1
|
Genome-wide aberrant methylation in primary metastatic UM and their matched metastases. Sci Rep 2022; 12:42. [PMID: 34997020 PMCID: PMC8742000 DOI: 10.1038/s41598-021-03964-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/01/2021] [Indexed: 12/20/2022] Open
Abstract
Uveal melanoma (UM) is an aggressive intra-ocular cancer with a strong tendency to metastasize. Metastatic UM is associated with mutations in BAP1 and SF3B1, however only little is known about the epigenetic modifications that arise in metastatic UM. In this study we aim to unravel epigenetic changes contributing to UM metastasis using a new genome-wide methylation analysis technique that covers over 50% of all CpG’s. We identified aberrant methylation contributing to BAP1 and SF3B1-mediated UM metastasis. The methylation data was integrated with expression data and surveyed in matched UM metastases from the liver, skin and bone. UM metastases showed no commonly shared novel epigenetic modifications, implying that epigenetic changes contributing to metastatic spreading and colonization in distant tissues occur early in the development of UM and epigenetic changes that occur after metastasis are mainly patient-specific. Our findings reveal a plethora of epigenetic modifications in metastatic UM and its metastases, which could subsequently result in aberrant repression or activation of many tumor-related genes. This observation points towards additional layers of complexity at the level of gene expression regulation, which may explain the low mutational burden of UM.
Collapse
|
2
|
Chai P, Jia R, Li Y, Zhou C, Gu X, Yang L, Shi H, Tian H, Lin H, Yu J, Zhuang A, Ge S, Jia R, Fan X. Regulation of epigenetic homeostasis in uveal melanoma and retinoblastoma. Prog Retin Eye Res 2021; 89:101030. [PMID: 34861419 DOI: 10.1016/j.preteyeres.2021.101030] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022]
Abstract
Uveal melanoma (UM) and retinoblastoma (RB), which cause blindness and even death, are the most frequently observed primary intraocular malignancies in adults and children, respectively. Epigenetic studies have shown that changes in the epigenome contribute to the rapid progression of both UM and RB following classic genetic changes. The loss of epigenetic homeostasis plays an important role in oncogenesis by disrupting the normal patterns of gene expression. The targetable nature of epigenetic modifications provides a unique opportunity to optimize treatment paradigms and establish new therapeutic options for both UM and RB with these aberrant epigenetic modifications. We aimed to review the research findings regarding relevant epigenetic changes in UM and RB. Herein, we 1) summarize the literature, with an emphasis on epigenetic alterations, including DNA methylation, histone modifications, RNA modifications, noncoding RNAs and an abnormal chromosomal architecture; 2) elaborate on the regulatory role of epigenetic modifications in biological processes during tumorigenesis; and 3) propose promising therapeutic candidates for epigenetic targets and update the list of epigenetic drugs for the treatment of UM and RB. In summary, we endeavour to depict the epigenetic landscape of primary intraocular malignancy tumorigenesis and provide potential epigenetic targets in the treatment of these tumours.
Collapse
Affiliation(s)
- Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Ruobing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Yongyun Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Chuandi Zhou
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Xiang Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Ludi Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Hanhan Shi
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Hao Tian
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Huimin Lin
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Jie Yu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Ai Zhuang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China.
| |
Collapse
|
3
|
Fallico M, Raciti G, Longo A, Reibaldi M, Bonfiglio V, Russo A, Caltabiano R, Gattuso G, Falzone L, Avitabile T. Current molecular and clinical insights into uveal melanoma (Review). Int J Oncol 2021; 58:10. [PMID: 33649778 PMCID: PMC7910016 DOI: 10.3892/ijo.2021.5190] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
Uveal melanoma (UM) represents the most prominent primary eye cancer in adults. With an incidence of approximately 5 cases per million individuals annually in the United States, UM could be considered a relatively rare cancer. The 90-95% of UM cases arise from the choroid. Diagnosis is based mainly on a clinical examination and ancillary tests, with ocular ultrasonography being of greatest value. Differential diagnosis can prove challenging in the case of indeterminate choroidal lesions and, sometimes, monitoring for documented growth may be the proper approach. Fine needle aspiration biopsy tends to be performed with a prognostic purpose, often in combination with radiotherapy. Gene expression profiling has allowed for the grading of UMs into two classes, which feature different metastatic risks. Patients with UM require a specialized multidisciplinary management. Primary tumor treatment can be either enucleation or globe preserving. Usually, enucleation is reserved for larger tumors, while radiotherapy is preferred for small/medium melanomas. The prognosis is unfavorable due to the high mortality rate and high tendency to metastasize. Following the development of metastatic disease, the mortality rate increases to 80% within one year, due to both the absence of an effective treatment and the aggressiveness of the condition. Novel molecular studies have allowed for a better understanding of the genetic and epigenetic mechanisms involved in UM biological activity, which differs compared to skin melanomas. The most commonly mutated genes are GNAQ, GNA11 and BAP1. Research in this field could help to identify effective diagnostic and prognostic biomarkers, as well as novel therapeutic targets.
