1
|
Reyila A, Gao X, Yu J, Nie Y. Insight into the role of DNA methylation in prognosis and treatment response prediction of gastrointestinal cancers. Epigenomics 2025; 17:475-488. [PMID: 40084815 PMCID: PMC12026041 DOI: 10.1080/17501911.2025.2476380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 03/04/2025] [Indexed: 03/16/2025] Open
Abstract
Gastrointestinal (GI) cancers impose a significant disease burden, underscoring the critical importance of accurate prognosis prediction and treatment response evaluation. DNA methylation, one of the most extensively studied epigenetic modifications, has gained prominence due to its reliable measurement across various sample types. Numerous studies have reported that DNA methylation was linked to the diagnosis, prognosis and treatment response in malignancies, including GI cancers. While its diagnostic role in GI cancers has been comprehensively reviewed. Recent research has increasingly highlighted its potential in prognosis prediction and treatment response evaluation. However, no existing reviews have exclusively focused on these two aspects. In this review, we retrieved relevant studies and included 230 of them in our discussion, thereby providing an overview of the clinical applicability of aberrant DNA methylation in these two fields among patients with esophageal, gastric, colorectal, pancreatic cancers, and hepatocellular carcinomas. Additionally, we discuss the limitations of the current literature and propose directions for future research. Specifically, we emphasize the need for standardized DNA methylation methodologies and advocate for the integration of gene panels, rather than single genes, to address tumor heterogeneity more effectively.
Collapse
Affiliation(s)
- Abudurousuli Reyila
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi’an, Shaanxi, China
- National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xianchun Gao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi’an, Shaanxi, China
- National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jun Yu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi’an, Shaanxi, China
- National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yongzhan Nie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi’an, Shaanxi, China
- National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
2
|
Zand A, Macharia JM, Szabó I, Gerencsér G, Molnár Á, Raposa BL, Varjas T. The Impact of Tartrazine on DNA Methylation, Histone Deacetylation, and Genomic Stability in Human Cell Lines. Nutrients 2025; 17:913. [PMID: 40077783 PMCID: PMC11902176 DOI: 10.3390/nu17050913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/21/2025] [Accepted: 02/22/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND/OBJECTIVES Tartrazine (TRZ), a synthetic red azo dye derived from coal tar, is widely used as a food colorant in various food products, pharmaceuticals, and cosmetics. This study aims to investigate the impact of TRZ on the expression levels of DNA methyltransferases (DNMT1, DNMT3a, and DNMT3b) and histone deacetylases (HDAC5 and HDAC6). Additionally, we evaluate genomic DNA stability using the alkaline comet assay in three human cell lines: immortalized human keratinocyte (HaCaT), human hepatocellular carcinoma (HepG2), and human lung adenocarcinoma (A549). The research question focuses on whether TRZ exposure alters epigenetic regulation and DNA integrity, potentially implicating its role in carcinogenesis. METHODS The selected human cell lines were exposed to different concentrations of TRZ (20 µM, 40 µM, and 80 µM), with DMBA serving as a positive control. After treatment, we quantified the expression levels of DNMT1, DNMT3a, DNMT3b, HDAC5, and HDAC6 using quantitative real-time PCR. Additionally, we assessed DNA fragmentation via the alkaline comet assay to determine the extent of DNA damage resulting from TRZ exposure. RESULTS Our findings indicate that TRZ significantly upregulates the expression of HDAC5, HDAC6, DNMT1, DNMT3a, and DNMT3b in comparison to the control group. Furthermore, TRZ exposure leads to a notable increase in DNA damage, as evidenced by elevated tail moments across all examined human cell lines. CONCLUSIONS These results suggest that TRZ may play a role in carcinogenesis and epigenetic modifications. The observed upregulation of DNMTs and HDACs, coupled with increased DNA damage, highlights the potential risks associated with TRZ exposure. Further research is necessary to explore these mechanisms and assess their implications for human health.
Collapse
Affiliation(s)
- Afshin Zand
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (I.S.); (G.G.); (T.V.)
| | - John M. Macharia
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary;
| | - Istvan Szabó
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (I.S.); (G.G.); (T.V.)
| | - Gellért Gerencsér
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (I.S.); (G.G.); (T.V.)
- Preclinical Research Center, Medical School, University of Pécs, 7624 Pécs, Hungary;
| | - Ádám Molnár
- Preclinical Research Center, Medical School, University of Pécs, 7624 Pécs, Hungary;
| | - Bence L. Raposa
- Institute of Basics of Health Sciences, Midwifery and Health Visiting, Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary;
| | - Timea Varjas
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (I.S.); (G.G.); (T.V.)
| |
Collapse
|
3
|
Su L, Bu J, Yu J, Jin M, Meng G, Zhu X. Comprehensive review and updated analysis of DNA methylation in hepatocellular carcinoma: From basic research to clinical application. Clin Transl Med 2024; 14:e70066. [PMID: 39462685 PMCID: PMC11513202 DOI: 10.1002/ctm2.70066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a primary malignant tumour, ranking second in global mortality rates and posing significant health threats. Epigenetic alterations, particularly DNA methylation, have emerged as pivotal factors associated with HCC diagnosis, therapy, prognosis and malignant progression. However, a comprehensive analysis of the DNA methylation mechanism driving HCC progression and its potential as a therapeutic biomarker remains lacking. This review attempts to comprehensively summarise various aspects of DNA methylation, such as its mechanism, detection methods and biomarkers aiding in HCC diagnosis, treatment and prognostic assessment of HCC. It also explores the role of DNA methylation in regulating HCC's malignant progression and sorafenib resistance, alongside elaborating the therapeutic effects of DNA methyltransferase inhibitors on HCC. A detailed examination of these aspects underscores the significant research on DNA methylation in tumour cells to elucidate malignant progression mechanisms, identify diagnostic markers and develop new tumour-specific inhibitors for HCC. KEY POINTS: A comprehensive summary of various aspects of DNA methylation, such as its mechanism, detection methods and biomarkers aiding in diagnosis and treatment. The role of DNA methylation in regulating hepatocellular carcinoma's (HCC) malignant progression and sorafenib resistance, alongside elaborating therapeutic effects of DNA methyltransferase inhibitors. Deep research on DNA methylation is critical for discovering novel tumour-specific inhibitors for HCC.
Collapse
Affiliation(s)
- Lin Su
- Department of Pain ManagementShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Jiawen Bu
- Department of Colorectal SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Jiahui Yu
- Department of UltrasoundShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Mila Jin
- Department of Operation RoomThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Guanliang Meng
- Department of UrologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xudong Zhu
- Department of OncologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
- Department of General SurgeryCancer Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
4
|
Yadav B, Singh D, Mantri S, Rishi V. Genome-wide Methylation Dynamics and Context-dependent Gene Expression Variability in Differentiating Preadipocytes. J Endocr Soc 2024; 8:bvae121. [PMID: 38966711 PMCID: PMC11222978 DOI: 10.1210/jendso/bvae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Indexed: 07/06/2024] Open
Abstract
Obesity, characterized by the accumulation of excess fat, is a complex condition resulting from the combination of genetic and epigenetic factors. Recent studies have found correspondence between DNA methylation and cell differentiation, suggesting a role of the former in cell fate determination. There is a lack of comprehensive understanding concerning the underpinnings of preadipocyte differentiation, specifically when cells are undergoing terminal differentiation (TD). To gain insight into dynamic genome-wide methylation, 3T3 L1 preadipocyte cells were differentiated by a hormone cocktail. The genomic DNA was isolated from undifferentiated cells and 4 hours, 2 days postdifferentiated cells, and 15 days TD cells. We employed whole-genome bisulfite sequencing (WGBS) to ascertain global genomic DNA methylation alterations at single base resolution as preadipocyte cells differentiate. The genome-wide distribution of DNA methylation showed similar overall patterns in pre-, post-, and terminally differentiated adipocytes, according to WGBS analysis. DNA methylation decreases at 4 hours after differentiation initiation, followed by methylation gain as cells approach TD. Studies revealed novel differentially methylated regions (DMRs) associated with adipogenesis. DMR analysis suggested that though DNA methylation is global, noticeable changes are observed at specific sites known as "hotspots." Hotspots are genomic regions rich in transcription factor (TF) binding sites and exhibit methylation-dependent TF binding. Subsequent analysis indicated hotspots as part of DMRs. The gene expression profile of key adipogenic genes in differentiating adipocytes is context-dependent, as we found a direct and inverse relationship between promoter DNA methylation and gene expression.
Collapse
Affiliation(s)
- Binduma Yadav
- Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India
- Regional Center for Biotechnology, Faridabad, Haryana 160014, India
| | - Dalwinder Singh
- Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India
- Department of Anatomy and Cell Biology, Western University, London, Ontario N6A 5C1, Canada
| | - Shrikant Mantri
- Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India
| | - Vikas Rishi
- Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India
| |
Collapse
|
5
|
Kanai Y. Molecular pathological approach to cancer epigenomics and its clinical application. Pathol Int 2024; 74:167-186. [PMID: 38482965 PMCID: PMC11551818 DOI: 10.1111/pin.13418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 04/11/2024]
Abstract
Careful microscopic observation of histopathological specimens, accumulation of large numbers of high-quality tissue specimens, and analysis of molecular pathology in relation to morphological features are considered to yield realistic data on the nature of multistage carcinogenesis. Since the morphological hallmark of cancer is disruption of the normal histological structure maintained through cell-cell adhesiveness and cellular polarity, attempts have been made to investigate abnormalities of the cadherin-catenin cell adhesion system in human cancer cells. It has been shown that the CDH1 tumor suppressor gene encoding E-cadherin is silenced by DNA methylation, suggesting that a "double hit" involving DNA methylation and loss of heterozygosity leads to carcinogenesis. Therefore, in the 1990s, we focused on epigenomic mechanisms, which until then had not received much attention. In chronic hepatitis and liver cirrhosis associated with hepatitis virus infection, DNA methylation abnormalities were found to occur frequently, being one of the earliest indications that such abnormalities are present even in precancerous tissue. Aberrant expression and splicing of DNA methyltransferases, such as DNMT1 and DNMT3B, was found to underlie the mechanism of DNA methylation alterations in various organs. The CpG island methylator phenotype in renal cell carcinoma was identified for the first time, and its therapeutic targets were identified by multilayer omics analysis. Furthermore, the DNA methylation profile of nonalcoholic steatohepatitis (NASH)-related hepatocellular carcinoma was clarified in groundbreaking studies. Since then, we have developed diagnostic markers for carcinogenesis risk in NASH patients and noninvasive diagnostic markers for upper urinary tract cancer, as well as developing a new high-performance liquid chromatography-based diagnostic system for DNA methylation diagnosis. Research on the cancer epigenome has revealed that DNA methylation alterations occur from the precancerous stage as a result of exposure to carcinogenic factors such as inflammation, smoking, and viral infections, and continuously contribute to multistage carcinogenesis through aberrant expression of cancer-related genes and genomic instability. DNA methylation alterations at the precancerous stages are inherited by or strengthened in cancers themselves and determine the clinicopathological aggressiveness of cancers as well as patient outcome. DNA methylation alterations have applications as biomarkers, and are expected to contribute to diagnosis, as well as preventive and preemptive medicine.
Collapse
Affiliation(s)
- Yae Kanai
- Department of PathologyKeio University School of MedicineTokyoJapan
| |
Collapse
|
6
|
Yu Y, Fu W, Xie Y, Jiang X, Wang H, Yang X. A review on recent advances in assays for DNMT1: a promising diagnostic biomarker for multiple human cancers. Analyst 2024; 149:1002-1021. [PMID: 38204433 DOI: 10.1039/d3an01915b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The abnormal expression of human DNA methyltransferases (DNMTs) is closely related with the occurrence and development of a wide range of human cancers. DNA (cytosine-5)-methyltransferase-1 (DNMT1) is the most abundant human DNA methyltransferase and is mainly responsible for genomic DNA methylation patterns. Abnormal expression of DNMT1 has been found in many kinds of tumors, and DNMT1 has become a valuable target for the diagnosis and drug therapy of diseases. Nowadays, DNMT1 has been found to be involved in multiple cancers such as pancreatic cancer, breast cancer, bladder cancer, lung cancer, gastric cancer and other cancers. In order to achieve early diagnosis and for scientific research, various analytical methods have been developed for qualitative or quantitative detection of low-abundance DNMT1 in biological samples and human tumor cells. Herein, we provide a brief explication of the research progress of DNMT1 involved in various cancer types. In addition, this review focuses on the types, principles, and applications of DNMT1 detection methods, and discusses the challenges and potential future directions of DNMT1 detection.
Collapse
Affiliation(s)
- Yang Yu
- Department of Laboratory Medicine, QianWei People's Hospital, Leshan 614400, China
- Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Wen Fu
- Department of Thoracic Surgery, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Yaxing Xie
- Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Xue Jiang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hong Wang
- Department of Laboratory Medicine, QianWei People's Hospital, Leshan 614400, China
| | - Xiaolan Yang
- Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
7
|
Lee SW, Frankston CM, Kim J. Epigenome editing in cancer: Advances and challenges for potential therapeutic options. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 383:191-230. [PMID: 38359969 DOI: 10.1016/bs.ircmb.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Cancers are diseases caused by genetic and non-genetic environmental factors. Epigenetic alterations, some attributed to non-genetic factors, can lead to cancer development. Epigenetic changes can occur in tumor suppressors or oncogenes, or they may contribute to global cell state changes, making cells abnormal. Recent advances in gene editing technology show potential for cancer treatment. Herein, we will discuss our current knowledge of epigenetic alterations occurring in cancer and epigenetic editing technologies that can be applied to developing therapeutic options.
