1
|
Campagna J, Chandra S, Teter B, Cohn W, Pham J, Kim YS, Jagodzinska B, Vadivel K, Alam P, Bilousova T, Young M, Elias C, Marcucci J, Flacau I, Jackman A, Padder S, Wi D, Zhu C, Spilman P, Jung ME, Bredesen DE, John V. Discovery of an ApoE4-targeted small-molecule SirT1 enhancer for the treatment of Alzheimer's disease. Sci Rep 2025; 15:14028. [PMID: 40269061 PMCID: PMC12019328 DOI: 10.1038/s41598-025-96131-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/26/2025] [Indexed: 04/25/2025] Open
Abstract
Decreased expression of sirtuin 1 (SirT1) has been implicated in Alzheimer's disease (AD), and as we previously reported, is related to transcriptional repression by the major risk factor for sporadic AD, apolipoprotein E4 (ApoE4). Herein we describe the discovery of an orally brain-permeable small-molecule, DDL-218, that enhanced SirT1 in ApoE4-expressing neuronal cells and a murine AD model. DDL-218 increased the transcription factor NFYb resulting in upregulation of PRMT5. Mechanistic and modeling studies show that binding of ApoE4 to the SirT1 gene promoter can be displaced by PRMT5 leading to increased SirT1 transcription. DDL-218 treatment elicited improvement in memory in the AD model, suggesting that DDL-218 enhancement of neurotrophic SirT1 in the brain has potential to modulate neuronal activity that may clinically provide an improvement in cognitive function and complement the current anti-Aβ antibody monotherapy. Our findings support further development of DDL-218 as a novel ApoE4-targeted therapeutic candidate for AD.
Collapse
Affiliation(s)
- Jesus Campagna
- The Drug Discovery Lab, Department of Neurology, David Geffen School of Medicine, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Sujyoti Chandra
- The Drug Discovery Lab, Department of Neurology, David Geffen School of Medicine, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Bruce Teter
- The Drug Discovery Lab, Department of Neurology, David Geffen School of Medicine, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Whitaker Cohn
- The Drug Discovery Lab, Department of Neurology, David Geffen School of Medicine, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Johnny Pham
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, 650 Charles E. Young Drive, Los Angeles, CA, 90095, USA
| | - Young-Sug Kim
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, 650 Charles E. Young Drive, Los Angeles, CA, 90095, USA
| | - Barbara Jagodzinska
- The Drug Discovery Lab, Department of Neurology, David Geffen School of Medicine, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Kanagasabai Vadivel
- The Drug Discovery Lab, Department of Neurology, David Geffen School of Medicine, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Parvez Alam
- The Drug Discovery Lab, Department of Neurology, David Geffen School of Medicine, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Tina Bilousova
- The Drug Discovery Lab, Department of Neurology, David Geffen School of Medicine, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Malaney Young
- The Drug Discovery Lab, Department of Neurology, David Geffen School of Medicine, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Chris Elias
- The Drug Discovery Lab, Department of Neurology, David Geffen School of Medicine, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Juan Marcucci
- The Drug Discovery Lab, Department of Neurology, David Geffen School of Medicine, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Ilinca Flacau
- The Drug Discovery Lab, Department of Neurology, David Geffen School of Medicine, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Ainsley Jackman
- The Drug Discovery Lab, Department of Neurology, David Geffen School of Medicine, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Samar Padder
- The Drug Discovery Lab, Department of Neurology, David Geffen School of Medicine, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Dongwook Wi
- The Drug Discovery Lab, Department of Neurology, David Geffen School of Medicine, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Chunni Zhu
- The Drug Discovery Lab, Department of Neurology, David Geffen School of Medicine, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Patricia Spilman
- The Drug Discovery Lab, Department of Neurology, David Geffen School of Medicine, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Michael E Jung
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, 650 Charles E. Young Drive, Los Angeles, CA, 90095, USA
| | - Dale E Bredesen
- The Drug Discovery Lab, Department of Neurology, David Geffen School of Medicine, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Varghese John
- The Drug Discovery Lab, Department of Neurology, David Geffen School of Medicine, 710 Westwood Plaza, Los Angeles, CA, 90095, USA.
| |
Collapse
|
2
|
Matsunaga A, Saito T. Impact of Apolipoprotein E Variants: A Review of Naturally Occurring Variants and Clinical Features. J Atheroscler Thromb 2025; 32:281-303. [PMID: 39779225 PMCID: PMC11883201 DOI: 10.5551/jat.65393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/14/2024] [Indexed: 01/11/2025] Open
Abstract
Apolipoprotein E (apoE) is a key apoprotein in lipid transport and is susceptible to genetic mutations. ApoE variants have been studied for four decades and more than a hundred of them have been reported. This paper presents an up-to-date review of the function and structure of apoE in lipid metabolism, the E2, E3, and E4 isoforms, the APOE gene, and various pathologies, such as familial type III hyperlipidemia and lipoprotein glomerulopathy, caused by apoE variants. Alzheimer's disease was barely mentioned in this paper. But this review should help researchers obtain a comprehensive overview of human apoE in lipid metabolism.
Collapse
Affiliation(s)
- Akira Matsunaga
- General Medical Research Center, Faculty of Medicine, Fukuoka University
| | - Takao Saito
- Sanko Clinic
- Faculty of Medicine, Fukuoka University
| |
Collapse
|
3
|
Kalwick M, Roth M. A Comprehensive Review of the Genetics of Dyslipidemias and Risk of Atherosclerotic Cardiovascular Disease. Nutrients 2025; 17:659. [PMID: 40004987 PMCID: PMC11858766 DOI: 10.3390/nu17040659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Dyslipidemias are often diagnosed based on an individual's lipid panel that may or may not include Lp(a) or apoB. But these values alone omit key information that can underestimate risk and misdiagnose disease, which leads to imprecise medical therapies that reduce efficacy with unnecessary adverse events. For example, knowing whether an individual's dyslipidemia is monogenic can granularly inform risk and create opportunities for precision therapeutics. This review explores the canonical and non-canonical causes of dyslipidemias and how they impact atherosclerotic cardiovascular disease (ASCVD) risk. This review emphasizes the multitude of genetic causes that cause primary hypercholesterolemia, hypertriglyceridemia, and low or elevated high-density lipoprotein (HDL)-cholesterol levels. Within each of these sections, this review will explore the evidence linking these genetic conditions with ASCVD risk. Where applicable, this review will summarize approved therapies for a particular genetic condition.
Collapse
Affiliation(s)
| | - Mendel Roth
- GBinsight, GB Healthwatch, San Diego, CA 92122, USA;
| |
Collapse
|
4
|
Wang Y, Li C, Zhao W, Dong Y, Wang P. SYNTAX I score is associated with genetically confirmed familial hypercholesterolemia in chinese patients with coronary heart disease. BMC Cardiovasc Disord 2024; 24:737. [PMID: 39709366 DOI: 10.1186/s12872-024-04428-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Familial hypercholesterolemia (FH) is a genetically inherited disorder caused by monogenic mutations or polygenic deleterious variants. Patients with FH innate with significantly elevated risks for coronary heart disease (CHD). FH prevalence based on genetic testing in Chinese CHD patients is missing. Whether classical index of coronary atherosclerosis severity can be used as indicators of FH needs to be explored. To investigate the FH prevalence in Chinese CHD patients and the association of SYNTAX I score with FH genotype. METHODS The monogenic and polygenic FH related genes were genotyped in 400 consecutively enrolled CHD patients. The clinical characteristics and SYNTAX I scores were analyzed in a retrospective nested case-control study. RESULTS The prevalence of genetically confirmed FH in our CHD cohort was 8.75%. The cLDL-C level, SYNTAX I scores and incidences of triple vessel lesions in FH patients were significantly higher, while cLDL-C and SYNTAX I scores were independent risk factors for FH. Furthermore, cLDL-C levels of polygenic FH were significantly lower than monogenic FH, while their severity of coronary atherosclerosis was comparable. CONCLUSIONS Our study revealed that the SYNTAX I score was an independent risk factor for FH. Besides, polygenic origin of FH should be taken into consideration for CHD patients suspected of FH.
Collapse
Affiliation(s)
- Yihan Wang
- School of The Third Clinical Medical College, Capital Medical University, Beijing, People's Republic of China
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Chuang Li
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Wenshu Zhao
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Ying Dong
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People's Republic of China.
| | - Peijia Wang
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People's Republic of China.
- Department of General Practice, Beijing Chaoyang District Sunhe Community Health Center, Beijing, People's Republic of China.
| |
Collapse
|
5
|
Azar Y, Ludwig TE, Le Bon H, Strøm TB, Bluteau O, Di-Filippo M, Carrié A, Chtioui H, Béliard S, Marmontel O, Fonteille A, Gebhart M, Peretti N, Moulin P, Ferrières J, Pradignac A, Farnier M, Gallo A, Yelnik C, Blom D, Génin E, Bogsrud MP, Leren TP, Boileau C, Abifadel M, Rabès JP, Varret M. The singular French PCSK9-p.Ser127Arg gain-of-function variant: A significant player in cholesterol levels from a 775-year-old common ancestor. Atherosclerosis 2024; 399:118596. [PMID: 39500114 DOI: 10.1016/j.atherosclerosis.2024.118596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND AND AIMS PCSK9 is a key regulator of LDL-cholesterol levels. PCSK9 gain of function variants (GOFVs) cause autosomal dominant hypercholesterolemia (ADH). The first described PCSK9-GOFV, p.Ser127Arg, almost exclusively reported in France, represents 67 % of the PCSK9 French GOFVs due to a founder effect. Few other carriers are reported in South Africa and Norway. This study aims to estimate when the common ancestor lived and to describe a cohort of p.Ser127Arg carriers. METHODS Eight families and 14 p.Ser127Arg carriers were genotyped and phenotyped. Haplotypes were constructed using 11 microsatellites around PCSK9 and 6 intragenic single nucleotide polymorphisms (SNPs). To add to the biological analysis, eight additional p.Ser127Arg carriers, 12 carriers of other PCSK9-GOFVs, 93 LDLR loss of function variant (LOFV) carriers and 49 non-carriers subjects were phenotyped. RESULTS The most common ancestor of p.Ser127Arg was estimated to have lived 775 years ago [95 % CI: 575-1075]. French Protestants exiled after the revocation of the Edict of Nantes in 1685 AD likely brought the variant to South Africa and Norway. As expected for ADH subjects, carriers of LDLR-LOFV, the p.Ser127Arg, or other PCSK9-GOFVs showed significantly higher LDL-C levels than that of the non-carriers. Interestingly, LDL-C levels are higher for LDLR-LOFVs and for the reduced secreted p.Ser127Arg than for secreted PCSK9-GOFVs, suggesting a greater effect of the p.Ser127Arg. Conversely, HDL-C was significantly lower for LDLR-LOFV and p.Ser127Arg carriers. CONCLUSIONS This first report from a large cohort of PCSK9-p.Ser127Arg carriers provides observations suggesting a stronger hypercholesterolemic potential of the mutated pro-PCSK9 compared with the secreted mature protein. This work also provides additional data to support the association between PCSK9 and HDL metabolism, and molecular evidence that this variant appeared in France around 1248 AD (Graphical Abstract = Fig. 1).
Collapse
Affiliation(s)
- Yara Azar
- Paris Cité University and Sorbonne Paris Nord University, INSERM UMRS 1148, Laboratory for Vascular Translational Science (LVTS), F-75018, Paris, France; Saint-Joseph University of Beirut, Faculty of Pharmacy, Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Beirut, 1004 2020, Lebanon
| | - Thomas E Ludwig
- CHRU and Brest University, Inserm, EFS, INSERM UMR 1078, GGB, F-29200, Brest, France
| | - Hugo Le Bon
- Paris Cité University and Sorbonne Paris Nord University, INSERM UMRS 1148, Laboratory for Vascular Translational Science (LVTS), F-75018, Paris, France
| | - Thea Bismo Strøm
- Oslo University Hospital, Department of Medical Genetics, 0450, Oslo, Norway
| | - Olivier Bluteau
- Sorbonne University, Faculty of Medicine Pitié-Salpêtrière, INSERM UMRS 1166, F-75005, Paris, France
| | - Mathilde Di-Filippo
- Lyon-1 University, INSERM U1060, CarMeN Laboratory, Oullins, F-69600, France; Hospices Civil de Lyon, Department of Biochemistry and Molecular Biology, Bron, F-69002, France
| | - Alain Carrié
- Sorbonne University, Faculty of Medicine Pitié-Salpêtrière, INSERM UMRS 1166, F-75005, Paris, France
| | - Hedi Chtioui
- Aix-Marseille University, La Conception Hospital, Nutrition Department, AP-HM, INSERM, INRAE, C2VN, Marseille, F-13001, France
| | - Sophie Béliard
- Aix-Marseille University, La Conception Hospital, Nutrition Department, AP-HM, INSERM, INRAE, C2VN, Marseille, F-13001, France
| | - Oriane Marmontel
- Lyon-1 University, INSERM U1060, CarMeN Laboratory, Oullins, F-69600, France; Hospices Civil de Lyon, Department of Biochemistry and Molecular Biology, Bron, F-69002, France
| | - Annie Fonteille
- Centre Hospitalier d'Annecy Genevois, Médecine Interne, Epagny Metz-Tessy, F-74370, France
| | | | - Noël Peretti
- Lyon-1 University, INSERM U1060, CarMeN Laboratory, Oullins, F-69600, France; Hospices Civil de Lyon, Department of Pediatric Gastroenterology-Hepatology and Nutrition, Bron, F-69002, France
| | - Philippe Moulin
- Lyon-1 University, INSERM U1060, CarMeN Laboratory, Oullins, F-69600, France; Hospices Civil de Lyon, Department of Endocrinology and Nutrition, Bron, F-69002, France
| | - Jean Ferrières
- Toulouse Rangueil University Hospital, Department of Cardiology, INSERM, UMR 1295, F-31400, Toulouse, France
| | - Alain Pradignac
- CHU of Strasbourg, Department of Internal Medicine, Endocrinology and Nutrition, Strasbourg, F-67000, France
| | - Michel Farnier
- University of Bourgogne Franche-Comté, PEC2 Team, Dijon, Cedex, F-25000, France
| | - Antonio Gallo
- Sorbonne University, Faculty of Medicine Pitié-Salpêtrière, INSERM UMRS 1166, F-75005, Paris, France
| | - Cécile Yelnik
- CHUR of Lille, Department of Internal Medicine and Immunology, Lille, France; INSERM, UMR 1167 RID-AGE, Lille, F-59000, France
| | - Dirk Blom
- University of Cape Town, Division of Lipidology and Cape Heart Institute, Cape Town, 7925, South Africa
| | - Emmanuelle Génin
- CHRU and Brest University, Inserm, EFS, INSERM UMR 1078, GGB, F-29200, Brest, France
| | | | - Trond P Leren
- Oslo University Hospital, Department of Medical Genetics, 0450, Oslo, Norway
| | - Catherine Boileau
- Paris Cité University and Sorbonne Paris Nord University, INSERM UMRS 1148, Laboratory for Vascular Translational Science (LVTS), F-75018, Paris, France; Bichat-Claude Bernard Hospital, Genetic Department, AP-HP, F-75018, Paris, France
| | - Marianne Abifadel
- Paris Cité University and Sorbonne Paris Nord University, INSERM UMRS 1148, Laboratory for Vascular Translational Science (LVTS), F-75018, Paris, France; Saint-Joseph University of Beirut, Faculty of Pharmacy, Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Beirut, 1004 2020, Lebanon
| | - Jean-Pierre Rabès
- Paris Cité University and Sorbonne Paris Nord University, INSERM UMRS 1148, Laboratory for Vascular Translational Science (LVTS), F-75018, Paris, France; Paris-Saclay University and Versailles-Saint-Quentin-en-Yvelines University, Ambroise Paré University Hospital, Biochemistry and Molecular Genetics Department, AP-HP, F-92104, Boulogne-Billancourt, France
| | - Mathilde Varret
- Paris Cité University and Sorbonne Paris Nord University, INSERM UMRS 1148, Laboratory for Vascular Translational Science (LVTS), F-75018, Paris, France.
| |
Collapse
|
6
|
Schatoff D, Jung IY, Goldberg IJ. Lipid Disorders and Pregnancy. Endocrinol Metab Clin North Am 2024; 53:483-495. [PMID: 39084821 DOI: 10.1016/j.ecl.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Practicing endocrinologists are likely to confront 2 major issues that occur with dyslipidemias during pregnancy. The most dramatic is the development of severe hypertriglyceridemia leading to acute pancreatitis. The second is the approach to treatment of familial hypercholesterolemia, a common genetic disorder. This article reviews the normal physiology and the pathophysiology of lipoproteins that occurs with pregnancy and then discusses the approaches to prevention and/or treatment of dyslipidemia in pregnancy with a focus on lifestyle and acceptable drug therapies.