Collapse
Affiliation(s)
- Matteo Fallico
- Department of Ophthalmology, University of Catania, I‑95123 Catania, Italy
| | - Giuseppina Raciti
- Department of Drug Sciences, Section of Biochemistry, University of Catania, I‑95125 Catania, Italy
| | - Antonio Longo
- Department of Ophthalmology, University of Catania, I‑95123 Catania, Italy
| | - Michele Reibaldi
- Department of Surgical Sciences, Eye Clinic Section, University of Turin, I‑10122 Turin, Italy
| | - Vincenza Bonfiglio
- Department of Experimental Biomedicine and Clinical Neuroscience, Ophthalmology Section, University of Palermo, I‑90127 Palermo, Italy
| | - Andrea Russo
- Department of Ophthalmology, University of Catania, I‑95123 Catania, Italy
| | - Rosario Caltabiano
- Department 'G.F. Ingrassia', Section of Anatomic Pathology, University of Catania, I‑95123 Catania, Italy
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Luca Falzone
- Epidemiology Unit, IRCCS Istituto Nazionale Tumori 'Fondazione G. Pascale', I‑80131 Naples, Italy
| | - Teresio Avitabile
- Department of Ophthalmology, University of Catania, I‑95123 Catania, Italy
| |
Collapse
|
4
|
Ness C, Katta K, Garred Ø, Kumar T, Olstad OK, Petrovski G, Moe MC, Noer A. Integrated differential DNA methylation and gene expression of formalin-fixed paraffin-embedded uveal melanoma specimens identifies genes associated with early metastasis and poor prognosis. Exp Eye Res 2020; 203:108426. [PMID: 33387485 DOI: 10.1016/j.exer.2020.108426] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 12/09/2020] [Accepted: 12/22/2020] [Indexed: 12/23/2022]
Abstract
PURPOSE Uveal melanoma (UM) is an aggressive malignancy, in which nearly 50% of the patients die from metastatic disease. Aberrant DNA methylation is recognized as an important epigenomic event in carcinogenesis. Formalin-fixed paraffin-embedded (FFPE) samples represent a valuable source of tumor tissue, and recent technology has enabled the use of these samples in genome-wide DNA methylation analyses. Our aim was to investigate differential DNA methylation in relation to histopathological classification and survival data. In addition we sought to identify aberrant DNA methylation of genes that could be associated with metastatic disease and poor survival. METHODS FFPE samples from UM patients (n = 23) who underwent enucleation of the eye in the period 1976-1989 were included. DNA methylation was assessed using the Illumina Infinium HumanMethylation450 array and coupled to histopathological data, Cancer Registry of Norway- (registered UM metastasis) and Norwegian Cause of Death Registry- (time and cause of death) data. Differential DNA methylation patterns contrasting histological classification, survival data and clustering properties were investigated. Survival groups were defined as "Early metastasis" (metastases and death within 2-5 years after enucleation, n = 8), "Late metastasis" (metastases and death within 9-21 years after enucleation, n = 7) and "No metastasis" (no detected metastases ≥18 years after enucleation, n = 8). A subset of samples were selected based on preliminary multi-dimensional scaling (MDS) plots, histopathological classification, chromosome 3 status, survival status and clustering properties; "Subset Early metastasis" (n = 4) vs "Subset No metastasis" (n = 4). Bioinformatics analyses were conducted in the R statistical software. Differentially methylated positions (DMPs) and differentially methylated regions (DMRs) in various comparisons were assessed. Gene expression of relevant subgroups was determined by microarray analysis and quantitative reverse-transcription polymerase chain reaction (qRT-PCR). RESULTS DNA methylation analyses identified 2 clusters that separated the samples according to chromosome 3 status. Cluster 1 consisted of samples (n = 5) with chromosome 3 disomy (D3), while Cluster 2 was comprised of samples (n = 15) with chromosome 3 monosomy (M3). 1212 DMRs and 9386 DMPs were identified in M3 vs D3. No clear clusters were formed based on our predefined survival groups ("Early", "Late", "No") nor histopathological classification (Epithelioid, Mixed, Spindle). We identified significant changes in DNA methylation (beta FC ≥ 0.2, adjusted p < 0.05) between two sample subsets (n = 8). "Subset Early metastasis" (n = 4) vs "Subset No metastasis" (n = 4) identified 348 DMPs and 36 DMRs, and their differential gene expression by microarray showed that 14 DMPs and 2 DMRs corresponded to changes in gene expression (FC ≥ 1.5, p < 0.05). RNF13, ZNF217 and HYAL1 were hypermethylated and downregulated in "Subset Early metastasis" vs "Subset No metastasis" and could be potential tumor suppressors. TMEM200C, RGS10, ADAM12 and PAM were hypomethylated and upregulated in "Subset Early metastasis vs "Subset No metastasis" and could be potential oncogenes and thus markers of early metastasis and poor prognosis in UM. CONCLUSIONS DNA methylation profiling showed differential clustering of samples according to chromosome 3 status: Cluster 1 (D3) and Cluster 2 (M3). Integrated differential DNA methylation and gene expression of two subsets of samples identified genes associated with early metastasis and poor prognosis. RNF13, ZNF217 and HYAL1 are hypermethylated and candidate tumor suppressors, while TMEM200C, RGS10, ADAM12 and PAM are hypomethylated and candidate oncogenes linked to early metastasis. UM FFPE samples represent a valuable source for methylome studies and enable long-time follow-up.
Collapse
Affiliation(s)
- Charlotte Ness
- Center for Eye Research, Department of Ophthalmology, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kirankumar Katta
- Center for Eye Research, Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
| | - Øystein Garred
- Department of Pathology, Oslo University Hospital, Norway
| | - Theresa Kumar
- Department of Pathology, Oslo University Hospital, Norway
| | | | - Goran Petrovski
- Center for Eye Research, Department of Ophthalmology, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Morten C Moe
- Center for Eye Research, Department of Ophthalmology, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Agate Noer
- Center for Eye Research, Department of Ophthalmology, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
5
|
Hou P, Bao S, Fan D, Yan C, Su J, Qu J, Zhou M. Machine learning-based integrative analysis of methylome and transcriptome identifies novel prognostic DNA methylation signature in uveal melanoma. Brief Bioinform 2020; 22:6048939. [PMID: 33367533 DOI: 10.1093/bib/bbaa371] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/09/2020] [Accepted: 11/22/2020] [Indexed: 12/11/2022] Open
Abstract
Uveal melanoma (UVM) is the most common primary intraocular human malignancy with a high mortality rate. Aberrant DNA methylation has rapidly emerged as a diagnostic and prognostic signature in many cancers. However, such DNA methylation signature available in UVM remains limited. In this study, we performed a genome-wide integrative analysis of methylome and transcriptome and identified 40 methylation-driven prognostic genes (MDPGs) associated with the tumorigenesis and progression of UVM. Then, we proposed a machine-learning-based discovery and validation strategy to identify a DNA methylation-driven signature (10MeSig) composing of 10 MDPGs (AZGP1, BAI1, CCDC74A, FUT3, PLCD1, S100A4, SCN8A, SEMA3B, SLC25A38 and SLC44A3), which stratified 80 patients of the discovery cohort into two risk subtypes with significantly different overall survival (HR = 29, 95% CI: 6.7-126, P < 0.001). The 10MeSig was validated subsequently in an independent cohort with 57 patients and yielded a similar prognostic value (HR = 2.1, 95% CI: 1.2-3.7, P = 0.006). Multivariable Cox regression analysis showed that the 10MeSig is an independent predictive factor for the survival of patients with UVM. With a prospective validation study, this 10MeSig will improve clinical decisions and provide new insights into the pathogenesis of UVM.
