Alegre, Brazil
| | - Flavia Martinez de Carvalho
- Instituto Nacional de Genética Médica Populacional INAGEMP, Porto Alegre, Brazil.,ECLAMC at Laboratorio Epidemiol. Malformações Congênitas, IOC/FIOCRUZ, Rio de Janeiro, Brazil
| | | | - Milagros M Duenas-Roque
- ECLAMC at Servicio de Genética, Hospital Nacional Edgardo Rebagliati Martins/EsSalud, Lima, Peru
| | - Juan Llerena
- Instituto Nacional de Genética Médica Populacional INAGEMP, Porto Alegre, Brazil.,ECLAMC at Centro de Genética Médica, IFF/FIOCRUZ, Rio de Janeiro, Brazil
| | | | | | | | | | | | - Pricila Bernardi
- Núcleo de Genética Clínica, Departamento de Clínica Médica/UFSC, Florianópolis, Brazil
| | - Ana Maria Bolognese
- Departamento de Ortodontia, Faculdade de Odontologia/UFRJ, Rio de Janeiro, Brazil
| | - Luiz Carlos Santana da Silva
- Instituto Nacional de Genética Médica Populacional INAGEMP, Porto Alegre, Brazil.,Laboratório de Erros Inatos de Metabolismo, Instituto de Ciências Biológicas/UFP, Belém, Brazil
| | - Pablo Barbero
- RENAC, Centro Nacional de Genética Médica Dr. Eduardo E. Castilla/MS, Buenos Aires, Argentina
| | | | | | | | - Iêda Maria Orioli
- ECLAMC at Departamento de Genética, UFRJ, Rio de Janeiro, Brazil.,Instituto Nacional de Genética Médica Populacional INAGEMP, Porto Alegre, Brazil
| |
Collapse
|
13
|
Mafi A, Purohit R, Vielmas E, Lauinger AR, Lam B, Cheng YS, Zhang T, Huang Y, Kim SK, Goddard WA, Ondrus AE. Hedgehog proteins create a dynamic cholesterol interface. PLoS One 2021; 16:e0246814. [PMID: 33630857 PMCID: PMC7906309 DOI: 10.1371/journal.pone.0246814] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/26/2021] [Indexed: 12/27/2022] Open
Abstract
During formation of the Hedgehog (Hh) signaling proteins, cooperative activities of the Hedgehog INTein (Hint) fold and Sterol Recognition Region (SRR) couple autoproteolysis to cholesterol ligation. The cholesteroylated Hh morphogens play essential roles in embryogenesis, tissue regeneration, and tumorigenesis. Despite the centrality of cholesterol in Hh function, the full structure of the Hint-SRR ("Hog") domain that attaches cholesterol to the last residue of the active Hh morphogen remains enigmatic. In this work, we combine molecular dynamics simulations, photoaffinity crosslinking, and mutagenesis assays to model cholesterolysis intermediates in the human Sonic Hedgehog (hSHH) protein. Our results provide evidence for a hydrophobic Hint-SRR interface that forms a dynamic, non-covalent cholesterol-Hog complex. Using these models, we suggest a unified mechanism by which Hh proteins can recruit, sequester, and orient cholesterol, and offer a molecular basis for the effects of disease-causing hSHH mutations.
Collapse
Affiliation(s)
- Amirhossein Mafi
- Department of Chemistry, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Rahul Purohit
- Department of Chemistry, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Erika Vielmas
- Department of Chemistry, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Alexa R. Lauinger
- Department of Chemistry, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Brandon Lam
- Department of Chemistry, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Yu-Shiuan Cheng
- Department of Chemistry, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Tianyi Zhang
- Department of Chemistry, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Yiran Huang
- Department of Chemistry, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Soo-Kyung Kim
- Department of Chemistry, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - William A. Goddard
- Department of Chemistry, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
- * E-mail: (AEO); (WAG)
| | - Alison E. Ondrus
- Department of Chemistry, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
- * E-mail: (AEO); (WAG)
| |
Collapse
|
14
|
Kim A, Le Douce J, Diab F, Ferovova M, Dubourg C, Odent S, Dupé V, David V, Diambra L, Watrin E, de Tayrac M. Synonymous variants in holoprosencephaly alter codon usage and impact the Sonic Hedgehog protein. Brain 2020; 143:2027-2038. [PMID: 32542401 DOI: 10.1093/brain/awaa152] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/04/2020] [Accepted: 03/21/2020] [Indexed: 11/13/2022] Open
Abstract
Synonymous single nucleotide variants (sSNVs) have been implicated in various genetic disorders through alterations of pre-mRNA splicing, mRNA structure and miRNA regulation. However, their impact on synonymous codon usage and protein translation remains to be elucidated in clinical context. Here, we explore the functional impact of sSNVs in the Sonic Hedgehog (SHH) gene, identified in patients affected by holoprosencephaly, a congenital brain defect resulting from incomplete forebrain cleavage. We identified eight sSNVs in SHH, selectively enriched in holoprosencephaly patients as compared to healthy individuals, and systematically assessed their effect at both transcriptional and translational levels using a series of in silico and in vitro approaches. Although no evidence of impact of these sSNVs on splicing, mRNA structure or miRNA regulation was found, five sSNVs introduced significant changes in codon usage and were predicted to impact protein translation. Cell assays demonstrated that these five sSNVs are associated with a significantly reduced amount of the resulting protein, ranging from 5% to 23%. Inhibition of the proteasome rescued the protein levels for four out of five sSNVs, confirming their impact on protein stability and folding. Remarkably, we found a significant correlation between experimental values of protein reduction and computational measures of codon usage, indicating the relevance of in silico models in predicting the impact of sSNVs on translation. Considering the critical role of SHH in brain development, our findings highlight the clinical relevance of sSNVs in holoprosencephaly and underline the importance of investigating their impact on translation in human pathologies.
Collapse
Affiliation(s)
- Artem Kim
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)-UMR 6290, F-35000 Rennes, France
| | - Jérôme Le Douce
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)-UMR 6290, F-35000 Rennes, France
| | - Farah Diab
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)-UMR 6290, F-35000 Rennes, France
| | - Monika Ferovova
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)-UMR 6290, F-35000 Rennes, France
| | - Christèle Dubourg
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)-UMR 6290, F-35000 Rennes, France.,Service de Génétique Moléculaire et Génomique, CHU, Rennes, France
| | - Sylvie Odent
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)-UMR 6290, F-35000 Rennes, France.,Service de Génétique Clinique, CHU, Rennes, France
| | - Valérie Dupé
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)-UMR 6290, F-35000 Rennes, France
| | - Véronique David
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)-UMR 6290, F-35000 Rennes, France.,Service de Génétique Moléculaire et Génomique, CHU, Rennes, France
| | - Luis Diambra
- CREG, CONICET-Universidad Nacional de La Plata, La Plata, CP 1900, Argentina
| | - Erwan Watrin
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)-UMR 6290, F-35000 Rennes, France
| | - Marie de Tayrac
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)-UMR 6290, F-35000 Rennes, France.,Service de Génétique Moléculaire et Génomique, CHU, Rennes, France
| |
Collapse
|
15
|
Echevarría-Andino ML, Allen BL. The hedgehog co-receptor BOC differentially regulates SHH signaling during craniofacial development. Development 2020; 147:dev.189076. [PMID: 33060130 DOI: 10.1242/dev.189076] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 10/06/2020] [Indexed: 12/31/2022]
Abstract
The Hedgehog (HH) pathway controls multiple aspects of craniofacial development. HH ligands signal through the canonical receptor PTCH1, and three co-receptors: GAS1, CDON and BOC. Together, these co-receptors are required during embryogenesis to mediate proper HH signaling. Here, we investigated the individual and combined contributions of GAS1, CDON and BOC to HH-dependent mammalian craniofacial development. Notably, individual deletion of either Gas1 or Cdon results in variable holoprosencephaly phenotypes in mice, even on a congenic background. In contrast, we find that Boc deletion results in facial widening that correlates with increased HH target gene expression. In addition, Boc deletion in a Gas1 null background partially ameliorates the craniofacial defects observed in Gas1 single mutants; a phenotype that persists over developmental time, resulting in significant improvements to a subset of craniofacial structures. This contrasts with HH-dependent phenotypes in other tissues that significantly worsen following combined deletion of Gas1 and Boc Together, these data indicate that BOC acts as a multi-functional regulator of HH signaling during craniofacial development, alternately promoting or restraining HH pathway activity in a tissue-specific fashion.
Collapse
Affiliation(s)
| | - Benjamin L Allen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
16
|
Hong S, Hu P, Jang JH, Carrington B, Sood R, Berger SI, Roessler E, Muenke M. Functional analysis of Sonic Hedgehog variants associated with holoprosencephaly in humans using a CRISPR/Cas9 zebrafish model. Hum Mutat 2020; 41:2155-2166. [PMID: 32939873 DOI: 10.1002/humu.24119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/17/2020] [Accepted: 09/12/2020] [Indexed: 01/20/2023]
Abstract
Genetic variation in the highly conserved Sonic Hedgehog (SHH) gene is one of the most common genetic causes for the malformations of the brain and face in humans described as the holoprosencephaly clinical spectrum. However, only a minor fraction of known SHH variants have been experimentally proven to lead to abnormal function. Employing a phenotypic rescue assay with synthetic human messenger RNA variant constructs in shha-/- knockout zebrafish, we evaluated 104 clinically reported in-frame and missense SHH variants. Our data helped us to classify them into loss of function variants (31), hypomorphic variants (33), and nonpathogenic variants (40). We discuss the strengths and weaknesses of currently accepted predictors of variant deleteriousness and the American College of Medical Genetics and Genomics guidelines for variant interpretation in the context of this functional model; furthermore, we demonstrate the robustness of model systems such as zebrafish as a rapid method to resolve variants of uncertain significance.