Collapse
Affiliation(s)
- Daria Schatoff
- New York University Grossman School of Medicine, New York, USA
| | - Irene Y Jung
- New York University Grossman School of Medicine, New York, USA
| | - Ira J Goldberg
- Department of Medicine, New York University Grossman School of Medicine, New York, USA; Holman Division of Endocrinology, Diabetes & Metabolism, New York University Grossman School of Medicine, New York, USA.
| |
Collapse
|
7
|
Civeira F, Martín C, Cenarro A. APOE and familial hypercholesterolemia. Curr Opin Lipidol 2024; 35:195-199. [PMID: 38640077 DOI: 10.1097/mol.0000000000000937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
PURPOSE OF REVIEW Autosomal dominant hypercholesterolemia is a common cause of cardiovascular disease. In addition to the classic genes that cause hypercholesterolemia, LDLR, APOB and PCSK9 , a new locus has emerged as a candidate to be the cause of this hyperlipidemia, the p.(Leu167del) mutation in the APOE gene. RECENT FINDINGS Various studies have demonstrated the involvement of the p.(Leu167del) mutation in the APOE gene in hypercholesterolemia: Studies of family segregation, lipoprotein composition by ultracentrifugation and proteomic techniques, and functional studies of VLDL-carrying p.(Leu167del) internalization with cell cultures have demonstrated the role of this mutation in the cause of hypercholesterolemia. The phenotype of individuals carrying the p.(Leu167del) in APOE is indistinguishable from familial hypercholesterolemia individuals with mutations in the classic genes. However, a better response to lipid-lowering treatment has been demonstrated in these APOE mutation carrier individuals. SUMMARY Therefore, APOE gene should be considered a candidate locus along with LDLR, APOB , and PCSK9 to be investigated in the genetic diagnosis of familial hypercholesterolemia.
Collapse
Affiliation(s)
- Fernando Civeira
- Hospital Universitario Miguel Servet, IIS Aragón, CIBERCV
- Universidad de Zaragoza, Zaragoza
| | - César Martín
- Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country, Leioa
- Department of Biochemistry and Molecular Biology, UPV/EHU, University of the Basque Country, Bilbao
| | - Ana Cenarro
- Hospital Universitario Miguel Servet, IIS Aragón, CIBERCV
- Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain
| |
Collapse
|
8
|
Zhang Y, de Ferranti SD, Moran AE. Genetic testing for familial hypercholesterolemia. Curr Opin Lipidol 2024; 35:93-100. [PMID: 38299384 PMCID: PMC10932851 DOI: 10.1097/mol.0000000000000925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
PURPOSE OF REVIEW Despite familial hypercholesterolemia (FH) being the most common genetic cause of cardiovascular disease (CVD), genetic testing is rarely utilized in the US. This review summarizes what is known about the clinical utility of genetic testing and its role in the diagnosis and screening of FH. RECENT FINDINGS The presence of an FH-causative variant is associated with a substantially higher risk of CVD, even when low-density lipoprotein cholesterol (LDL-C) levels are only modestly elevated. Genetic testing can facilitate the identification of FH cases who may be missed by clinical diagnostic criteria, improve risk stratification beyond LDL-C and family history, guide treatment decisions, and improve treatment initiation and adherence. Genetic testing can be incorporated into FH screening and diagnosis algorithms, including cascade, targeted, and universal screening. Integrating genetic testing into cascade screening can enhance the effectiveness of the process. Several models of universal FH screening with coordinated genetic and lipid testing are feasible and effective. SUMMARY More systematic integration of genetic testing into FH diagnosis and screening can significantly reduce the burden of this condition through early detection and treatment. Further pragmatic implementation studies are needed to determine how to more effectively and affordably integrate genetic testing into clinical lipid screening programs.
Collapse
Affiliation(s)
- Yiyi Zhang
- Division of General Medicine, Columbia University, New York, NY
| | - Sarah D. de Ferranti
- Department of Cardiology, Boston Children’s Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Andrew E. Moran
- Division of General Medicine, Columbia University, New York, NY
| |
Collapse
|
9
|
Paquette M, Baass A. Advances in familial hypercholesterolemia. Adv Clin Chem 2024; 119:167-201. [PMID: 38514210 DOI: 10.1016/bs.acc.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Familial hypercholesterolemia (FH), a semi-dominant genetic disease affecting more than 25 million people worldwide, is associated with severe hypercholesterolemia and premature atherosclerotic cardiovascular disease. Over the last decade, advances in data analysis, screening, diagnosis and cardiovascular risk stratification has significantly improved our ability to deliver precision medicine for these patients. Furthermore, recent updates on guideline recommendations and new therapeutic approaches have also proven to be highly beneficial. It is anticipated that both ongoing and upcoming clinical trials will offer further insights for the care and treatment of FH patients.
Collapse
Affiliation(s)
- Martine Paquette
- Genetic Dyslipidemias Clinic of the Montreal Clinical Research Institute, Montreal, QC, Canada
| | - Alexis Baass
- Genetic Dyslipidemias Clinic of the Montreal Clinical Research Institute, Montreal, QC, Canada; Department of Medicine, Divisions of Experimental Medicine and Medical Biochemistry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
10
|
Medeiros AM, Alves AC, Miranda B, Chora JR, Bourbon M. Unraveling the genetic background of individuals with a clinical familial hypercholesterolemia phenotype. J Lipid Res 2024; 65:100490. [PMID: 38122934 PMCID: PMC10832474 DOI: 10.1016/j.jlr.2023.100490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Familial hypercholesterolemia (FH) is a common genetic disorder of lipid metabolism caused by pathogenic/likely pathogenic variants in LDLR, APOB, and PCSK9 genes. Variants in FH-phenocopy genes (LDLRAP1, APOE, LIPA, ABCG5, and ABCG8), polygenic hypercholesterolemia, and hyperlipoprotein (a) [Lp(a)] can also mimic a clinical FH phenotype. We aim to present a new diagnostic tool to unravel the genetic background of clinical FH phenotype. Biochemical and genetic study was performed in 1,005 individuals with clinical diagnosis of FH, referred to the Portuguese FH Study. A next-generation sequencing panel, covering eight genes and eight SNPs to determine LDL-C polygenic risk score and LPA genetic score, was validated, and used in this study. FH was genetically confirmed in 417 index cases: 408 heterozygotes and 9 homozygotes. Cascade screening increased the identification to 1,000 FH individuals, including 11 homozygotes. FH-negative individuals (phenotype positive and genotype negative) have Lp(a) >50 mg/dl (30%), high polygenic risk score (16%), other monogenic lipid metabolism disorders (1%), and heterozygous pathogenic variants in FH-phenocopy genes (2%). Heterozygous variants of uncertain significance were identified in primary genes (12%) and phenocopy genes (7%). Overall, 42% of our cohort was genetically confirmed with FH. In the remaining individuals, other causes for high LDL-C were identified in 68%. Hyper-Lp(a) or polygenic hypercholesterolemia may be the cause of the clinical FH phenotype in almost half of FH-negative individuals. A small part has pathogenic variants in ABCG5/ABCG8 in heterozygosity that can cause hypercholesterolemia and should be further investigated. This extended next-generation sequencing panel identifies individuals with FH and FH-phenocopies, allowing to personalize each person's treatment according to the affected pathway.
Collapse
Affiliation(s)
- Ana Margarida Medeiros
- Unidade de I&D, Grupo de Investigação Cardiovascular, Departamento de Promoção da Saúde e Prevenção de Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal; BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Catarina Alves
- Unidade de I&D, Grupo de Investigação Cardiovascular, Departamento de Promoção da Saúde e Prevenção de Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal; BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Beatriz Miranda
- Unidade de I&D, Grupo de Investigação Cardiovascular, Departamento de Promoção da Saúde e Prevenção de Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal; BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Joana Rita Chora
- Unidade de I&D, Grupo de Investigação Cardiovascular, Departamento de Promoção da Saúde e Prevenção de Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal; BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Mafalda Bourbon
- Unidade de I&D, Grupo de Investigação Cardiovascular, Departamento de Promoção da Saúde e Prevenção de Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal; BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
11
|
Fularski P, Hajdys J, Majchrowicz G, Stabrawa M, Młynarska E, Rysz J, Franczyk B. Unveiling Familial Hypercholesterolemia-Review, Cardiovascular Complications, Lipid-Lowering Treatment and Its Efficacy. Int J Mol Sci 2024; 25:1637. [PMID: 38338916 PMCID: PMC10855128 DOI: 10.3390/ijms25031637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Familial hypercholesterolemia (FH) is a genetic disorder primarily transmitted in an autosomal-dominant manner. We distinguish two main forms of FH, which differ in the severity of the disease, namely homozygous familial hypercholesterolemia (HoFH) and heterozygous familial hypercholesterolemia (HeFH). The characteristic feature of this disease is a high concentration of low-density lipoprotein cholesterol (LDL-C) in the blood. However, the level may significantly vary between the two mentioned types of FH, and it is decidedly higher in HoFH. A chronically elevated concentration of LDL-C in the plasma leads to the occurrence of certain abnormalities, such as xanthomas in the tendons and skin, as well as corneal arcus. Nevertheless, a significantly more severe phenomenon is leading to the premature onset of cardiovascular disease (CVD) and its clinical implications, such as cardiac events, stroke or vascular dementia, even at a relatively young age. Due to the danger posed by this medical condition, we have investigated how both non-pharmacological and selected pharmacological treatment impact the course of FH, thereby reducing or postponing the risk of clinical manifestations of CVD. The primary objective of this review is to provide a comprehensive summary of the current understanding of FH, the effectiveness of lipid-lowering therapy in FH and to explain the anatomopathological correlation between FH and premature CVD development, with its complications.
Collapse
Affiliation(s)
- Piotr Fularski
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Joanna Hajdys
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Gabriela Majchrowicz
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Magdalena Stabrawa
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
12
|
Humphries SE, Ramaswami U, Hopper N. Should Familial Hypercholesterolaemia Be Included in the UK Newborn Whole Genome Sequencing Programme? Curr Atheroscler Rep 2023; 25:1083-1091. [PMID: 38060059 DOI: 10.1007/s11883-023-01177-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2023] [Indexed: 12/08/2023]
Abstract
PURPOSE OF REVIEW The UK National Health Service (NHS) has recently announced a Newborn Genomes Programme (NGP) to identify infants with treatable inherited disorders using whole genome sequencing (WGS). Here, we address, for familial hypercholesterolaemia (FH), the four principles that must be met for the inclusion of a disorder in the NGP. RECENT FINDINGS Principle A: There is strong evidence that the genetic variants causing FH can be reliably detected. Principle B: A high proportion of individuals who carry an FH-causing variant are likely to develop early heart disease if left undiagnosed and not offered appropriate treatment. Principle C: Early intervention has been shown to lead to substantially improved outcomes in children with FH. Principle D: The recommended interventions are equitably accessible for all. FH meets all the Wilson and Jungner criteria for inclusion in a screening programme, and it also meets all four principles and therefore should be included in the Newborn Genomes Programme.
Collapse
Affiliation(s)
- Steve E Humphries
- Centre for Cardiovascular Genetics, Rayne Building, 5 University Street, University College London, London, United Kingdom, WC1E 6JJ
| | - Uma Ramaswami
- Lysosomal Disorders Unit, Royal Free London NHS Foundation Trust, Royal Free Hospital, London, United Kingdom, NW3 2QG.
| | - Neil Hopper
- South Tyneside and Sunderland NHS Foundation Trust, Sunderland Royal Hospital, Sunderland, United Kingdom
| |
Collapse
|
13
|
Gratton J, Humphries SE, Schmidt AF, Patel RS, Sofat R, Finan C, Morris JK, Hingorani AD, Futema M. Modelling a two-stage adult population screen for autosomal dominant familial hypercholesterolaemia: cross-sectional analysis within the UK Biobank. BMJ PUBLIC HEALTH 2023; 1:e000021. [PMID: 40017868 PMCID: PMC11812690 DOI: 10.1136/bmjph-2023-000021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/04/2023] [Indexed: 03/01/2025]
Abstract
Background Most people with autosomal dominant familial hypercholesterolaemia (FH) remain undetected, which represents a missed opportunity for coronary heart disease prevention. Objective To evaluate the performance of two-stage adult population screening for FH. Design Using data from UK Biobank, we estimated the screening performance of different low-density lipoprotein cholesterol (LDL-C) cut-offs (stage 1) to select adults for DNA sequencing (stage 2) to identify individuals with FH-causing variants in LDLR, APOB, PCSK9 and APOE. We estimated the number of additional FH cases detected by cascade testing of first-degree relatives of index cases and compared the overall approach with screening in childhood. Setting UK Biobank. Participants 140 439 unrelated participants of European ancestry from UK Biobank with information on circulating LDL-C concentration and exome sequence. Main outcome measures For different LDL-C cut-offs, we estimated the detection and false-positive rate, the proportion of individuals who would be referred for DNA sequencing (stage 1 screen positive rate), and the number of FH cases identified by population screening followed by cascade testing. Results We identified 488 individuals with an FH-causing variant and 139 951 without (prevalence 1 in 288). An LDL-C cut-off of >4.8 mmol/L had a stage 1 detection rate (sensitivity) of 40% (95% CI 36 to 44%) for a false-positive rate of 10% (95% CI 10 to 11%). Detection rate increased at lower LDL-C cut-offs but at the expense of higher false-positive and screen positive rates, and vice versa. Two-stage screening of 100 000 adults using an LDL-C cut-off of 4.8 mmol/L would generate 10 398 stage 1 screen positives for sequencing, detect 138 FH cases and miss 209. Up to 207 additional cases could be detected through two-generation cascade testing of first-degree relatives. By comparison, based on previously published data, childhood screening followed by cascade testing was estimated to detect nearly three times as many affected individuals for around half the sequencing burden. Conclusions Two-stage adult population screening for FH could help achieve the 25% FH case detection target set in the National Health Service Long Term Plan, but less efficiently than childhood screening and with a greater sequencing requirement.