Collapse
Affiliation(s)
- Ping Hou
- School of Biomedical Engineering, Wenzhou Medical University
| | - Siqi Bao
- School of Biomedical Engineering, Wenzhou Medical University
| | - Dandan Fan
- School of Biomedical Engineering, Wenzhou Medical University
| | - Congcong Yan
- School of Biomedical Engineering, Wenzhou Medical University
| | - Jianzhong Su
- School of Biomedical Engineering, Wenzhou Medical University
| | - Jia Qu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University
| | - Meng Zhou
- School of Biomedical Engineering, Wenzhou Medical University
| |
Collapse
|
6
|
Li Y, Shi J, Yang J, Ge S, Zhang J, Jia R, Fan X. Uveal melanoma: progress in molecular biology and therapeutics. Ther Adv Med Oncol 2020; 12:1758835920965852. [PMID: 33149769 PMCID: PMC7586035 DOI: 10.1177/1758835920965852] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022] Open
Abstract
Uveal melanoma (UM) is the most common intraocular malignancy in adults. So far, no systemic therapy or standard treatment exists to reduce the risk of metastasis and improve overall survival of patients. With the increased knowledge regarding the molecular pathways that underlie the oncogenesis of UM, it is expected that novel therapeutic approaches will be available to conquer this disease. This review provides a summary of the current knowledge of, and progress made in understanding, the pathogenesis, genetic mutations, epigenetics, and immunology of UM. With the advent of the omics era, multi-dimensional big data are publicly available, providing an innovation platform to develop effective targeted and personalized therapeutics for UM patients. Indeed, recently, a great number of therapies have been reported specifically for UM caused by oncogenic mutations, as well as other etiologies. In this review, special attention is directed to advancements in targeted therapies. In particular, we discuss the possibilities of targeting: GNAQ/GNA11, PLCβ, and CYSLTR2 mutants; regulators of G-protein signaling; the secondary messenger adenosine diphosphate (ADP)-ribosylation factor 6 (ARF6); downstream pathways, such as those involving mitogen-activated protein kinase/MEK/extracellular signal-related kinase, protein kinase C (PKC), phosphoinositide 3-kinase/Akt/mammalian target of rapamycin (mTOR), Trio/Rho/Rac/Yes-associated protein, and inactivated BAP1; and immune-checkpoint proteins cytotoxic T-lymphocyte antigen 4 and programmed cell-death protein 1/programmed cell-death ligand 1. Furthermore, we conducted a survey of completed and ongoing clinical trials applying targeted and immune therapies for UM. Although drug combination therapy based on the signaling pathways involved in UM has made great progress, targeted therapy is still an unmet medical need.
Collapse
Affiliation(s)
- Yongyun Li
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Jiahao Shi
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Jie Yang
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Jianming Zhang
- National Research Center for Translational Medicine, Shanghai State Key Laboratory of Medical Genomics, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Huangpu District, Shanghai 200001, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Huangpu District, Shanghai 200001, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, 833 Zhizaoju Road, Huangpu District, Shanghai 200001, China
| |
Collapse
|
7
|
Targeting Epigenetic Modifications in Uveal Melanoma. Int J Mol Sci 2020; 21:ijms21155314. [PMID: 32726977 PMCID: PMC7432398 DOI: 10.3390/ijms21155314] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/21/2020] [Accepted: 07/25/2020] [Indexed: 12/17/2022] Open
Abstract
Uveal melanoma (UM), the most common intraocular malignancy in adults, is a rare subset of melanoma. Despite effective primary therapy, around 50% of patients will develop the metastatic disease. Several clinical trials have been evaluated for patients with advanced UM, though outcomes remain dismal due to the lack of efficient therapies. Epigenetic dysregulation consisting of aberrant DNA methylation, histone modifications, and small non-coding RNA expression, silencing tumor suppressor genes, or activating oncogenes, have been shown to play a significant role in UM initiation and progression. Given that there is no evidence any approach improves results so far, adopting combination therapies, incorporating a new generation of epigenetic drugs targeting these alterations, may pave the way for novel promising therapeutic options. Furthermore, the fusion of effector enzymes with nuclease-deficient Cas9 (dCas9) in clustered regularly interspaced short palindromic repeats (CRISPR) associated protein 9 (Cas9) system equips a potent tool for locus-specific erasure or establishment of DNA methylation as well as histone modifications and, therefore, transcriptional regulation of specific genes. Both, CRISPR-dCas9 potential for driver epigenetic alterations discovery, and possibilities for their targeting in UM are highlighted in this review.