Collapse
Affiliation(s)
- Sungkook Hong
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ping Hu
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jae Hee Jang
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA.,College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, Maryland, USA
| | - Blake Carrington
- Zebrafish Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Raman Sood
- Zebrafish Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Seth I Berger
- Children's National Hospital, Center for Genetic Medicine Research and Rare Disease Institute, Washington DC, USA
| | - Erich Roessler
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA.,American College of Medical Genetics and Genomics, Bethesda, Maryland, USA
| |
Collapse
|
17
|
Hu T, Kruszka P, Martinez AF, Ming JE, Shabason EK, Raam MS, Shaikh TH, Pineda-Alvarez DE, Muenke M. Cytogenetics and holoprosencephaly: A chromosomal microarray study of 222 individuals with holoprosencephaly. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 178:175-186. [PMID: 30182442 DOI: 10.1002/ajmg.c.31622] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 11/08/2022]
Abstract
Holoprosencephaly (HPE), a common developmental forebrain malformation, is characterized by failure of the cerebrum to completely divide into left and right hemispheres. The etiology of HPE is heterogeneous and a number of environmental and genetic factors have been identified. Cytogenetically visible alterations occur in 25% to 45% of HPE patients and cytogenetic techniques have long been used to study copy number variants (CNVs) in this disorder. The karyotype approach initially demonstrated several recurrent chromosomal anomalies, which led to the identification of HPE-specific loci and, eventually, several major HPE genes. More recently, higher-resolution cytogenetic techniques such as subtelomeric multiplex ligation-dependent probe amplification and chromosomal microarray have been used to analyze chromosomal anomalies. By using chromosomal microarray, we sought to identify submicroscopic chromosomal deletions and duplications in patients with HPE. In an analysis of 222 individuals with HPE, a deletion or duplication was detected in 107 individuals. Of these 107 individuals, 23 (21%) had variants that were classified as pathogenic or likely pathogenic by board-certified medical geneticists. We identified multiple patients with deletions in established HPE loci as well as three patients with deletions encompassed by 6q12-q14.3, a CNV previously reported by Bendavid et al. In addition, we identified a new locus, 16p13.2 that warrants further investigation for HPE association. Incidentally, we also found a case of Potocki-Lupski syndrome, a case of Phelan-McDermid syndrome, and multiple cases of 22q11.2 deletion syndrome within our cohort. These data confirm the genetically heterogeneous nature of HPE, and also demonstrate clinical utility of chromosomal microarray in diagnosing patients affected by HPE.
Collapse
Affiliation(s)
- Tommy Hu
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Paul Kruszka
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Ariel F Martinez
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Jeffrey E Ming
- Division of Human Genetics, The Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Emily K Shabason
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland.,Division of Developmental and Behavioral Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Manu S Raam
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland.,General Pediatrics Services Shriners for Children Medical Center, Pasadena, California.,General Pediatrics Services Children's Hospital Los Angeles, Los Angeles, California
| | - Tamim H Shaikh
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado.,Invitae Corporation, San Francisco, California
| | - Daniel E Pineda-Alvarez
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland.,Division of Developmental and Behavioral Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
18
|
Epileptic Encephalopathy In A Patient With A Novel Variant In The Kv7.2 S2 Transmembrane Segment: Clinical, Genetic, and Functional Features. Int J Mol Sci 2019; 20:ijms20143382. [PMID: 31295832 PMCID: PMC6678645 DOI: 10.3390/ijms20143382] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 11/18/2022] Open
Abstract
Kv7.2 subunits encoded by the KCNQ2 gene provide a major contribution to the M-current (IKM), a voltage-gated K+ current crucially involved in the regulation of neuronal excitability. Heterozygous missense variants in Kv7.2 are responsible for epileptic diseases characterized by highly heterogeneous genetic transmission and clinical severity, ranging from autosomal-dominant Benign Familial Neonatal Seizures (BFNS) to sporadic cases of severe epileptic and developmental encephalopathy (DEE). Here, we describe a patient with neonatal onset DEE, carrying a previously undescribed heterozygous KCNQ2 c.418G > C, p.Glu140Gln (E140Q) variant. Patch-clamp recordings in CHO cells expressing the E140Q mutation reveal dramatic loss of function (LoF) effects. Multistate structural modelling suggested that the E140Q substitution impeded an intrasubunit electrostatic interaction occurring between the E140 side chain in S2 and the arginine at position 210 in S4 (R210); this interaction is critically involved in stabilizing the activated configuration of the voltage-sensing domain (VSD) of Kv7.2. Functional results from coupled charge reversal or disulfide trapping experiments supported such a hypothesis. Finally, retigabine restored mutation-induced functional changes, reinforcing the rationale for the clinical use of Kv7 activators as personalized therapy for DEE-affected patients carrying Kv7.2 LoF mutations.
Collapse
|
19
|
de Koning MA, Haak MC, Adama van Scheltema PN, Peeters-Scholte CMPCD, Koopmann TT, Nibbeling EAR, Aten E, den Hollander NS, Ruivenkamp CAL, Hoffer MJV, Santen GWE. From diagnostic yield to clinical impact: a pilot study on the implementation of prenatal exome sequencing in routine care. Genet Med 2019; 21:2303-2310. [PMID: 30918357 DOI: 10.1038/s41436-019-0499-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/14/2019] [Indexed: 12/29/2022] Open
Abstract
PURPOSE Exome sequencing (ES) is an efficient tool to diagnose genetic disorders postnatally. Recent studies show that it may have a considerable diagnostic yield in fetuses with structural anomalies on ultrasound. We report on the clinical impact of the implementation of prenatal ES (pES) for ongoing pregnancies in routine care. METHODS We retrospectively analyzed the impact of pES on pregnancy outcome and pre- or perinatal management in the first 22 patients counseled for pES because of one or more structural anomalies on fetal ultrasound. RESULTS In two cases, a diagnosis was made by chromosomal microarray analysis after ES counseling. The remaining 20 cases were divided in three groups: (1) pES to aid parental decision making (n = 12), (2) pES in the context of late pregnancy termination requests (n = 5), and (3) pES to guide pre- or perinatal management (n = 3). pES had a clinical impact in 75% (9/12), 40% (2/5), and 100% (3/3) respectively, showing an overall clinical impact of pES of 70% (14/20). CONCLUSION We show that clinical implementation of pES is feasible and affects parental decision making or pre- and perinatal management supporting further implementation of ES in the prenatal setting.
Collapse
Affiliation(s)
- Maayke A de Koning
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Monique C Haak
- Department of Obstetrics and Fetal Medicine, Leiden University Medical Centre, Leiden, the Netherlands
| | | | | | - Tamara T Koopmann
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Esther A R Nibbeling
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Emmelien Aten
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | | | - Claudia A L Ruivenkamp
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Mariëtte J V Hoffer
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Gijs W E Santen
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands.
| |
Collapse
|
20
|
Hall ET, Cleverdon ER, Ogden SK. Dispatching Sonic Hedgehog: Molecular Mechanisms Controlling Deployment. Trends Cell Biol 2019; 29:385-395. [PMID: 30852081 DOI: 10.1016/j.tcb.2019.02.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 11/26/2022]
Abstract
The Hedgehog (Hh) family of morphogens direct cell fate decisions during embryogenesis and signal to maintain tissue homeostasis after birth. Hh ligands harbor dual lipid modifications that anchor the proteins into producing cell membranes, effectively preventing ligand release. The transporter-like protein Dispatched (Disp) functions to release these membrane tethers and mobilize Hh ligands to travel toward distant cellular targets. The molecular mechanisms by which Disp achieves Hh deployment are not yet fully understood, but a number of recent publications provide insight into the complex process of Hh release. Herein we review this literature, integrate key discoveries, and discuss some of the open questions that will drive future studies aimed at understanding Disp-mediated Hh ligand deployment.
Collapse
Affiliation(s)
- Eric T Hall
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 340, Memphis, TN 38105, USA
| | - Elizabeth R Cleverdon
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 340, Memphis, TN 38105, USA
| | - Stacey K Ogden
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 340, Memphis, TN 38105, USA.
| |
Collapse
|
21
|
Casillas C, Roelink H. Gain-of-function Shh mutants activate Smo cell-autonomously independent of Ptch1/2 function. Mech Dev 2018; 153:30-41. [PMID: 30144507 PMCID: PMC6165682 DOI: 10.1016/j.mod.2018.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 12/25/2022]
Abstract
Sonic Hedgehog (Shh) signaling is characterized by non-cell autonomy; cells expressing Shh do not respond to the ligand. Here, we identify several Shh mutations that can activate the Hedgehog (Hh) pathway cell-autonomously. Cell-autonomous pathway activation requires the extracellular cysteine rich domain of Smoothened, but is otherwise independent of the Shh receptors Patched1 and -2. Many of the Shh mutants that gain activity fail to undergo auto processing resulting in the perdurance of the Shh pro-peptide, a form of Shh that is sufficient to activate the Hh response cell-autonomously. Our results demonstrate that Shh is capable of activating the Hh pathway via Smoothened, independently of Patched1/2, and that it harbors an intrinsic mechanism that prevents cell-autonomous activation of the Shh response.