Collapse
Affiliation(s)
- Jasmine Gratton
- Institute of Cardiovascular Science, University College London, London, UK
| | - Steve E Humphries
- Institute of Cardiovascular Science, University College London, London, UK
| | | | - Riyaz S Patel
- Institute of Cardiovascular Science, University College London, London, UK
| | - Reecha Sofat
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | - Chris Finan
- Institute of Cardiovascular Science, University College London, London, UK
| | - Joan K Morris
- Population Health Research Institute, St George's University of London, London, UK
| | - Aroon D Hingorani
- Institute of Cardiovascular Science, University College London, London, UK
| | - Marta Futema
- Cardiology Research Centre, Molecular and Clinical Science Institute, St George's University of London, London, UK
| |
Collapse
|
14
|
Lee WJ, Chuang HN, Hsiao TH, Lee WL, Wu JP, Sheu WHH, Liang KW. Prevalence and prognosis of genetically proven familial hypercholesterolemia in subjects with coronary artery disease and reduced ejection fraction. Sci Rep 2023; 13:16942. [PMID: 37805670 PMCID: PMC10560264 DOI: 10.1038/s41598-023-44065-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 10/03/2023] [Indexed: 10/09/2023] Open
Abstract
Few studies have genetically screened variants related to familial hypercholesterolemia (FH) and investigated their survival impact in patients with coronary artery disease (CAD) and reduced left ventricular ejection fraction (EF). Patients with CAD and reduced EF (< 40%) were enrolled. Their genomic DNAs were sequenced for FH-related genes. All-cause and cardiovascular mortality data served as the major outcome. A total of 256 subjects were analyzed and 12 subjects (4.7%) carried FH-related genetic variants. After a median follow-up period of 44 months, 119 of the study subjects died. Cox survival analysis showed that carrying the FH genetic variant did not have a significant impact on the survival of CAD with reduced EF. However, higher estimated glomerular filtration rate (eGFR), better EF and beta blocker use were protective for a lower all-cause mortality. Further larger studies are needed to evaluate the impact of carrying the FH-related genetic variant on survival of CAD with reduced EF.
Collapse
Affiliation(s)
- Wen-Jane Lee
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Social Work, Tung-Hai University, Taichung, Taiwan
| | - Han-Ni Chuang
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Tzu-Hung Hsiao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Public Health, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
| | - Wen-Lieng Lee
- Cardiovascular Center, Taichung Veterans General Hospital, 1650 Taiwan Boulevard, Sec. 4, Taichung, 40705, Taiwan
- Department of Post-Baccalaureate Medicine, School of Medicine, National Chung Hsing University, Taichung, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jen-Pey Wu
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wayne H-H Sheu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Kae-Woei Liang
- Cardiovascular Center, Taichung Veterans General Hospital, 1650 Taiwan Boulevard, Sec. 4, Taichung, 40705, Taiwan.
- Department of Post-Baccalaureate Medicine, School of Medicine, National Chung Hsing University, Taichung, Taiwan.
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
15
|
Genetic Heterogeneity of Familial Hypercholesterolemia: Repercussions for Molecular Diagnosis. Int J Mol Sci 2023; 24:ijms24043224. [PMID: 36834635 PMCID: PMC9961636 DOI: 10.3390/ijms24043224] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Genetics of Familial Hypercholesterolemia (FH) is ascribable to pathogenic variants in genes encoding proteins leading to an impaired LDL uptake by the LDL receptor (LDLR). Two forms of the disease are possible, heterozygous (HeFH) and homozygous (HoFH), caused by one or two pathogenic variants, respectively, in the three main genes that are responsible for the autosomal dominant disease: LDLR, APOB and PCSK9 genes. The HeFH is the most common genetic disease in humans, being the prevalence about 1:300. Variants in the LDLRAP1 gene causes FH with a recessive inheritance and a specific APOE variant was described as causative of FH, contributing to increase FH genetic heterogeneity. In addition, variants in genes causing other dyslipidemias showing phenotypes overlapping with FH may mimic FH in patients without causative variants (FH-phenocopies; ABCG5, ABCG8, CYP27A1 and LIPA genes) or act as phenotype modifiers in patients with a pathogenic variant in a causative gene. The presence of several common variants was also considered a genetic basis of FH and several polygenic risk scores (PRS) have been described. The presence of a variant in modifier genes or high PRS in HeFH further exacerbates the phenotype, partially justifying its variability among patients. This review aims to report the updates on the genetic and molecular bases of FH with their implication for molecular diagnosis.
Collapse
|
16
|
Abstract
Atherosclerotic cardiovascular disease is the leading cause of death globally. Despite its important risk of premature atherosclerosis and cardiovascular disease, familial hypercholesterolemia (FH) is still largely underdiagnosed worldwide. It is one of the most frequently inherited diseases due to mutations, for autosomal dominant forms, in either of the LDLR, APOB, and PCSK9 genes or possibly a few mutations in the APOE gene and, for the rare autosomal forms, in the LDLRAP1 gene. The discovery of the genes implicated in the disease has largely helped to improve the diagnosis and treatment of FH from the LDLR by Brown and Goldstein, as well as the introduction of statins, to PCSK9 discovery in FH by Abifadel et al., and the very rapid availability of PCSK9 inhibitors. In the last two decades, major progress has been made in clinical and genetic diagnostic tools and the therapeutic arsenal against FH. Improving prevention, diagnosis, and treatment and making them more accessible to all patients will help reduce the lifelong burden of the disease.
Collapse
Affiliation(s)
- Marianne Abifadel
- UMR1148, Inserm, Hôpital Bichat-Claude Bernard, 46 rue Henri Huchard, F-75018 Paris, France.,Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Faculty of Pharmacy, Pôle Technologie-Santé, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Catherine Boileau
- UMR1148, Inserm, Hôpital Bichat-Claude Bernard, 46 rue Henri Huchard, F-75018 Paris, France.,Département de Génétique, AP-HP, Hôpital Bichat-Claude Bernard, Paris, France
| |
Collapse
|
17
|
Heidemann BE, Koopal C, Baass A, Defesche JC, Zuurbier L, Mulder MT, Roeters van Lennep JE, Riksen NP, Boot C, Marais AD, Visseren FLJ. Establishing the relationship between Familial Dysbetalipoproteinemia and genetic variants in the APOE gene. Clin Genet 2022; 102:253-261. [PMID: 35781703 PMCID: PMC9543580 DOI: 10.1111/cge.14185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/30/2022]
Abstract
Familial Dysbetalipoproteinemia (FD) is the second most common monogenic dyslipidemia and is associated with a very high cardiovascular risk due to cholesterol‐enriched remnant lipoproteins. FD is usually caused by a recessively inherited variant in the APOE gene (ε2ε2), but variants with dominant inheritance have also been described. The typical dysbetalipoproteinemia phenotype has a delayed onset and requires a metabolic hit. Therefore, the diagnosis of FD should be made by demonstrating both the genotype and dysbetalipoproteinemia phenotype. Next Generation Sequencing is becoming more widely available and can reveal variants in the APOE gene for which the relation with FD is unknown or uncertain. In this article, two approaches are presented to ascertain the relationship of a new variant in the APOE gene with FD. The comprehensive approach consists of determining the pathogenicity of the variant and its causal relationship with FD by confirming a dysbetalipoproteinemia phenotype, and performing in vitro functional tests and, optionally, in vivo postprandial clearance studies. When this is not feasible, a second, pragmatic approach within reach of clinical practice can be followed for individual patients to make decisions on treatment, follow‐up, and family counseling.
Collapse
Affiliation(s)
- Britt E Heidemann
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Charlotte Koopal
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Alexis Baass
- Genetic Dyslipidemias Clinic of the Montreal Clinical Research Institute, Québec, Canada; Department of Medicine, Divisions of Experimental Medicine and Medical Biochemistry, McGill University, Québec, Canada
| | - Joep C Defesche
- Department of Human Genetics, Amsterdam University Medical Centers, University of Amsterdam, Netherlands
| | - Linda Zuurbier
- Department of Human Genetics, Amsterdam University Medical Centers, University of Amsterdam, Netherlands
| | - Monique T Mulder
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Niels P Riksen
- Department of Internal Medicine and Research Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Christopher Boot
- Department of Blood Sciences, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - A David Marais
- Division of Chemical Pathology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, South Africa; Cape Town, South Africa
| | - Frank L J Visseren
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht University, The Netherlands
| |
Collapse
|
18
|
Benito-Vicente A, Uribe KB, Larrea-Sebal A, Palacios L, Cenarro A, Calle X, Galicia-Garcia U, Jebari-Benslaiman S, Sánchez-Hernández RM, Stef M, Lambert G, Civeira F, Martín C. Leu22_Leu23 Duplication at the Signal Peptide of PCSK9 Promotes Intracellular Degradation of LDLr and Autosomal Dominant Hypercholesterolemia. Arterioscler Thromb Vasc Biol 2022; 42:e203-e216. [PMID: 35510551 DOI: 10.1161/atvbaha.122.315499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND PCSK9 (Proprotein convertase subtilisin/kexin type 9) regulates LDL-C (low-density lipoprotein cholesterol) metabolism by targeting LDLr (LDL receptor) for lysosomal degradation. PCSK9 gain-of-function variants cause autosomal dominant hypercholesterolemia by reducing LDLr levels, the D374Y variant being the most severe, while loss-of-function variants are associated with low LDL-C levels. Gain-of-function and loss-of-function activities have also been attributed to variants occurring in the PCSK9 signal peptide. Among them, L11 is a very rare PCSK9 variant that seems to increase LDL-C values in a moderate way causing mild hypercholesterolemia. METHODS Using molecular biology and biophysics methodologies, activities of L8 and L11 variants, both located in the leucine repetition stretch of the signal peptide, have been extensively characterized in vitro. RESULTS L8 variant is not associated with increased LDLr activity, whereas L11 activity is increased by ≈20% compared with wt PCSK9. The results suggest that the L11 variant reduces LDLr levels intracellularly by a process resulting from impaired cleavage of the signal peptide. This would lead to less efficient LDLr transport to the cell membrane and promote LDLr intracellular degradation. CONCLUSIONS Deletion of a leucine in the signal peptide in L8 variant does not affect PCSK9 activity, whereas the leucine duplication in the L11 variant enhances LDLr intracellular degradation. These findings highlight the importance of deep in vitro characterization of PCSK9 genetic variants to determine pathogenicity and improve clinical diagnosis and therapy of inherited familial hypercholesterolemia disease.
Collapse
Affiliation(s)
- Asier Benito-Vicente
- Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain (A.B.-V., A.L.-S., U.G.-G., S.J.-B., C.M.).,Department of Biochemistry and Molecular Biology, UPV/EHU, University of the Basque Country, Bilbao, Spain (A.B.-V., S.J.-B., C.M.)
| | - Kepa B Uribe
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain (K.B.U.)
| | - Asier Larrea-Sebal
- Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain (A.B.-V., A.L.-S., U.G.-G., S.J.-B., C.M.).,Fundación Biofísica Bizkaia, Leioa, Spain (A.L.-S., U.G.-G.)
| | - Lourdes Palacios
- Progenika Biopharma, a Grifols Company, Derio, Spain (L.P., M.S.)
| | - Ana Cenarro
- Lipid Unit, Hospital Universitario Miguel Servet, IIS Aragon, CIBERCV, Universidad de Zaragoza, Spain (A.C., F.C.)
| | - Xabier Calle
- Institute of Biological Phychiatry, Mental Health Services, University Hospital, Copenhagen, Denmark (X.C.)
| | - Unai Galicia-Garcia
- Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain (A.B.-V., A.L.-S., U.G.-G., S.J.-B., C.M.).,Fundación Biofísica Bizkaia, Leioa, Spain (A.L.-S., U.G.-G.)
| | - Shifa Jebari-Benslaiman
- Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain (A.B.-V., A.L.-S., U.G.-G., S.J.-B., C.M.).,Department of Biochemistry and Molecular Biology, UPV/EHU, University of the Basque Country, Bilbao, Spain (A.B.-V., S.J.-B., C.M.)
| | - Rosa M Sánchez-Hernández
- Endocrinology Department, Complejo Hospitalario Universitario Insular Materno Infantil de Gran Canaria and Instituto Universitario de Investigación Biomédica y Sanitaria (IUIBS) de la Universidad de Las Palmas de Gran Canaria, Spain (R.M.S.-H.)
| | - Marianne Stef
- Progenika Biopharma, a Grifols Company, Derio, Spain (L.P., M.S.)
| | - Gilles Lambert
- Inserm, Laboratoire UMR1188 DéTROI, Sainte Clotilde, France (G.L.).,Université de La Réunion, Faculté de Médecine, Saint Denis de La Réunion, France (G.L.)
| | - Fernando Civeira
- Lipid Unit, Hospital Universitario Miguel Servet, IIS Aragon, CIBERCV, Universidad de Zaragoza, Spain (A.C., F.C.)
| | - Cesar Martín
- Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain (A.B.-V., A.L.-S., U.G.-G., S.J.-B., C.M.).,Department of Biochemistry and Molecular Biology, UPV/EHU, University of the Basque Country, Bilbao, Spain (A.B.-V., S.J.-B., C.M.)
| |
Collapse
|
19
|
Noorian S, Razmandeh R, Jazayeri R. Familial hypercholesterolemia in an Iranian family due to a mutation in the APOE gene (first case report). J Diabetes Metab Disord 2022; 21:1201-1205. [PMID: 35673444 PMCID: PMC9167334 DOI: 10.1007/s40200-022-01007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/12/2022] [Indexed: 11/30/2022]
Abstract
Familial Hypercholesterolemia is an autosomal, dominant genetic disorder associated with premature cardiovascular disease (CVD). Mutations in the LDLR, APOB, and PCSK9 genes cause the FH phenotype, but in 20% of FH patients, mutations in other genes cause FH. In this regard, we investigated the genetic basis of an Autosomal Dominant Hypercholesterolemia (ADH) phenotype in an Iranian family via next-generation exome sequencing with a panel of hyperlipidemia. We report the first case of FH in an Iranian family due to a mutation in the APOE gene. A 10-year-old female was referred to our genetic clinic with a family history of hypercholesterolemia and high cholesterol level at the age of 3. Evaluation of the lipid profile showed the off total cholesterol of 338 mg/dl, low-density lipoprotein cholesterol (LDL-C of 247 mg/dl(. We identified a mutation in the APOE gene, c.500_502del /p. Leu167del confirmed co-segregation in three individuals of the family from three generations. This in-frame mutation identified here, the first report in Iran, confirms previous reports that ADH can be caused by mutations within the APOE gene and strongly introduces it as the 4th gene that must be checked in the genetic investigating of FH.
Collapse
Affiliation(s)
- Shahab Noorian
- Department of Pediatric Endocrinology and Metabolism, Emam Ali Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Rezvan Razmandeh
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Roshanak Jazayeri
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Department of Genetics, Faculty of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
20
|
APOE Molecular Spectrum in a French Cohort with Primary Dyslipidemia. Int J Mol Sci 2022; 23:ijms23105792. [PMID: 35628605 PMCID: PMC9145810 DOI: 10.3390/ijms23105792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/17/2022] Open
Abstract
Primary hypercholesterolemia is characterized by elevated LDL-cholesterol (LDL-C) levels isolated in autosomal dominant hypercholesterolemia (ADH) or associated with elevated triglyceride levels in familial combined hyperlipidemia (FCHL). Rare APOE variants are known in ADH and FCHL. We explored the APOE molecular spectrum in a French ADH/FCHL cohort of 5743 unrelated probands. The sequencing of LDLR, PCSK9, APOB, and APOE revealed 76 carriers of a rare APOE variant, with no mutation in LDLR, PCSK9, or APOB. Among the 31 APOE variants identified here, 15 are described in ADH, 10 in FCHL, and 6 in both probands. Five were previously reported with dyslipidemia and 26 are novel, including 12 missense, 5 synonymous, 2 intronic, and 7 variants in regulatory regions. Sixteen variants were predicted as pathogenic or likely pathogenic, and their carriers had significantly lower polygenic risk scores (wPRS) than carriers of predicted benign variants. We observed no correlation between LDL-C levels and wPRS, suggesting a major effect of APOE variants. Carriers of p.Leu167del were associated with a severe phenotype. The analysis of 11 probands suggests that carriers of an APOE variant respond better to statins than carriers of a LDLR mutation. Altogether, we show that the APOE variants account for a significant contribution to ADH and FCHL.