Collapse
|
8
|
Thornton S, Kalirai H, Aughton K, Coupland SE. Unpacking the genetic etiology of uveal melanoma. EXPERT REVIEW OF OPHTHALMOLOGY 2020. [DOI: 10.1080/17469899.2020.1785872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Sophie Thornton
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- Liverpool Clinical Laboratories, Liverpool University Hospitals Foundation Trusts, Liverpool, UK
| | - Helen Kalirai
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- Liverpool Clinical Laboratories, Liverpool University Hospitals Foundation Trusts, Liverpool, UK
| | - Karen Aughton
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Sarah E. Coupland
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- Liverpool Clinical Laboratories, Liverpool University Hospitals Foundation Trusts, Liverpool, UK
| |
Collapse
|
9
|
Croce M, Ferrini S, Pfeffer U, Gangemi R. Targeted Therapy of Uveal Melanoma: Recent Failures and New Perspectives. Cancers (Basel) 2019; 11:E846. [PMID: 31216772 PMCID: PMC6628160 DOI: 10.3390/cancers11060846] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/23/2022] Open
Abstract
Among Uveal Melanoma (UM) driver mutations, those involving GNAQ or GNA11 genes are the most frequent, while a minor fraction of tumors bears mutations in the PLCB4 or CYSLTR2 genes. Direct inhibition of constitutively active oncoproteins deriving from these mutations is still in its infancy in UM, whereas BRAFV600E-targeted therapy has obtained relevant results in cutaneous melanoma. However, UM driver mutations converge on common downstream signaling pathways such as PKC/MAPK, PI3K/AKT, and YAP/TAZ, which are presently considered as actionable targets. In addition, BAP1 loss, which characterizes UM metastatic progression, affects chromatin structure via histone H2A deubiquitylation that may be counteracted by histone deacetylase inhibitors. Encouraging results of preclinical studies targeting signaling molecules such as MAPK and PKC were unfortunately not confirmed in early clinical studies. Indeed, a general survey of all clinical trials applying new targeted and immune therapy to UM displayed disappointing results. This paper summarizes the most recent studies of UM-targeted therapies, analyzing the possible origins of failures. We also focus on hyperexpressed molecules involved in UM aggressiveness as potential new targets for therapy.
Collapse
Affiliation(s)
- Michela Croce
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy.
| | | | - Ulrich Pfeffer
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy.
| | | |
Collapse
|
10
|
Li Y, Yang X, Yang J, Wang H, Wei W. An 11-gene-based prognostic signature for uveal melanoma metastasis based on gene expression and DNA methylation profile. J Cell Biochem 2019; 120:8630-8639. [PMID: 30556166 DOI: 10.1002/jcb.28151] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/05/2018] [Indexed: 01/24/2023]
Abstract
Uveal melanoma (UM) is the most common intraocular tumor worldwide. We proposed to identify a vital gene signature that has prognostic value for UM metastasis. For this purpose, we obtained a published DNA methylation and gene expression data set associated with UM from the Gene Expression Omnibus. The genes whose aberrant expression significantly associated with UM patients' metastasis-free survival (MFS) were identified by applying a univariate Cox proportional hazards model to the gene expression data set followed by a robust likelihood-based survival analysis to screen the optimal prognostic gene signatures (PGS). A formula for calculating the risk score that represents UM metastasis risk was constructed by including the PGSs' expression values weighted by their regression coefficients, which were obtained by a multivariate Cox regression analysis. As a result, aberrant expression of 2884 genes were found to be significantly associated with UM patients' MFS, which were referred to as MFSGs, and 11 out of those MFSGs, GJC1, TCEA1, MFSD3, FAF2, TLCD1, GPAA1, CYC1, ASAP1, JPH1, LDB3, and KDELR3, were identified as PGSs through which we could accurately separate UM samples with shorter MFS from those with longer MFS. By combining the DNA methylation data set and MFSGs, we further identified 265 MFSGs, which contained CpG sites that significantly hyper- or hypo-methylated in UM samples compared with control samples. Functional enrichment analysis and pathway crosstalk analysis of those genes indicated significant enrichment of cancer-related pathways. In conclusion, we identified an 11-gene-based prognostic signature and several gene biomarkers for UM metastasis, which should be helpful for selecting an appropriate treatment method for specific patients with UM.
Collapse
Affiliation(s)
- Yang Li
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xuan Yang
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jingyan Yang
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Heng Wang
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wenbin Wei
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Guo J, Liu Q, Li Z, Guo H, Bai C, Wang F. miR-222-3p promotes osteosarcoma cell migration and invasion through targeting TIMP3. Onco Targets Ther 2018; 11:8643-8653. [PMID: 30584323 PMCID: PMC6284535 DOI: 10.2147/ott.s175745] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Abnormal expression of miRNAs has been reported in osteosarcoma (OS), and miR-222-3p levels have been found to be increased in the serum of OS patients. However, the exact role of miR-222-3p in OS remains unclear. In the present study, we aimed to identify the molecular mechanism underlying the role of miR-222-3p in the development of OS. METHODS We examined the expression level of miR-222-3p in OS tissues and OS cells using reverse-transcription quantitative PCR (RT-qPCR) analysis. MTT, colony formation, and transwell invasion assays were used to analyze the effects of miR-222-3p on the proliferation and invasion ability of OS cells. Luciferase reporter gene assays were used to confirm the target gene of miR-222-3p in OS cells. Tumor xenografts were then used to investigate the role of miR-222-3p in OS growth in vivo. RESULTS The data of the present study demonstrated that miR-222-3p levels were increased in OS tissues and OS cells. Downregulation of miR-222-3p significantly inhibited the proliferation, migration, and invasion of OS cells in vitro. Further analysis revealed that tissue inhibitors of metalloproteinases 3 (TIMP3) is one of the functional target genes of miR-222-3p, and inhibition of TIMP3 efficiently rescues the blocking of cell proliferation and invasion mediated by miR-222-3p inhibitor in OS cells. CONCLUSION Our findings constitute evidence that miR-222-3p promotes OS cell proliferation and invasion through targeting TIMP3 mRNA and provide novel insight into the mechanism underlying the development of OS.