Collapse
Affiliation(s)
- Seung-Won Lee
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States; Department of Molecular and Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Connor Mitchell Frankston
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States; Biomedical Engineering Graduate Program, Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Jungsun Kim
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States; Department of Molecular and Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, OR, United States; Cancer Biology Research Program, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States.
| |
Collapse
|
8
|
Pérez-Aguilar B, Marquardt JU, Muñoz-Delgado E, López-Durán RM, Gutiérrez-Ruiz MC, Gomez-Quiroz LE, Gómez-Olivares JL. Changes in the Acetylcholinesterase Enzymatic Activity in Tumor Development and Progression. Cancers (Basel) 2023; 15:4629. [PMID: 37760598 PMCID: PMC10526250 DOI: 10.3390/cancers15184629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Acetylcholinesterase is a well-known protein because of the relevance of its enzymatic activity in the hydrolysis of acetylcholine in nerve transmission. In addition to the catalytic action, it exerts non-catalytic functions; one is associated with apoptosis, in which acetylcholinesterase could significantly impact the survival and aggressiveness observed in cancer. The participation of AChE as part of the apoptosome could explain the role in tumors, since a lower AChE content would increase cell survival due to poor apoptosome assembly. Likewise, the high Ach content caused by the reduction in enzymatic activity could induce cell survival mediated by the overactivation of acetylcholine receptors (AChR) that activate anti-apoptotic pathways. On the other hand, in tumors in which high enzymatic activity has been observed, AChE could be playing a different role in the aggressiveness of cancer; in this review, we propose that AChE could have a pro-inflammatory role, since the high enzyme content would cause a decrease in ACh, which has also been shown to have anti-inflammatory properties, as discussed in this review. In this review, we analyze the changes that the enzyme could display in different tumors and consider the different levels of regulation that the acetylcholinesterase undergoes in the control of epigenetic changes in the mRNA expression and changes in the enzymatic activity and its molecular forms. We focused on explaining the relationship between acetylcholinesterase expression and its activity in the biology of various tumors. We present up-to-date knowledge regarding this fascinating enzyme that is positioned as a remarkable target for cancer treatment.
Collapse
Affiliation(s)
- Benjamín Pérez-Aguilar
- Area de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City 09310, Mexico; (B.P.-A.); (M.C.G.-R.)
- Department of Medicine I, University of Lübeck, 23562 Lübeck, Germany;
| | - Jens U. Marquardt
- Department of Medicine I, University of Lübeck, 23562 Lübeck, Germany;
| | | | - Rosa María López-Durán
- Laboratorio de Biomembranas, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City 09310, Mexico;
| | - María Concepción Gutiérrez-Ruiz
- Area de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City 09310, Mexico; (B.P.-A.); (M.C.G.-R.)
| | - Luis E. Gomez-Quiroz
- Area de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City 09310, Mexico; (B.P.-A.); (M.C.G.-R.)
| | - José Luis Gómez-Olivares
- Laboratorio de Biomembranas, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City 09310, Mexico;
| |
Collapse
|
9
|
Steers GJ, O’Leary BR, Du J, Wagner BA, Carroll RS, Domann FE, Goswami PC, Buettner GR, Cullen JJ. Pharmacologic Ascorbate and DNMT Inhibitors Increase DUOX Expression and Peroxide-Mediated Toxicity in Pancreatic Cancer. Antioxidants (Basel) 2023; 12:1683. [PMID: 37759986 PMCID: PMC10525653 DOI: 10.3390/antiox12091683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Recent studies have demonstrated an important role for vitamin C in the epigenetic regulation of cancer-related genes via DNA demethylation by the ten-eleven translocation (TET) methylcytosine dioxygenase enzymes. DNA methyltransferase (DNMT) reverses this, increasing DNA methylation and decreasing gene expression. Dual oxidase (DUOX) enzymes produce hydrogen peroxide (H2O2) in normal pancreatic tissue but are silenced in pancreatic cancer (PDAC). Treatment of PDAC with pharmacologic ascorbate (P-AscH-, intravenous, high dose vitamin C) increases DUOX expression. We hypothesized that inhibiting DNMT may act synergistically with P-AscH- to further increase DUOX expression and cytotoxicity of PDAC. PDAC cells demonstrated dose-dependent increases in DUOX mRNA and protein expression when treated with DNMT inhibitors. PDAC cells treated with P-AscH- + DNMT inhibitors demonstrated increased DUOX expression, increased intracellular oxidation, and increased cytotoxicity in vitro and in vivo compared to either treatment alone. These findings suggest a potential therapeutic, epigenetic mechanism to treat PDAC.
Collapse
Affiliation(s)
- Garett J. Steers
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, Iowa City, IA 52242, USA; (G.J.S.); (B.R.O.); (J.D.); (B.A.W.); (R.S.C.); (F.E.D.); (P.C.G.); (G.R.B.)
- The Department of Surgery, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Brianne R. O’Leary
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, Iowa City, IA 52242, USA; (G.J.S.); (B.R.O.); (J.D.); (B.A.W.); (R.S.C.); (F.E.D.); (P.C.G.); (G.R.B.)
- The Department of Surgery, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Juan Du
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, Iowa City, IA 52242, USA; (G.J.S.); (B.R.O.); (J.D.); (B.A.W.); (R.S.C.); (F.E.D.); (P.C.G.); (G.R.B.)
- The Department of Surgery, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Brett A. Wagner
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, Iowa City, IA 52242, USA; (G.J.S.); (B.R.O.); (J.D.); (B.A.W.); (R.S.C.); (F.E.D.); (P.C.G.); (G.R.B.)
| | - Rory S. Carroll
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, Iowa City, IA 52242, USA; (G.J.S.); (B.R.O.); (J.D.); (B.A.W.); (R.S.C.); (F.E.D.); (P.C.G.); (G.R.B.)
- The Department of Surgery, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Frederick E. Domann
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, Iowa City, IA 52242, USA; (G.J.S.); (B.R.O.); (J.D.); (B.A.W.); (R.S.C.); (F.E.D.); (P.C.G.); (G.R.B.)
| | - Prabhat C. Goswami
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, Iowa City, IA 52242, USA; (G.J.S.); (B.R.O.); (J.D.); (B.A.W.); (R.S.C.); (F.E.D.); (P.C.G.); (G.R.B.)
| | - Garry R. Buettner
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, Iowa City, IA 52242, USA; (G.J.S.); (B.R.O.); (J.D.); (B.A.W.); (R.S.C.); (F.E.D.); (P.C.G.); (G.R.B.)
| | - Joseph J. Cullen
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, Iowa City, IA 52242, USA; (G.J.S.); (B.R.O.); (J.D.); (B.A.W.); (R.S.C.); (F.E.D.); (P.C.G.); (G.R.B.)
- The Department of Surgery, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| |
Collapse
|
10
|
Kciuk M, Alam M, Ali N, Rashid S, Głowacka P, Sundaraj R, Celik I, Yahya EB, Dubey A, Zerroug E, Kontek R. Epigallocatechin-3-Gallate Therapeutic Potential in Cancer: Mechanism of Action and Clinical Implications. Molecules 2023; 28:5246. [PMID: 37446908 PMCID: PMC10343677 DOI: 10.3390/molecules28135246] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Cellular signaling pathways involved in the maintenance of the equilibrium between cell proliferation and apoptosis have emerged as rational targets that can be exploited in the prevention and treatment of cancer. Epigallocatechin-3-gallate (EGCG) is the most abundant phenolic compound found in green tea. It has been shown to regulate multiple crucial cellular signaling pathways, including those mediated by EGFR, JAK-STAT, MAPKs, NF-κB, PI3K-AKT-mTOR, and others. Deregulation of the abovementioned pathways is involved in the pathophysiology of cancer. It has been demonstrated that EGCG may exert anti-proliferative, anti-inflammatory, and apoptosis-inducing effects or induce epigenetic changes. Furthermore, preclinical and clinical studies suggest that EGCG may be used in the treatment of numerous disorders, including cancer. This review aims to summarize the existing knowledge regarding the biological properties of EGCG, especially in the context of cancer treatment and prophylaxis.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland; (M.K.); (R.K.)
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Pola Głowacka
- Department of Medical Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 90-001 Lodz, Poland;
- Doctoral School of Medical University of Lodz, Hallera 1 Square, 90-700 Lodz, Poland
| | - Rajamanikandan Sundaraj
- Department of Biochemistry, Centre for Drug Discovery, Karpagam Academy of Higher Education, Coimbatore 641021, India;
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38280, Turkey;
| | - Esam Bashir Yahya
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - Amit Dubey
- Computational Chemistry and Drug Discovery Division, Quanta Calculus, Greater Noida 201310, India;
- Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Chennai 600077, India
| | - Enfale Zerroug
- LMCE Laboratory, Group of Computational and Pharmaceutical Chemistry, University of Biskra, Biskra 07000, Algeria;
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland; (M.K.); (R.K.)
| |
Collapse
|
11
|
Sahafnejad Z, Ramazi S, Allahverdi A. An Update of Epigenetic Drugs for the Treatment of Cancers and Brain Diseases: A Comprehensive Review. Genes (Basel) 2023; 14:genes14040873. [PMID: 37107631 PMCID: PMC10137918 DOI: 10.3390/genes14040873] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/28/2022] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Epigenetics has long been recognized as a significant field in biology and is defined as the investigation of any alteration in gene expression patterns that is not attributed to changes in the DNA sequences. Epigenetic marks, including histone modifications, non-coding RNAs, and DNA methylation, play crucial roles in gene regulation. Numerous studies in humans have been carried out on single-nucleotide resolution of DNA methylation, the CpG island, new histone modifications, and genome-wide nucleosome positioning. These studies indicate that epigenetic mutations and aberrant placement of these epigenetic marks play a critical role in causing the disease. Consequently, significant development has occurred in biomedical research in identifying epigenetic mechanisms, their interactions, and changes in health and disease conditions. The purpose of this review article is to provide comprehensive information about the different types of diseases caused by alterations in epigenetic factors such as DNA methylation and histone acetylation or methylation. Recent studies reported that epigenetics could influence the evolution of human cancer via aberrant methylation of gene promoter regions, which is associated with reduced gene function. Furthermore, DNA methyltransferases (DNMTs) in the DNA methylation process as well as histone acetyltransferases (HATs)/histone deacetylases (HDACs) and histone methyltransferases (HMTs)/demethylases (HDMs) in histone modifications play important roles both in the catalysis and inhibition of target gene transcription and in many other DNA processes such as repair, replication, and recombination. Dysfunction in these enzymes leads to epigenetic disorders and, as a result, various diseases such as cancers and brain diseases. Consequently, the knowledge of how to modify aberrant DNA methylation as well as aberrant histone acetylation or methylation via inhibitors by using epigenetic drugs can be a suitable therapeutic approach for a number of diseases. Using the synergistic effects of DNA methylation and histone modification inhibitors, it is hoped that many epigenetic defects will be treated in the future. Numerous studies have demonstrated a link between epigenetic marks and their effects on brain and cancer diseases. Designing appropriate drugs could provide novel strategies for the management of these diseases in the near future.
Collapse
Affiliation(s)
- Zahra Sahafnejad
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran P.O. Box 14115-111, Iran
| | - Shahin Ramazi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran P.O. Box 14115-111, Iran
| | - Abdollah Allahverdi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran P.O. Box 14115-111, Iran
| |
Collapse
|
12
|
Kim M, Delgado E, Ko S. DNA methylation in cell plasticity and malignant transformation in liver diseases. Pharmacol Ther 2023; 241:108334. [PMID: 36535346 PMCID: PMC9841769 DOI: 10.1016/j.pharmthera.2022.108334] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
The liver possesses extraordinary regenerative capacity mainly attributable to the ability of hepatocytes (HCs) and biliary epithelial cells (BECs) to self-replicate. This ability is left over from their bipotent parent cell, the hepatoblast, during development. When this innate regeneration is compromised due to the absence of proliferative parenchymal cells, such as during cirrhosis, HCs and BEC can transdifferentiate; thus, adding another layer of complexity to the process of liver repair. In addition, dysregulated lineage maintenance in these two cell populations has been shown to promote malignant growth in experimental conditions. Here, malignant transformation, driven in part by insufficient maintenance of lineage reprogramming, contributes to end-stage liver disease. Epigenetic changes are key drivers for cell fate decisions as well as transformation by finetuning overall transcription and gene expression. In this review, we address how altered DNA methylation contributes to the initiation and progression of hepatic cell fate conversion and cancer formation. We also discussed the diagnostic and therapeutic potential of targeting DNA methylation in liver cancer, its current limitations, and what future research is necessary to facilitate its contribution to clinical translation.