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW : Familial combined hyperlipidemia (FCH), defined by concurrently elevated plasma triglyceride (TG) and low-density lipoprotein (LDL) cholesterol, has long been investigated to characterize its genetic basis. Despite almost half a century of searching, a single gene cause for the phenotype has not yet been identified. RECENT FINDINGS : Recent studies using next-generation genetic analytic methods confirm that FCH has a polygenic basis, with a clear large contribution from the accumulation of small-to-moderate effect common single nucleotide polymorphisms (SNPs) throughout the genome that is associated with raising TG, and probably also those raising LDL cholesterol. On the other hand, rare monogenic variants, such as those causing familial hypercholesterolemia, play a negligible role, if any. Genetic profiling suggests that patients with FCH and hypertriglyceridemia share a strong polygenic basis and show a similar profile of multiple TG-raising common SNPs. SUMMARY : Recent progress in genomics has shown that most if not all of the genetic susceptibility to FCH is polygenic in nature. Future research should include larger cohort studies, with wider ancestral diversity, ancestry-specific polygenic scores, and investigation of epigenetic and lifestyle factors to help further elucidate the causative agents at play in cases where the genetic etiology remains to be defined.
Collapse
Affiliation(s)
| | - Robert A Hegele
- Robarts Research Institute
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
22
|
Olmastroni E, Gazzotti M, Arca M, Averna M, Pirillo A, Catapano AL, Casula M. Twelve Variants Polygenic Score for Low-Density Lipoprotein Cholesterol Distribution in a Large Cohort of Patients With Clinically Diagnosed Familial Hypercholesterolemia With or Without Causative Mutations. J Am Heart Assoc 2022; 11:e023668. [PMID: 35322671 PMCID: PMC9075429 DOI: 10.1161/jaha.121.023668] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background A significant proportion of individuals clinically diagnosed with familial hypercholesterolemia (FH), but without any disease‐causing mutation, are likely to have polygenic hypercholesterolemia. We evaluated the distribution of a polygenic risk score, consisting of 12 low‐density lipoprotein cholesterol (LDL‐C)‐raising variants (polygenic LDL‐C risk score), in subjects with a clinical diagnosis of FH. Methods and Results Within the Lipid Transport Disorders Italian Genetic Network (LIPIGEN) study, 875 patients who were FH‐mutation positive (women, 54.75%; mean age, 42.47±15.00 years) and 644 patients who were FH‐mutation negative (women, 54.21%; mean age, 49.73±13.54 years) were evaluated. Patients who were FH‐mutation negative had lower mean levels of pretreatment LDL‐C than patients who were FH‐mutation positive (217.14±55.49 versus 270.52±68.59 mg/dL, P<0.0001). The mean value (±SD) of the polygenic LDL‐C risk score was 1.00 (±0.18) in patients who were FH‐mutation negative and 0.94 (±0.20) in patients who were FH‐mutation positive (P<0.0001). In the receiver operating characteristic analysis, the area under the curve for recognizing subjects characterized by polygenic hypercholesterolemia was 0.59 (95% CI, 0.56–0.62), with sensitivity and specificity being 78% and 36%, respectively, at 0.905 as a cutoff value. Higher mean polygenic LDL‐C risk score levels were observed among patients who were FH‐mutation negative having pretreatment LDL‐C levels in the range of 150 to 350 mg/dL (150–249 mg/dL: 1.01 versus 0.91, P<0.0001; 250–349 mg/dL: 1.02 versus 0.95, P=0.0001). A positive correlation between polygenic LDL‐C risk score and pretreatment LDL‐C levels was observed among patients with FH independently of the presence of causative mutations. Conclusions This analysis confirms the role of polymorphisms in modulating LDL‐C levels, even in patients with genetically confirmed FH. More data are needed to support the use of the polygenic score in routine clinical practice.
Collapse
Affiliation(s)
- Elena Olmastroni
- Epidemiology and Preventive Pharmacology Service (SEFAP) Department of Pharmacological and Biomolecular Sciences University of Milan Italy
| | - Marta Gazzotti
- Epidemiology and Preventive Pharmacology Service (SEFAP) Department of Pharmacological and Biomolecular Sciences University of Milan Italy
| | - Marcello Arca
- Department of Translational and Precision Medicine Sapienza University of Rome Rome Italy
| | - Maurizio Averna
- Department of Health Promotion Sciences Maternal and Infantile Care Internal Medicine and Medical Specialties (PROMISE) School of Medicine University of Palermo Palermo Italy
| | - Angela Pirillo
- IRCCS MultiMedica Sesto S. Giovanni (MI), Milan Italy.,Centre for the Study of Atherosclerosis E. Bassini Hospital, Cinisello Balsamo Milan Italy
| | - Alberico Luigi Catapano
- Epidemiology and Preventive Pharmacology Service (SEFAP) Department of Pharmacological and Biomolecular Sciences University of Milan Italy.,IRCCS MultiMedica Sesto S. Giovanni (MI), Milan Italy
| | - Manuela Casula
- Epidemiology and Preventive Pharmacology Service (SEFAP) Department of Pharmacological and Biomolecular Sciences University of Milan Italy.,IRCCS MultiMedica Sesto S. Giovanni (MI), Milan Italy
| | | |
Collapse
|
23
|
Qiuju H, Jianlong Z, Qi W, Zhifa L, Ding W, Xiaofang S, Yingjun X. Epilepsy Combined With Multiple Gene Heterozygous Mutation. Front Pediatr 2022; 10:763642. [PMID: 35299674 PMCID: PMC8921529 DOI: 10.3389/fped.2022.763642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/26/2022] [Indexed: 11/16/2022] Open
Abstract
The fast pace of gene discovery has resulted in groundbreaking advances in the field of epilepsy genetics. Clinical testing using comprehensive gene panels, exomes, or genomes is now increasingly available and has significantly increased the diagnostic yield for early-onset epilepsies and enabled precision medicine approaches. In this paper, we report a case of epilepsy in a pedigree. The proband had heterozygous mutations in KCNC1 (NM_001112741.1:c.959G>A, p. Arg320His), CAPN3 (NM_000070.2:c.526G>A, p. Val176Met), and NEFH (NM_021076.3:c. 2595 delC, p. Lys866Argfs*51). Sanger sequencing verification was consistent with the results of whole-exome sequencing. The KCNC1 mutation was a de novo mutation, and the CAPN3 and NEFH mutations were inherited from their father and mother, respectively. Based on the American College of Medical Genetics and Genomics (ACMG) guidelines, a heterozygous mutation was found for APOB (NM_000384.2: c.10579C > T, p. Arg3527Trp). The heterozygous mutation at this site was inherent in the pedigree. Coexpression analysis indicated that heterozygous mutations of KCNC1, CAPN3, NEFH, and APOB were closely related to the clinical phenotypes of the patient, and the clinical phenotypic heterogeneity of the disease may be the result of the interaction of multiple genes.
Collapse
Affiliation(s)
- He Qiuju
- Department of Obstetrics and Gynaecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Zhuang Jianlong
- Prenatal Diagnosis Center, Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Wen Qi
- Department of Obstetrics and Gynaecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Li Zhifa
- Gastrointestinal Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wang Ding
- Department of Obstetrics and Gynaecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Sun Xiaofang
- Department of Obstetrics and Gynaecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xie Yingjun
- Department of Obstetrics and Gynaecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
24
|
Pagnon de la Vega M, Näslund C, Brundin R, Lannfelt L, Löwenmark M, Kilander L, Ingelsson M, Giedraitis V. Mutation analysis of disease causing genes in patients with early onset or familial forms of Alzheimer's disease and frontotemporal dementia. BMC Genomics 2022; 23:99. [PMID: 35120450 PMCID: PMC8817590 DOI: 10.1186/s12864-022-08343-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/28/2022] [Indexed: 12/05/2022] Open
Abstract
Background Most dementia disorders have a clear genetic background and a number of disease genes have been identified. Mutations in the tau gene (MAPT) lead to frontotemporal dementia (FTD), whereas mutations in the genes for the amyloid-β precursor protein (APP) and the presenilins (PSEN1, PSEN2) cause early-onset, dominantly inherited forms of Alzheimer’s disease (AD). Even if mutations causing Mendelian forms of these diseases are uncommon, elucidation of the pathogenic effects of such mutations have proven important for understanding the pathogenic processes. Here, we performed a screen to identify novel pathogenic mutations in known disease genes among patients undergoing dementia investigation. Results Using targeted exome sequencing we have screened all coding exons in eleven known dementia genes (PSEN1, PSEN2, APP, MAPT, APOE, GRN, TARDBP, CHMP2B, TREM2, VCP and FUS) in 102 patients with AD, FTD, other dementia diagnoses or mild cognitive impairment. We found three AD patients with two previously identified pathogenic mutations in PSEN1 (Pro264Leu and Met146Val). In this screen, we also identified the recently reported APP mutation in two siblings with AD. This mutation, named the Uppsala mutation, consists of a six amino acid intra-amyloid β deletion. In addition, we found several potentially pathogenic mutations in PSEN2, FUS, MAPT, GRN and APOE. Finally, APOE ε4 was prevalent in this patient group with an allele frequency of 54%. Conclusions Among the 102 screened patients, we found two disease causing mutations in PSEN1 and one in APP, as well as several potentially pathogenic mutations in other genes related to neurodegenerative disorders. Apart from giving important information to the clinical investigation, the identification of disease mutations can contribute to an increased understanding of disease mechanisms.
Collapse
Affiliation(s)
- María Pagnon de la Vega
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Carl Näslund
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
| | - RoseMarie Brundin
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Lars Lannfelt
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Malin Löwenmark
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Lena Kilander
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden.,Krembil Brain Institute, University Health Network, Toronto, Canada.,Department of Medicine and Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Vilmantas Giedraitis
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
25
|
Martín-Campos JM. Genetic Determinants of Plasma Low-Density Lipoprotein Cholesterol Levels: Monogenicity, Polygenicity, and "Missing" Heritability. Biomedicines 2021; 9:biomedicines9111728. [PMID: 34829957 PMCID: PMC8615680 DOI: 10.3390/biomedicines9111728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
Changes in plasma low-density lipoprotein cholesterol (LDL-c) levels relate to a high risk of developing some common and complex diseases. LDL-c, as a quantitative trait, is multifactorial and depends on both genetic and environmental factors. In the pregenomic age, targeted genes were used to detect genetic factors in both hyper- and hypolipidemias, but this approach only explained extreme cases in the population distribution. Subsequently, the genetic basis of the less severe and most common dyslipidemias remained unknown. In the genomic age, performing whole-exome sequencing in families with extreme plasma LDL-c values identified some new candidate genes, but it is unlikely that such genes can explain the majority of inexplicable cases. Genome-wide association studies (GWASs) have identified several single-nucleotide variants (SNVs) associated with plasma LDL-c, introducing the idea of a polygenic origin. Polygenic risk scores (PRSs), including LDL-c-raising alleles, were developed to measure the contribution of the accumulation of small-effect variants to plasma LDL-c. This paper discusses other possibilities for unexplained dyslipidemias associated with LDL-c, such as mosaicism, maternal effect, and induced epigenetic changes. Future studies should consider gene-gene and gene-environment interactions and the development of integrated information about disease-driving networks, including phenotypes, genotypes, transcription, proteins, metabolites, and epigenetics.
Collapse
Affiliation(s)
- Jesús Maria Martín-Campos
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau (IR-HSCSP)-Biomedical Research Institute Sant Pau (IIB-Sant Pau), C/Sant Quintí 77-79, 08041 Barcelona, Spain
| |
Collapse
|
26
|
Di Taranto MD, Giacobbe C, Palma D, Iannuzzo G, Gentile M, Calcaterra I, Guardamagna O, Auricchio R, Di Minno MND, Fortunato G. Genetic spectrum of familial hypercholesterolemia and correlations with clinical expression: Implications for diagnosis improvement. Clin Genet 2021; 100:529-541. [PMID: 34297352 PMCID: PMC9291778 DOI: 10.1111/cge.14036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 12/26/2022]
Abstract
Familial hypercholesterolemia (FH) is the most common genetic disease caused by variants in LDLR, APOB, PCSK9 genes; it is characterized by high levels of LDL-cholesterol and premature cardiovascular disease. We aim to perform a retrospective analysis of a genetically screened population (528 unrelated patients-342 adults and 186 children) to evaluate the biochemical and clinical correlations with the different genetic statuses. Genetic screening was performed by traditional sequencing and some patients were re-analyzed by next-generation-sequencing. Pathogenic variants, mainly missense in the LDLR gene, were identified in 402/528 patients (76.1%), including 4 homozygotes, 17 compound heterozygotes and 1 double heterozygotes. A gradual increase of LDL-cholesterol was observed from patients without pathogenic variants to patients with a defective variant, to patients with a null variant and to patients with two variants. Six variants accounted for 51% of patients; a large variability of LDL-cholesterol was observed among patients carrying the same variant. The frequency of pathogenic variants gradually increased from unlikely FH to definite FH, according to the Dutch Lipid Clinic Network criteria. Genetic diagnosis can help prognostic evaluation of FH patients, discriminating between the different genetic statuses or variant types. Clinical suspicion of FH should be considered even if few symptoms are present or if LDL-cholesterol is only mildly increased.