Collapse
Affiliation(s)
- Catalina Casillas
- Department of Molecular and Cell Biology, 16 Barker Hall, 3204, University of California, Berkeley, CA 94720, USA
| | - Henk Roelink
- Department of Molecular and Cell Biology, 16 Barker Hall, 3204, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
22
|
Roessler E, Hu P, Marino J, Hong S, Hart R, Berger S, Martinez A, Abe Y, Kruszka P, Thomas JW, Mullikin JC, Wang Y, Wong WSW, Niederhuber JE, Solomon BD, Richieri-Costa A, Ribeiro-Bicudo LA, Muenke M. Common genetic causes of holoprosencephaly are limited to a small set of evolutionarily conserved driver genes of midline development coordinated by TGF-β, hedgehog, and FGF signaling. Hum Mutat 2018; 39:1416-1427. [PMID: 29992659 DOI: 10.1002/humu.23590] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/05/2018] [Accepted: 07/05/2018] [Indexed: 01/01/2023]
Abstract
Here, we applied targeted capture to examine 153 genes representative of all the major vertebrate developmental pathways among 333 probands to rank their relative significance as causes for holoprosencephaly (HPE). We now show that comparisons of variant transmission versus nontransmission among 136 HPE Trios indicates some reported genes now lack confirmation, while novel genes are implicated. Furthermore, we demonstrate that variation of modest intrinsic effect can synergize with these driver mutations as gene modifiers.
Collapse
Affiliation(s)
- Erich Roessler
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Ping Hu
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | | | - Sungkook Hong
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Rachel Hart
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Seth Berger
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Ariel Martinez
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Yu Abe
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Paul Kruszka
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - James W Thomas
- NIH Intramural Sequencing Center, NISC, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - James C Mullikin
- NIH Intramural Sequencing Center, NISC, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | -
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Yupeng Wang
- Inova Translational Medicine Institute, Virginia Commonwealth University School of Medicine, Falls Church, Virginia
| | - Wendy S W Wong
- Inova Translational Medicine Institute, Virginia Commonwealth University School of Medicine, Falls Church, Virginia
| | - John E Niederhuber
- Inova Translational Medicine Institute, Virginia Commonwealth University School of Medicine, Falls Church, Virginia
| | - Benjamin D Solomon
- Inova Translational Medicine Institute, Virginia Commonwealth University School of Medicine, Falls Church, Virginia.,Presently the Managing Director, GeneDx, Gaithersburg, Maryland
| | - Antônio Richieri-Costa
- Hospital for the Rehabilitation of Craniofacial Anomalies, São Paulo University, São Paulo, Brazil
| | - L A Ribeiro-Bicudo
- Institute of Bioscience, Department of Genetics, Federal University of Goias, Goias, Brazil
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
23
|
Roelink H. Sonic Hedgehog Is a Member of the Hh/DD-Peptidase Family That Spans the Eukaryotic and Bacterial Domains of Life. J Dev Biol 2018; 6:jdb6020012. [PMID: 29890674 PMCID: PMC6027127 DOI: 10.3390/jdb6020012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/01/2018] [Accepted: 06/07/2018] [Indexed: 11/16/2022] Open
Abstract
Sonic Hedgehog (Shh) coordinates Zn2+ in a manner that resembles that of peptidases. The ability of Shh to undergo autoproteolytic processing is impaired in mutants that affect the Zn2+ coordination, while mutating residues essential for catalytic activity results in more stable forms of Shh. The residues involved in Zn2+ coordination in Shh are found to be mutated in some individuals with the congenital birth defect holoprosencephaly, demonstrating their importance in development. Highly conserved Shh domains are found in parts of some bacterial proteins that are members of the larger family of DD-peptidases, supporting the notion that Shh acts as a peptidase. Whereas this Hh/DD-peptidase motif is present in Hedgehog (Hh) proteins of nearly all animals, it is not present in Drosophila Hh, indicating that Hh signaling in fruit flies is derived, and perhaps not a good model for vertebrate Shh signaling. A sequence analysis of Hh proteins and their possible evolutionary precursors suggests that the evolution of modern Hh might have involved horizontal transfer of a bacterial gene coding of a Hh/DD-peptidase into a Cnidarian ancestor, recombining to give rise to modern Hh.
Collapse
Affiliation(s)
- Henk Roelink
- Department of Molecular and Cell Biology, University of California, 16 Barker Hall, 3204, Berkeley, CA 94720, USA.
| |
Collapse
|
24
|
Hinreiner S, Wieczorek D, Mueller D, Roedl T, Thiel G, Grasshoff U, Chaoui R, Hehr U. Further evidence for complex inheritance of holoprosencephaly: Lessons learned from pre- and postnatal diagnostic testing in Germany. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2018; 178:198-205. [PMID: 30182445 DOI: 10.1002/ajmg.c.31625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 01/02/2023]
Abstract
Holoprosencephaly (HPE) has been defined as a distinct clinical entity with characteristic facial gestalt, which may-or may not-be associated with the true brain malformation observed postmortem in autopsy or in pre- or postnatal imaging. Affected families mainly show autosomal dominant inheritance with markedly reduced penetrance and extremely broad clinical variability even between mutation carriers within the same families. We here present advances in prenatal imaging over the last years, increasing the proportion of individuals with HPE identified prenatally including milder HPE forms and more frequently allowing to detect more severe forms already in early gestation. We report the results of diagnostic genetic testing of 344 unrelated patients for HPE at our lab in Germany since the year 2000, which currently with the application of next generation sequencing (NGS) panel sequencing identifies causal mutations for about 31% (12/38) of unrelated individuals with normal chromosomes when compared to about 15% (46/306) using conventional Sanger sequencing and Multiplex Ligation-dependent Probe Amplification (MLPA). More comprehensive genetic testing by our in house NGS panel sequencing of 10 HPE associated genes (MiSeq™ and NextSeq™500, Illumina, Inc., San Diego, CA) not only allowed to include genes with smaller contribution to the phenotype, but may also unravel additional low frequency or more common genetic variants potentially contributing to the observed large intrafamiliar variability and may ultimately guide our understanding of the individual clinical manifestation of this complex developmental disorder.
Collapse
Affiliation(s)
| | - Dagmar Wieczorek
- Medical Faculty, Institute of Human Genetics, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Dietmar Mueller
- Department of Medical Genetics, Children's Hospital Chemnitz, Chemnitz, Germany
| | - Tanja Roedl
- Center for Human Genetics Regensburg, Regensburg, Germany
| | - Gundula Thiel
- Center for Prenatal Diagnosis and Human Genetics, Berlin, Germany
| | - Ute Grasshoff
- Institute of Medical Genetics and Applied Genomics, University Hospital Tuebingen, Tuebingen, Germany
| | - Rabih Chaoui
- Center for Prenatal Diagnosis and Human Genetics, Berlin, Germany
| | - Ute Hehr
- Center for Human Genetics Regensburg, Regensburg, Germany
| |
Collapse
|
25
|
Dubourg C, Kim A, Watrin E, de Tayrac M, Odent S, David V, Dupé V. Recent advances in understanding inheritance of holoprosencephaly. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2018; 178:258-269. [PMID: 29785796 DOI: 10.1002/ajmg.c.31619] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 12/16/2022]
Abstract
Holoprosencephaly (HPE) is a complex genetic disorder of the developing forebrain characterized by high phenotypic and genetic heterogeneity. HPE was initially defined as an autosomal dominant disease, but recent research has shown that its mode of transmission is more complex. The past decade has witnessed rapid development of novel genetic technologies and significant progresses in clinical studies of HPE. In this review, we recapitulate genetic epidemiological studies of the largest European HPE cohort and summarize the novel genetic discoveries of HPE based on recently developed diagnostic methods. Our main purpose is to present different inheritance patterns that exist for HPE with a particular emphasis on oligogenic inheritance and its implications in genetic counseling.