Collapse
Affiliation(s)
- Minwook Kim
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Evan Delgado
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Sungjin Ko
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America.
| |
Collapse
|
13
|
Maksimova VP, Usalka OG, Makus YV, Popova VG, Trapeznikova ES, Khayrieva GI, Sagitova GR, Zhidkova EM, Prus AY, Yakubovskaya MG, Kirsanov KI. Aberrations of DNA methylation in cancer. ADVANCES IN MOLECULAR ONCOLOGY 2022. [DOI: 10.17650/2313-805x-2022-9-4-24-40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
DNA methylation is a chromatin modification that plays an important role in the epigenetic regulation of gene expression. Changes in DNA methylation patterns are characteristic of many malignant neoplasms. DNA methylation is occurred by DNA methyltransferases (DNMTs), while demethylation is mediated by TET family proteins. Mutations and changes in the expression profile of these enzymes lead to DNA hypo- and hypermethylation and have a strong impact on carcinogenesis. In this review, we considered the key aspects of the mechanisms of regulation of DNA methylation and demethylation, and also analyzed the role of DNA methyltransferases and TET family proteins in the pathogenesis of various malignant neoplasms.During the preparation of the review, we used the following biomedical literature information bases: Scopus (504), PubMed (553), Web of Science (1568), eLibrary (190). To obtain full-text documents, the electronic resources of PubMed Central (PMC), Science Direct, Research Gate, CyberLeninka were used. To analyze the mutational profile of epigenetic regulatory enzymes, we used the cBioportal portal (https://www.cbioportal.org / ), data from The AACR Project GENIE Consortium (https://www.mycancergenome.org / ), COSMIC, Clinvar, and The Cancer Genome Atlas (TCGA).
Collapse
Affiliation(s)
- V. P. Maksimova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - O. G. Usalka
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; Sechenov First Moscow State Medical University, Ministry of Health of Russia
| | - Yu. V. Makus
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; Peoples’ Friendship University of Russia
| | - V. G. Popova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; Mendeleev University of Chemical Technology of Russia
| | - E. S. Trapeznikova
- Sechenov First Moscow State Medical University, Ministry of Health of Russia
| | - G. I. Khayrieva
- Sechenov First Moscow State Medical University, Ministry of Health of Russia
| | - G. R. Sagitova
- Sechenov First Moscow State Medical University, Ministry of Health of Russia
| | - E. M. Zhidkova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - A. Yu. Prus
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; MIREA – Russian Technological University
| | - M. G. Yakubovskaya
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - K. I. Kirsanov
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia; Peoples’ Friendship University of Russia
| |
Collapse
|
14
|
Abstract
DNA methylation is considered an essential epigenetic event during leukaemogenesis and the emergence of drug resistance, which is primarily regulated by DNA methyltransferases. DNA methyltransferase-1 (DNMT1) is one of the members of DNA methyltransferases, in charge of maintaining established methylation. Recently, DNMT1 is shown to promote malignant events of cancers through the epigenetic and non-epigenetic processes. Increasing studies in solid tumours have identified DNMT1 as a therapeutic target and a regulator of therapy resistance; however, it is unclear whether DNMT1 is a critical regulator in acute myeloid leukaemia (AML) and how it works. In this review, we summarized the recent understanding of DNMT1 in normal haematopoiesis and AML and discussed the possible functions of DNMT1 in promoting the development of AML and predicting the sensitivity of hypomethylation agents to better understand the relationship between DNMT1 and AML and to look for new hope to treat AML patients.Key messagesThe function of DNA methyltransferase-1 in acute myeloid leukaemia.DNA methyltransferase-1 predicts the sensitivity of drug and involves the emergence of drug resistance.
Collapse
Affiliation(s)
- Mengyuan Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Donghua Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
15
|
Pavlov KH, Tadić V, Palković PB, Sasi B, Magdić N, Petranović MZ, Klasić M, Hančić S, Gršković P, Matulić M, Gašparov S, Dominis M, Korać P. Different expression of DNMT1, PCNA, MCM2, CDT1, EZH2, GMNN and EP300 genes in lymphomagenesis of low vs. high grade lymphoma. Pathol Res Pract 2022; 239:154170. [DOI: 10.1016/j.prp.2022.154170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/29/2022]
|
16
|
Li G, Roy B, Huang X, Mu Y, Yuan J, Xia Y, Song Y, Peng Z. High expression of N-type calcium channel indicates a favorable prognosis in gliomas. Medicine (Baltimore) 2022; 101:e29782. [PMID: 35777045 PMCID: PMC9239611 DOI: 10.1097/md.0000000000029782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
For the diagnosis and prognosis of glioma, the development of prognostic biomarkers is critical. The N-type calcium channel, whose predominant subunit is encoded by calcium voltage-gated channel subunit alpha1 B (CACNA1B), is mostly found in the nervous system and is closely associated with neurosensory functions. However, the link between the expression of CACNA1B and glioma remains unknown. We used ONCOMINE to explore the differences in CACNA1B expression among different cancers. We then conducted survival analysis and COX analysis using TCGA_LGG and TCGA_GBM datasets, which were divided into CACNA1Bhigh and CACNA1Blow based on the median. We examined the differences in other favorable prognostic markers or clinical characteristics between CACNA1Bhigh and CACNA1Blow using t tests. Differentially expressed genes were identified, and KEGG pathway enrichment was performed. We compared the expression of methyltransferases and analyzed the differentially methylated regions. Immunohistochemistry results were retrieved from the Human Protein Atlas database for validation purposes. CACNA1B was expressed at lower levels in gliomas, and, for the first time, we found that high expression of CACNA1B in gliomas predicts a good prognosis. Other favorable prognostic markers, such as isocitrate dehydrogenase mutation, 1p/19q codeletion, and O6-methylguanine-DNA methyltransferase promoter methylation, were increased in tandem with high expression of CACNA1B. Differentially expressed genes were enriched in multiple pathways related to cancer progression and aberrant epigenetic alterations were significantly associated with CACNA1B. High expression of N-type calcium channels indicates a favorable prognosis for gliomas. This study provides a better understanding of the link between gliomas and N-type calcium channels and may offer guidance for the future treatment of gliomas.
Collapse
Affiliation(s)
- Guibin Li
- Guangzhou KingMed Transformative Medicine Institute, Guangzhou, China
- *Correspondence: Guibin Li, Guangzhou KingMed Transformative Medicine Institute, No. 10 Luoxuan 3rd Road, International Biotech Island, Guangzhou 510320, Guangdong Province, China (e-mail: )
| | | | - Xiaoqiang Huang
- KingMed Center for Clinical Laboratory Co. Ltd., Guangzhou, China
| | - Yafei Mu
- Guangzhou KingMed Transformative Medicine Institute, Guangzhou, China
| | - Jiecheng Yuan
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Yang Xia
- Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yue Song
- Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Ziyue Peng
- Second Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
17
|
Zhang X, Yang Y, Zhang W, Huang K, Xu L, Shahid N, Pan Y, Xu C, Jiao X, Yang K. Downregulation of MiR-1538 promotes proliferation and metastasis of colorectal cancer by targeting DNMT3A. Biochem Biophys Res Commun 2022; 609:119-126. [PMID: 35429679 DOI: 10.1016/j.bbrc.2022.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 01/11/2023]
Abstract
Colorectal cancer (CRC) is a common malignant tumor of digestive tract, but the molecular mechanism of its occurrence and development is not clear. Some studies have shown that microRNA (miRNA) plays an important role in the occurrence and development of cancer, but many miRNAs which play an important role in the progression of CRC remain to be investigated. In this study,we found that the expression of miR-1538 was significantly down-regulated in CRC tissues and cells, and its expression level was significantly correlated with tumor size, clinical stage and prognosis. Functional and mechanism experiments showed that miR-1538 decreased the protein level of DNA methyltransferases 3A (DNMT3A) and inhibited the proliferation, migration and invasion of CRC cells by targeting the 3'-UTR of DNMT3A mRNA. Our results identify the biological function and mechanism of miR-1538 as a tumor suppressor gene in the progression of CRC, and suggest that miR-1538 can be used as a potential prognostic marker and therapeutic target for CRC.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Department of Colorectal Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yi Yang
- Alberta Institute, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Weiguang Zhang
- Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Kaixin Huang
- Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Lingsha Xu
- Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Numan Shahid
- School of International Studies, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yifei Pan
- Department of Colorectal Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Chengle Xu
- Alberta Institute, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xueli Jiao
- Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| | - Kai Yang
- Department of Colorectal Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
18
|
Liu Y, Cheng H, Cheng C, Zheng F, Zhao Z, Chen Q, Zeng W, Zhang P, Huang C, Jiang W, Liu X, Liu G. ZNF191 alters DNA methylation and activates the PI3K‐AKT pathway in hepatoma cells via transcriptional regulation of
DNMT1. Cancer Med 2022; 11:1269-1280. [PMID: 35092191 PMCID: PMC8894703 DOI: 10.1002/cam4.4535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/04/2021] [Indexed: 12/12/2022] Open
Abstract
Background Alteration of DNA methylation is an important event in pathogenesis and progression of hepatocellular carcinoma (HCC). DNA methyltransferase (DNMT) 1, the foremost contributor in DNA methylation machinery, was revealed elevated in HCC and significantly correlates with poor prognosis. However, the transcriptional regulation of DNMT1 in HCC remains unknown. Methods Real‐time PCR and immunohistochemistry were performed to detect DNMT1 and zinc finger transcription factor 191 (ZNF191) expressions in HCCs. Transcription activity of DNMT1promoter was analyzed with Luciferase reporter activity assay. The binding capacity of ZNF191 protein to DNMT1 promoter was examined with chromatin immunoprecipitation‐qPCR (ChIP‐qPCR) and electrophoretic mobility shift assay (EMSA). DNA methylation level of hepatoma cells was detected with Methylation array. Results ZNF191 can regulate DNMT1 mRNA and protein expression positively, and increase the transcription activity of the DNMT1 promoter. ChIP‐qPCR and EMSA revealed that ZNF191 protein directly binds to the DNMT1 promoter at nt‐240 AT(TCAT)3TC. Moreover, DNMT1 and ZNF191 expression correlate positively in human HCCs. With methylation array, DNA methylation alteration was observed in hepatoma cells with ZNF191 knockdown, and the differential methylation sites are enriched in the PI3K‐AKT pathway. Furthermore, we proved DNMT1 contributes the effect of ZNF191 on hepatoma cell growth via the PI3K‐AKT pathway. Conclusion ZNF191 is a novel transcription regulator for DNMT1, and the pro‐proliferation effect of ZNF191/DNMT1/p‐AKT axis in hepatoma cells implies that ZNF191 status in HCCs may affect the therapeutic effect of DNMTs inhibitors and PI3K inhibitors for precise treatment of the disease.
Collapse
Affiliation(s)
- Yufeng Liu
- Department of Pathology School of Basic Medical Sciences Fudan University Shanghai China
| | - Hanghang Cheng
- Department of Pathology School of Basic Medical Sciences Fudan University Shanghai China
| | - Chenchen Cheng
- Department of Pathology School of Basic Medical Sciences Fudan University Shanghai China
| | - Fengyun Zheng
- Institutes of Biomedical Sciences Fudan University Shanghai China
| | - Zhonghua Zhao
- Department of Pathology School of Basic Medical Sciences Fudan University Shanghai China
| | - Qi Chen
- Department of Pathology School of Basic Medical Sciences Fudan University Shanghai China
| | - Wenjiao Zeng
- Department of Pathology School of Basic Medical Sciences Fudan University Shanghai China
| | - Pingzhao Zhang
- Department of Pathology School of Basic Medical Sciences Fudan University Shanghai China
| | - Cheng Huang
- Department of Liver Surgery & Transplantation Liver Cancer Institute Zhongshan Hospital Fudan University Shanghai China
| | - Wei Jiang
- Key Laboratory of Metabolism and Molecular Medicine The Ministry of Education Department of Biochemistry and Molecular Biology School of Basic Medical Sciences Fudan University Shanghai China
| | - Xiuping Liu
- Department of Pathology Shanghai Fifth People’s Hospital School of Basic Medical Sciences Fudan University Shanghai China
| | - Guoyuan Liu
- Department of Pathology School of Basic Medical Sciences Fudan University Shanghai China
| |
Collapse
|
19
|
Parker WB, Thottassery JV. 5-Aza-4'-thio-2'-deoxycytidine, a New Orally Bioavailable Nontoxic "Best-in-Class": DNA Methyltransferase 1-Depleting Agent in Clinical Development. J Pharmacol Exp Ther 2021; 379:211-222. [PMID: 34503994 PMCID: PMC9164309 DOI: 10.1124/jpet.121.000758] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/01/2021] [Indexed: 11/22/2022] Open
Abstract
DNA methyltransferase (DNMT) 1 is an enzyme that functions as a maintenance methyltransferase during DNA replication, and depletion of this enzyme from cells is considered to be a rational goal in DNA methylation-dependent disorders. Two DNMT1-depleting agents 5-aza-2'-deoxycytidine (aza-dCyd, decitabine) and 5-aza-cytidine (aza-Cyd, azacitidine) are currently used for the treatment of myelodysplastic syndromes and acute myeloid leukemia and have also been investigated for nononcology indications, such as sickle cell disease. However, these agents have several off-target activities leading to significant toxicities that limit dosing and duration of treatment. Development of more selective inhibitors of DNMT1 could therefore afford treatment of long durations at effective doses. We have discovered that 5-aza-4'-thio-2'-deoxycytidine (aza-T-dCyd) is as effective as aza-dCyd in depleting DNMT1 in mouse tumor models but with markedly low toxicity. In this review we describe the preclinical studies that led to the development of aza-T-dCyd as a superior DNMT1-depleting agent with respect to aza-dCyd and will describe its pharmacology, metabolism, and mechanism of action. In an effort to understand why aza-T-dCyd is a more selective DNMT1 depleting agent than aza-dCyd, we will also compare and contrast the activities of these two agents. SIGNIFICANCE STATEMENT: Aza-T-dCyd is a potent DNMT1-depleting agent. Although similar in structure to decitabine (aza-dCyd), its metabolism and mechanism of action is different than that of aza-dCyd, resulting in less off-target activity and less toxicity. The larger therapeutic index of aza-T-dCyd (DNMT1 depletion vs. toxicity) in mice suggests that it would be a better clinical candidate to selectively deplete DNMT1 from target cells and determine whether or not depletion of DNMT1 is an effective target for various diseases.