Collapse
Affiliation(s)
- Maria Donata Di Taranto
- Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniversità degli Studi di Napoli Federico II, CEINGE Biotecnologie Avanzate s.c. a r.l.NaplesItaly
| | - Carola Giacobbe
- Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniversità degli Studi di Napoli Federico II, CEINGE Biotecnologie Avanzate s.c. a r.l.NaplesItaly
| | - Daniela Palma
- Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniversità degli Studi di Napoli Federico II, CEINGE Biotecnologie Avanzate s.c. a r.l.NaplesItaly
| | - Gabriella Iannuzzo
- Dipartimento di Medicina Clinica e ChirurgiaUniversità degli Studi di Napoli Federico IINaplesItaly
| | - Marco Gentile
- Dipartimento di Medicina Clinica e ChirurgiaUniversità degli Studi di Napoli Federico IINaplesItaly
| | - Ilenia Calcaterra
- Dipartimento di Medicina Clinica e ChirurgiaUniversità degli Studi di Napoli Federico IINaplesItaly
| | - Ornella Guardamagna
- Dipartimento di Scienze della Sanità Pubblica e PediatricheUniversità degli Studi di TorinoTurinItaly
| | - Renata Auricchio
- Dipartimento di Scienze Mediche TraslazionaliUniversità degli Studi di Napoli Federico IINaplesItaly
| | | | - Giuliana Fortunato
- Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniversità degli Studi di Napoli Federico II, CEINGE Biotecnologie Avanzate s.c. a r.l.NaplesItaly
| |
Collapse
|
27
|
Futema M, Taylor-Beadling A, Williams M, Humphries SE. Genetic testing for familial hypercholesterolemia-past, present, and future. J Lipid Res 2021; 62:100139. [PMID: 34666015 PMCID: PMC8572866 DOI: 10.1016/j.jlr.2021.100139] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/22/2021] [Accepted: 10/02/2021] [Indexed: 01/01/2023] Open
Abstract
In the early 1980s, the Nobel Prize winning cellular and molecular work of Mike Brown and Joe Goldstein led to the identification of the LDL receptor gene as the first gene where mutations cause the familial hypercholesterolemia (FH) phenotype. We now know that autosomal dominant monogenic FH can be caused by pathogenic variants of three additional genes (APOB/PCSK9/APOE) and that the plasma LDL-C concentration and risk of premature coronary heart disease differs according to the specific locus and associated molecular cause. It is now possible to use next-generation sequencing to sequence all exons of all four genes, processing 96 patient samples in one sequencing run, increasing the speed of test results, and reducing costs. This has resulted in the identification of not only many novel FH-causing variants but also some variants of unknown significance, which require further evidence to classify as pathogenic or benign. The identification of the FH-causing variant in an index case can be used as an unambiguous and rapid test for other family members. An FH-causing variant can be found in 20-40% of patients with the FH phenotype, and we now appreciate that in the majority of patients without a monogenic cause, a polygenic etiology for their phenotype is highly likely. Compared with those with a monogenic cause, these patients have significantly lower risk of future coronary heart disease. The use of these molecular genetic diagnostic methods in the characterization of FH is a prime example of the utility of precision or personalized medicine.
Collapse
Affiliation(s)
- Marta Futema
- Centre for Heart Muscle Disease, Institute of Cardiovascular Science, University College London, London, United Kingdom; Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
| | - Alison Taylor-Beadling
- Regional Molecular Genetics Laboratory, Great Ormond Street Hospital for Children, London, United Kingdom
| | | | - Steve E Humphries
- Institute of Cardiovascular Science, University College London, London, United Kingdom.
| |
Collapse
|
28
|
Successful Genetic Screening and Creating Awareness of Familial Hypercholesterolemia and Other Heritable Dyslipidemias in the Netherlands. Genes (Basel) 2021; 12:genes12081168. [PMID: 34440342 PMCID: PMC8392502 DOI: 10.3390/genes12081168] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/17/2022] Open
Abstract
The genetic screening program for familial hypercholesterolemia (FH) in the Netherlands, which was embraced by the Dutch Ministry of Health from 1994 to 2014, has led to twenty years of identification of at least 1500 FH cases per year. Although funding by the government was terminated in 2014, the approach had proven its effectiveness and had built the foundation for the development of more sophisticated diagnostic tools, clinical collaborations, and new molecular-based treatments for FH patients. As such, the community was driven to continue the program, insurance companies were convinced to collaborate, and multiple approaches were launched to find new index cases with FH. Additionally, the screening was extended, now also including other heritable dyslipidemias. For this purpose, a diagnostic next-generation sequencing (NGS) panel was developed, which not only comprised the culprit LDLR, APOB, and PCSK9 genes, but also 24 other genes that are causally associated with genetic dyslipidemias. Moreover, the NGS technique enabled further optimization by including pharmacogenomic genes in the panel. Using such a panel, more patients that are prone to cardiovascular diseases are being identified nowadays and receive more personalized treatment. Moreover, the NGS output teaches us more and more about the dyslipidemic landscape that is less straightforward than we originally thought. Still, continuous progress is being made that underlines the strength of genetics in dyslipidemia, such as discovery of alternative genomic pathogenic mechanisms of disease development and polygenic contribution.
Collapse
|
29
|
Khalil YA, Rabès JP, Boileau C, Varret M. APOE gene variants in primary dyslipidemia. Atherosclerosis 2021; 328:11-22. [PMID: 34058468 DOI: 10.1016/j.atherosclerosis.2021.05.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/30/2021] [Accepted: 05/12/2021] [Indexed: 01/10/2023]
Abstract
Apolipoprotein E (apoE) is a major apolipoprotein involved in lipoprotein metabolism. It is a polymorphic protein and different isoforms are associated with variations in lipid and lipoprotein levels and thus cardiovascular risk. The isoform apoE4 is associated with an increase in LDL-cholesterol levels and thus a higher cardiovascular risk compared to apoE3. Whereas, apoE2 is associated with a mild decrease in LDL-cholesterol levels. In the presence of other risk factors, apoE2 homozygotes could develop type III hyperlipoproteinemia (familial dysbetalipoproteinemia or FD), an atherogenic disorder characterized by an accumulation of remnants of triglyceride-rich lipoproteins. Several rare APOE gene variants were reported in different types of dyslipidemias including FD, familial combined hyperlipidemia (FCH), lipoprotein glomerulopathy and bona fide autosomal dominant hypercholesterolemia (ADH). ADH is characterized by elevated LDL-cholesterol levels leading to coronary heart disease, and due to molecular alterations in three main genes: LDLR, APOB and PCSK9. The identification of the APOE-p.Leu167del variant as the causative molecular element in two different ADH families, paved the way to considering APOE as a candidate gene for ADH. Due to non mendelian interacting factors, common genetic and environmental factors and perhaps epigenetics, clinical presentation of lipid disorders associated with APOE variants often strongly overlap. More studies are needed to determine the spectrum of APOE implication in each of the diseases, notably ADH, in order to improve clinical and genetic diagnosis, prognosis and patient management. The purpose of this review is to comment on these APOE variants and on the molecular and clinical overlaps between dyslipidemias.
Collapse
Affiliation(s)
- Yara Abou Khalil
- Laboratory for Vascular Translational Science (LVTS), INSERM U1148, Centre Hospitalo-Universitaire Xavier Bichat, Paris, France; Université de Paris, Paris, France; Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Faculty of Pharmacy, Pôle Technologie- Santé (PTS), Saint-Joseph University, Beirut, Lebanon
| | - Jean-Pierre Rabès
- Laboratory for Vascular Translational Science (LVTS), INSERM U1148, Centre Hospitalo-Universitaire Xavier Bichat, Paris, France; Laboratory of Biochemistry and Molecular Genetics, Centre Hospitalo-Universitaire Ambroise Paré, HUPIFO, AP-HP. Paris-Saclay, Boulogne-Billancourt, France; UFR Simone Veil-Santé, UVSQ, Montigny-Le-Bretonneux, France
| | - Catherine Boileau
- Laboratory for Vascular Translational Science (LVTS), INSERM U1148, Centre Hospitalo-Universitaire Xavier Bichat, Paris, France; Université de Paris, Paris, France; Genetics Department, AP-HP, CHU Xavier Bichat, Paris, France
| | - Mathilde Varret
- Laboratory for Vascular Translational Science (LVTS), INSERM U1148, Centre Hospitalo-Universitaire Xavier Bichat, Paris, France; Université de Paris, Paris, France.
| |
Collapse
|
30
|
Cao YX, Sun D, Liu HH, Jin JL, Li S, Guo YL, Wu NQ, Zhu CG, Liu G, Dong Q, Sun J, Chen XH, Li JJ. Improvement of Definite Diagnosis of Familial Hypercholesterolemia Using an Expanding Genetic Analysis. JACC. ASIA 2021; 1:82-89. [PMID: 36338372 PMCID: PMC9627923 DOI: 10.1016/j.jacasi.2021.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/24/2021] [Accepted: 04/06/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND The deeper understanding of the complex hereditary basis of familial hypercholesterolemia (FH) has raised the rationale of genetic testing, which has been underutilized in clinical practice. OBJECTIVES The present study aimed to explore the variant spectrum of FH in an expanding manner and compare its diagnostic performance. METHODS A total of 169 Chinese individuals (124 index cases and 45 relatives) with clinical definite/probable FH were consecutively enrolled. Next-generation sequencing was performed for genetic analysis of 9 genes associated with hypercholesterolemia (major genes: LDLR, APOB, and PCSK9; minor genes: LDLRAP1, LIPA, STAP1, APOE, ABCG5, and ABCG8) including the evaluations of small-scale variants and large-scale copy number variants (CNVs). RESULTS Among the 169 clinical FH patients included, 98 (58.0%) were men. A total of 85 (68.5%) index cases carried FH-associated variants. The proportion of FH caused by small-scale variants in LDLR, APOB, and PCSK9 genes was 62.1% and then increased by 6.5% when other genes and CNVs were further included. Furthermore, the variants in LDLR, APOB, and PCSK9 genes occupied 75% of all FH-associated variants. Of note, there were 8 non-LDLR CNVs detected in the present study. CONCLUSIONS LDLR, APOB, and PCSK9 genes should be tested in the initial genetic screening, although variants in minor genes also could explain phenotypic FH, suggesting that an expanding genetic testing may be considered to further explain phenotypic FH.
Collapse
Affiliation(s)
- Ye-Xuan Cao
- State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiology, Beijing Chaoyang Hospital Affiliated to Capital University of Medical Science, Beijing, China
| | - Di Sun
- State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui-Hui Liu
- State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing-Lu Jin
- State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sha Li
- State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan-Lin Guo
- State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Na-Qiong Wu
- State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cheng-Gang Zhu
- State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Geng Liu
- State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qian Dong
- State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Sun
- State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xie-Hui Chen
- State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian-Jun Li
- State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
31
|
Mariano C, Alves AC, Medeiros AM, Chora JR, Antunes M, Futema M, Humphries SE, Bourbon M. The familial hypercholesterolaemia phenotype: Monogenic familial hypercholesterolaemia, polygenic hypercholesterolaemia and other causes. Clin Genet 2021; 97:457-466. [PMID: 31893465 DOI: 10.1111/cge.13697] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/22/2019] [Accepted: 11/29/2019] [Indexed: 12/13/2022]
Abstract
Familial hypercholesterolaemia (FH) is a monogenic disorder characterised by high low-density lipoprotein cholesterol (LDL-C) concentrations and increased cardiovascular risk. However, in clinically defined FH cohorts worldwide, an FH-causing variant is only found in 40%-50% of the cases. The aim of this work was to characterise the genetic cause of the FH phenotype in Portuguese clinical FH patients. Between 1999 and 2017, 731 index patients (311 children and 420 adults) who met the Simon Broome diagnostic criteria had been referred to our laboratory. LDLR, APOB, PCSK9, APOE, LIPA, LDLRAP1, ABCG5/8 genes were analysed by polymerase chain reaction amplification and Sanger sequencing. The 6-SNP LDL-C genetic risk score (GRS) for polygenic hypercholesterolaemia was validated in the Portuguese population and cases with a GRS over the 25th percentile were considered to have a high likelihood of polygenic hypercholesterolaemia. An FH-causing mutation was found in 39% of patients (94% in LDLR, 5% APOB and 1% PCSK9), while at least 29% have polygenic hypercholesterolaemia and 1% have other lipid disorders. A genetic cause for the FH phenotype was found in 503 patients (69%). All known causes of the FH phenotype should be investigated in FH cohorts to ensure accurate diagnosis and appropriate management.
Collapse
Affiliation(s)
- Cibelle Mariano
- Cardiovascular Research Group, Research and Development Unit, Department of Health Promotion and Chronic Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal.,Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisbon, Lisbon, Portugal
| | - Ana Catarina Alves
- Cardiovascular Research Group, Research and Development Unit, Department of Health Promotion and Chronic Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal.,Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisbon, Lisbon, Portugal
| | - Ana Margarida Medeiros
- Cardiovascular Research Group, Research and Development Unit, Department of Health Promotion and Chronic Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal.,Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisbon, Lisbon, Portugal
| | - Joana Rita Chora
- Cardiovascular Research Group, Research and Development Unit, Department of Health Promotion and Chronic Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal.,Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisbon, Lisbon, Portugal
| | - Marília Antunes
- Department of Statistics and Operations Research, Faculty of Sciences, University of Lisbon, Lisbon, Portugal.,Centre of Statistics and its Applications - CEAUL, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Marta Futema
- Centre for Heart Muscle Disease, Institute of Cardiovascular Sciences, University College London, London, UK
| | - Steve E Humphries
- Centre for Cardiovascular Genetics, Institute of Cardiovascular Sciences, University College London, London, UK
| | - Mafalda Bourbon
- Cardiovascular Research Group, Research and Development Unit, Department of Health Promotion and Chronic Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal.,Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
32
|
Futema M, Ramaswami U, Tichy L, Bogsrud MP, Holven KB, Roeters van Lennep J, Wiegman A, Descamps OS, De Leener A, Fastre E, Vrablik M, Freiberger T, Esterbauer H, Dieplinger H, Greber-Platzer S, Medeiros AM, Bourbon M, Mollaki V, Drogari E, Humphries SE. Comparison of the mutation spectrum and association with pre and post treatment lipid measures of children with heterozygous familial hypercholesterolaemia (FH) from eight European countries. Atherosclerosis 2021; 319:108-117. [PMID: 33508743 DOI: 10.1016/j.atherosclerosis.2021.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 12/21/2020] [Accepted: 01/08/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND AND AIMS Familial hypercholesterolaemia (FH) is commonly caused by mutations in the LDLR, APOB or PCSK9 genes, with untreated mean low density lipoprotein-cholesterol (LDL-C) concentrations being elevated in APOB mutation carriers, even higher in LDLR mutation and highest in those with a PCSK9 mutation. Here we examine this in children with FH from Norway, UK, The Netherlands, Belgium, Czech Republic, Austria, Portugal and Greece. METHODS Differences in characteristics and pre- and post-treatment lipid concentrations in those with different molecular causes were compared by standard statistical tests. RESULTS Data were obtained from 2866 children, of whom 2531 (88%) carried a reported LDLR/APOB/PCSK9 variant. In all countries, the most common cause of FH was an LDLR mutation (79% of children, 297 different), but the prevalence of the APOB p.(Arg3527Gln) mutation varied significantly (ranging from 0% in Greece to 39% in Czech Republic, p < 2.2 × 10-16). The prevalence of a family history of premature CHD was significantly higher in children with an LDLR vs APOB mutation (16% vs 7% p=0.0005). Compared to the LDLR mutation group, mean (±SD) concentrations of pre-treatment LDL-C were significantly lower in those with an APOB mutation (n = 2260 vs n = 264, 4.96 (1.08)mmol/l vs 5.88 (1.41)mmol/l, p < 2.2 × 10-16) and lowest in those with a PCSK9 mutation (n = 7, 4.71 (1.22)mmol/l). CONCLUSIONS The most common cause of FH in children from eight European countries was an LDLR mutation, with the prevalence of the APOB p.(Arg3527Gln) mutation varying significantly across countries. In children, LDLR-FH is associated with higher concentrations of LDL-C and family history of CHD compared to those with APOB-FH.