Collapse
Affiliation(s)
- Christèle Dubourg
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F - 35000, Rennes, France.,Service de Génétique Moléculaire et Génomique, CHU, Rennes, France
| | - Artem Kim
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F - 35000, Rennes, France
| | - Erwan Watrin
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F - 35000, Rennes, France
| | - Marie de Tayrac
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F - 35000, Rennes, France.,Service de Génétique Moléculaire et Génomique, CHU, Rennes, France
| | - Sylvie Odent
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F - 35000, Rennes, France.,Service de Génétique Clinique, CHU, Rennes, France
| | - Véronique David
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F - 35000, Rennes, France.,Service de Génétique Moléculaire et Génomique, CHU, Rennes, France
| | - Valérie Dupé
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F - 35000, Rennes, France
| |
Collapse
|
26
|
Roessler E, Hu P, Muenke M. Holoprosencephaly in the genomics era. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2018; 178:165-174. [PMID: 29770992 DOI: 10.1002/ajmg.c.31615] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/06/2018] [Accepted: 04/11/2018] [Indexed: 01/08/2023]
Abstract
Holoprosencephaly (HPE) is the direct consequence of specific genetic and/or environmental insults interrupting the midline specification of the nascent forebrain. Such disturbances can lead to a broad range of phenotypic consequences for the brain and face in humans. This malformation sequence is remarkably common in utero (1 in 250 human fetuses), but 97% typically do not survive to birth. The precise molecular pathogenesis of HPE in these early human embryos remains largely unknown. Here, we outline our current understanding of the principal driving factors leading to HPE pathologies and elaborate our multifactorial integrated genomics approach. Overall, our understanding of the pathogenesis continues to become simpler, rather than more complicated. Genomic technologies now provide unprecedented insight into disease-associated variation, including the overall extent of genetic interactions (coding and noncoding) predicted to explain divergent phenotypes.
Collapse
Affiliation(s)
- Erich Roessler
- Medical Genetics Branch, National Human, Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Ping Hu
- Medical Genetics Branch, National Human, Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Maximilian Muenke
- Medical Genetics Branch, National Human, Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
27
|
Xavier GM, Seppala M, Papageorgiou SN, Fan CM, Cobourne MT. Genetic interactions between the hedgehog co-receptors Gas1 and Boc regulate cell proliferation during murine palatogenesis. Oncotarget 2018; 7:79233-79246. [PMID: 27811357 PMCID: PMC5346710 DOI: 10.18632/oncotarget.13011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/05/2016] [Indexed: 12/26/2022] Open
Abstract
Abnormal regulation of Sonic hedgehog (Shh) signaling has been described in a variety of human cancers and developmental anomalies, which highlights the essential role of this signaling molecule in cell cycle regulation and embryonic development. Gas1 and Boc are membrane co-receptors for Shh, which demonstrate overlapping domains of expression in the early face. This study aims to investigate potential interactions between these co-receptors during formation of the secondary palate. Mice with targeted mutation in Gas1 and Boc were used to generate Gas1; Boc compound mutants. The expression of key Hedgehog signaling family members was examined in detail during palatogenesis via radioactive in situ hybridization. Morphometric analysis involved computational quantification of BrdU-labeling and cell packing; whilst TUNEL staining was used to assay cell death. Ablation of Boc in a Gas1 mutant background leads to reduced Shh activity in the palatal shelves and an increase in the penetrance and severity of cleft palate, associated with failed elevation, increased proliferation and reduced cell death. Our findings suggest a dual requirement for Boc and Gas1 during early development of the palate, mediating cell cycle regulation during growth and subsequent fusion of the palatal shelves.
Collapse
Affiliation(s)
- Guilherme M Xavier
- Department of Craniofacial Development and Stem Cell Biology, King's College London Dental Institute, Guy's Hospital, SE1 9RT, London, UK.,Department of Orthodontics, King's College London Dental Institute, Guy's Hospital, SE1 9RT, London, UK
| | - Maisa Seppala
- Department of Craniofacial Development and Stem Cell Biology, King's College London Dental Institute, Guy's Hospital, SE1 9RT, London, UK.,Department of Orthodontics, King's College London Dental Institute, Guy's Hospital, SE1 9RT, London, UK
| | - Spyridon N Papageorgiou
- Department of Orthodontics, School of Dentistry, University of Bonn, 53111, Bonn, Germany.,Department of Oral Technology, School of Dentistry, University of Bonn, 53111, Bonn, Germany
| | - Chen-Ming Fan
- Department of Embryology, Carnegie Institution of Washington, Baltimore, MD 21218, USA
| | - Martyn T Cobourne
- Department of Craniofacial Development and Stem Cell Biology, King's College London Dental Institute, Guy's Hospital, SE1 9RT, London, UK.,Department of Orthodontics, King's College London Dental Institute, Guy's Hospital, SE1 9RT, London, UK
| |
Collapse
|
28
|
Vasques GA, Funari MFA, Ferreira FM, Aza-Carmona M, Sentchordi-Montané L, Barraza-García J, Lerario AM, Yamamoto GL, Naslavsky MS, Duarte YAO, Bertola DR, Heath KE, Jorge AAL. IHH Gene Mutations Causing Short Stature With Nonspecific Skeletal Abnormalities and Response to Growth Hormone Therapy. J Clin Endocrinol Metab 2018; 103:604-614. [PMID: 29155992 DOI: 10.1210/jc.2017-02026] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/10/2017] [Indexed: 11/19/2022]
Abstract
CONTEXT Genetic evaluation has been recognized as an important tool to elucidate the causes of growth disorders. OBJECTIVE To investigate the cause of short stature and to determine the phenotype of patients with IHH mutations, including the response to recombinant human growth hormone (rhGH) therapy. PATIENTS AND METHODS We studied 17 families with autosomal-dominant short stature by using whole exome sequencing and screened IHH defects in 290 patients with growth disorders. Molecular analyses were performed to evaluate the potential impact of N-terminal IHH variants. RESULTS We identified 10 pathogenic or possibly pathogenic variants in IHH, an important regulator of endochondral ossification. Molecular analyses revealed a smaller potential energy of mutated IHH molecules. The allele frequency of rare, predicted to be deleterious IHH variants found in short-stature samples (1.6%) was higher than that observed in two control cohorts (0.017% and 0.08%; P < 0.001). Identified IHH variants segregate with short stature in a dominant inheritance pattern. Affected individuals typically manifest mild disproportional short stature with a frequent finding of shortening of the middle phalanx of the fifth finger. None of them have classic features of brachydactyly type A1, which was previously associated with IHH mutations. Five patients heterozygous for IHH variants had a good response to rhGH therapy. The mean change in height standard deviation score in 1 year was 0.6. CONCLUSION Our study demonstrated the association of pathogenic variants in IHH with short stature with nonspecific skeletal abnormalities and established a frequent cause of growth disorder, with a preliminary good response to rhGH.
Collapse
Affiliation(s)
- Gabriela A Vasques
- Unidade de Endocrinologia Genetica (LIM/25), Hospital das Clinicas da Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Mariana F A Funari
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular (LIM/42), Hospital das Clinicas da Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Frederico M Ferreira
- Laboratorio de Imunologia, Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Miriam Aza-Carmona
- Institute of Medical and Molecular Genetics, IdiPAZ, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigacion Biomedica em Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Skeletal Dysplasia Multidisciplinary Unit, Hospital Universitario La Paz, Madrid, Spain
| | - Lucia Sentchordi-Montané
- Institute of Medical and Molecular Genetics, IdiPAZ, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigacion Biomedica em Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Jimena Barraza-García
- Institute of Medical and Molecular Genetics, IdiPAZ, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigacion Biomedica em Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Skeletal Dysplasia Multidisciplinary Unit, Hospital Universitario La Paz, Madrid, Spain
| | - Antonio M Lerario
- Unidade de Endocrinologia Genetica (LIM/25), Hospital das Clinicas da Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan
| | - Guilherme L Yamamoto
- Unidade de Genetica Clinica, Instituto da Criança do Hospital das Clinicas da Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- Centro de Pesquisa sobre o Genoma Humano e Células Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Michel S Naslavsky
- Centro de Pesquisa sobre o Genoma Humano e Células Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Yeda A O Duarte
- Departamento de Epidemiologia da Faculdade de Saude Publica, Universidade de São Paulo, São Paulo, Brazil
| | - Debora R Bertola
- Unidade de Genetica Clinica, Instituto da Criança do Hospital das Clinicas da Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Karen E Heath
- Institute of Medical and Molecular Genetics, IdiPAZ, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigacion Biomedica em Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Skeletal Dysplasia Multidisciplinary Unit, Hospital Universitario La Paz, Madrid, Spain
| | - Alexander A L Jorge
- Unidade de Endocrinologia Genetica (LIM/25), Hospital das Clinicas da Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
29
|
Guillen Sacoto MJ, Martinez AF, Abe Y, Kruszka P, Weiss K, Everson JL, Bataller R, Kleiner DE, Ward JM, Sulik KK, Lipinski RJ, Solomon BD, Muenke M. Human germline hedgehog pathway mutations predispose to fatty liver. J Hepatol 2017; 67. [PMID: 28645738 PMCID: PMC5613974 DOI: 10.1016/j.jhep.2017.06.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND & AIMS Non-alcoholic fatty liver disease (NAFLD) is the most common form of liver disease. Activation of hedgehog (Hh) signaling has been implicated in the progression of NAFLD and proposed as a therapeutic target; however, the effects of Hh signaling inhibition have not been studied in humans with germline mutations that affect this pathway. METHODS Patients with holoprosencephaly (HPE), a disorder associated with germline mutations disrupting Sonic hedgehog (SHH) signaling, were clinically evaluated for NAFLD. A combined mouse model of Hh signaling attenuation (Gli2 heterozygous null: Gli2+/-) and diet-induced NAFLD was used to examine aspects of NAFLD and hepatic gene expression profiles, including molecular markers of hepatic fibrosis and inflammation. RESULTS Patients with HPE had a higher prevalence of liver steatosis compared to the general population, independent of obesity. Exposure of Gli2+/- mice to fatty liver-inducing diets resulted in increased liver steatosis compared to wild-type mice. Similar to humans, this effect was independent of obesity in the mutant mice and was associated with decreased expression of pro-fibrotic and pro-inflammatory genes, and increased expression of PPARγ, a potent anti-fibrogenic and anti-inflammatory regulator. Interestingly, tumor suppressors p53 and p16INK4 were found to be downregulated in the Gli2+/- mice exposed to a high-fat diet. CONCLUSIONS Our results indicate that germline mutations disrupting Hh signaling promotes liver steatosis, independent of obesity, with reduced fibrosis. While Hh signaling inhibition has been associated with a better NAFLD prognosis, further studies are required to evaluate the long-term effects of mutations affecting this pathway. Lay summary: Non-alcoholic fatty liver disease (NAFLD) is characterized by excess fat deposition in the liver predominantly due to high calorie intake and a sedentary lifestyle. NAFLD progression is usually accompanied by activation of the Sonic hedgehog (SHH) pathway leading to fibrous buildup (scar tissue) and inflammation of the liver tissue. For the first time patients with holoprosencephaly, a disease caused by SHH signaling mutations, are shown to have increased liver steatosis independent of obesity. This observation was recapitulated in a mouse model of attenuated SHH signaling that also showed increased liver steatosis but with decreased fibrosis and inflammation. While SHH inhibition is associated with a good NAFLD prognosis, this increase in liver fat accumulation in the context of SHH signaling inhibition must be studied prospectively to evaluate its long-term effects, especially in individuals with Western-type dietary habits.