Collapse
Affiliation(s)
- William B Parker
- PNP Therapeutics, Birmingham, Alabama (W.B.P.); and UDG Healthcare, Smartanalyst - Ashfield Division, New York, New York (J.V.T.)
| | - Jaideep V Thottassery
- PNP Therapeutics, Birmingham, Alabama (W.B.P.); and UDG Healthcare, Smartanalyst - Ashfield Division, New York, New York (J.V.T.)
| |
Collapse
|
20
|
Burkitt K, Saloura V. Epigenetic Modifiers as Novel Therapeutic Targets and a Systematic Review of Clinical Studies Investigating Epigenetic Inhibitors in Head and Neck Cancer. Cancers (Basel) 2021; 13:cancers13205241. [PMID: 34680389 PMCID: PMC8534083 DOI: 10.3390/cancers13205241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Head and neck cancer is the sixth most common malignancy worldwide and it affects approximately 50,000 patients annually in the United States. Current treatments are suboptimal and induce significant long-term toxicities that permanently affect quality of life. Novel therapeutic approaches are thus urgently needed to increase the survival and quality of life of these patients. Epigenetic modifications have been recognized as potential therapeutic targets in various cancer types, including head and neck cancer. The objective of this review is to provide a brief overview of the function of important epigenetic modifiers in head and neck cancer, and to discuss the results of past and ongoing clinical trials evaluating epigenetic interventions targeting these epigenetic modifiers in head and neck cancer patients. The field of epigenetic therapy in head and neck cancer is still nascent; however, it holds significant promise. Although more specific epigenetic drugs are being developed, we envision the rational design of clinical trials that will target a select group of head and neck cancer patients with epigenetic vulnerabilities that can be targeted in combination with immunotherapy, chemotherapy and/or radiotherapy, rendering higher and durable responses while minimizing chronic complications for patients with head and neck cancer. Abstract The survival rate of head and neck squamous cell carcinoma patients with the current standard of care therapy is suboptimal and is associated with long-term side effects. Novel therapeutics that will improve survival rates while minimizing treatment-related side effects are the focus of active investigation. Epigenetic modifications have been recognized as potential therapeutic targets in various cancer types, including head and neck cancer. This review summarizes the current knowledge on the function of important epigenetic modifiers in head and neck cancer, their clinical implications and discusses results of clinical trials evaluating epigenetic interventions in past and ongoing clinical trials as monotherapy or combination therapy with either chemotherapy, radiotherapy or immunotherapy. Understanding the function of epigenetic modifiers in both preclinical and clinical settings will provide insight into a more rational design of clinical trials using epigenetic interventions and the patient subgroups that may benefit from such interventions.
Collapse
Affiliation(s)
- Kyunghee Burkitt
- Head and Neck Medical Oncology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Correspondence: (K.B.); (V.S.)
| | - Vassiliki Saloura
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
- Correspondence: (K.B.); (V.S.)
| |
Collapse
|
21
|
Epigenetic Changes Affecting the Development of Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:cancers13164237. [PMID: 34439391 PMCID: PMC8392268 DOI: 10.3390/cancers13164237] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hepatocellular carcinoma is a life-threatening disease. Despite many efforts to understand the exact pathogenesis and the signaling pathways involved in its formation, treatment remains unsatisfactory. Currently, an important function in the development of neoplastic diseases and treatment effects is attributed to changes taking place at the epigenetic level. Epigenetic studies revealed modified methylation patterns in HCC, dysfunction of enzymes engaged in the DNA methylation process, the aberrant function of non-coding RNAs, and a set of histone modifications that influence gene expression. The aim of this review is to summarize the current knowledge on the role of epigenetics in the formation of hepatocellular carcinoma. Abstract Hepatocellular carcinoma (HCC) remains a serious oncologic issue with still a dismal prognosis. So far, no key molecular mechanism that underlies its pathogenesis has been identified. Recently, by specific molecular approaches, many genetic and epigenetic changes arising during HCC pathogenesis were detected. Epigenetic studies revealed modified methylation patterns in HCC tumors, dysfunction of enzymes engaged in the DNA methylation process, and a set of histone modifications that influence gene expression. HCC cells are also influenced by the disrupted function of non-coding RNAs, such as micro RNAs and long non-coding RNAs. Moreover, a role of liver cancer stem cells in HCC development is becoming evident. The reversibility of epigenetic changes offers the possibility of influencing them and regulating their undesirable effects. All these data can be used not only to identify new therapeutic targets but also to predict treatment response. This review focuses on epigenetic changes in hepatocellular carcinoma and their possible implications in HCC therapy.
Collapse
|
22
|
Yadav P, Bandyopadhayaya S, Ford BM, Mandal C. Interplay between DNA Methyltransferase 1 and microRNAs During Tumorigenesis. Curr Drug Targets 2021; 22:1129-1148. [PMID: 33494674 DOI: 10.2174/1389450122666210120141546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/16/2020] [Accepted: 10/18/2020] [Indexed: 01/18/2023]
Abstract
Cancer is a genetic disease resulting from genomic changes; however, epigenetic alterations act synergistically with these changes during tumorigenesis and cancer progression. Epigenetic variations are gaining more attention as an important regulator in tumor progression, metastasis and therapy resistance. Aberrant DNA methylation at CpG islands is a central event in epigeneticmediated gene silencing of various tumor suppressor genes. DNA methyltransferase 1 (DNMT1) predominately methylates at CpG islands on hemimethylated DNA substrates in proliferation of cells. DNMT1 has been shown to be overexpressed in various cancer types and exhibits tumor-promoting potential. The major drawbacks to DNMT1-targeted cancer therapy are the adverse effects arising from nucleoside and non-nucleoside based DNMT1 inhibitors. This paper focuses on the regulation of DNMT1 by various microRNAs (miRNAs), which may be assigned as future DNMT1 modulators, and highlights how DNMT1 regulates various miRNAs involved in tumor suppression. Importantly, the role of reciprocal inhibition between DNMT1 and certain miRNAs in tumorigenic potential is approached in this review. Hence, this review seeks to project an efficient and strategic approach using certain miRNAs in conjunction with conventional DNMT1 inhibitors as a novel cancer therapy. It has also been pinpointed to select miRNA candidates associated with DNMT1 regulation that may not only serve as potential biomarkers for cancer diagnosis and prognosis, but may also predict the existence of aberrant methylation activity in cancer cells.
Collapse
Affiliation(s)
- Pooja Yadav
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh- 305817, Ajmer, Rajasthan, India
| | - Shreetama Bandyopadhayaya
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh- 305817, Ajmer, Rajasthan, India
| | - Bridget M Ford
- Department of Biology, University of the Incarnate Word, San Antonio, TX 78209, United States
| | - Chandi Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh- 305817, Ajmer, Rajasthan, India
| |
Collapse
|
23
|
Flausino CS, Daniel FI, Modolo F. DNA methylation in oral squamous cell carcinoma: from its role in carcinogenesis to potential inhibitor drugs. Crit Rev Oncol Hematol 2021; 164:103399. [PMID: 34147646 DOI: 10.1016/j.critrevonc.2021.103399] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
DNA methylation is one of epigenetic changes most frequently studied nowadays, together with its relationship with oral carcinogenesis. A group of enzymes is responsible for methylation process, known as DNA methyltransferases (DNMT). Although essential during embryogenesis, DNA methylation pattern alterations, including global hypomethylation or gene promoter hypermethylation, can be respectively associated with chromosomal instability and tumor suppressor gene silencing. Higher expression of DNA methyltransferases is a common finding in oral cancer and may contribute to inactivation of important tumor suppressor genes, influencing development, progression, metastasis, and prognosis of the tumor. To control these alterations, inhibitor drugs have been developed as a way to regulate DNMT overexpression, and they are intended to be associated with ongoing chemo- and radiotherapy in oral cancer treatments. In this article, we aimed to highlight the current knowledge about DNA methylation in oral cancer, including main hyper/hypomethylated genes, DNMT expression and its inhibitor treatments.
Collapse
Affiliation(s)
| | - Filipe Ivan Daniel
- Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| | - Filipe Modolo
- Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
24
|
Sasaki M, Sato Y. An immunohistochemical panel of insulin-like growth factor II mRNA-binding protein 3 (IMP3), enhancer of zeste homolog 2 (EZH2), and p53 is useful for a diagnosis in bile duct biopsy. Virchows Arch 2021; 479:697-703. [PMID: 34115196 DOI: 10.1007/s00428-021-03132-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/07/2021] [Accepted: 05/30/2021] [Indexed: 11/29/2022]
Abstract
Bile duct biopsy is being increasingly performed in number for a definite diagnosis of cholangiocarcinoma. However, difficulties are associated with a histopathological diagnosis because of the limited small amount of specimen obtained and crash artifact. The aim of the present study was to identify useful diagnostic immunohistochemical markers in bile duct biopsy that support a histological diagnosis. Fifty-one bile duct biopsy samples, including 26 samples taken from patients with cholangiocarcinoma, 11 with intraductal papillary neoplasm of the bile duct (IPNB), and 14 with benign bile duct lesions, were examined. Histology and the immunohistochemical expression of insulin-like growth factor II mRNA-binding protein 3 (IMP3), enhancer of zeste homolog 2 (EZH2), and p53 were assessed. They were then evaluated for their usefulness as diagnostic markers of malignancy. The diagnostic sensitivity and accuracy of the institutional histological diagnosis were 53.8% and 70.0%, respectively. The diagnostic sensitivity and accuracy of IMP3, EZH2, and p53 were 69.2% and 80.0%, 76.9% and 85.0%, and 50.0% and 67.5%, respectively. Immunohistochemical staining for EZH2; the combination of either 2 of IMP3, EZH2, and p53; or the combination of IMP3, EZH2, and p53 significantly increased sensitivity and accuracy over those of the institutional histological diagnosis (p<0.05). In conclusion, an immunohistochemical panel consisting of IMP3, EZH2, and p53 increases the diagnostic sensitivity and accuracy of bile duct biopsy for the diagnosis of cholangiocarcinoma.
Collapse
Affiliation(s)
- Motoko Sasaki
- Department of Human Pathology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan.
| | - Yasunori Sato
- Department of Human Pathology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| |
Collapse
|
25
|
Mungamuri SK, Nagasuryaprasad K. Epigenetic mechanisms of hepatocellular carcinoma progression: Potential therapeutic opportunities. EPIGENETICS AND METABOLOMICS 2021:279-296. [DOI: 10.1016/b978-0-323-85652-2.00008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
26
|
Lv DD, Zhou LY, Tang H. Hepatocyte nuclear factor 4α and cancer-related cell signaling pathways: a promising insight into cancer treatment. Exp Mol Med 2021; 53:8-18. [PMID: 33462379 PMCID: PMC8080681 DOI: 10.1038/s12276-020-00551-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 10/23/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatocyte nuclear factor 4α (HNF4α), a member of the nuclear receptor superfamily, is described as a protein that binds to the promoters of specific genes. It controls the expression of functional genes and is also involved in the regulation of numerous cellular processes. A large number of studies have demonstrated that HNF4α is involved in many human malignancies. Abnormal expression of HNF4α is emerging as a critical factor in cancer cell proliferation, apoptosis, invasion, dedifferentiation, and metastasis. In this review, we present emerging insights into the roles of HNF4α in the occurrence, progression, and treatment of cancer; reveal various mechanisms of HNF4α in cancer (e.g., the Wnt/β-catenin, nuclear factor-κB, signal transducer and activator of transcription 3, and transforming growth factor β signaling pathways); and highlight potential clinical uses of HNF4α as a biomarker and therapeutic target for cancer.
Collapse
Affiliation(s)
- Duo-Duo Lv
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Ling-Yun Zhou
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
27
|
Fernández-Barrena MG, Arechederra M, Colyn L, Berasain C, Avila MA. Epigenetics in hepatocellular carcinoma development and therapy: The tip of the iceberg. JHEP Rep 2020; 2:100167. [PMID: 33134907 PMCID: PMC7585149 DOI: 10.1016/j.jhepr.2020.100167] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a deadly tumour whose causative agents are generally well known, but whose pathogenesis remains poorly understood. Nevertheless, key genetic alterations are emerging from a heterogeneous molecular landscape, providing information on the tumorigenic process from initiation to progression. Among these molecular alterations, those that affect epigenetic processes are increasingly recognised as contributing to carcinogenesis from preneoplastic stages. The epigenetic machinery regulates gene expression through intertwined and partially characterised circuits involving chromatin remodelers, covalent DNA and histone modifications, and dedicated proteins reading these modifications. In this review, we summarise recent findings on HCC epigenetics, focusing mainly on changes in DNA and histone modifications and their carcinogenic implications. We also discuss the potential drugs that target epigenetic mechanisms for HCC treatment, either alone or in combination with current therapies, including immunotherapies.