Collapse
Affiliation(s)
- Jianping Guo
- Department of Orthopaedic Surgery, Affiliated Hospital of Beihua University, Jilin 132011, PR China,
| | - Quanxiang Liu
- Department of Orthopaedic Surgery, Affiliated Hospital of Beihua University, Jilin 132011, PR China,
| | - Zengxin Li
- Department of Orthopaedic Surgery, Affiliated Hospital of Beihua University, Jilin 132011, PR China,
| | - Haifeng Guo
- Department of Orthopaedic Surgery, Affiliated Hospital of Beihua University, Jilin 132011, PR China,
| | - Changshuang Bai
- Department of Orthopaedic Surgery, Affiliated Hospital of Beihua University, Jilin 132011, PR China,
| | - Fajia Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Beihua University, Jilin 132011, PR China,
| |
Collapse
|
12
|
Abstract
Objective: The objective of the study was to summarize the role of DNA methylation in the development and metastasis of uveal melanoma (UM). Data Sources: The relevant studies in MEDLINE were searched. Study Selection: In this review, we performed a comprehensive literature search in MEDLINE using “uveal melanoma” AND (“DNA methylation” OR “epigenetics”) for original research/review articles published before February 2018 on the relationship between DNA methylation and UM. References of the retrieved studies were also examined to search for potentially relevant papers. Results: Previous studies on the relationship between DNA methylation and UM covered many genes including tumor suppressor genes (TSGs), cyclin-dependent kinase genes, and other genes. Among them, the TSG genes such as RASSF1A and p16INK4a, which encodes a cyclin-dependent kinase inhibitor, are relatively well-studied genes. Specifically, a high percentage of promoter methylation of RASSF1A was observed in UM cell lines and/or patients with UM. Promoter methylation of RASSF1A was also associated with the development of metastasis. Similarly, a high percentage of promoter hypermethylation of p16INK4a was found in UM cell lines. DNA promoter methylation can control the expression of p16INK4a, which affect cell growth, migration, and invasion in UM. Many other genes might also be involved in the pathogenesis of UM such as the Ras and EF-hand domain containing (RASEF) gene, RAB31, hTERT, embryonal fyn-associated substrate, and deleted in split-hand/split-foot 1. Conclusions: Our review reveals the complex mechanisms underlying the tumorigenesis of UM and highlights the great needs of future studies to discover more genes/5’-C-phosphate-G-3’ sites contributing to the development/metastasis of UM and explore the mechanisms through which epigenetic changes exert their function in UM.
Collapse
Affiliation(s)
- Zhi-Kun Yang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jing-Yun Yang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Zhuo-Zai Xu
- Department of Ophthalmology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Wei-Hong Yu
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
13
|
Sharma A, Stei MM, Fröhlich H, Holz FG, Loeffler KU, Herwig-Carl MC. Genetic and epigenetic insights into uveal melanoma. Clin Genet 2018; 93:952-961. [PMID: 28902406 DOI: 10.1111/cge.13136] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 08/31/2017] [Accepted: 09/04/2017] [Indexed: 12/18/2022]
Abstract
Uveal melanoma (UM) is the most frequent primary intraocular tumor in Caucasian adults and is potentially fatal if metastases develop. While several prognostic genetic changes have been identified in UM, epigenetic influences are now getting closer attention. Recent technological advances have allowed to exam the human genome to a greater extent and have improved our understanding of several diseases including malignant tumors. In this context, there has been tremendous progress in the field of UM pathogenesis. Herein, we review the literature with emphasis on genetic alterations, epigenetic modifications and signaling pathways as well as possible biomarkers in UM. In addition, different research models for UM are discussed. New insights and major challenges are outlined in order to evaluate the current status for this potentially devastating disease.
Collapse
Affiliation(s)
- A Sharma
- Department of Ophthalmology, University of Bonn, Bonn, Germany.,Department of Neurology, University of Bonn, Bonn, Germany
| | - M M Stei
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - H Fröhlich
- Algorithmic Bioinformatics, BIT, University of Bonn, Bonn, Germany.,UCB Biosciences GmbH, Monheim, Germany
| | - F G Holz
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - K U Loeffler
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - M C Herwig-Carl
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| |
Collapse
|
14
|
Maldonado L, Brait M, Michailidi C, Munari E, Driscoll T, Schultz L, Bivalacqua T, Schoenberg M, Sidransky D, Netto GJ, Hoque MO. An epigenetic marker panel for recurrence risk prediction of low grade papillary urothelial cell carcinoma (LGPUCC) and its potential use for surveillance after transurethral resection using urine. Oncotarget 2015; 5:5218-33. [PMID: 24980822 PMCID: PMC4170626 DOI: 10.18632/oncotarget.2129] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
By a candidate gene approach, we analyzed the promoter methylation (PM) of 8 genes genes (ARF, TIMP3, RAR-β2, NID2, CCNA1, AIM1, CALCA and CCND2) by quantitative methylation specific PCR (QMSP) in DNA of 17 non-recurrent and 19 recurrent noninvasive low grade papillary urothelial cell carcinoma (LGPUCC) archival tissues. Among the genes tested, by establishing an empiric cutoff value, CCND2, CCNA1, NID2, and CALCA showed higher frequency of methylation in recurrent than in non-recurrent LGPUCC: CCND2 10/19 (53%) vs. 2/17 (12%) (p=0.014); CCNA1 11/19 (58%) vs. 4/17 (23.5%) (p=0.048); NID2 13/19 (68%) vs. 3/17 (18%) (p=0.003) and CALCA 10/19 (53%) vs. 4/17 (23.5%) (p=0.097), respectively. We further analyzed PM of CCND2, CCNA1, and CALCA in urine DNA from UCC patients including LGPUCC and controls. The frequency of CCND2, CCNA1 and CALCA was significantly higher (p<0.0001) in urine of UCC cases [ 38/148 (26%), 50/73 (68%) and 94/148 (63.5%) respectively] than controls [0/56 (0%), 10/60 (17%) and 16/56 (28.5%), respectively)]. Most importantly we found any one of the 3 markers methylation positive in 25 out of 30 (83%) cytology negative LGPUCC cases. We also explored the biological function of CCNA1 in UCC. Prospective confirmatory studies are needed to develop a reliable tool for prediction of recurrence using primary LGPUCC tissues and/or urine.