Collapse
Affiliation(s)
| | - Ariel F. Martinez
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Yu Abe
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Paul Kruszka
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Karin Weiss
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Joshua L. Everson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI
| | - Ramon Bataller
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, NC
| | - David E. Kleiner
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD
| | | | - Kathleen K. Sulik
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC,Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC
| | - Robert J. Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI
| | - Benjamin D. Solomon
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD,Division of Medical Genomics, Inova Translational Medicine Institute, Falls Church, VA; Department of Pediatrics, Inova Children’s Hospital and Virginia Commonwealth University School of Medicine, Falls Church, VA,GeneDx, Gaithersburg, MD
| | - Maximilian Muenke
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
30
|
Daniele JR, Chu T, Kunes S. A novel proteolytic event controls Hedgehog intracellular sorting and distribution to receptive fields. Biol Open 2017; 6:540-550. [PMID: 28298318 PMCID: PMC5450321 DOI: 10.1242/bio.024083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The patterning activity of a morphogen depends on secretion and dispersal mechanisms that shape its distribution to the cells of a receptive field. In the case of the protein Hedgehog (Hh), these mechanisms of secretion and transmission remain unclear. In the developing Drosophila visual system, Hh is partitioned for release at opposite poles of photoreceptor neurons. Release into the retina regulates the progression of eye development; axon transport and release at axon termini trigger the development of postsynaptic neurons in the brain. Here we show that this binary targeting decision is controlled by a C-terminal proteolysis. Hh with an intact C-terminus undergoes axonal transport, whereas a C-terminal proteolysis enables Hh to remain in the retina, creating a balance between eye and brain development. Thus, we define a novel mechanism for the apical/basal targeting of this developmentally important protein and posit that similar post-translational regulation could underlie the polarity of related ligands.
Collapse
Affiliation(s)
- Joseph R Daniele
- Department of Molecular & Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Tehyen Chu
- Department of Molecular & Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Sam Kunes
- Department of Molecular & Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
31
|
Mechanism of inhibition of the tumor suppressor Patched by Sonic Hedgehog. Proc Natl Acad Sci U S A 2016; 113:E5866-E5875. [PMID: 27647915 DOI: 10.1073/pnas.1606719113] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Hedgehog cell-cell signaling pathway is crucial for animal development, and its misregulation is implicated in numerous birth defects and cancers. In unstimulated cells, pathway activity is inhibited by the tumor suppressor membrane protein, Patched. Hedgehog signaling is triggered by the secreted Hedgehog ligand, which binds and inhibits Patched, thus setting in motion the downstream events in signal transduction. Despite its critical importance, the mechanism by which Hedgehog antagonizes Patched has remained unknown. Here, we show that vertebrate Patched1 inhibition is caused by direct, palmitate-dependent interaction with the Sonic Hedgehog ligand. We find that a short palmitoylated N-terminal fragment of Sonic Hedgehog binds Patched1 and, strikingly, is sufficient to inhibit it and to activate signaling. The rest of Sonic Hedgehog confers high-affinity Patched1 binding and internalization through a distinct binding site, but, surprisingly, it is not absolutely required for signaling. The palmitate-dependent interaction with Patched1 is specifically impaired in a Sonic Hedgehog mutant causing human holoprosencephaly, the most frequent congenital brain malformation, explaining its drastically reduced potency. The palmitate-dependent interaction is also abolished in constitutively inhibited Patched1 point mutants causing the Gorlin cancer syndrome, suggesting that they might adopt a conformation distinct from the wild type. Our data demonstrate that Sonic Hedgehog signals via the palmitate-dependent arm of a two-pronged contact with Patched1. Furthermore, our results suggest that, during Hedgehog signaling, ligand binding inhibits Patched by trapping it in an inactive conformation, a mechanism that explains the dramatically reduced activity of oncogenic Patched1 mutants.
Collapse
|
32
|
Xie J, Owen T, Xia K, Callahan B, Wang C. A Single Aspartate Coordinates Two Catalytic Steps in Hedgehog Autoprocessing. J Am Chem Soc 2016; 138:10806-9. [PMID: 27529645 PMCID: PMC5589136 DOI: 10.1021/jacs.6b06928] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Hedgehog (Hh) signaling is driven by the cholesterol-modified Hh ligand, generated by autoprocessing of Hh precursor protein. Two steps in Hh autoprocessing, N-S acyl shift and transesterification, must be coupled for efficient Hh cholesteroylation and downstream signal transduction. In the present study, we show that a conserved aspartate residue, D46 of the Hh autoprocessing domain, coordinates these two catalytic steps. Mutagenesis demonstrated that D46 suppresses non-native Hh precursor autoprocessing and is indispensable for transesterification with cholesterol. NMR measurements indicated that D46 has a pKa of 5.6, ∼2 units above the expected pKa of aspartate, due to a hydrogen-bond between protonated D46 and a catalytic cysteine residue. However, the deprotonated form of D46 side chain is also essential, because a D46N mutation cannot mediate cholesteroylation. On the basis of these data, we propose that the proton shuttling of D46 side chain mechanistically couples the two steps of Hh cholesteroylation.
Collapse
Affiliation(s)
- Jian Xie
- Biochemistry and Biophysics Graduate Program, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
| | - Timothy Owen
- Department of Chemistry, Binghamton University, State University of New York, 4400 Vestal Parkway East, Binghamton, New York 13902, United States
| | - Ke Xia
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
| | - Brian Callahan
- Department of Chemistry, Binghamton University, State University of New York, 4400 Vestal Parkway East, Binghamton, New York 13902, United States
| | - Chunyu Wang
- Biochemistry and Biophysics Graduate Program, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
- Department of Biological Sciences, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
| |
Collapse
|
33
|
Gondré-Lewis MC, Gboluaje T, Reid SN, Lin S, Wang P, Green W, Diogo R, Fidélia-Lambert MN, Herman MM. The human brain and face: mechanisms of cranial, neurological and facial development revealed through malformations of holoprosencephaly, cyclopia and aberrations in chromosome 18. J Anat 2016; 227:255-67. [PMID: 26278930 DOI: 10.1111/joa.12343] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2015] [Indexed: 01/19/2023] Open
Abstract
The study of inborn genetic errors can lend insight into mechanisms of normal human development and congenital malformations. Here, we present the first detailed comparison of cranial and neuro pathology in two exceedingly rare human individuals with cyclopia and alobar holoprosencephaly (HPE) in the presence and absence of aberrant chromosome 18 (aCh18). The aCh18 fetus contained one normal Ch18 and one with a pseudo-isodicentric duplication of chromosome 18q and partial deletion of 18p from 18p11.31 where the HPE gene, TGIF, resides, to the p terminus. In addition to synophthalmia, the aCh18 cyclopic malformations included a failure of induction of most of the telencephalon - closely approximating anencephaly, unchecked development of brain stem structures, near absence of the sphenoid bone and a malformed neurocranium and viscerocranium that constitute the median face. Although there was complete erasure of the olfactory and superior nasal structures, rudiments of nasal structures derived from the maxillary bone were evident, but with absent pharyngeal structures. The second non-aCh18 cyclopic fetus was initially classified as a true Cyclops, as it appeared to have a proboscis and one median eye with a single iris, but further analysis revealed two eye globes as expected for synophthalmic cyclopia. Furthermore, the proboscis was associated with the medial ethmoid ridge, consistent with an incomplete induction of these nasal structures, even as the nasal septum and paranasal sinuses were apparently developed. An important conclusion of this study is that it is the brain that predicts the overall configuration of the face, due to its influence on the development of surrounding skeletal structures. The present data using a combination of macroscopic, computed tomography (CT) and magnetic resonance imaging (MRI) techniques provide an unparalleled analysis on the extent of the effects of median defects, and insight into normal development and patterning of the brain, face and their skeletal support.