Collapse
Key Words
- 5acC, 5-acetylcytosine
- 5fC, 5-formylcytosine
- 5hmC, 5-hydoxymethyl cytosine
- 5mC, 5-methylcytosine
- Acetyl-CoA, acetyl coenzyme A
- BER, base excision repair
- BRD, bromodomain
- CDA, cytidine deaminase
- CGI, CpG island
- CIMP, CGI methylator phenotype
- CTLA-4, cytotoxic T-lymphocyte-associated protein 4
- DNMT, DNA methyltransferase
- DNMTi, DNMT inhibitor
- Epigenetics
- FAD, flavin adenine dinucleotide
- HAT, histone acetyltransferases
- HCC, hepatocellular carcinoma
- HDAC, histone deacetylase
- HDACi, HDAC inhibitor
- HDM, histone demethylase
- HMT, histone methyltransferase
- Hepatocellular carcinoma
- KMT, lysine methyltransferase
- LSD/KDM, lysine specific demethylases
- NAFLD, non-alcoholic fatty liver disease
- NK, natural killer
- NPC, nasopharyngeal carcinoma
- PD-L1, programmed cell death ligand-1
- PD1, programmed cell death protein 1
- PHD, plant homeodomain
- PTM, post-translational modification
- SAM, S-adenosyl-L-methionine
- TDG, thymidine-DNA-glycosylase
- TERT, telomerase reverse transcriptase
- TET, ten-eleven translocation
- TME, tumour microenvironment
- TSG, tumour suppressor gene
- Therapy
- UHRF1, ubiquitin like with PHD and ring finger domains 1
- VEGF, vascular endothelial growth factor
- ncRNAs, non-coding RNAs
- α-KG, α-ketoglutarate
Collapse
Affiliation(s)
- Maite G. Fernández-Barrena
- Hepatology Program CIMA, University of Navarra, Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - María Arechederra
- Hepatology Program CIMA, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Leticia Colyn
- Hepatology Program CIMA, University of Navarra, Pamplona, Spain
| | - Carmen Berasain
- Hepatology Program CIMA, University of Navarra, Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Matias A. Avila
- Hepatology Program CIMA, University of Navarra, Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| |
Collapse
|
28
|
HP1s modulate the S-Adenosyl Methionine synthesis pathway in liver cancer cells. Biochem J 2020; 477:1033-1047. [PMID: 32091571 DOI: 10.1042/bcj20190621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most frequent primary liver cancer in adults. Among the altered pathways leading to HCC, an increasing role is attributed to abnormal epigenetic regulation. Members of the Heterochromatin Protein (HP1) 1 family are key players in chromatin organisation, acting as docking sites for chromatin modifiers. Here, we inactivated HP1α in HepG2 human liver carcinoma cells and showed that HP1α participated in cell proliferation. HP1α-depleted cells have a global decrease in DNA methylation and consequently a perturbed chromatin organisation, as exemplified by the reactivation of transcription at centromeric and pericentromeric regions, eventhough the protein levels of chromatin writers depositing methylation marks, such as EZH2, SETDB1, SUV39H1, G9A and DNMT3A remained unaltered. This decrease was attributed mainly to a low S-Adenosyl Methionine (SAM) level, a cofactor involved in methylation processes. Furthermore, we showed that this decrease was due to a modification in the Methionine adenosyl transferase 2A RNA (MAT2A) level, which modifies the ratio of MAT1A/MAT2A, two enzymes that generate SAM. Importantly, HP1α reintroduction into HP1α-depleted cells restored the MAT2A protein to its initial level. Finally, we demonstrated that this transcriptional deregulation of MAT2A in HP1α-depleted cells relied on a lack of recruitment of HP1β and HP1γ to MAT2A promoter where an improper non-CpG methylation site was promoted in the vicinity of the transcription start site where HP1β and HP1γ bound. Altogether, these results highlight an unanticipated link between HP1 and the SAM synthesis pathway, and emphasise emerging functions of HP1s as sensors of some aspects of liver cell metabolism.
Collapse
|
29
|
Nemtsova MV, Mikhaylenko DS, Kuznetsova EB, Bykov II, Zamyatnin AA. Inactivation of Epigenetic Regulators due to Mutations in Solid Tumors. BIOCHEMISTRY (MOSCOW) 2020; 85:735-748. [PMID: 33040718 DOI: 10.1134/s0006297920070020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Main factors involved in carcinogenesis are associated with somatic mutations in oncogenes and tumor suppressor genes representing changes in the DNA nucleotide sequence. Epigenetic changes, such as aberrant DNA methylation, modifications of histone proteins, and chromatin remodeling, are equally important in the development of human neoplasms. From this perspective, mutations in the genes encoding key participants of epigenetic regulation are of particular interest including enzymes that methylate/demethylate DNA, enzymes that covalently attach or remove regulatory signals from histones, components of nucleosome remodeling multiprotein complexes, auxiliary proteins and cofactors of the above-mentioned molecules. This review describes both germline and somatic mutations in the key epigenetic regulators with emphasis on the latter ones in the solid human tumors, as well as considers functional consequences of these mutations on the cellular level. In addition, clinical associations of the somatic mutations in epigenetic regulators are presented, as well as DNA diagnostics of hereditary cancer syndromes due to germline mutations in the SMARC proteins and chemotherapy drugs directly affecting the altered epigenetic mechanisms for treatment of patients with solid neoplasms. The review is intended for a wide range of molecular biologists, geneticists, oncologists, and associated specialists.
Collapse
Affiliation(s)
- M V Nemtsova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia.,Research Centre for Medical Genetics, Moscow, 115478, Russia
| | - D S Mikhaylenko
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia. .,Research Centre for Medical Genetics, Moscow, 115478, Russia
| | - E B Kuznetsova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia
| | - I I Bykov
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia
| | - A A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
30
|
Heller G, Nebenfuehr S, Bellutti F, Ünal H, Zojer M, Scheiblecker L, Sexl V, Kollmann K. The Effect of CDK6 Expression on DNA Methylation and DNMT3B Regulation. iScience 2020; 23:101602. [PMID: 33205015 PMCID: PMC7648139 DOI: 10.1016/j.isci.2020.101602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/31/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022] Open
Abstract
CDK6 is frequently overexpressed in various cancer types and functions as a positive regulator of the cell cycle and as a coregulator of gene transcription. We provide evidence that CDK6 is involved in the process of DNA methylation, at least in ALL. We observe a positive correlation of CDK6 and DNMT expression in a large number of ALL samples. ChIP-seq analysis reveals CDK6 binding to genomic regions associated with DNA methyltransferases (DNMTs). ATAC-seq shows a strong reduction in chromatin accessibility for DNMT3B in CDK6-deficient BCR-ABL + Cdk6-/- cells, accompanied by lower levels of DNMT3B mRNA and less chromatin-bound DNMT3B, as shown by RNA-seq and chromatome analysis. Motif analysis suggests that ETS family members interact with CDK6 to regulate DNMT3B. Reduced representation bisulfite sequencing analysis uncovers reversible and cell line-specific changes in DNA methylation patterns upon CDK6 loss. The results reveal a function of CDK6 as a regulator of DNA methylation in transformed cells.
Collapse
Affiliation(s)
- Gerwin Heller
- Department of Medicine I, Division of Oncology, Medical University of Vienna, 1090 Vienna, Austria.,Comprehensive Cancer Center, Vienna, Austria.,Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Sofie Nebenfuehr
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Florian Bellutti
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Huriye Ünal
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Markus Zojer
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Lisa Scheiblecker
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Veronika Sexl
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Karoline Kollmann
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| |
Collapse
|
31
|
Zha H, Lu H, Wu J, Chang K, Wang Q, Zhang H, Li J, Luo Q, Lu Y, Li L. Vital Members in the More Dysbiotic Oropharyngeal Microbiotas in H7N9-Infected Patients. Front Med (Lausanne) 2020; 7:396. [PMID: 32850904 PMCID: PMC7433009 DOI: 10.3389/fmed.2020.00396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/24/2020] [Indexed: 01/09/2023] Open
Abstract
The dysbiosis of oropharyngeal (OP) microbiota is associated with multiple diseases, including H7N9 infection. Different OP microbial colonization states may reflect different severities or stages of disease and affect the effectiveness of the treatments. Current study aims to determine the vital bacteria that could possibly drive the OP microbiota in the H7N9 patients to more severe microbial dysbiosis state. The OP microbiotas of 42 H7N9 patients and 30 healthy subjects were analyzed by a series of bioinformatics and statistical analyses. Two clusters of OP microbiotas in H7N9 patients, i.e., Cluster_1_Diseased and Cluster_2_Diseased, were determined at two microbial colonization states by Partition Around Medoids (PAM) clustering analysis, each characterized by distinct operational taxonomic units (OTUs) and functional metabolites. Cluster_1_Diseased was determined at more severe dysbiosis status compared with Cluster_2_Diseased, while OTU143_Capnocytophaga and OTU269_Treponema acted as gatekeepers for both of the two clustered microbiotas. Nine OTUs assigned to seven taxa, i.e., Alloprevotella, Atopobium, Megasphaera, Oribacterium, Prevotella, Stomatobaculum, and Veillonella, were associated with both H7N9 patients with and without secondary bacterial lung infection in Cluster_1. In addition, two groups of healthy cohorts may have potential different susceptibilities to H7N9 infection. These findings suggest that two OP microbial colonization states of H7N9 patients were at different dysbiosis states, which may help determine the health status of H7N9 patients, as well as the susceptibility of healthy subjects to H7N9 infection.
Collapse
Affiliation(s)
- Hua Zha
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,School of Biological Sciences, The University of Auckland, Auckland, New Zealand.,Institute of Marine Science, The University of Auckland, Auckland, New Zealand
| | - Haifeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jieyun Wu
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.,Plant Health and Environment Laboratory, Ministry for Primary Industries, Auckland, New Zealand
| | - Kevin Chang
- Department of Statistics, The University of Auckland, Auckland, New Zealand
| | - Qiangqiang Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hua Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jinyou Li
- Department of Geriatrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qixia Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yanmeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
32
|
Abbaszadeh S, Rashidipour M, Khosravi P, Shahryarhesami S, Ashrafi B, Kaviani M, Moradi Sarabi M. Biocompatibility, Cytotoxicity, Antimicrobial and Epigenetic Effects of Novel Chitosan-Based Quercetin Nanohydrogel in Human Cancer Cells. Int J Nanomedicine 2020; 15:5963-5975. [PMID: 32884259 PMCID: PMC7441583 DOI: 10.2147/ijn.s263013] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/28/2020] [Indexed: 12/25/2022] Open
Abstract
Background Previous studies have reported that quercetin (Q) has a potential antibacterial and anticancer activity. However, its application is limited by many important factors including high hydrophobicity and low absorption. Methodology In the current study, we synthesized and characterized (Patent) a novel chitosan-based quercetin nanohydrogel (ChiNH/Q). Encapsulation efficiency was confirmed by UV/VIS spectrophotometer. Physicochemical characterization of ChiNH/Q was assessed by PDI, DLS, SEM, FTIR, and XRD. The toxicity of the ChiNH/Q against five strains of the pathogen and HepG2 cells was examined. Moreover, the quantification of ChiNH/Q on genomic global DNA methylation and expression of DNMTs (DNMT1/3A/3B) in HepG2 cancer cells were evaluated by ELISA and real-time PCR, respectively. Results Under the SEM-based images, the hydrodynamic size of the ChiNH/Q was 743.6 nm. The changes in the PDI were 0.507, and zeta potential was obtained as 12.1 mV for ChiNH/Q. The FTIR peak of ChiNH/Q showed the peak at 627 cm−1 corresponded to tensile vibrational of NH2-groups related to Q, and it is the indication of Q loading in the formulation. Moreover, XRD data have detected the encapsulation of ChiNH/Q. The ChiNH/Q showed a potent antimicrobial inhibitory effect and exerted cytotoxic effects against HepG2 cancer cells with IC50 values of 100 µg/mL. Moreover, our data have shown that ChiNH/Q effectively reduced (65%) the average expression level of all the three DNMTs (p<0.05) and significantly increased (1.01%) the 5-methylated cytosine (5-mC) levels in HepG2 cells. Conclusion Our results showed for the first time the bioavailability and potentiality of ChiNH/Q as a potent antimicrobial and anticancer agent against cancer cells. Our result provided evidence that ChiNH/Q could effectively reduce cellular DNMT expression levels and increase genomic global DNA methylation in HepG2 cancer cells. Our results suggest a potential clinical application of nanoparticles as antimicrobial and anticancer agents in combination cancer therapy.