Collapse
Affiliation(s)
- Marta Futema
- Centre for Heart Muscle Disease, Institute for Cardiovascular Science, University College London, London, United Kingdom
| | - Uma Ramaswami
- Lysosomal Disorders Unit, Royal Free Hospital, London, United Kingdom
| | - Lukas Tichy
- Centre of Molecular Biology and Gene Therapy, University Hospital Brno, Brno, Czech Republic
| | - Martin P Bogsrud
- National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway; Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | | | | | - Albert Wiegman
- Department of Pediatrics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | | | - Anne De Leener
- Centre de Génétique Humaine, UCL Cliniques Universitaires Saint-Luc, Bruxelles, Belgium
| | - Elodie Fastre
- Centre de Génétique Humaine, UCL Cliniques Universitaires Saint-Luc, Bruxelles, Belgium
| | - Michal Vrablik
- Third Department of Internal Medicine, General University Hospital and First Faculty of Medicine, Charles University, U Nemocnice 1, Prague 2, 128 08, Czech Republic
| | - Tomas Freiberger
- Centre for Cardiovascular Surgery and Transplantation, Czech Republic, and Medical Faculty, Masaryk University, Pekarska 53, 656 91 Brno, Brno, Czech Republic
| | - Harald Esterbauer
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Hans Dieplinger
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Schöpfstraße 41, 6020, Innsbruck, Austria
| | - Susanne Greber-Platzer
- Division of Pediatric Pulmonology, Allergology and Endocrinology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center Pediatrics, Medical University Vienna, Austria
| | - Ana M Medeiros
- Cardiovascular Research Group, Research and Development Unit, Department of Health Promotion and Chronic Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal and University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Mafalda Bourbon
- Cardiovascular Research Group, Research and Development Unit, Department of Health Promotion and Chronic Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal and University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Vasiliki Mollaki
- First Department of Pediatrics, National and Kapodistrian University of Athens, Greece
| | - Euridiki Drogari
- First Department of Pediatrics, National and Kapodistrian University of Athens and Department of Inborn Errors of Metabolism and Inherited Dyslipidemias, "MITERA" Children's Hospital, Athens, Greece
| | - Steve E Humphries
- Centre for Cardiovascular Genetics, Institute for Cardiovascular Science, University College London, London, United Kingdom.
| |
Collapse
|
33
|
Lui DTW, Lee ACH, Tan KCB. Management of Familial Hypercholesterolemia: Current Status and Future Perspectives. J Endocr Soc 2021; 5:bvaa122. [PMID: 33928199 PMCID: PMC8059332 DOI: 10.1210/jendso/bvaa122] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Indexed: 12/31/2022] Open
Abstract
Familial hypercholesterolemia (FH) is the most common monogenic disorder associated with premature atherosclerotic cardiovascular disease. Early diagnosis and effective treatment can significantly improve prognosis. Recent advances in the field of lipid metabolism have shed light on the molecular defects in FH and new therapeutic options have emerged. A search of PubMed database up to March 2020 was performed for this review using the following keywords: "familial hypercholesterolemia," "diagnosis," "management," "guideline," "consensus," "genetics," "screening," "lipid lowering agents." The prevalence rate of heterozygous FH is approximately 1 in 200 to 250 and FH is underdiagnosed and undertreated in many parts of the world. Diagnostic criteria have been developed to aid the clinical diagnosis of FH. Genetic testing is now available but not widely used. Cascade screening is recommended to identify affected family members, and the benefits of early interventions are clear. Treatment strategy and target is currently based on low-density lipoprotein (LDL) cholesterol levels as the prognosis of FH largely depends on the magnitude of LDL cholesterol-lowering that can be achieved by lipid-lowering therapies. Statins with or without ezetimibe are the mainstay of treatment and are cost-effective. Addition of newer medications like PCSK9 inhibitors is able to further lower LDL cholesterol levels substantially, but the cost is high. Lipoprotein apheresis is indicated in homozygous FH or severe heterozygous FH patients with inadequate response to cholesterol-lowering therapies. In conclusion, FH is a common, treatable genetic disorder, and although our understanding of this disease has improved, many challenges still remain for its optimal management.
Collapse
Affiliation(s)
- David T W Lui
- Department of Medicine, University of Hong Kong, Queen
Mary Hospital, Hong Kong, China
| | - Alan C H Lee
- Department of Medicine, University of Hong Kong, Queen
Mary Hospital, Hong Kong, China
| | - Kathryn C B Tan
- Department of Medicine, University of Hong Kong, Queen
Mary Hospital, Hong Kong, China
| |
Collapse
|
34
|
Rieck L, Bardey F, Grenkowitz T, Bertram L, Helmuth J, Mischung C, Spranger J, Steinhagen-Thiessen E, Bobbert T, Kassner U, Demuth I. Mutation spectrum and polygenic score in German patients with familial hypercholesterolemia. Clin Genet 2020; 98:457-467. [PMID: 32770674 DOI: 10.1111/cge.13826] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/17/2022]
Abstract
Autosomal-dominant familial hypercholesterolemia (FH) is characterized by increased plasma concentrations of low-density lipoprotein cholesterol (LDL-C) and a substantial risk to develop cardiovascular disease. Causative mutations in three major genes are known: the LDL receptor gene (LDLR), the apolipoprotein B gene (APOB) and the proprotein convertase subtilisin/kexin 9 gene (PCSK9). We clinically characterized 336 patients suspected to have FH and screened them for disease causing mutations in LDLR, APOB, and PCSK9. We genotyped six single nucleotide polymorphisms (SNPs) to calculate a polygenic risk score for the patients and 1985 controls. The 117 patients had a causative variant in one of the analyzed genes. Most variants were found in the LDLR gene (84.9%) with 11 novel mutations. The mean polygenic risk score was significantly higher in FH mutation negative subjects than in FH mutation positive patients (P < .05) and healthy controls (P < .001), whereas the score of the two latter groups did not differ significantly. However, the score explained only about 3% of the baseline LDL-C variance. We verified the previously described clinical and genetic variability of FH for German hypercholesterolemic patients. Evaluation of a six-SNP polygenic score recently proposed for clinical use suggests that it is not a reliable tool to classify hypercholesterolemic patients.
Collapse
Affiliation(s)
- Lorenz Rieck
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Frieda Bardey
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Thomas Grenkowitz
- Department of Cardiology, Charité - University Medicine Berlin (Campus Benjamin Franklin), Berlin, Germany
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics, Institutes of Neurogenetics and Cardiogenetics, University of Lübeck, Lübeck, Germany.,Center for Lifespan Changes in Brain and Cognition (LCBC), Dept of Psychology, University of Oslo, Oslo, Norway
| | - Johannes Helmuth
- Department Molecular Diagnostics, Labor Berlin - Charité Vivantes GmbH, Berlin, Germany
| | - Claudia Mischung
- Department Molecular Diagnostics, Labor Berlin - Charité Vivantes GmbH, Berlin, Germany
| | - Joachim Spranger
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Elisabeth Steinhagen-Thiessen
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Thomas Bobbert
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ursula Kassner
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ilja Demuth
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Charité - Universitätsmedizin Berlin, BCRT - Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| |
Collapse
|
35
|
Di Taranto MD, Giacobbe C, Fortunato G. Familial hypercholesterolemia: A complex genetic disease with variable phenotypes. Eur J Med Genet 2020; 63:103831. [DOI: 10.1016/j.ejmg.2019.103831] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/01/2019] [Accepted: 12/21/2019] [Indexed: 12/21/2022]
|
36
|
Reggiani F, Carraro M, Belligoli A, Sanna M, dal Prà C, Favaretto F, Ferrari C, Vettor R, Tosatto SCE. In silico prediction of blood cholesterol levels from genotype data. PLoS One 2020; 15:e0227191. [PMID: 32040480 PMCID: PMC7010235 DOI: 10.1371/journal.pone.0227191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/14/2019] [Indexed: 11/18/2022] Open
Abstract
In this work we present a framework for blood cholesterol levels prediction from genotype data. The predictor is based on an algorithm for cholesterol metabolism simulation available in literature, implemented and optimized by our group in the R language. The main weakness of the former simulation algorithm was the need of experimental data to simulate mutations in genes altering the cholesterol metabolism. This caveat strongly limited the application of the model in the clinical practice. In this work we present how this limitation could be bypassed thanks to an optimization of model parameters based on patient cholesterol levels retrieved from literature. Prediction performance has been assessed taking into consideration several scoring indices currently used for performance evaluation of machine learning methods. Our assessment shows how the optimization phase improved model performance, compared to the original version available in literature.
Collapse
Affiliation(s)
- Francesco Reggiani
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Marco Carraro
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Anna Belligoli
- Clinica Medica 3, Department of Medicine—DIMED, School of Medicine, University of Padua, Padua, Italy
| | - Marta Sanna
- Clinica Medica 3, Department of Medicine—DIMED, School of Medicine, University of Padua, Padua, Italy
| | - Chiara dal Prà
- Clinica Medica 3, Department of Medicine—DIMED, School of Medicine, University of Padua, Padua, Italy
| | - Francesca Favaretto
- Clinica Medica 3, Department of Medicine—DIMED, School of Medicine, University of Padua, Padua, Italy
| | - Carlo Ferrari
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Roberto Vettor
- Clinica Medica 3, Department of Medicine—DIMED, School of Medicine, University of Padua, Padua, Italy
| | - Silvio C. E. Tosatto
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- CNR Institute of Neuroscience, Padua, Italy
- * E-mail:
| |
Collapse
|
37
|
Loaiza N, Hartgers ML, Reeskamp LF, Balder JW, Rimbert A, Bazioti V, Wolters JC, Winkelmeijer M, Jansen HPG, Dallinga-Thie GM, Volta A, Huijkman N, Smit M, Kloosterhuis N, Koster M, Svendsen AF, van de Sluis B, Hovingh GK, Grefhorst A, Kuivenhoven JA. Taking One Step Back in Familial Hypercholesterolemia: STAP1 Does Not Alter Plasma LDL (Low-Density Lipoprotein) Cholesterol in Mice and Humans. Arterioscler Thromb Vasc Biol 2020; 40:973-985. [PMID: 31996024 PMCID: PMC7098433 DOI: 10.1161/atvbaha.119.313470] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE STAP1, encoding for STAP1 (signal transducing adaptor family member 1), has been reported as a candidate gene associated with familial hypercholesterolemia. Unlike established familial hypercholesterolemia genes, expression of STAP1 is absent in liver but mainly observed in immune cells. In this study, we set out to validate STAP1 as a familial hypercholesterolemia gene. Approach and Results: A whole-body Stap1 knockout mouse model (Stap1-/-) was generated and characterized, without showing changes in plasma lipid levels compared with controls. In follow-up studies, bone marrow from Stap1-/- mice was transplanted to Ldlr-/- mice, which did not show significant changes in plasma lipid levels or atherosclerotic lesions. To functionally assess whether STAP1 expression in B cells can affect hepatic function, HepG2 cells were cocultured with peripheral blood mononuclear cells isolated from heterozygotes carriers of STAP1 variants and controls. The peripheral blood mononuclear cells from STAP1 variant carriers and controls showed similar LDLR mRNA and protein levels. Also, LDL (low-density lipoprotein) uptake by HepG2 cells did not differ upon coculturing with peripheral blood mononuclear cells isolated from either STAP1 variant carriers or controls. In addition, plasma lipid profiles of 39 carriers and 71 family controls showed no differences in plasma LDL cholesterol, HDL (high-density lipoprotein) cholesterol, triglycerides, and lipoprotein(a) levels. Similarly, B-cell populations did not differ in a group of 10 STAP1 variant carriers and 10 age- and sex-matched controls. Furthermore, recent data from the UK Biobank do not show association between STAP1 rare gene variants and LDL cholesterol. CONCLUSIONS Our combined studies in mouse models and carriers of STAP1 variants indicate that STAP1 is not a familial hypercholesterolemia gene.
Collapse
Affiliation(s)
- Natalia Loaiza
- From the Department of Pediatrics, Molecular Genetics Section (N.L., J.-W.B., A.R., V.B., J.C.W., N.H., M.S., N.K., M.K., B.v.d.S., J.A.K.), University Medical Center Groningen, University of Groningen, the Netherlands
| | - Merel L Hartgers
- Department of Vascular Medicine, Amsterdam University Medical Centers, Location AMC, the Netherlands (M.L.H., L.F.R., G.M.D.-T., G.K.H.)
| | - Laurens F Reeskamp
- Department of Vascular Medicine, Amsterdam University Medical Centers, Location AMC, the Netherlands (M.L.H., L.F.R., G.M.D.-T., G.K.H.)
| | - Jan-Willem Balder
- From the Department of Pediatrics, Molecular Genetics Section (N.L., J.-W.B., A.R., V.B., J.C.W., N.H., M.S., N.K., M.K., B.v.d.S., J.A.K.), University Medical Center Groningen, University of Groningen, the Netherlands.,Department of Vascular Medicine (J.-W.B.), University Medical Center Groningen, University of Groningen, the Netherlands.,Department of Cardiology, University Medical Center Utrecht, the Netherlands (J.-W.B.)
| | - Antoine Rimbert
- From the Department of Pediatrics, Molecular Genetics Section (N.L., J.-W.B., A.R., V.B., J.C.W., N.H., M.S., N.K., M.K., B.v.d.S., J.A.K.), University Medical Center Groningen, University of Groningen, the Netherlands.,L'institut du thorax, INSERM, CNRS, Université de Nantes, France (A.R.)
| | - Venetia Bazioti
- From the Department of Pediatrics, Molecular Genetics Section (N.L., J.-W.B., A.R., V.B., J.C.W., N.H., M.S., N.K., M.K., B.v.d.S., J.A.K.), University Medical Center Groningen, University of Groningen, the Netherlands
| | - Justina C Wolters
- From the Department of Pediatrics, Molecular Genetics Section (N.L., J.-W.B., A.R., V.B., J.C.W., N.H., M.S., N.K., M.K., B.v.d.S., J.A.K.), University Medical Center Groningen, University of Groningen, the Netherlands
| | - Maaike Winkelmeijer
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, the Netherlands (M.W., H.P.G.J., A.G.)
| | - Hans P G Jansen
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, the Netherlands (M.W., H.P.G.J., A.G.)
| | - Geesje M Dallinga-Thie
- Department of Vascular Medicine, Amsterdam University Medical Centers, Location AMC, the Netherlands (M.L.H., L.F.R., G.M.D.-T., G.K.H.)
| | - Andrea Volta
- Department of Experimental and Clinical Medicine, University of Florence, Italy (A.V.)
| | - Nicolette Huijkman
- From the Department of Pediatrics, Molecular Genetics Section (N.L., J.-W.B., A.R., V.B., J.C.W., N.H., M.S., N.K., M.K., B.v.d.S., J.A.K.), University Medical Center Groningen, University of Groningen, the Netherlands
| | - Marieke Smit
- From the Department of Pediatrics, Molecular Genetics Section (N.L., J.-W.B., A.R., V.B., J.C.W., N.H., M.S., N.K., M.K., B.v.d.S., J.A.K.), University Medical Center Groningen, University of Groningen, the Netherlands
| | - Niels Kloosterhuis
- From the Department of Pediatrics, Molecular Genetics Section (N.L., J.-W.B., A.R., V.B., J.C.W., N.H., M.S., N.K., M.K., B.v.d.S., J.A.K.), University Medical Center Groningen, University of Groningen, the Netherlands
| | - Mirjam Koster
- From the Department of Pediatrics, Molecular Genetics Section (N.L., J.-W.B., A.R., V.B., J.C.W., N.H., M.S., N.K., M.K., B.v.d.S., J.A.K.), University Medical Center Groningen, University of Groningen, the Netherlands
| | - Arthur F Svendsen
- Laboratory of Ageing Biology and Stem Cells, European Institute for the Biology of Aging (ERIBA) (A.F.S.), University Medical Center Groningen, University of Groningen, the Netherlands
| | - Bart van de Sluis
- From the Department of Pediatrics, Molecular Genetics Section (N.L., J.-W.B., A.R., V.B., J.C.W., N.H., M.S., N.K., M.K., B.v.d.S., J.A.K.), University Medical Center Groningen, University of Groningen, the Netherlands.,iPSC/CRISPR Center Groningen (B.v.d.S.), University Medical Center Groningen, University of Groningen, the Netherlands
| | - G Kees Hovingh
- Department of Vascular Medicine, Amsterdam University Medical Centers, Location AMC, the Netherlands (M.L.H., L.F.R., G.M.D.-T., G.K.H.)
| | - Aldo Grefhorst
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, the Netherlands (M.W., H.P.G.J., A.G.)
| | - Jan Albert Kuivenhoven
- From the Department of Pediatrics, Molecular Genetics Section (N.L., J.-W.B., A.R., V.B., J.C.W., N.H., M.S., N.K., M.K., B.v.d.S., J.A.K.), University Medical Center Groningen, University of Groningen, the Netherlands
| |
Collapse
|
38
|
Page MM, Bell DA, Watts GF. Widening the spectrum of genetic testing in familial hypercholesterolaemia: Will it translate into better patient and population outcomes? Clin Genet 2019; 97:543-555. [PMID: 31833051 DOI: 10.1111/cge.13685] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/25/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022]
Abstract
Familial hypercholesterolaemia (FH) is caused by pathogenic variants in LDLR, APOB or PCSK9. Impaired low-density lipoprotein (LDL) receptor function leads to decreased LDL catabolism and premature atherosclerotic cardiovascular disease (ASCVD). Thousands of LDLR variants are known, but assignation of pathogenicity requires accurate phenotyping, family studies and assessment of LDL receptor function. Precise, genetic diagnosis of FH using targeted next generation sequencing allows for optimal treatment, distinguishing FH from pathogenically distinct disorders requiring different treatment. Polygenic hypercholesterolaemia resulting from an accumulation of LDL cholesterol-raising single nucleotide polymorphisms (SNPs) could also be suspected by this approach. Similarly, ASCVD risk could be estimated by broader sequencing of cholesterol and non-cholesterol-related genes. Both of these areas require further research. The clinical management of FH, focusing on the primary or secondary prevention of ASCVD, has been boosted by PCSK9 inhibitor therapy. The efficacy of PCSK9 inhibitors in homozygous FH may be partly predicted by the LDLR variants. While expanded genetic testing in FH is clinically useful in providing an accurate diagnosis and enabling cost-effective testing of relatives, further research is needed to establish its value in improving clinical outcomes.