Collapse
Affiliation(s)
- Marjorie C Gondré-Lewis
- Laboratory for Neurodevelopment, Department of Anatomy, Howard University College of Medicine, Washington, DC, USA
| | - Temitayo Gboluaje
- Laboratory for Neurodevelopment, Department of Anatomy, Howard University College of Medicine, Washington, DC, USA
| | - Shaina N Reid
- Laboratory for Neurodevelopment, Department of Anatomy, Howard University College of Medicine, Washington, DC, USA
| | - Stephen Lin
- Department of Radiology, Howard University College of Medicine, Washington, DC, USA
| | - Paul Wang
- Department of Radiology, Howard University College of Medicine, Washington, DC, USA
| | - William Green
- Laboratory for Evolutionary Biology, Department of Anatomy, Howard University College of Medicine, Washington, DC, USA
| | - Rui Diogo
- Laboratory for Evolutionary Biology, Department of Anatomy, Howard University College of Medicine, Washington, DC, USA
| | | | - Mary M Herman
- Clinical Brain Disorders Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
34
|
Facial Morphogenesis: Physical and Molecular Interactions Between the Brain and the Face. Curr Top Dev Biol 2015; 115:299-320. [PMID: 26589930 DOI: 10.1016/bs.ctdb.2015.09.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Morphogenesis of the brain and face is intrinsically linked by a number of factors. These include: origins of tissues, adjacency allowing their physical interactions, and molecular cross talk controlling growth. Neural crest cells that form the facial primordia originate on the dorsal neural tube. In the caudal pharyngeal arches, a Homeobox code regulates arch identity. In anterior regions, positional information is acquired locally. Second, the brain is a structural platform that influences positioning of the facial primordia, and brain growth influences the timing of primordia fusion. Third, the brain helps induce a signaling center, the frontonasal ectodermal zone, in the ectoderm, which participates in patterned growth of the upper jaw. Similarly, signals from neural crest cells regulate expression of fibroblast growth factor 8 in the anterior neural ridge, which controls growth of the anterior forebrain. Disruptions to these interactions have significant consequences for normal development of the craniofacial complex, leading to structural malformations and birth defects.
Collapse
|
35
|
Owen TS, Ngoje G, Lageman TJ, Bordeau BM, Belfort M, Callahan BP. Förster resonance energy transfer-based cholesterolysis assay identifies a novel hedgehog inhibitor. Anal Biochem 2015; 488:1-5. [PMID: 26095399 DOI: 10.1016/j.ab.2015.06.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/12/2015] [Accepted: 06/12/2015] [Indexed: 01/20/2023]
Abstract
Hedgehog (Hh) proteins function in cell/cell signaling processes linked to human embryo development and the progression of several types of cancer. Here, we describe an optical assay of hedgehog cholesterolysis, a unique autoprocessing event critical for Hh function. The assay uses a recombinant Förster resonance energy transfer (FRET)-active Hh precursor whose cholesterolysis can be monitored continuously in multi-well plates (dynamic range=4, Z'=0.7), offering advantages in throughput over conventional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) assays. Application of the optical assay in a pilot small molecule screen produced a novel cholesterolysis inhibitor (apparent IC50=5×10(-6)M) that appears to inactivate hedgehog covalently by a substitution nucleophilic aromatic (SNAr) mechanism.
Collapse
Affiliation(s)
- Timothy S Owen
- Department of Chemistry, Binghamton University, Binghamton, NY 13902, USA
| | - George Ngoje
- Department of Chemistry, Binghamton University, Binghamton, NY 13902, USA
| | - Travis J Lageman
- Department of Chemistry, Binghamton University, Binghamton, NY 13902, USA
| | - Brandon M Bordeau
- Department of Chemistry, Binghamton University, Binghamton, NY 13902, USA
| | - Marlene Belfort
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Brian P Callahan
- Department of Chemistry, Binghamton University, Binghamton, NY 13902, USA.
| |
Collapse
|
36
|
Paulo SS, Fernandes-Rosa FL, Turatti W, Coeli-Lacchini FB, Martinelli CE, Nakiri GS, Moreira AC, Santos AC, de Castro M, Antonini SR. Sonic Hedgehog mutations are not a common cause of congenital hypopituitarism in the absence of complex midline cerebral defects. Clin Endocrinol (Oxf) 2015; 82:562-9. [PMID: 25056824 DOI: 10.1111/cen.12565] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/02/2014] [Accepted: 07/21/2014] [Indexed: 01/29/2023]
Abstract
CONTEXT AND OBJECTIVE Sonic Hedgehog (SHH) and GLI2, an obligatory mediator of SHH signal transduction, are holoprosencephaly (HPE)-associated genes essential in pituitary formation. GLI2 variants have been found in patients with congenital hypopituitarism without complex midline cerebral defects (MCD). However, data on the occurrence of SHH mutations in these patients are limited. We screened for SHH and GLI2 mutations or copy number variations (CNV) in patients with congenital hypopituitarism without MCD or with variable degrees of MCD. PATIENTS AND METHODS Detailed data on clinical, laboratory and neuroimaging findings of 115 patients presenting with congenital hypopituitarism without MCD, septo-optic dysplasia or HPE were analysed. The SHH and GLI2 genes were directly sequenced, and the presence of gene CNV was analysed by multiplex ligation-dependent probe amplification (MLPA). RESULTS Anterior pituitary deficiency was found in 74% and 53% of patients with SOD or HPE, respectively. Diabetes insipidus was common in patients with HPE (47%) but infrequent in patients with congenital hypopituitarism or SOD (7% and 8%, respectively). A single heterozygous nonsense SHH mutation (p.Tyr175Ter) was found in a patient presenting with hypopituitarism and alobar HPE. No other SHH mutations or CNV were found. Nine GLI2 variations (8 missense and 1 frameshift) including a homozygous and a compound heterozygous variation were found in patients with congenital hypopituitarism or SOD, but not in HPE patients. No GLI2 CNV were found. CONCLUSION SHH mutations or copy number variations are not a common cause of congenital hypopituitarism in patients without complex midline cerebral defects. GLI2 variants are found in some patients with congenital hypopituitarism without complex midline cerebral defects or septo-optic dysplasia. However, functional analyses of these variants are needed to strengthen genotype-phenotype relationship.
Collapse
Affiliation(s)
- Sabrina Soares Paulo
- Department of Pediatrics, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Jao CY, Nedelcu D, Lopez LV, Samarakoon TN, Welti R, Salic A. Bioorthogonal probes for imaging sterols in cells. Chembiochem 2015; 16:611-7. [PMID: 25663046 DOI: 10.1002/cbic.201402715] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 12/23/2014] [Indexed: 12/21/2022]
Abstract
Cholesterol is a fundamental lipid component of eukaryotic membranes and a precursor of potent signaling molecules, such as oxysterols and steroid hormones. Cholesterol and oxysterols are also essential for Hedgehog signaling, a pathway critical in embryogenesis and cancer. Despite their importance, the use of imaging sterols in cells is currently very limited. We introduce a robust and versatile method for sterol microscopy based on C19 alkyne cholesterol and oxysterol analogues. These sterol analogues are fully functional; they rescue growth of cholesterol auxotrophic cells and faithfully recapitulate the multiple roles that sterols play in Hedgehog signal transduction. Alkyne sterol analogues incorporate efficiently into cellular membranes and can be imaged with high resolution after copper(I)-catalyzed azide-alkyne cycloaddition reaction with fluorescent azides. We demonstrate the use of alkyne sterol probes for visualizing the subcellular distribution of cholesterol and for two-color imaging of sterols and choline phospholipids. Our imaging strategy should be broadly applicable to studying the role of sterols in normal physiology and disease.
Collapse
Affiliation(s)
- Cindy Y Jao
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115 (USA)
| | | | | | | | | | | |
Collapse
|
38
|
Akiyama T, Gibson MC. Morphogen transport: theoretical and experimental controversies. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:99-112. [PMID: 25581550 DOI: 10.1002/wdev.167] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 10/13/2014] [Indexed: 01/09/2023]
Abstract
UNLABELLED According to morphogen gradient theory, extracellular ligands produced from a localized source convey positional information to receiving cells by signaling in a concentration-dependent manner. How do morphogens create concentration gradients to establish positional information in developing tissues? Surprisingly, the answer to this central question remains largely unknown. During development, a relatively small number of morphogens are reiteratively deployed to ensure normal embryogenesis and organogenesis. Thus, the intracellular processing and extracellular transport of morphogens are tightly regulated in a tissue-specific manner. Over the past few decades, diverse experimental and theoretical approaches have led to numerous conflicting models for gradient formation. In this review, we summarize the experimental evidence for each model and discuss potential future directions for studies of morphogen gradients. For further resources related to this article, please visit the WIREs website. CONFLICT OF INTEREST The authors have declared no conflicts of interest for this article.