Collapse
Affiliation(s)
- Saber Abbaszadeh
- Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Marzieh Rashidipour
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Peyman Khosravi
- Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Soroosh Shahryarhesami
- Functional Genome Analysis/B070, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Behnam Ashrafi
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mozhgan Kaviani
- Department of Internal Medicine, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mostafa Moradi Sarabi
- Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.,Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.,Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.,Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
33
|
Busto-Moner L, Morival J, Ren H, Fahim A, Reitz Z, Downing TL, Read EL. Stochastic modeling reveals kinetic heterogeneity in post-replication DNA methylation. PLoS Comput Biol 2020; 16:e1007195. [PMID: 32275652 PMCID: PMC7176288 DOI: 10.1371/journal.pcbi.1007195] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 04/22/2020] [Accepted: 01/20/2020] [Indexed: 01/17/2023] Open
Abstract
DNA methylation is a heritable epigenetic modification that plays an essential role in mammalian development. Genomic methylation patterns are dynamically maintained, with DNA methyltransferases mediating inheritance of methyl marks onto nascent DNA over cycles of replication. A recently developed experimental technique employing immunoprecipitation of bromodeoxyuridine labeled nascent DNA followed by bisulfite sequencing (Repli-BS) measures post-replication temporal evolution of cytosine methylation, thus enabling genome-wide monitoring of methylation maintenance. In this work, we combine statistical analysis and stochastic mathematical modeling to analyze Repli-BS data from human embryonic stem cells. We estimate site-specific kinetic rate constants for the restoration of methyl marks on >10 million uniquely mapped cytosines within the CpG (cytosine-phosphate-guanine) dinucleotide context across the genome using Maximum Likelihood Estimation. We find that post-replication remethylation rate constants span approximately two orders of magnitude, with half-lives of per-site recovery of steady-state methylation levels ranging from shorter than ten minutes to five hours and longer. Furthermore, we find that kinetic constants of maintenance methylation are correlated among neighboring CpG sites. Stochastic mathematical modeling provides insight to the biological mechanisms underlying the inference results, suggesting that enzyme processivity and/or collaboration can produce the observed kinetic correlations. Our combined statistical/mathematical modeling approach expands the utility of genomic datasets and disentangles heterogeneity in methylation patterns arising from replication-associated temporal dynamics versus stable cell-to-cell differences.
Collapse
Affiliation(s)
- Luis Busto-Moner
- Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, Spain
- Dept. of Chemical & Biomolecular Engineering, University of California, Irvine, California, United States of America
| | - Julien Morival
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, United States of America
| | - Honglei Ren
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, California, United States of America
| | - Arjang Fahim
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, United States of America
| | - Zachary Reitz
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, United States of America
| | - Timothy L. Downing
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, United States of America
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
| | - Elizabeth L. Read
- Dept. of Chemical & Biomolecular Engineering, University of California, Irvine, California, United States of America
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
| |
Collapse
|
34
|
Dai Q, Zhang C, Yuan Z, Sun Q, Jiang Y. Current discovery strategies for hepatocellular carcinoma therapeutics. Expert Opin Drug Discov 2020; 15:243-258. [PMID: 31809618 DOI: 10.1080/17460441.2020.1696769] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023]
Abstract
Introduction: The global incidence of hepatocellular carcinoma (HCC) is not expected to decline significantly over the next 30 years. And although the latest gene sequencing studies have established its genetic map, the potentially targetable drivers of HCC are, so far, difficult to identify. To date, only seven drugs have been approved by the FDA for unresectable HCC treatment; thus, effective therapeutic breakthroughs are still needed urgently.Areas covered: In this review, the authors discuss both genetic and epigenetic alterations in HCC and introduce the current progress with some of the representative molecular targeting inhibitors, listing some of the approved drugs for the targets of HCC. The structure-activity relationship of molecules (e.g. thalidomide, bortezomil) used for HCC is also discussed.Expert opinion: Effective therapeutic targets and effective drugs for HCC treatment are an urgent unmet need. Better understanding and characterization of genetic and epigenetic alterations, which are important to hepatocarcinogenesis, may help to understand the molecular pathogenesis of HCC, as well as provide novel therapeutic lead compounds for HCC treatment.
Collapse
Affiliation(s)
- Qiuzi Dai
- Department of Chemistry, Tsinghua University, Beijing, PR China
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, the Graduate School at Shenzhen, Tsinghua University, Shenzhen, PR China
- Shenzhen Bay Laboratory, Shenzhen, PR China
| | - Cunlong Zhang
- Shenzhen Bay Laboratory, Shenzhen, PR China
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, Shenzhen Kivita Innovative Drug Discovery Institute, The Graduate School at Shenzhen, Tsinghua University, Shenzhen, PR China
| | - Zigao Yuan
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, the Graduate School at Shenzhen, Tsinghua University, Shenzhen, PR China
- Shenzhen Bay Laboratory, Shenzhen, PR China
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, Shenzhen Kivita Innovative Drug Discovery Institute, The Graduate School at Shenzhen, Tsinghua University, Shenzhen, PR China
| | - Qinsheng Sun
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, the Graduate School at Shenzhen, Tsinghua University, Shenzhen, PR China
- Shenzhen Bay Laboratory, Shenzhen, PR China
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, Shenzhen Kivita Innovative Drug Discovery Institute, The Graduate School at Shenzhen, Tsinghua University, Shenzhen, PR China
| | - Yuyang Jiang
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, the Graduate School at Shenzhen, Tsinghua University, Shenzhen, PR China
- Shenzhen Bay Laboratory, Shenzhen, PR China
- Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, P. R. China
| |
Collapse
|
35
|
Shahkarami S, Zoghi S, Rezaei N. The Role of DNA Methylation in Cancer. CANCER IMMUNOLOGY 2020:491-511. [DOI: 10.1007/978-3-030-30845-2_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
36
|
Shen AJJ, King J, Scott H, Colman P, Yates CJ. Insights into pituitary tumorigenesis: from Sanger sequencing to next-generation sequencing and beyond. Expert Rev Endocrinol Metab 2019; 14:399-418. [PMID: 31793361 DOI: 10.1080/17446651.2019.1689120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/01/2019] [Indexed: 12/17/2022]
Abstract
Introduction: This review explores insights provided by next-generation sequencing (NGS) of pituitary tumors and the clinical implications.Areas covered: Although syndromic forms account for just 5% of pituitary tumours, past Sanger sequencing studies pragmatically focused on them. These studies identified mutations in MEN1, CDKN1B, PRKAR1A, GNAS and SDHx causing Multiple Endocrine Neoplasia-1 (MEN1), MEN4, Carney Complex-1, McCune Albright Syndrome and 3P association syndromes, respectively. Furthermore, linkage analysis of single-nucleotide polymorphisms identified AIP mutations in 20% with familial isolated pituitary adenomas (FIPA). NGS has enabled further investigation of sporadic tumours. Thus, mutations of USP8 and CABLES1 were identified in corticotrophinomas, BRAF in papillary craniopharyngiomas and CTNNB1 in adamantinomatous craniopharyngiomas. NGS also revealed that pituitary tumours occur in the DICER1 syndrome, due to DICER1 mutations, and CDH23 mutations occur in FIPA. These discoveries revealed novel therapeutic targets and studies are underway of BRAF inhibitors for papillary craniopharyngiomas, and EGFR and USP8 inhibitors for corticotrophinomas.Expert opinion: It has become apparent that single-nucleotide variants and small insertion/deletion DNA mutations cannot explain all pituitary tumorigenesis. Integrated and improved analyses including whole-genome sequencing, copy number, and structural variation analyses, RNA sequencing and epigenomic analyses, with improved genomic technologies, are likely to further define the genomic landscape.
Collapse
Affiliation(s)
| | - James King
- Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, Australia
| | - Hamish Scott
- Department of Genetics and Molecular Pathology, Center for Cancer Biology, SA Pathology, Adelaide, Australia
- School of Pharmacy and Medical Science, University of South Australia, Adelaide, Australia
- School of Medicine, University of Adelaide, Adelaide, Australia
- Australian Cancer Research Foundation Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, Australia
| | - Peter Colman
- Department of Medicine, The University of Melbourne, Parkville, Australia
- Department of Diabetes and Endocrinology, The Royal Melbourne Hospital, Parkville, Australia
| | - Christopher J Yates
- Department of Medicine, The University of Melbourne, Parkville, Australia
- Department of Diabetes and Endocrinology, The Royal Melbourne Hospital, Parkville, Australia
| |
Collapse
|
37
|
The role of DNA-demethylating agents in cancer therapy. Pharmacol Ther 2019; 205:107416. [PMID: 31626871 DOI: 10.1016/j.pharmthera.2019.107416] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/20/2019] [Indexed: 12/29/2022]
Abstract
DNA methylation patterns are frequently altered in cancer cells as compared to normal cells. A large body of research associates these DNA methylation aberrations with cancer initiation and progression. Moreover, cancer cells seem to depend upon these aberrant DNA methylation profiles to thrive. Finally, DNA methylation modifications are reversible, highlighting the potential to target the global methylation patterns for cancer therapy. In this review, we will discuss the scientific and clinical aspects of DNA methylation in cancer. We will review the limited success of targeting DNA methylation in the clinic, the associated clinical challenges, the impact of novel DNA methylation inhibitors and how combination therapies are improving patient outcomes.
Collapse
|
38
|
Hu J, Dong Y, Ding L, Dong Y, Wu Z, Wang W, Shen M, Duan Y. Local delivery of arsenic trioxide nanoparticles for hepatocellular carcinoma treatment. Signal Transduct Target Ther 2019; 4:28. [PMID: 31637008 PMCID: PMC6799825 DOI: 10.1038/s41392-019-0062-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 05/28/2019] [Accepted: 06/20/2019] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignancy with a poor prognosis. Surgery combined with chemotherapy has been recommended as a curative regimen for HCC. Nevertheless, the anticancer mechanisms of chemicals in hepatocellular carcinoma remain unclear. Pyroptosis is a type of programmed necrosis, and its mechanism in hepatocellular carcinoma is poorly understood. The efficacy and mechanism of arsenic trioxide nanoparticles in the treatment of HCC were explored in this research. Arsenic trioxide alone and arsenic trioxide nanoparticles were conveniently administered to mice intratumorally using a needle. Compared with As2O3, As2O3 nanoparticles (As2O3-NPs) showed better inhibition, promoted greater LDH release, and induced cell morphology indicative of pyroptosis in vitro. Compared with the free drug, As2O3-NPs increased GSDME-N expression and decreased Dnmt3a, Dnmt3b, and Dnmt1 expression in Huh7 cells. In vivo, As2O3-NPs induced a significant decrease in the expression of Dnmt3a, Dnmt3b and Dnmt1, but significantly upregulated the expression of GSDME-N (gasdermin E (GSDME) was originally found to be related to deafness; recently, it has been defined as a gasdermin family member associated with pyroptosis). As2O3-NPs inhibited tumor growth more strongly than As2O3 or control, a finding likely attributed to the downregulation of PCNA and DNMT-related proteins and the upregulation of GSDME-N.
Collapse
Affiliation(s)
- Jian Hu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200032 Shanghai, China
| | - Yi Dong
- Department of Ultrasound, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
| | - Li Ding
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200032 Shanghai, China
| | - Yang Dong
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200032 Shanghai, China
| | - Zhihua Wu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200032 Shanghai, China
| | - Wenping Wang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
| | - Ming Shen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200032 Shanghai, China
| | - Yourong Duan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200032 Shanghai, China
| |
Collapse
|
39
|
He J, Liu W, Ge X, Wang GC, Desai V, Wang S, Mu W, Bhardwaj V, Seifert E, Liu LZ, Bhushan A, Peiper SC, Jiang BH. Arsenic-induced metabolic shift triggered by the loss of miR-199a-5p through Sp1-dependent DNA methylation. Toxicol Appl Pharmacol 2019; 378:114606. [PMID: 31170415 PMCID: PMC6788774 DOI: 10.1016/j.taap.2019.114606] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/21/2019] [Accepted: 05/31/2019] [Indexed: 12/23/2022]
Abstract
Inorganic arsenic is an environmental carcinogen that poses a major global public health risk. A high percentage of drinking water from wells in the U.S. contains higher-than-normal levels of arsenic, suggesting an increased risk of arsenic-induced deleterious effects. In addition to primary preventive measures, therapeutic strategies need to effectively address and integrate multiple molecular mechanisms underlying arsenic-induced carcinogenesis. We previously showed that the loss of miR-199a-5p in arsenic-transformed cells is pivotal to promote arsenic-induced angiogenesis and tumor growth in lung epithelial cells. In this study, we further showed that subacute or chronic exposure to arsenic diminished miR-199a-5p levels largely due to DNA methylation, which was achieved by increased DNA methyltransferase-1 (DNMT1) activity, mediated by the formation of specific protein 1 (Sp1)/DNMT1 complex. In addition to the DNA hypermethylation, arsenic exposure also repressed miR-199a transcription through a transcriptional repressor Sp1. We further identified an association between miR-199a-5p repression and the arsenic-mediated energy metabolic shift, as reflected by mitochondria defects and a switch to glycolysis, in which a glycolytic enzyme pyruvate kinase 2 (PKM2) was a functional target of miR-199a-5p. Taken together, the repression of miR-199a-5p through both Sp1-dependent DNA methylation and Sp1 transcriptional repression promotes an arsenic-mediated metabolic shift from mitochondria respiration to aerobic glycolysis via PKM2.