Collapse
Affiliation(s)
- Michael M Page
- School of Medicine, Faculty of Medicine and Health Sciences, The University of Western Australia, Perth, Australia.,Department of Clinical Biochemistry, Western Diagnostic Pathology, Perth, Australia
| | - Damon A Bell
- School of Medicine, Faculty of Medicine and Health Sciences, The University of Western Australia, Perth, Australia.,Department of Clinical Biochemistry, PathWest Fiona Stanley Hospital and Royal Perth Hospital, Perth, Australia.,Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, Perth, Australia.,Department of Clinical Biochemistry, Clinipath Pathology, Perth, Australia
| | - Gerald F Watts
- School of Medicine, Faculty of Medicine and Health Sciences, The University of Western Australia, Perth, Australia.,Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, Perth, Australia
| |
Collapse
|
39
|
Muñoz G, García-Seisdedos D, Ciubotariu C, Piris-Villaespesa M, Gandía M, Martín-Moro F, Gutiérrez-Solana LG, Morado M, López-Jiménez J, Sánchez-Herranz A, Villarrubia J, Del Castillo FJ. Early detection of lysosomal diseases by screening of cases of idiopathic splenomegaly and/or thrombocytopenia with a next-generation sequencing gene panel. JIMD Rep 2019; 51:53-61. [PMID: 32071839 PMCID: PMC7012743 DOI: 10.1002/jmd2.12078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/06/2019] [Accepted: 09/12/2019] [Indexed: 02/02/2023] Open
Abstract
Lysosomal diseases (LD) are a group of about 70 rare hereditary disorders (combined incidence 1:5000) in which diverse lysosomal functions are impaired, impacting multiple organs and systems. The first clinical signs and symptoms are usually unspecific and shared by hundreds of other disorders. Diagnosis of LD traditionally relies on performing specific enzymatic assays, if available, upon clinical suspicion of the disorder. However, the combination of the insidious onset of LD and the lack of awareness on these rare diseases among medical personnel results in undesirable diagnostic delays, with unchecked disease progression, appearance of complications and a worsened prognosis. We tested the usefulness of a next‐generation sequencing‐based gene panel for quick, early detection of LD among cases of idiopathic splenomegaly and/or thrombocytopenia, two of the earliest clinical signs observed in most LD. Our 73‐gene panel interrogated 28 genes for LD, 1 biomarker and 44 genes underlying non‐LD differential diagnoses. Among 38 unrelated patients, we elucidated eight cases (21%), five with LD (GM1 gangliosidosis, Sanfilippo disease A and B, Niemann‐Pick disease B, Gaucher disease) and three with non‐LD conditions. Interestingly, we identified three LD patients harboring pathogenic mutations in two LD genes each, which may result in unusual disease presentations and impact treatment. Turnaround time for panel screening and genetic validation was 1 month. Our results underline the usefulness of resequencing gene panels for quick and cost‐effective screening of LDs and disorders sharing with them early clinical signs.
Collapse
Affiliation(s)
- Gloria Muñoz
- UCA de Genómica Traslacional Hospital Universitario Ramón y Cajal, IRYCIS Madrid Spain
| | | | - Crina Ciubotariu
- UCA de Genómica Traslacional Hospital Universitario Ramón y Cajal, IRYCIS Madrid Spain
| | | | - Marta Gandía
- UCA de Genómica Traslacional Hospital Universitario Ramón y Cajal, IRYCIS Madrid Spain
| | - Fernando Martín-Moro
- Servicio de Hematología Hospital Universitario Ramón y Cajal, IRYCIS Madrid Spain
| | - Luis G Gutiérrez-Solana
- Consulta de Neurodegenerativas, Servicio de Neurología Pediátrica Hospital Infantil Universitario Niño Jesús Madrid Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Madrid Spain
| | - Marta Morado
- Servicio de Hematología Hospital Universitario La Paz Madrid Spain
| | - Javier López-Jiménez
- Servicio de Hematología Hospital Universitario Ramón y Cajal, IRYCIS Madrid Spain
| | | | - Jesús Villarrubia
- UCA de Genómica Traslacional Hospital Universitario Ramón y Cajal, IRYCIS Madrid Spain.,Servicio de Hematología Hospital Universitario Ramón y Cajal, IRYCIS Madrid Spain
| | - Francisco J Del Castillo
- UCA de Genómica Traslacional Hospital Universitario Ramón y Cajal, IRYCIS Madrid Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Madrid Spain.,Servicio de Genética Hospital Universitario Ramón y Cajal, IRYCIS Madrid Spain
| |
Collapse
|
40
|
Genes Potentially Associated with Familial Hypercholesterolemia. Biomolecules 2019; 9:biom9120807. [PMID: 31795497 PMCID: PMC6995538 DOI: 10.3390/biom9120807] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/24/2019] [Accepted: 11/26/2019] [Indexed: 12/21/2022] Open
Abstract
This review addresses the contribution of some genes to the phenotype of familial hypercholesterolemia. At present, it is known that the pathogenesis of this disease involves not only a pathological variant of low-density lipoprotein receptor and its ligands (apolipoprotein B, proprotein convertase subtilisin/kexin type 9 or low-density lipoprotein receptor adaptor protein 1), but also lipids, including sphingolipids, fatty acids, and sterols. The genetic cause of familial hypercholesterolemia is unknown in 20%–40% of the cases. The genes STAP1 (signal transducing adaptor family member 1), CYP7A1 (cytochrome P450 family 7 subfamily A member 1), LIPA (lipase A, lysosomal acid type), ABCG5 (ATP binding cassette subfamily G member 5), ABCG8 (ATP binding cassette subfamily G member 8), and PNPLA5 (patatin like phospholipase domain containing 5), which can cause aberrations of lipid metabolism, are being evaluated as new targets for the diagnosis and personalized management of familial hypercholesterolemia.
Collapse
|
41
|
Hsiung YC, Lin PC, Chen CS, Tung YC, Yang WS, Chen PL, Su TC. Identification of a novel LDLR disease-causing variant using capture-based next-generation sequencing screening of familial hypercholesterolemia patients in Taiwan. Atherosclerosis 2019; 277:440-447. [PMID: 30270083 DOI: 10.1016/j.atherosclerosis.2018.08.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 08/10/2018] [Accepted: 08/21/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIMS Familial hypercholesterolemia (FH) is an autosomal dominant disorder with paramount health impacts. However, less than 1% FH patients in Taiwan were formally diagnosed, partly due to the lack of reliable cost-effective genetic testing. We aimed at using a next-generation sequencing (NGS) platform as the clinical genetic testing method for FH. METHODS We designed probes to capture the whole LDLR gene and all coding sequences of APOB and PCSK9, and then sequenced with Illumina MiSeq platform (2 × 300 bps). The entire pipeline was tested on 13 DNA samples with known causative variants (including 3 large duplications and 2 large deletions). Then we enrolled a new cohort of 28 unrelated FH patients with Dutch Lipid Clinic Network score ≥5. Relatives were included in the cascade screening. RESULTS From the 13 DNA samples, we correctly identify all the variants, including big duplications and deletions. From the new cohort, we identified the causative variants in 21 of the 28 unrelated probands; five of them carrying a novel splice site variant c.1186+2T>G in LDLR. Among the family members, the concentration of LDL cholesterol was 7.82 ± 2.13 mmol/l in LDLR c.1186+2T>G carrier group (n = 26), and was significantly higher than 3.18 ± 1.36 mmol/l in the non-carrier group (n = 25). CONCLUSIONS This is the first capture-based NGS testing for FH to cover the whole LDLR genomic region, and therefore making reliable structural variation detection. This panel can comprehensively detect disease-causing variants in LDLR, APOB, and PCSK9 for FH patients.
Collapse
Affiliation(s)
- Yun-Chieh Hsiung
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Po-Chih Lin
- Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Chih-Shan Chen
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Ching Tung
- Department of Pediatrics, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Shiung Yang
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan; Department of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Lung Chen
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan; Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan.
| | - Ta-Chen Su
- Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan; Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University College of Public Health, Taipei, Taiwan.
| |
Collapse
|
42
|
Clinical utility of the polygenic LDL-C SNP score in familial hypercholesterolemia. Atherosclerosis 2019; 277:457-463. [PMID: 30270085 DOI: 10.1016/j.atherosclerosis.2018.06.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/16/2018] [Accepted: 06/07/2018] [Indexed: 01/28/2023]
Abstract
Mutations in any of three genes (LDLR, APOB and PCSK9) are known to cause autosomal dominant FH, but a mutation can be found in only ∼40% of patients with a clinical diagnosis of FH. In the remainder, a polygenic aetiology may be the cause of the phenotype, due to the co-inheritance of common LDL-C raising variants. In 2013, we reported the development of a 12-SNP LDL-C "SNP-Score" based on common variants identified as LDL-C raising from genome wide association consortium studies, and have confirmed the validity of this score in samples of no-mutation FH adults and children from more than six countries with European-Caucasian populations. In more than 80% of those with a clinical diagnosis of FH but with no detectable mutation in LDLR/APOB/PCSK9, the polygenic explanation is the most likely for their hypercholesterolaemia. Those with a low score (in the bottom two deciles) may have a mutation in a novel gene, and further research including whole exome or whole genome sequencing is warranted. Only in families where the index case has a monogenic cause should cascade testing be carried out, using DNA tests for an unambiguous identification of affected relatives. The clinical utility of the polygenic explanation is that it supports a more conservative (less aggressive) treatment care pathway for those with no mutation. The ability to distinguish those with a clinical diagnosis of FH who have a monogenic or a polygenic cause of their hypercholesterolaemia is a paradigm example of the use of genomic information to inform Precision Medicine using lipid lowering agents with different efficacy and costs.
Collapse
|
43
|
Ramaswami U, Humphries SE, Priestley-Barnham L, Green P, Wald DS, Capps N, Anderson M, Dale P, Morris AA. Current management of children and young people with heterozygous familial hypercholesterolaemia - HEART UK statement of care. Atherosclerosis 2019; 290:1-8. [DOI: 10.1016/j.atherosclerosis.2019.09.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/08/2019] [Accepted: 09/12/2019] [Indexed: 12/19/2022]
|
44
|
MESH Headings
- ATP Binding Cassette Transporter, Subfamily G, Member 5/blood
- ATP Binding Cassette Transporter, Subfamily G, Member 5/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 8/blood
- ATP Binding Cassette Transporter, Subfamily G, Member 8/genetics
- Adaptor Proteins, Signal Transducing/blood
- Adaptor Proteins, Signal Transducing/genetics
- Apolipoprotein B-100/blood
- Apolipoprotein B-100/genetics
- Apolipoproteins E/blood
- Apolipoproteins E/genetics
- Cholesterol, LDL/blood
- Databases, Genetic
- Gene Expression
- Genomics/methods
- Humans
- Hyperlipoproteinemia Type II/blood
- Hyperlipoproteinemia Type II/genetics
- Hyperlipoproteinemia Type II/pathology
- Lipid Metabolism/genetics
- Lipoproteins/blood
- Lipoproteins/genetics
- Mutation
- Proprotein Convertase 9/blood
- Proprotein Convertase 9/genetics
- Receptors, LDL/blood
- Receptors, LDL/genetics
- Sterol Esterase/blood
- Sterol Esterase/genetics
Collapse
Affiliation(s)
- Ana C Alves
- Unidade de I&D, Grupo de Investigação Cardiovascular, Departamento de Promoção da Saúde e Prevenção de Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge
- BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Joana R Chora
- Unidade de I&D, Grupo de Investigação Cardiovascular, Departamento de Promoção da Saúde e Prevenção de Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge
- BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Mafalda Bourbon
- Unidade de I&D, Grupo de Investigação Cardiovascular, Departamento de Promoção da Saúde e Prevenção de Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge
- BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
45
|
Sarraju A, Knowles JW. Genetic Testing and Risk Scores: Impact on Familial Hypercholesterolemia. Front Cardiovasc Med 2019; 6:5. [PMID: 30761309 PMCID: PMC6361766 DOI: 10.3389/fcvm.2019.00005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/11/2019] [Indexed: 12/11/2022] Open
Abstract
Familial Hypercholesterolemia (FH) is an inherited lipid disorder affecting 1 in 220 individuals resulting in highly elevated low-density lipoprotein levels and risk of premature coronary disease. Pathogenic variants causing FH typically involve the LDL receptor (LDLR), apolipoprotein B-100 (APOB), and proprotein convertase subtulisin/kexin type 9 genes (PCSK9) and if identified convey a risk of early onset coronary artery disease (ASCVD) of 3- to 10-fold vs. the general population depending on the severity of the mutation. Identification of monogenic FH within a family has implications for family-based testing (cascade screening), risk stratification, and potentially management, and it has now been recommended that such testing be offered to all potential FH patients. Recently, robust genome wide association studies (GWAS) have led to the recognition that the accumulation of common, small effect alleles affecting many LDL-c raising genes can result in a clinical phenotype largely indistinguishable from monogenic FH (i.e., a risk of early onset ASCVD of ~3-fold) in those at the extreme tail of the distribution for these alleles (i.e., the top 8% of the population for a polygenic risk score). The incorporation of these genetic risk scores into clinical practice for non-FH patients may improve risk stratification but is not yet widely performed due to a less robust evidence base for utility. Here, we review the current status of FH genetic testing, potential future applications as well as challenges and pitfalls.