Collapse
Affiliation(s)
- Leonel Maldonado
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA. These authors contributed equally to this work
| | - Mariana Brait
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA. These authors contributed equally to this work
| | - Christina Michailidi
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Enrico Munari
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA. Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Tina Driscoll
- Department of Urology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Luciana Schultz
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Trinity Bivalacqua
- Department of Urology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Mark Schoenberg
- Department of Urology, Johns Hopkins University, Baltimore, Maryland, USA
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - George J Netto
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA. Department of Urology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Mohammad Obaidul Hoque
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA. Department of Urology, Johns Hopkins University, Baltimore, Maryland, USA. Department of Oncology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
15
|
Herlihy N, Dogrusöz M, van Essen TH, Harbour JW, van der Velden PA, van Eggermond MCJA, Haasnoot GW, van den Elsen PJ, Jager MJ. Skewed expression of the genes encoding epigenetic modifiers in high-risk uveal melanoma. Invest Ophthalmol Vis Sci 2015; 56:1447-58. [PMID: 25593028 DOI: 10.1167/iovs.14-15250] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
PURPOSE Monosomy 3 (M3) or the presence of a specific RNA expression profile, known as class 2, is strongly associated with death from uveal melanoma (UM). Given the important role of epigenetic processes in cancer development and progression, we compared the transcriptional profiles of a selection of epigenetic regulators between primary UM with a good and a bad prognosis. METHODS Transcriptional levels of 59 epigenetic regulator genes were measured by quantitative PCR (qPCR) in 20 UM, 12 with monosomy of chromosome 3 (M3) and 8 with disomy of chromosome 3 (D3). Validation was performed in an independent cohort. Expression levels were compared to clinicopathological characteristics, including class type. Bisulfite sequencing was used to evaluate the role of DNA methylation in gene silencing. RESULTS In the first set of tumors, general downregulation of transcription of the genes encoding epigenetic regulatory enzymes was seen in association with M3. The 10 genes with the highest differential expression between M3 and D3 were selected and were analyzed in a second set of tumors. In the validation set, significantly lower levels of KAT2B (P = 0.008), HDAC11 (P = 0.009), KMT1C (P = 0.05), KDM4B (P = 0.003), KDM6B (P = 0.04), and BMI-1 (P = 0.001) transcripts were found in tumors with M3/class 2. Methylation of C-phosphate-G (CpG) residues was not observed on the putative regulatory regions of KAT2B, KDM4B, or KDM6B. CONCLUSIONS Expression levels of a number of histone-modifying genes and polycomb family members are significantly lower in uveal melanoma with monosomy 3/class 2, supporting a general dysregulation of epigenetic modifiers in UM with a bad prognosis.
Collapse
Affiliation(s)
- Naoimh Herlihy
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Mehmet Dogrusöz
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - T Huibertus van Essen
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Marja C J A van Eggermond
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Geert W Haasnoot
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter J van den Elsen
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Martine J Jager
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
16
|
Martin del Campo SE, Latchana N, Levine KM, Grignol VP, Fairchild ET, Jaime-Ramirez AC, Dao TV, Karpa VI, Carson M, Ganju A, Chan AN, Carson III WE. MiR-21 enhances melanoma invasiveness via inhibition of tissue inhibitor of metalloproteinases 3 expression: in vivo effects of MiR-21 inhibitor. PLoS One 2015; 10:e0115919. [PMID: 25587717 PMCID: PMC4294659 DOI: 10.1371/journal.pone.0115919] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 12/02/2014] [Indexed: 12/11/2022] Open
Abstract
Metastatic melanoma is the most aggressive form of this cancer. It is important to understand factors that increase or decrease metastatic activity in order to more effectively research and implement treatments for melanoma. Increased cell invasion through the extracellular matrix is required for metastasis and is enhanced by matrix metalloproteinases (MMPs). Tissue inhibitor of metalloproteinases 3 (TIMP3) inhibits MMP activity. It was previously shown by our group that miR-21, a potential regulator of TIMP3, is over-expressed in cutaneous melanoma. It was therefore hypothesized that increased levels of miR-21 expression would lead to decreased expression of TIMP3 and thereby enhance the invasiveness of melanoma cells. miR-21 over-expression in the melanoma cell lines WM1552c, WM793b, A375 and MEL 39 was accomplished via transfection with pre-miR-21. Immunoblot analysis of miR-21-overexpressing cell lines revealed reduced expression of TIMP3 as compared to controls. This in turn led to a significant increase in the invasiveness of the radial growth phase cell line WM1552c and the vertical growth phase cell line WM793b (p < 0.05), but not in the metastatic cell lines A375 or MEL 39. The proliferation and migration of miR-21 over-expressing cell lines was not affected. Reduced expression of TIMP3 was achieved by siRNA knockdown and significantly enhanced invasion of melanoma cell lines, mimicking the effects of miR-21 over-expression. Treatment of tumor cells with a linked nucleic acid antagomir to miR-21 inhibited tumor growth and increased tumor expression of TIMP3 in vivo in 01B74 Athymic NCr-nu/nu mice. Intra-tumoral injections of anti-miR-21 produced similar effects. This data shows that increased expression of miR-21 enhanced the invasive potential of melanoma cell lines through TIMP3 inhibition. Therefore, inhibition of miR-21 in melanoma may reduce melanoma invasiveness.