Collapse
Affiliation(s)
- Takuya Akiyama
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | |
Collapse
|
39
|
Expanding the Phenotypic Expression of Sonic Hedgehog Mutations Beyond Holoprosencephaly. J Craniofac Surg 2015; 26:3-5. [DOI: 10.1097/scs.0000000000001377] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
40
|
Guerrero I, Kornberg TB. Hedgehog and its circuitous journey from producing to target cells. Semin Cell Dev Biol 2014; 33:52-62. [PMID: 24994598 DOI: 10.1016/j.semcdb.2014.06.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 06/23/2014] [Indexed: 12/12/2022]
Abstract
The hedgehog (Hh) signaling protein has essential roles in the growth, development and regulation of many vertebrate and invertebrate organs. The processes that make Hh and prepare it for release from producing cells and that move it to target cells are both diverse and complex. This article reviews the essential features of these processes and highlights recent work that provides a novel framework to understand how these processes contribute to an integrated pathway.
Collapse
Affiliation(s)
- Isabel Guerrero
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain.
| | - Thomas B Kornberg
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
41
|
Coutton C, Poreau B, Devillard F, Durand C, Odent S, Rozel C, Vieville G, Amblard F, Jouk PS, Satre V. Currarino Syndrome and HPE Microform Associated with a 2.7-Mb Deletion in 7q36.3 Excluding SHH Gene. Mol Syndromol 2013; 5:25-31. [PMID: 24550762 DOI: 10.1159/000355391] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2013] [Indexed: 01/28/2023] Open
Abstract
Holoprosencephaly (HPE) is the most common forebrain defect in humans. It results from incomplete midline cleavage of the prosencephalon and can be caused by environmental and genetic factors. HPE is usually described as a continuum of brain malformations from the most severe alobar HPE to the middle interhemispheric fusion variant or syntelencephaly. A microform of HPE is limited to craniofacial features such as congenital nasal pyriform aperture stenosis and single central maxillary incisor, without brain malformation. Among the heterogeneous causes of HPE, point mutations and deletions in the SHH gene at 7q36 have been identified as well as extremely rare chromosomal rearrangements in the long-range enhancers of this gene. Here, we report a boy with an HPE microform associated with a Currarino syndrome. Array CGH detected a de novo 2.7-Mb deletion in the 7q36.3 region including the MNX1 gene, usually responsible for the Currarino triad but excluding SHH, which is just outside the deletion. This new case provides further evidence of the importance of the SHH long-range enhancers in the HPE spectrum.
Collapse
Affiliation(s)
- C Coutton
- Laboratoire de Génétique Chromosomique, Grenoble, France ; AGIM CNRS FRE3405, Equipe 'Andrologie, Génétique et Cancer', Université Joseph Fourier, Grenoble, France
| | - B Poreau
- Service de Génétique Clinique, Département de Génétique et Procréation, Grenoble, France
| | - F Devillard
- Laboratoire de Génétique Chromosomique, Grenoble, France
| | - C Durand
- Service de Radiopédiatrie, Hôpital Couple Enfant, CHU Grenoble, Grenoble, France
| | - S Odent
- Service de Génétique Clinique, Rennes, France
| | - C Rozel
- Service de Radiologie et Imagerie Médicale, Hôpital Sud, Rennes, France
| | - G Vieville
- Laboratoire de Génétique Chromosomique, Grenoble, France
| | - F Amblard
- Laboratoire de Génétique Chromosomique, Grenoble, France
| | - P-S Jouk
- Service de Génétique Clinique, Département de Génétique et Procréation, Grenoble, France
| | - V Satre
- Laboratoire de Génétique Chromosomique, Grenoble, France ; AGIM CNRS FRE3405, Equipe 'Andrologie, Génétique et Cancer', Université Joseph Fourier, Grenoble, France
| |
Collapse
|
42
|
Castro JJ, Méndez JP, Coral-Vázquez RM, Soriano-Ursúa MA, Damian-Matsumura P, Benítez-Granados J, Rosas-Vargas H, Canto P. In vitro and molecular modeling analysis of two mutant desert hedgehog proteins associated with 46,XY gonadal dysgenesis. DNA Cell Biol 2013; 32:524-530. [PMID: 23786321 PMCID: PMC3753129 DOI: 10.1089/dna.2013.2052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/22/2013] [Accepted: 05/23/2013] [Indexed: 02/05/2023] Open
Abstract
Mutations of Desert hedgehog (DHH) have been associated to 46,XY pure gonadal dysgenesis (PGD) and to mixed gonadal dysgenesis (MGD); however, there have been no functional studies of mutations described in DHH. To determine if mutations p.L162P and Δ1086delG yield functional impairment, we performed in vitro and in silico analysis of both DHH mutants. In complementary DNA of DHH, we performed site-directed mutagenesis, which was confirmed by DNA sequencing. Protein extracts were obtained from HEK293cells transfected with different constructs and analyzed by Western blot; besides, densitometric analysis of chemiluminescent signals was performed. In addition, the structure of the wt-DHH and its two mutant proteins was inferred using in silico protein molecular modeling. In the Western blot analysis, we observed the absence of signal for p.L162P in DHH-N and a diminished signal for Δ1086delG in DHH-C, when compared to wt-DHH. Protein modeling showed notable conformational changes for the side chains of p.L162P, while the secondary structure was drastically modified in Δ1086delG, when compared to wt-DHH. To our knowledge, this is the first study focused to determine by in vitro studies, the effect of two specific mutations in DHH associated with 46,XY PGD and MGD. Our results suggest that both mutations have a deleterious effect on the expression of the DHH mutant proteins.
Collapse
Affiliation(s)
- Josué Joram Castro
- División de Investigación Biomédica, Subdirección de Enseñanza e Investigación, Centro Médico Nacional 20 de Noviembre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, México, D.F., México
| | - Juan Pablo Méndez
- Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de México, México, D.F., México
- Clínica de Obesidad, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán,” México, D.F., México
| | - Ramón Mauricio Coral-Vázquez
- Sección de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, México, D.F., México
- Subdirección de Enseñanza e Investigación, Centro Médico Nacional “20 de Noviembre,” Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, México, D.F., México
| | | | - Pablo Damian-Matsumura
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana (UAM), México, D.F., México
| | - Jesús Benítez-Granados
- División de Investigación Biomédica, Subdirección de Enseñanza e Investigación, Centro Médico Nacional 20 de Noviembre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, México, D.F., México
| | - Haydee Rosas-Vargas
- Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría, Centro Médico Nacional Siglo XXI-IMSS, México, D.F., México
| | - Patricia Canto
- División de Investigación Biomédica, Subdirección de Enseñanza e Investigación, Centro Médico Nacional 20 de Noviembre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, México, D.F., México
| |
Collapse
|
43
|
Gradilla AC, Guerrero I. Hedgehog on the move: a precise spatial control of Hedgehog dispersion shapes the gradient. Curr Opin Genet Dev 2013; 23:363-73. [PMID: 23747033 DOI: 10.1016/j.gde.2013.04.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 01/28/2023]
Abstract
Hedgehog (Hh) as morphogen directs cell differentiation during development activating various target genes in a concentration dependent manner. The mechanisms that permit controlled Hh dispersion and gradient formation remain controversial. New research in the Drosophila wing disc epithelium has revealed a crucial role of Hh recycling for its release and transportation from source cells. Lipid modifications on Hh mediate key interactions with different elements of the pathway, which balance the retention and release of the molecule through the basolateral side of the epithelium, allowing its tight spatial control. Dispersion of Hh is also determined by its hydrophobic nature, and the mechanisms that include membrane-tethered transport of Hh are increasingly proposed.
Collapse
Affiliation(s)
- Ana-Citlali Gradilla
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), C/Nicolas Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | | |
Collapse
|
44
|
Gorbenko del Blanco D, de Graaff LCG, Visser TJ, Hokken-Koelega ACS. Single-nucleotide variants in two Hedgehog genes, SHH and HHIP, as genetic cause of combined pituitary hormone deficiency. Clin Endocrinol (Oxf) 2013; 78:415-23. [PMID: 22897141 DOI: 10.1111/cen.12000] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 07/01/2012] [Accepted: 07/27/2012] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Combined pituitary hormone deficiency (CPHD) is characterized by deficiencies of two or more anterior pituitary hormones. Its genetic cause is unknown in the majority of cases. The Hedgehog (Hh) signalling pathway has been implicated in disorders associated with pituitary development. Mutations in Sonic Hedgehog (SHH) have been described in patients with holoprosencephaly (with or without pituitary involvement). Hedgehog interacting protein (HHIP) has been associated with variations in adult height in genome wide association studies. We investigated whether mutations in these two genes of the Hh pathway, SHH and HHIP, could result in 'idiopathic' CPHD. DESIGN/PATIENTS We directly sequenced the coding regions and exon - intron boundaries of SHH and HHIP in 93 CPHD patients of the Dutch HYPOPIT study in whom mutations in the classical CPHD genes PROP1, POU1F1, HESX1, LHX3 and LHX4 had been ruled out. We compared the expression of Hh genes in Hep3B transfected cells between wild-type proteins and mutants. RESULTS We identified three single-nucleotide variants (p.Ala226Thr, c.1078C>T and c.*8G>T) in SHH. The function of the latter was severely affected in our in vitro assay. In HHIP, we detected a new activating variant c.-1G>C, which increases HHIP's inhibiting function on the Hh pathway. CONCLUSIONS Our results suggest involvement of the Hedgehog pathway in CPHD. We suggest that both SHH and HHIP are investigated as a second screening in CPHD, after mutations in the classical CPHD genes have been ruled out.