Collapse
Affiliation(s)
- Jun He
- Department of Pathology, Anatomy & Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States of America.
| | - Weitao Liu
- Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Xin Ge
- Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Gao-Chan Wang
- Department of Pathology, Anatomy & Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Vilas Desai
- Department of Pharmaceutical Sciences, College of Pharmacy, Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Shaomin Wang
- Department of Pathology, Anatomy & Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Wei Mu
- School of Public Health, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Vikas Bhardwaj
- Department of Pharmaceutical Sciences, College of Pharmacy, Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Erin Seifert
- Department of Pathology, Anatomy & Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Ling-Zhi Liu
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IW 52242, United States of America
| | - Alok Bhushan
- Department of Pharmaceutical Sciences, College of Pharmacy, Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Stephen C Peiper
- Department of Pathology, Anatomy & Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Bing-Hua Jiang
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IW 52242, United States of America.
| |
Collapse
|
40
|
Gailhouste L, Liew LC, Yasukawa K, Hatada I, Tanaka Y, Kato T, Nakagama H, Ochiya T. MEG3-derived miR-493-5p overcomes the oncogenic feature of IGF2-miR-483 loss of imprinting in hepatic cancer cells. Cell Death Dis 2019; 10:553. [PMID: 31320614 PMCID: PMC6639415 DOI: 10.1038/s41419-019-1788-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/10/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023]
Abstract
Numerous studies have described the critical role played by microRNAs (miRNAs) in cancer progression and the potential of these small non-coding RNAs for diagnostic or therapeutic applications. However, the mechanisms responsible for the altered expression of miRNAs in malignant cells remain poorly understood. Herein, via epigenetic unmasking, we identified a group of miRNAs located in the imprinted delta like non-canonical Notch ligand 1 (DLK1)-maternally expressed 3 (MEG3) locus that were repressed in hepatic tumor cells. Notably, miR-493-5p epigenetic silencing was correlated with hypermethylation of the MEG3 differentially regulated region (DMR) in liver cancer cell lines and tumor tissues from patients. Experimental rescue of miR-493-5p promoted an anti-cancer response by hindering hepatocellular carcinoma (HCC) cell growth in vitro and tumor progression in vivo. We found that miR-493-5p mediated part of its tumor-suppressor activity by abrogating overexpression of insulin-like growth factor 2 (IGF2) and the IGF2-derived intronic oncomir miR-483-3p in HCC cells characterized by IGF2 loss of imprinting (LOI). In summary, this study describes an unknown miRNA-dependent regulatory mechanism between two distinct imprinted loci and a possible therapeutic window for liver cancer patients exhibiting IGF2-miR-483 LOI and amplification.
Collapse
MESH Headings
- Animals
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Cell Movement/genetics
- Cell Survival/genetics
- DNA Methylation
- Epigenesis, Genetic
- Female
- Gene Expression Regulation, Neoplastic/genetics
- Genes, Tumor Suppressor
- Genomic Imprinting/genetics
- Humans
- Insulin-Like Growth Factor II/genetics
- Insulin-Like Growth Factor II/metabolism
- Introns
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Mice
- Mice, Nude
- MicroRNAs/genetics
- MicroRNAs/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Luc Gailhouste
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan.
- Liver Cancer Prevention Research Unit, RIKEN Center for Integrative Medical Sciences, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Lee Chuen Liew
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ken Yasukawa
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Izuho Hatada
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Yasuhito Tanaka
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takashi Kato
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Hitoshi Nakagama
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- National Cancer Center, Tokyo, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan.
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1 Shinjuku-ku, Tokyo, 160-0023, Japan.
| |
Collapse
|
41
|
Wu YJ, Ko BS, Liang SM, Lu YJ, Jan YJ, Jiang SS, Shyue SK, Chen L, Liou JY. ZNF479 downregulates metallothionein-1 expression by regulating ASH2L and DNMT1 in hepatocellular carcinoma. Cell Death Dis 2019; 10:408. [PMID: 31138789 PMCID: PMC6538656 DOI: 10.1038/s41419-019-1651-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 05/12/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022]
Abstract
Decreased expression of metallothionein-1 (MT-1) is associated with a poor prognosis in hepatocellular carcinoma (HCC). Here, we found that MT-1 expression was suppressed by 14-3-3ε, and MT-1 overexpression abolished 14-3-3ε-induced cell proliferation and tumor growth. We identified that 14-3-3ε induced expression of ZNF479, a novel potential transcriptional regulator by gene expression profiling and ZNF479 contributed to 14-3-3ε-suppressed MT-1 expression. ZNF479 induced the expression of DNMT1, UHRF1, and mixed-lineage leukemia (MLL) complex proteins (ASH2L and Menin), and increased tri-methylated histone H3 (H3K4me3) levels, but suppressed H3K4 (H3K4me2) di-methylation. ZNF479-suppressed MT-1 expression was restored by silencing of ASH2L and DNMT1. Furthermore, ZNF479 expression was higher in HCC tissues than that in the non-cancerous tissues. Expression analyses revealed a positive correlation between the expression of ZNF479 and DNMT1, UHRF1, ASH2L, and Menin, and an inverse correlation with that of ZNF479, ASH2L, Menin, and MT-1 isoforms. Moreover, correlations between the expression of ZNF479 and its downstream factors were more pronounced in HCC patients with hepatitis B. Here, we found that ZNF479 regulates MT-1 expression by modulating ASH2L in HCC. Approaches that target ZNF479/MLL complex/MT-1 or related epigenetic regulatory factors are potential therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Yi-Ju Wu
- Institute of Cellular and System Medicine, National Health Research Institutes, 350, Zhunan, Taiwan.,Institute of Molecular Medicine, National Tsing Hua University, 300, Hsinchu, Taiwan
| | - Bor-Sheng Ko
- Department of Internal Medicine, National Taiwan University Hospital, 100, Taipei, Taiwan
| | - Shu-Man Liang
- Institute of Cellular and System Medicine, National Health Research Institutes, 350, Zhunan, Taiwan
| | - Yi-Jhu Lu
- Institute of Cellular and System Medicine, National Health Research Institutes, 350, Zhunan, Taiwan
| | - Yee-Jee Jan
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, 407, Taichung, Taiwan
| | - Shih-Sheng Jiang
- National Institute of Cancer Research, National Health Research Institutes, 350, Zhunan, Taiwan
| | - Song-Kun Shyue
- Institute of Biomedical Sciences, Academia Sinica, 115, Taipei, Taiwan
| | - Linyi Chen
- Institute of Molecular Medicine, National Tsing Hua University, 300, Hsinchu, Taiwan
| | - Jun-Yang Liou
- Institute of Cellular and System Medicine, National Health Research Institutes, 350, Zhunan, Taiwan. .,Graduate Institute of Biomedical Sciences, China Medical University, 404, Taichung, Taiwan.
| |
Collapse
|
42
|
Bárcena-Varela M, Caruso S, Llerena S, Álvarez-Sola G, Uriarte I, Latasa MU, Urtasun R, Rebouissou S, Alvarez L, Jimenez M, Santamaría E, Rodriguez-Ortigosa C, Mazza G, Rombouts K, San José-Eneriz E, Rabal O, Agirre X, Iraburu M, Santos-Laso A, Banales JM, Zucman-Rossi J, Prósper F, Oyarzabal J, Berasain C, Ávila MA, Fernández-Barrena MG. Dual Targeting of Histone Methyltransferase G9a and DNA-Methyltransferase 1 for the Treatment of Experimental Hepatocellular Carcinoma. Hepatology 2019; 69:587-603. [PMID: 30014490 DOI: 10.1002/hep.30168] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 07/05/2018] [Indexed: 12/12/2022]
Abstract
Epigenetic modifications such as DNA and histone methylation functionally cooperate in fostering tumor growth, including that of hepatocellular carcinoma (HCC). Pharmacological targeting of these mechanisms may open new therapeutic avenues. We aimed to determine the therapeutic efficacy and potential mechanism of action of our dual G9a histone-methyltransferase and DNA-methyltransferase 1 (DNMT1) inhibitor in human HCC cells and their crosstalk with fibrogenic cells. The expression of G9a and DNMT1, along with that of their molecular adaptor ubiquitin-like with PHD and RING finger domains-1 (UHRF1), was measured in human HCCs (n = 268), peritumoral tissues (n = 154), and HCC cell lines (n = 32). We evaluated the effect of individual and combined inhibition of G9a and DNMT1 on HCC cell growth by pharmacological and genetic approaches. The activity of our lead compound, CM-272, was examined in HCC cells under normoxia and hypoxia, human hepatic stellate cells and LX2 cells, and xenograft tumors formed by HCC or combined HCC+LX2 cells. We found a significant and correlative overexpression of G9a, DNMT1, and UHRF1 in HCCs in association with poor prognosis. Independent G9a and DNMT1 pharmacological targeting synergistically inhibited HCC cell growth. CM-272 potently reduced HCC and LX2 cells proliferation and quelled tumor growth, particularly in HCC+LX2 xenografts. Mechanistically, CM-272 inhibited the metabolic adaptation of HCC cells to hypoxia and induced a differentiated phenotype in HCC and fibrogenic cells. The expression of the metabolic tumor suppressor gene fructose-1,6-bisphosphatase (FBP1), epigenetically repressed in HCC, was restored by CM-272. Conclusion: Combined targeting of G9a/DNMT1 with compounds such as CM-272 is a promising strategy for HCC treatment. Our findings also underscore the potential of differentiation therapy in HCC.
Collapse
Affiliation(s)
| | - Stefano Caruso
- Functional Genomics of Solid Tumors, Inserm U1162, Université Paris Descartes, Université Paris Diderot, Université Paris 13, IUH, France
| | - Susana Llerena
- Marqués de Valdecilla University Hospital, Santander, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Gloria Álvarez-Sola
- Hepatology Program, Cima-University of Navarra, Pamplona, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Iker Uriarte
- Hepatology Program, Cima-University of Navarra, Pamplona, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - M Ujue Latasa
- Hepatology Program, Cima-University of Navarra, Pamplona, Spain
| | - Raquel Urtasun
- Hepatology Program, Cima-University of Navarra, Pamplona, Spain
| | - Sandra Rebouissou
- Functional Genomics of Solid Tumors, Inserm U1162, Université Paris Descartes, Université Paris Diderot, Université Paris 13, IUH, France
| | - Laura Alvarez
- Hepatology Program, Cima-University of Navarra, Pamplona, Spain
| | | | - Eva Santamaría
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona, Spain
| | - Carlos Rodriguez-Ortigosa
- Hepatology Program, Cima-University of Navarra, Pamplona, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona, Spain
| | - Giuseppe Mazza
- Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Krista Rombouts
- Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Edurne San José-Eneriz
- Oncohematology Program, Cima-University of Navarra, Pamplona, Spain.,Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona, Spain
| | - Obdulia Rabal
- Molecular Therapeutics Program, Cima-University of Navarra, Pamplona, Spain
| | - Xabier Agirre
- Oncohematology Program, Cima-University of Navarra, Pamplona, Spain.,Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona, Spain
| | - Maria Iraburu
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain
| | - Alvaro Santos-Laso
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain.,Biodonostia Research Institute, Donostia University Hospital, Ikerbasque, San Sebastian, Spain
| | - Jesus M Banales
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain.,Biodonostia Research Institute, Donostia University Hospital, Ikerbasque, San Sebastian, Spain
| | - Jessica Zucman-Rossi
- Functional Genomics of Solid Tumors, Inserm U1162, Université Paris Descartes, Université Paris Diderot, Université Paris 13, IUH, France
| | - Felipe Prósper
- Oncohematology Program, Cima-University of Navarra, Pamplona, Spain.,Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona, Spain
| | - Julen Oyarzabal
- Molecular Therapeutics Program, Cima-University of Navarra, Pamplona, Spain
| | - Carmen Berasain
- Hepatology Program, Cima-University of Navarra, Pamplona, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona, Spain
| | - Matías A Ávila
- Hepatology Program, Cima-University of Navarra, Pamplona, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona, Spain
| | - Maite G Fernández-Barrena
- Hepatology Program, Cima-University of Navarra, Pamplona, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona, Spain
| |
Collapse
|
43
|
Wu X, Yao X, Cao Q, Wu Z, Wang Z, Liu F, Shen L. Clinicopathological and prognostic significance of CDH1 hypermethylation in hepatocellular carcinoma: a meta-analysis. Cancer Manag Res 2019; 11:857-864. [PMID: 30697077 PMCID: PMC6340500 DOI: 10.2147/cmar.s179710] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background The patients with hepatocellular carcinoma (HCC) have poor prognosis due to being diagnosed at late stage or recurrence following surgery. It’s critical to identify effective biomarkers that can improve overall diagnosis and treatment of HCC. Methods We performed a meta-analysis of all relative studies reporting the clinicopathological significance of CDH1 hypermethylation in HCC by using Review Manager 5.2. A comprehensive literature search was performed in EMBASE, PubMed, Web of Science and Google Scholar databases. Kaplan Meier Plotter online database was used for the determination of correlation between CDH1 mRNA expression and overall survival in patients with HCC. Odds Ratios (OR) with 95% corresponding confidence intervals (CIs) were calculated. A total of 12 relevant studies were included in the meta-analysis with 981 patients. Results The positive rate of CDH1 hypermethylation was significantly higher in HCC than in normal liver tissue; and the pooled OR was 4.34 with 95% CI 2.50–7.56, P<0.00001. CDH1 promoter in HCC was more frequently hypermethylated compared to the group of chronic liver disease (CLD); OR was 4.83 with 95% CI 2.67–8.72, P<0.00001. However, the rate of CDH1 promoter hypermethylation was not correlated with different grades as well as stages. High CDH1 mRNA expression was significantly correlated to better overall survival in all 231 HCC patients compared to 133 HCC patients with low level CDH1 mRNA expression; HR was 0.6 with 95% CI 0.42–0.85, P=0.0034. Conclusion In summary, CDH1 promoter hypermethylation is a risk factor and promising biomarker for HCC carcinogenesis and diagnosis, as well as a predictor of poor prognosis.