Collapse
Affiliation(s)
| | - Nicholas Latchana
- Department of Surgery, The Ohio State University, Columbus, Ohio, United States of America
| | - Kala M. Levine
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Valerie P. Grignol
- Department of Surgery, The Ohio State University, Columbus, Ohio, United States of America
| | - Ene T. Fairchild
- Department of General Pediatrics, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Alena Cristina Jaime-Ramirez
- Department of Neurological Surgery, The Ohio State University, Arthur Giangiacomo James Cancer Hospital and Richard Jack Solove Research Institute, Columbus Ohio, United States of America
| | - Thao-Vi Dao
- School of Medicine, Wright State University, Dayton, Ohio, United States of America
| | - Volodymyr I. Karpa
- School of Medicine, Wright State University, Dayton, Ohio, United States of America
| | - Mary Carson
- Department of Surgery, The Ohio State University, Columbus, Ohio, United States of America
| | - Akaansha Ganju
- School of Medicine, Northeast Ohio Medical University, Rootstown, Ohio, United States of America
| | - Anthony N. Chan
- School of Medicine, Wright State University, Dayton, Ohio, United States of America
| | - William E. Carson III
- Department of Surgery, The Ohio State University, Columbus, Ohio, United States of America
- Department of General Pediatrics, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Arthur Giangiacomo James Cancer Hospital and Richard Jack Solove Research Institute, Columbus Ohio, United States of America
- * E-mail:
| |
Collapse
|
17
|
Jazirehi AR, Torres-Collado AX, Nazarian R. Research Highlights: Highlights from the latest articles in epigenomics. Epigenomics 2013. [DOI: 10.2217/epi.13.23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Ali R Jazirehi
- Department of Surgery, Division of Surgical Oncology, & Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Antoni X Torres-Collado
- Department of Surgery, Division of Surgical Oncology, & Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Ramin Nazarian
- Department of Surgery, Division of Surgical Oncology, & Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
18
|
Abstract
Like other cancers, uveal melanomas (UM) are characterised by an uncontrolled, clonal, cellular proliferation, occurring as a result of numerous genetic, and epigenetic aberrations. Signalling pathways known to be disrupted in UM include: (1) the retinoblastoma pathway, probably as a result of cyclin D1 overexpression; p53 signalling, possibly as a consequence of MDM2 overexpression; and the P13K/AKT and mitogen-activated protein kinase/extracellular signal-related kinase pathway pathways that are disturbed as a result of PTEN and GNAQ/11 mutations, respectively. Characteristic chromosomal abnormalities are common and include 6p gain, associated with a good prognosis, as well as 1p loss, 3 loss, and 8q gain, which correlate with high mortality. These are identified by techniques such as fluorescence in situ hybridisation, comparative genomic hybridisation, microsatellite analysis, multiplex ligation-dependent probe amplification, and single-nucleotide polymorphisms. UM can also be categorised by their gene expression profiles as class 1 or class 2, the latter correlating with poor survival, as do BRCA1-associated protein-1 (BAP1) inactivating mutations. Genetic testing of UM has enhanced prognostication, especially when results are integrated with histological and clinical data. The identification of abnormal signalling pathways, genes and proteins in UM opens the way for target-based therapies, improving prospects for conserving vision and prolonging life.
Collapse
|
19
|
Alcazar O, Achberger S, Aldrich W, Hu Z, Negrotto S, Saunthararajah Y, Triozzi P. Epigenetic regulation by decitabine of melanoma differentiation in vitro and in vivo. Int J Cancer 2012; 131:18-29. [PMID: 21796622 PMCID: PMC3454528 DOI: 10.1002/ijc.26320] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 06/07/2011] [Accepted: 07/01/2011] [Indexed: 01/20/2023]
Abstract
Apoptosis genes, such as TP53 and p16/CDKN2A, that mediate responses to cytotoxic chemotherapy, are frequently nonfunctional in melanoma. Differentiation may be an alternative to apoptosis for inducing melanoma cell cycle exit. Epigenetic mechanisms regulate differentiation, and DNA methylation alterations are associated with the abnormal differentiation of melanoma cells. The effects of the deoxycytidine analogue decitabine (5-aza-2'-deoxycytidine), which depletes DNA methyl transferase 1 (DNMT1), on melanoma differentiation were examined. Treatment of human and murine melanoma cells in vitro with concentrations of decitabine that did not cause apoptosis inhibited proliferation accompanied by cellular differentiation. A decrease in promoter methylation, and increase in expression of the melanocyte late-differentiation driver SOX9, was followed by increases in cyclin-dependent kinase inhibitors (CDKN) p27/CDKN1B and p21/CDKN1A that mediate cell cycle exit with differentiation. Effects were independent of the TP53, p16/CDKN2A and also the BRAF status of the melanoma cells. Resistance, when observed, was pharmacologic, characterized by diminished ability of decitabine to deplete DNMT1. Treatment of murine melanoma models in vivo with intermittent, low-dose decitabine, administered sub-cutaneously to limit high peak drug levels that cause cytotoxicity and increase exposure time for DNMT1 depletion, and with tetrahydrouridine to decrease decitabine metabolism and further increase exposure time, inhibited tumor growth and increased molecular and tumor stromal factors implicated in melanocyte differentiation. Modification of decitabine dose, schedule and formulation for differentiation rather than cytotoxic objectives inhibits the growth of melanoma cells in vitro and in vivo.