Collapse
|
45
|
Hardy RY, Resh MD. Identification of N-terminal residues of Sonic Hedgehog important for palmitoylation by Hedgehog acyltransferase. J Biol Chem 2012; 287:42881-9. [PMID: 23112049 DOI: 10.1074/jbc.m112.426833] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Sonic Hedgehog (Shh) is a secreted morphogen that regulates embryonic development. After removal of the signal peptide, Shh is processed to the mature, active form through autocleavage and a series of lipid modifications, including the attachment of palmitate. Covalent attachment of palmitate to the N-terminal cysteine of Shh is catalyzed by Hedgehog acyltransferase (Hhat) and is critical for proper signaling. The sequences within Shh that are responsible for palmitoylation by Hhat are not known. Here we show that the first six amino acids of mature Shh (CGPGRG) are sufficient for Hhat-mediated palmitoylation. Alanine scanning mutagenesis was used to determine the role of each amino acid and the positional sequence requirement in a cell-based Shh palmitoylation assay. Mutation of residues in the GPGR sequence to Ala had no effect on palmitoylation, provided that a positively charged residue was present within the first seven residues. The N-terminal position exhibited a strong but not exclusive requirement for Cys. Constructs with an N-terminal Ala were not palmitoylated. However, an N-terminal Ser served as a substrate for Hhat, but not the Drosophila melanogaster ortholog Rasp, highlighting a critical difference between the mammalian and fly enzymes. These findings define residues and regions within Shh that are necessary for its recognition as a substrate for Hhat-mediated palmitoylation. Finally, we report the results of a bioinformatics screen to identify other potential Hhat substrates encoded in the human genome.
Collapse
Affiliation(s)
- Rayshonda Y Hardy
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | | |
Collapse
|
46
|
Abstract
Hedgehog (Hh) proteins are secreted signaling proteins that contain amide-linked palmitate at the N-terminus and cholesterol at the C-terminus. Palmitoylation of Hh proteins is critical for effective long- and short-range signaling. The palmitoylation reaction occurs during transit of Hh through the secretory pathway, most likely in the lumen of the ER. Attachment of palmitate to Hh proteins is independent of cholesterol modification and autoprocessing and is catalyzed by Hhat (Hedgehog acyltransferase). Hhat is a member of the membrane bound O-acyltransferase (MBOAT) family, a subgroup of multipass membrane proteins that catalyze transfer of fatty acyl groups to lipids and proteins. Several classes of secreted proteins have recently been shown to be substrates for MBOAT acyltransferases, including Hh proteins and Spitz (palmitoylated by Hhat), Wg/Wnt proteins (modified with palmitate and/or palmitoleate by Porcupine) and ghrelin (octanoylated by ghrelin O-acyltransferase). These findings highlight protein fatty acylation as a mechanism that not only influences membrane binding of intracellular proteins but also regulates the signaling range and efficacy of secreted proteins.
Collapse
|
47
|
Solomon BD, Pineda-Alvarez DE, Gropman AL, Willis MJ, Hadley DW, Muenke M. High Intellectual Function in Individuals with Mutation-Positive Microform Holoprosencephaly. Mol Syndromol 2012; 3:140-142. [PMID: 23112757 DOI: 10.1159/000341373] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2012] [Indexed: 11/19/2022] Open
Abstract
Holoprosencephaly is the most common malformation of the forebrain and typically results in severe neurocognitive impairment with accompanying midline facial anomalies. Holoprosencephaly is heterogeneous and may be caused by chromosome aberrations or environmental factors, occur in the context of a syndrome or be due to heterozygous mutations in over 10 identified genes. The presence of these mutations may result in an extremely wide spectrum of severity, ranging from brain malformations incompatible with life to individuals with normal brain findings and subtle midline facial differences. Typically, clinicians regard intellectual disability as a sign that a parent or relative of a severely affected patient may be a mildly affected mutation 'carrier' with what is termed microform holoprosencephaly. Here we present 5 patients with clear phenotypic signs of microform holoprosencephaly, all of whom have evidence of above-average intellectual function. In 4 of these 5 individuals, the molecular cause of holoprosencephaly has been identified and includes mutations affecting SHH, SIX3, GLI2, and FGF8. This report expands the phenotypic spectrum of holoprosencephaly and is important in the counseling of patient and affected families.
Collapse
Affiliation(s)
- B D Solomon
- Medical Genetics Branch, Naval Medical Center, San Diego, Calif., USA
| | | | | | | | | | | |
Collapse
|
48
|
Zuniga A, Zeller R, Probst S. The molecular basis of human congenital limb malformations. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:803-22. [PMID: 23799625 DOI: 10.1002/wdev.59] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review focuses predominantly on the human congenital malformations caused by alterations affecting the morphoregulatory gene networks that control early limb bud patterning and outgrowth. Limb defects are among the most frequent congenital malformations in humans that are caused by genetic mutations or teratogenic effects resulting either in abnormal, loss of, or additional skeletal elements. Spontaneous and engineered mouse models have been used to identify and study the molecular alterations and disrupted gene networks that underlie human congenital limb malformations. More recently, mouse genetics has begun to reveal the alterations that affect the often-large cis-regulatory landscapes that control gene expression in limb buds and cause devastating effects on limb bud development. These findings have paved the way to identifying mutations in cis-regulatory regions as causal to an increasing number of congenital limb malformations in humans. In these cases, no mutations in the coding region of a presumed candidate were previously detected. This review highlights how the current understanding of the molecular gene networks and interactions that control mouse limb bud development provides insight into the etiology of human congenital limb malformations.
Collapse
Affiliation(s)
- Aimée Zuniga
- Developmental Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland.
| | | | | |
Collapse
|
49
|
Roessler E, Vélez JI, Zhou N, Muenke M. Utilizing prospective sequence analysis of SHH, ZIC2, SIX3 and TGIF in holoprosencephaly probands to describe the parameters limiting the observed frequency of mutant gene×gene interactions. Mol Genet Metab 2012; 105:658-64. [PMID: 22310223 PMCID: PMC3309119 DOI: 10.1016/j.ymgme.2012.01.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 01/05/2012] [Accepted: 01/05/2012] [Indexed: 11/29/2022]
Abstract
Clinical molecular diagnostic centers routinely screen SHH, ZIC2, SIX3 and TGIF for mutations that can help to explain holoprosencephaly and related brain malformations. Here we report a prospective Sanger sequence analysis of 189 unrelated probands referred to our diagnostic lab for genetic testing. We identified 28 novel unique mutations in this group (15%) and no instances of deleterious mutations in two genes in the same subject. Our result extends that of other diagnostic centers and suggests that among the aggregate 475 prospectively sequenced holoprosencephaly probands there is negligible evidence for direct gene-gene interactions among these tested genes. We model the predictions of the observed mutation frequency in the context of the hypothesis that gene×gene interactions are a prerequisite for forebrain malformations, i.e. the "multiple-hit" hypothesis. We conclude that such a direct interaction would be expected to be rare and that more subtle genetic and environmental interactions are a better explanation for the clinically observed inter- and intra-familial variability.
Collapse
Affiliation(s)
- Erich Roessler
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jorge I. Vélez
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nan Zhou
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
50
|
Basel-Vanagaite L, Sprecher E, Gat A, Merlob P, Albin-Kaplanski A, Konen O, Solomon BD, Muenke M, Grzeschik KH, Sirota L. New syndrome of congenital circumferential skin folds associated with multiple congenital anomalies. Pediatr Dermatol 2012; 29:89-95. [PMID: 21995818 PMCID: PMC4131925 DOI: 10.1111/j.1525-1470.2011.01403.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Congenital circumferential skin folds can be found in individuals with no additional defects, as well as in patients with multiple congenital anomalies and developmental abnormalities. Current data point to etiological heterogeneity of syndromic cases. We describe a 7-month-old girl with a novel combination of symmetrical congenital circumferential skin folds, dysmorphic features, and multiple congenital abnormalities. Examination of the patient revealed symmetrical congenital circumferential skin folds and dysmorphic features, as well as multiple congenital anomalies including nasal pyriform aperture stenosis, ventricular septal defect, absent spleen, camptodactyly, and severe psychomotor retardation. Skin biopsy demonstrated subcutaneous fat extending into the superficial and deep reticular dermis. Sequencing of the CDON, SHH, ZIC2, SIX3, and TGIF genes (associated with holoprosencephaly) did not disclose pathogenic alterations. Extensive review of previously described cases of syndromic congenital circumferential skin folds did not reveal a similar combination of clinical and histopathological findings.
Collapse
Affiliation(s)
- Lina Basel-Vanagaite
- Schneider Children's Medical Center of Israel and Raphael Recanati Genetic Institute, Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel.
| | | | | | | | | | | | | | | | | | | |
Collapse
|