Collapse
Affiliation(s)
- Ashish Sarraju
- Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | - Joshua W Knowles
- Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford University, Stanford, CA, United States.,The FH Foundation, Pasadena, CA, United States.,Stanford Diabetes Research Center, Stanford University, Stanford, CA, United States
| |
Collapse
|
46
|
Sun D, Zhou BY, Li S, Sun NL, Hua Q, Wu SL, Cao YS, Guo YL, Wu NQ, Zhu CG, Gao Y, Cui CJ, Liu G, Li JJ. Genetic basis of index patients with familial hypercholesterolemia in Chinese population: mutation spectrum and genotype-phenotype correlation. Lipids Health Dis 2018; 17:252. [PMID: 30400955 PMCID: PMC6220500 DOI: 10.1186/s12944-018-0900-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 10/24/2018] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Although there have been many reports in the genetics of familial hypercholesterolemia (FH) worldwide, studies in regard of Chinese population are lacking. In this multi-center study, we aim to characterize the genetic spectrum of FH in Chinese population, and examine the genotype-phenotype correlations in detail. METHODS A total of 285 unrelated index cases from China with clinical FH were consecutively recruited. Next-generation sequencing and bioinformatics tools were used for mutation detection of LDLR, APOB and PCSK9 genes and genetic analysis. RESULTS Overall, the detection rate is 51.9% (148/285) in the unrelated index cases with a total of 119 risk variants identified including 84 in the LDLR gene, 31 in APOB and 4 in PCSK9 gene. Twenty-eight variants were found in more than one individual and LDLR c.1448G > A (p. W483X) was most frequent one detected in 9 patients. Besides, we found 8 (7 LDLR and 1 APOB) novel variants referred as "pathogenic (or likely pathogenic) variants" according to in silico analysis. In the phenotype analysis, patients with LDLR null mutation had significantly higher LDL cholesterol level than LDLR defective and APOB/PCSK9 mutation carriers and those with no mutations (p < 0.001). Furthermore, 13 double heterozygotes, 16 compound heterozygotes and 5 true LDLR homozygotes were identified and the true LDLR homozygotes had the most severe phenotypes. CONCLUSIONS The present study confirmed the heterogeneity of FH genetics in the largest Chinese cohort, which could replenish the knowledge of mutation spectrum and contribute to early screening and disease management.
Collapse
Affiliation(s)
- Di Sun
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037 China
| | - Bing-Yang Zhou
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037 China
| | - Sha Li
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037 China
| | - Ning-Ling Sun
- Department of Cardiology, Peking University People’s Hospital, Beijing, 100044 China
| | - Qi Hua
- Department of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
| | - Shu-Lin Wu
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangzhou, 510080 China
| | - Yun-Shan Cao
- Department of Cardiology, Gansu Provincial People’s Hospital, Lanzhou, 730000 Gansu China
| | - Yuan-Lin Guo
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037 China
| | - Na-Qiong Wu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037 China
| | - Cheng-Gang Zhu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037 China
| | - Ying Gao
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037 China
| | - Chuan-Jue Cui
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037 China
| | - Geng Liu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037 China
| | - Jian-Jun Li
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037 China
| |
Collapse
|
47
|
Schöb M, Müller P, Gerth Y, Korte W, Rickli H, Brändle M, Bärlocher A, Bilz S. [Diagnosis and Treatment of Familial Hypercholesterolemia]. PRAXIS 2018; 107:1345-1353. [PMID: 30482120 DOI: 10.1024/1661-8157/a003134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Diagnosis and Treatment of Familial Hypercholesterolemia Abstract. Familial hypercholesterolemia secondary to heterozygous mutations in the LDL receptor, Apolipoprotein B or PCSK9 gene is characterized by 2- to 3-fold elevated LDL cholesterol levels, premature atherosclerosis and extravascular cholesterol deposits (tendon xanthomata, corneal arcus). The same phenotype may occur if a person carries several LDL cholesterol rising polymorphisms (polygenic FH). Primary prevention with statins has been shown to dramatically reduce the cardiovascular burden in patients with the disease. However, it is estimated that less than 10 % of affected subjects in Switzerland have received the diagnosis, and undertreatment is frequent. Thus, clinical cardiovascular events are still the first manifestation of the disease in many cases. A correct diagnosis in index patients and cascade screening of families are mandatory to identify and treat patients before they suffer the sequelae of untreated severe hypercholesterolemia. In patients with clinical cardiovascular disease combination lipid lowering treatment with potent statins, ezetimibe and the newly available PCSK9 inhibitors will successfully lower LDL cholesterol to normal or even target levels.
Collapse
Affiliation(s)
- Manuela Schöb
- 1 Klinik für Endokrinologie, Diabetologie, Osteologie und Stoffwechselkrankheiten, Kantonsspital St. Gallen
| | - Pascal Müller
- 2 Pädiatrische Gastroenterologie & Ernährungsmedizin, Ostschweizer Kinderspital, St. Gallen
| | | | | | - Hans Rickli
- 4 Klinik für Kardiologie, Kantonsspital St. Gallen
| | - Michael Brändle
- 1 Klinik für Endokrinologie, Diabetologie, Osteologie und Stoffwechselkrankheiten, Kantonsspital St. Gallen
- 5 Klinik für Allgemeine Innere Medizin und Hausarztmedizin, Kantonsspital St. Gallen
| | | | - Stefan Bilz
- 1 Klinik für Endokrinologie, Diabetologie, Osteologie und Stoffwechselkrankheiten, Kantonsspital St. Gallen
| |
Collapse
|
48
|
Iacocca MA, Wang J, Sarkar S, Dron JS, Lagace T, McIntyre AD, Lau P, Robinson JF, Yang P, Knoll JH, Cao H, McPherson R, Hegele RA. Whole-Gene Duplication of PCSK9 as a Novel Genetic Mechanism for Severe Familial Hypercholesterolemia. Can J Cardiol 2018; 34:1316-1324. [DOI: 10.1016/j.cjca.2018.07.479] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 01/23/2023] Open
|
49
|
Martín-Campos JM, Plana N, Figueras R, Ibarretxe D, Caixàs A, Esteve E, Pérez A, Bueno M, Mauri M, Roig R, Martínez S, Pintó X, Masana L, Julve J, Blanco-Vaca F. Autosomal dominant hypercholesterolemia in Catalonia: Correspondence between clinical-biochemical and genetic diagnostics in 967 patients studied in a multicenter clinical setting. J Clin Lipidol 2018; 12:1452-1462. [PMID: 30293936 DOI: 10.1016/j.jacl.2018.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/30/2018] [Accepted: 09/04/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Autosomal dominant hypercholesterolemia (ADH) is associated with mutations in the low-density lipoprotein (LDL) receptor (LDLR), apolipoprotein B (APOB), and proprotein convertase subtilisin/kexin 9 (PCSK9) genes, and it is estimated to be greatly underdiagnosed. The most cost-effective strategy for increasing ADH diagnosis is a cascade screening from mutation-positive probands. OBJECTIVE The objective of this study was to evaluate the results from 2008 to 2016 of ADH genetic analysis performed in our clinical laboratory, serving most lipid units of Catalonia, a Spanish region with approximately 7.5 million inhabitants. METHODS After the application of the Dutch Lipid Clinic Network (DLCN) clinical diagnostic score for ADH, this information and blood or saliva from 23 different lipid clinic units were investigated in our laboratory. DNA was screened for mutations in LDLR, APOB, and PCSK9, using the DNA-array LIPOchip, the next-generation sequencing SEQPRO LIPO RS platform, and multiplex ligation-dependent probe amplification (MLPA). The Simon Broome Register Group (SBRG) criteria was calculated and analyzed for comparative purposes. RESULTS A total of 967 unrelated samples were analyzed. From this, 158 pathogenic variants were detected in 356 patients. The main components of the DLCN criteria associated with the presence of mutation were plasma LDL cholesterol (LDLc), age, and the presence of tendinous xanthomata. The contribution of family history to the diagnosis was lower than in other studies. DLCN and SBRG were similarly useful for predicting the presence of mutation. CONCLUSION In a real clinical practice, multicenter setting in Catalonia, the percentage of positive genetic diagnosis in patients potentially affected by ADH was 38.6%. The DLCN showed a relatively low capacity to predict mutation detection but a higher one for ruling out mutation.
Collapse
Affiliation(s)
- Jesús M Martín-Campos
- Institut de Recerca - Hospital de la Santa Creu i Sant Pau, Serveis de Bioquímica, i d'Endocrinologia i Nutrició, IIB Sant Pau, CIBERDEM, Universitat Autònoma de Barcelona, Departaments de Bioquímica i Biologia Molecular, i Medicina, Barcelona, Spain.
| | - Núria Plana
- Hospital Universitari Sant Joan, Universitat Rovira i Virgili, Unitat de Medicina Vascular i Metabolisme, Unitat de Recerca en Lípids i Arteriosclerosi, IISPV, CIBERDEM, Reus, Spain
| | - Rosaura Figueras
- Hospital Universitari de Bellvitge, Servei de Medicina Interna, Unitat de Lípids i Risc Vascular, Universitat de Barcelona, IDIBELL, CIBEROBN, FIPEC, ABS 17 de Setembre, L'Hospitalet/El Prat de Llobregat, Spain
| | - Daiana Ibarretxe
- Hospital Universitari Sant Joan, Universitat Rovira i Virgili, Unitat de Medicina Vascular i Metabolisme, Unitat de Recerca en Lípids i Arteriosclerosi, IISPV, CIBERDEM, Reus, Spain
| | - Assumpta Caixàs
- Hospital Universitari Parc Taulí, Servei d'Endocrinologia i Nutrició, Institut Investigació i Innovació Parc Taulí I3PT-Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Eduardo Esteve
- Hospital Universitari de Girona Dr Josep Trueta, Servei d'Endocrinologia i Nutrició, CIBEROBN, Girona, Spain
| | - Antonio Pérez
- Institut de Recerca - Hospital de la Santa Creu i Sant Pau, Serveis de Bioquímica, i d'Endocrinologia i Nutrició, IIB Sant Pau, CIBERDEM, Universitat Autònoma de Barcelona, Departaments de Bioquímica i Biologia Molecular, i Medicina, Barcelona, Spain
| | - Marta Bueno
- Hospital Universitari Arnau de Vilanova, Servei d'Endocrinologia i Nutrició, Lleida, Spain
| | - Marta Mauri
- Hospital de Terrassa, Servei de Medicina Interna, Terrassa, Spain
| | - Rosa Roig
- Institut de Recerca - Hospital de la Santa Creu i Sant Pau, Serveis de Bioquímica, i d'Endocrinologia i Nutrició, IIB Sant Pau, CIBERDEM, Universitat Autònoma de Barcelona, Departaments de Bioquímica i Biologia Molecular, i Medicina, Barcelona, Spain
| | - Susana Martínez
- Institut de Recerca - Hospital de la Santa Creu i Sant Pau, Serveis de Bioquímica, i d'Endocrinologia i Nutrició, IIB Sant Pau, CIBERDEM, Universitat Autònoma de Barcelona, Departaments de Bioquímica i Biologia Molecular, i Medicina, Barcelona, Spain
| | - Xavier Pintó
- Hospital Universitari de Bellvitge, Servei de Medicina Interna, Unitat de Lípids i Risc Vascular, Universitat de Barcelona, IDIBELL, CIBEROBN, FIPEC, ABS 17 de Setembre, L'Hospitalet/El Prat de Llobregat, Spain
| | - Luís Masana
- Hospital Universitari Sant Joan, Universitat Rovira i Virgili, Unitat de Medicina Vascular i Metabolisme, Unitat de Recerca en Lípids i Arteriosclerosi, IISPV, CIBERDEM, Reus, Spain
| | - Josep Julve
- Institut de Recerca - Hospital de la Santa Creu i Sant Pau, Serveis de Bioquímica, i d'Endocrinologia i Nutrició, IIB Sant Pau, CIBERDEM, Universitat Autònoma de Barcelona, Departaments de Bioquímica i Biologia Molecular, i Medicina, Barcelona, Spain
| | - Francisco Blanco-Vaca
- Institut de Recerca - Hospital de la Santa Creu i Sant Pau, Serveis de Bioquímica, i d'Endocrinologia i Nutrició, IIB Sant Pau, CIBERDEM, Universitat Autònoma de Barcelona, Departaments de Bioquímica i Biologia Molecular, i Medicina, Barcelona, Spain.
| | | |
Collapse
|
50
|
Ashfield-Watt P, Haralambos K, Edwards R, Townsend D, Gingell R, Wa Li K, Humphries SE, McDowell I. Estimation of the prevalence of cholesteryl ester storage disorder in a cohort of patients with clinical features of familial hypercholesterolaemia. Ann Clin Biochem 2018; 56:112-117. [PMID: 30056760 DOI: 10.1177/0004563218793165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND AND AIM Familial hypercholesterolaemia is caused by variants in the low-density lipoprotein cholesterol metabolic pathway involving LDLR, APOB and PCSK9 genes. A national genetic testing service in Wales, UK has observed that no familial hypercholesterolaemia variant is found in almost 80% patients with the familial hypercholesterolaemia phenotype. It has recently been suggested that some adult patients with a familial hypercholesterolaemia phenotype may have cholesteryl ester storage disease which can also present as a mixed hyperlipidaemia. The commonest genetic cause of cholesteryl ester storage disease is an exon 8 splice junction variant in the LIPA gene (rs116928232, c.894G>A; E8SJM) previously found to have an allele frequency of 0.0011 (1 in 450 individuals) in a large European population. This study investigated the prevalence of the E8SJM in patients with a familial hypercholesterolaemia phenotype in Wales, UK. METHOD A total of 1203 patients with a clinical suspicion of familial hypercholesterolaemia but no familial hypercholesterolaemia variant were invited to participate. Of these, 668 patients provided informed written consent. Stored DNA samples from 663 patients were genotyped for the E8SJM variant. RESULTS Three heterozygotes were identified (allele frequency 0.0023). Whole gene sequencing of the LIPA gene was undertaken in these three individuals, but no other variants were found. Therefore, there were no cholesteryl ester storage disease patients (homozygote or compound heterozygote) identified in this cohort. CONCLUSION The allele frequency 0.0023 (1 in 221 individuals) for the E8SJM variant was more prevalent in this cohort than in a European population study; however, no cholesteryl ester storage disease homozygotes were identified. We found no evidence to support routine testing for cholesteryl ester storage disease in adult patients with a familial hypercholesterolaemia phenotype.
Collapse
Affiliation(s)
- Pauline Ashfield-Watt
- 1 FH Wales Research Team, Cardiff University, Wales Heart Research Institute, Cardiff, UK
| | - Kate Haralambos
- 1 FH Wales Research Team, Cardiff University, Wales Heart Research Institute, Cardiff, UK
| | - Rhiannon Edwards
- 2 All Wales FH Cascade Testing Service, All Wales Medical Genetics Service, Cardiff, UK
| | - Delyth Townsend
- 2 All Wales FH Cascade Testing Service, All Wales Medical Genetics Service, Cardiff, UK
| | - Rob Gingell
- 2 All Wales FH Cascade Testing Service, All Wales Medical Genetics Service, Cardiff, UK
| | - Kah Wa Li
- 3 Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, London, UK
| | - Steve E Humphries
- 3 Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, London, UK
| | - Ian McDowell
- 1 FH Wales Research Team, Cardiff University, Wales Heart Research Institute, Cardiff, UK
| |
Collapse
|