Collapse
Affiliation(s)
- Xiaoyu Wu
- Department of Surgical Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Xuequan Yao
- Department of Surgical Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Qinhong Cao
- Department of Surgical Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Zhenfeng Wu
- Department of Surgical Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Zhaojing Wang
- Department of Surgical Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Fukun Liu
- Department of Surgical Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Lizong Shen
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China,
| |
Collapse
|
44
|
Hentze JL, Høgdall CK, Høgdall EV. Methylation and ovarian cancer: Can DNA methylation be of diagnostic use? Mol Clin Oncol 2019; 10:323-330. [PMID: 30847169 DOI: 10.3892/mco.2019.1800] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 12/04/2018] [Indexed: 12/31/2022] Open
Abstract
Ovarian cancer is a silent killer and, due to late diagnosis and frequent chemo resistance in patients, the primary cause of fatality amongst the various types of gynecological cancer. The discovery of a specific and sensitive biomarker for ovarian cancer could improve early diagnosis, thereby saving lives. Biomarkers could also improve treatment, by predicting which patients will benefit from specific treatment strategies. DNA methylation is an epigenetic mechanism, and 'methylation imbalance' is characteristic of cancer. Previous research suggests that changes in DNA methylation can be used diagnostically, and that they may predict resistance to treatment. This paper gives an up-to-date overview of research investigating the potential of DNA methylation-based markers for diagnostics, prognostics, screening and prediction of drug resistance for ovarian cancer patients. DNA methylation cancer-biomarkers may be useful for cancer treatment, particularly since they are chemically stable and since cancer-associated changes in methylation typically precedes tumor growth. DNA methylation markers could improve diagnosis and treatment and might even be used for screening in the future. Furthermore, DNA methylation biomarkers could facilitate the development of precision medicine. However, at this point no biomarkers for ovarian cancer have a sufficient combination of sensitivity and specificity in a clinical setting. A reason for this is that most studies have focused on a single or a few methylation sites. More large screenings and genome-wide studies must be performed to increase the chance of identifying a DNA methylation marker which can identify ovarian cancer.
Collapse
Affiliation(s)
- Julie L Hentze
- Department of Pathology, Herlev Hospital, University of Copenhagen, 2730 Herlev, Denmark
| | - Claus K Høgdall
- Department of Gynecology, The Juliane Marie Centre, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Estrid V Høgdall
- Department of Pathology, Herlev Hospital, University of Copenhagen, 2730 Herlev, Denmark
| |
Collapse
|
45
|
Pharmaco-epigenomics: On the Road of Translation Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1168:31-42. [DOI: 10.1007/978-3-030-24100-1_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
46
|
Abstract
MicroRNAs (miRNA) are small non-coding RNAs (∼22 nt in length) that are known as potent master regulators of eukaryotic gene expression. miRNAs have been shown to play a critical role in cancer pathogenesis, and the misregulation of miRNAs is a well-known feature of cancer. In recent years, miR-29 has emerged as a critical miRNA in various cancers, and it has been shown to regulate multiple oncogenic processes, including epigenetics, proteostasis, metabolism, proliferation, apoptosis, metastasis, fibrosis, angiogenesis, and immunomodulation. Although miR-29 has been thoroughly documented as a tumor suppressor in the majority of studies, some controversy remains with conflicting reports of miR-29 as an oncogene. In this review, we provide a systematic overview of miR-29's functional role in various mechanisms of cancer and introspection on the contradictory roles of miR-29.
Collapse
|
47
|
Charostad J, Astani A, Goudarzi H, Faghihloo E. DNA methyltransferases in virus-associated cancers. Rev Med Virol 2018; 29:e2022. [PMID: 30511446 DOI: 10.1002/rmv.2022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 10/24/2018] [Accepted: 10/24/2018] [Indexed: 12/19/2022]
Abstract
Human tumor viruses are either casually linked or contribute in the development of human cancers. Viruses can stimulate oncogenesis through affecting diverse biological pathways in human cells. Growing data have demonstrated frequent involvement of one of the most characteristic parts of cellular epigenetic machinery, DNA methylation, in the oncogenesis. DNA methylation of cellular genes is catalyzed by DNA methyltransferases (DNMTs) as a key effector enzyme in this process. Dysregulation of DNMTs can cause aberrant gene methylation in promoter of cancer-related genes including tumor suppressor genes, resulting in gene silencing. In this regard, the role of tumor viruses is remarkable. Here, in this review, we used published information to elucidate whether tumor viruses are able to manipulate DNMT regulation, and if so, what are its consequences in the process of oncogenesis. This essay also aims to shed light on which cellular pathways have been engaged by viruses to induce DNMTs.
Collapse
Affiliation(s)
- Javad Charostad
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Akram Astani
- Zoonotic Diseases Research Center, School of Public Health, Sahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Microbiology, Shahid Sadoghi University of Medical Science, Yazd, Iran
| | - Hossein Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ebrahim Faghihloo
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
Ma HS, Wang EL, Xu WF, Yamada S, Yoshimoto K, Qian ZR, Shi L, Liu LL, Li XH. Overexpression of DNA (Cytosine-5)-Methyltransferase 1 (DNMT1) And DNA (Cytosine-5)-Methyltransferase 3A (DNMT3A) Is Associated with Aggressive Behavior and Hypermethylation of Tumor Suppressor Genes in Human Pituitary Adenomas. Med Sci Monit 2018; 24:4841-4850. [PMID: 30002361 PMCID: PMC6069575 DOI: 10.12659/msm.910608] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Alteration of DNA methylation of tumor suppressor genes (TSGs) is one of the most consistent epigenetic changes in human cancers. DNMTs play several important roles in DNA methylation and development of cancers. Regarding DNMTs protein expressions, little is known about the clinical significance and correlation with promoter methylation status of TSGs in human pituitary adenomas. Material/Methods We analyzed the protein expression of 3 DNMTs using immunohistochemistry and assessed DNA hypermethylation of RASSF1A, CDH13, CDH1, and CDKN2A (p16) in 63 pituitary adenomas. We examined associations between DNMTs expression and clinicopathological features or promoter methylation status of TSGs. Results Overexpression of DNMTs was detected in pituitary adenomas. Frequencies of DNMT1 overexpression were significantly higher in macroadenomas, invasive tumors, and grade III and IV tumors. DNMT3A was frequently detected in invasive tumors and grade IV tumors. In addition, DNMT1 and DNMT3A were frequently detected in high-methylation tumors. Furthermore, in multivariate logistic regression, the significant association between DNMT1 or DNMT3A and high-methylation status persisted after adjusting for clinicopathological features. Conclusions Our findings suggested that tumor overexpression of DNMT1 and DNMT3A is associated with tumor aggressive behavior and high-methylation status in pituitary adenomas. Our data support a possible role of DNMT1 and DNMT3A in TSG promoter methylation leading to pituitary adenoma invasion and suggest that inhibition of DNMTs has the potential to become a new therapeutic approach for invasive pituitary adenoma.
Collapse
Affiliation(s)
- Hou-Shi Ma
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China (mainland).,Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang, China (mainland)
| | - Elaine Lu Wang
- Department of Human Pathology, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima City, Tokushima, Japan.,Department of Legal Medicine, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Wen-Fei Xu
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiangb, China (mainland)
| | - Shozo Yamada
- Department of Neurosurgery, Toranomon Hospital, Tokyo, Japan
| | - Katsuhiko Yoshimoto
- Department of Medical Pharmacology, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima City, Tokushima, Japan
| | - Zhi Rong Qian
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Long Shi
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang, China (mainland)
| | - Li-Li Liu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China (mainland)
| | - Xu-Hui Li
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang, China (mainland)
| |
Collapse
|
49
|
Gailhouste L, Liew LC, Yasukawa K, Hatada I, Tanaka Y, Nakagama H, Ochiya T. Differentiation Therapy by Epigenetic Reconditioning Exerts Antitumor Effects on Liver Cancer Cells. Mol Ther 2018; 26:1840-1854. [PMID: 29759938 PMCID: PMC6035736 DOI: 10.1016/j.ymthe.2018.04.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/17/2018] [Accepted: 04/20/2018] [Indexed: 02/07/2023] Open
Abstract
Primary liver tumors are mainly represented by hepatocellular carcinoma (HCC), one of the most aggressive and resistant forms of cancer. Liver tumorigenesis is characterized by an accumulation of epigenetic abnormalities, leading to gene extinction and loss of hepatocyte differentiation. The aim of this work was to investigate the feasibility of converting liver cancer cells toward a less aggressive and differentiated phenotype using a process called epigenetic reconditioning. Here, we showed that an epigenetic regimen with non-cytotoxic doses of the demethylating compound 5-azacytidine (5-AZA) promoted an anti-cancer response by inhibiting HCC cell tumorigenicity. Furthermore, epigenetic reconditioning improved sorafenib response. Remarkably, epigenetic treatment was associated with a significant restoration of differentiation, as attested by the increased expression of characteristic hepatocyte markers in reconditioned cells. In particular, we showed that reexpression of these epigenetically silenced liver genes following 5-AZA treatment or after knockdown of DNA methyltransferase 1 (DNMT1) was the result of regional CpG demethylation. Lastly, we confirmed the efficacy of HCC differentiation therapy by epigenetic reconditioning using an in vivo tumor growth model. In summary, this work demonstrates that epigenetic reconditioning using the demethylating compound 5-AZA shows therapeutic significance for liver cancer and is potentially attractive for the treatment of solid tumors.
Collapse
Affiliation(s)
- Luc Gailhouste
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan.
| | - Lee Chuen Liew
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan; Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ken Yasukawa
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Izuho Hatada
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Yasuhito Tanaka
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hitoshi Nakagama
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; National Cancer Center, Tokyo, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan.
| |
Collapse
|
50
|
Wei HY, Feng R, Shao H, Feng B, Liu HQ, Men JL, Zou W. Serum glycine dehydrogenase is associated with increased risk of lung cancer and promotes malignant transformation by regulating DNA methyltransferases expression. Mol Med Rep 2018; 18:2293-2299. [PMID: 29956770 DOI: 10.3892/mmr.2018.9214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 12/20/2017] [Indexed: 11/06/2022] Open
Abstract
Identification of novel risk factors that are critical to the initiation of lung cancer will be key for its prevention. Recently, it has been reported that glycine dehydrogenase (GLDC) can drive the formation of lung cancer initiating cells. However, there have been no perspective studies on the association between circulating GLDC and lung cancer until now. To identify whether serum GLDC is a risk factor for lung cancer, the present study conducted a nested case‑control study within a Chinese cohort. Using ELISAs, serum GLDC was measured in 300 case subjects, who were subsequently diagnosed with lung cancer during follow‑up, and in 600 matched healthy controls. The results revealed that serum GLDC was associated with increased lung cancer risk [odds ratio=1.48; 95% confidence intervals (1.01‑2.04)]. Spearman correlation was employed to analyze the associations between age, body mass index, years of smoking and the serum concentration of GLDC. It was demonstrated that years of smoking was associated with serum GLDC (spearman's correlation, ρ=0.81) in patients with lung cancer. However, the association was attenuated in the serum of matched controls (ρ=0.48). In addition, overexpression of GLDC protein contributed to malignant transformation and inhibited microRNA (miR)‑29 family expression in normal human bronchial epithelial (NHBE) cells. Aberrant methylation of tumor suppressive gene (TSG) is an early event in the development of lung cancer, which is controlled by DNA methyltransferases (DNMTs). The present study demonstrated that GLDC promoted the expression of DNMT proteins; however, the miR‑29 family inhibited their expression in NHBE cells. Thus, it was concluded that elevated serum GLDC may increase lung cancer risk, and that smoking, GLDC, the miR‑29 family and DNMT signaling pathways may serve an important role in early malignant transformation during the development of lung cancer.
Collapse
Affiliation(s)
- Hai-Yan Wei
- The Physical and Chemical Laboratory, Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong 250062, P.R. China
| | - Rui Feng
- Radiotherapy Department, Shandong Cancer Hospital and Institute, Jinan, Shandong 250062, P.R. China
| | - Hua Shao
- The Physical and Chemical Laboratory, Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong 250062, P.R. China
| | - Bin Feng
- The Physical and Chemical Laboratory, Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong 250062, P.R. China
| | - Hong-Qiang Liu
- The Physical and Chemical Laboratory, Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong 250062, P.R. China
| | - Jin-Long Men
- The Physical and Chemical Laboratory, Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong 250062, P.R. China
| | - Wei Zou
- The Physical and Chemical Laboratory, Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong 250062, P.R. China
| |
Collapse
|