Collapse
MESH Headings
- Animals
- Antimetabolites, Antineoplastic/pharmacology
- Apoptosis
- Azacitidine/administration & dosage
- Azacitidine/analogs & derivatives
- Azacitidine/pharmacology
- Base Sequence
- Cell Differentiation/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cyclin-Dependent Kinase Inhibitor Proteins/biosynthesis
- Cyclin-Dependent Kinase Inhibitor p16/metabolism
- DNA (Cytosine-5-)-Methyltransferase 1
- DNA (Cytosine-5-)-Methyltransferases/analysis
- DNA (Cytosine-5-)-Methyltransferases/metabolism
- DNA Methylation
- Decitabine
- Epigenesis, Genetic
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Male
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/genetics
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Nude
- Promoter Regions, Genetic/genetics
- Proto-Oncogene Proteins B-raf/biosynthesis
- SOX9 Transcription Factor/biosynthesis
- Sequence Analysis, DNA
- Tetrahydrouridine/pharmacology
- Tumor Suppressor Protein p53/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Oscar Alcazar
- Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Susan Achberger
- Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Wayne Aldrich
- Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Zhenbo Hu
- Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Soledad Negrotto
- Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | | | | |
Collapse
|
20
|
Bonazzi VF, Nancarrow DJ, Stark MS, Moser RJ, Boyle GM, Aoude LG, Schmidt C, Hayward NK. Cross-platform array screening identifies COL1A2, THBS1, TNFRSF10D and UCHL1 as genes frequently silenced by methylation in melanoma. PLoS One 2011; 6:e26121. [PMID: 22028813 PMCID: PMC3197591 DOI: 10.1371/journal.pone.0026121] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 09/20/2011] [Indexed: 12/15/2022] Open
Abstract
Epigenetic regulation of tumor suppressor genes (TSGs) has been shown to play a central role in melanomagenesis. By integrating gene expression and methylation array analysis we identified novel candidate genes frequently methylated in melanoma. We validated the methylation status of the most promising genes using highly sensitive Sequenom Epityper assays in a large panel of melanoma cell lines and resected melanomas, and compared the findings with those from cultured melanocytes. We found transcript levels of UCHL1, COL1A2, THBS1 and TNFRSF10D were inversely correlated with promoter methylation. For THBS1 and UCHL1 the effect of this methylation on expression was confirmed at the protein level. Identification of these candidate TSGs and future research designed to understand how their silencing is related to melanoma development will increase our understanding of the etiology of this cancer and may provide tools for its early diagnosis.
Collapse
Affiliation(s)
- Vanessa F Bonazzi
- Oncogenomics Laboratory, Queensland Institute of Medical Research, Herston, Brisbane, Queensland, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Eze OP, Starker LF, Carling T. The role of epigenetic alterations in papillary thyroid carcinogenesis. J Thyroid Res 2011; 2011:895470. [PMID: 21765995 PMCID: PMC3134385 DOI: 10.4061/2011/895470] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 04/04/2011] [Indexed: 01/09/2023] Open
Abstract
Papillary thyroid carcinoma (PTC) accounts for over 80% of all thyroid malignancies. The molecular pathogenesis remains incompletely clarified although activation of the RET fusion oncogenes, and RAS and BRAF oncogenes, has been well characterized. Novel technologies using genome-wide approaches to study tumor genomes and epigenomes have provided great insights into tumor development. Growing evidence shows that acquired epigenetic abnormalities participate with genetic alterations to cause altered patterns of gene expression/function. It has been established beyond doubt that promoter cytosine methylation in CpG islands, and the subsequent gene silencing, is intimately involved in cancer development. These epigenetic events very likely contribute to significant variation in gene expression profiling, phenotypic features, and biologic characteristics seen in PTC. Hypermethylation of promoter regions has also been analyzed in PTC, and most studies have focused on individual genes or a small cohort of genes implicated in tumorigenesis.
Collapse
Affiliation(s)
- Ogechukwu P Eze
- Department of Surgery, Yale University School of Medicine, 333 Cedar Street, TMP202, Box 208062, New Haven, CT 06520-8062, USA
| | | | | |
Collapse
|
22
|
Molognoni F, Cruz AT, Meliso FM, Morais AS, Souza CF, Xander P, Bischof JM, Costa FF, Soares MB, Liang G, Jones PA, Jasiulionis MG. Epigenetic reprogramming as a key contributor to melanocyte malignant transformation. Epigenetics 2011; 6:450-64. [PMID: 21343701 DOI: 10.4161/epi.6.4.14917] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Melanoma progression requires deregulation of gene expression by currently uncharacterized epigenetic mechanisms. A mouse model based on changes in cell microenvironment was developed by our group to study melanocyte malignant transformation. Melanoma cell lines (4C11- and 4C11+) were obtained as result of 5 sequential anchorage blockades of non-tumorigenic melan-a melanocytes. Melan-a cells submitted to 4 de-adhesion cycles were also established (4C), are non-tumorigenic and represent an intermediary phase of tumor progression. The aim of this work was to identify factors contributing to epigenetic modifications in early and later phases of malignant transformation induced by anchorage impediment. Epigenetic alterations occur early in tumorigenesis; 4C cell line shows changes in global and gene-specific DNA methylation and histone marks. Many histone modifications differ between melan-a, 4C, 4C11- (non-metastatic melanoma cell line) and 4C11+ (metastatic melanoma cell line) which could be associated with changes in gene and microRNA expression. These epigenetic alterations seem to play a key role in malignant transformation since melanocytes treated with 5-Aza-2'-deoxycytidine before each anchorage blockade do not transform. Some epigenetic changes seem to be also responsible for the maintenance of malignant phenotype, since melanoma cell lines (4C11- and 4C11+) treated in vitro with 5-Aza-2'-deoxycytidine or Trichostatin A showed reduction of tumor growth in vivo. Changes in gene expression reflecting cell adaptation to new environment were also observed. We propose a model in which sustained microenvironmental stress in melanocytes results in epigenetic reprogramming. Thus, after adaptation, cells may acquire epigenetic marks that could contribute to the establishment of a malignant phenotype.
Collapse
Affiliation(s)
- Fernanda Molognoni
- Pharmacology Department, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Jager MJ, Ly LV, El Filali M, Madigan MC. Macrophages in uveal melanoma and in experimental ocular tumor models: Friends or foes? Prog Retin Eye Res 2011; 30:129-46. [DOI: 10.1016/j.preteyeres.2010.11.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 11/16/2010] [Accepted: 11/22/2010] [Indexed: 01/05/2023]
|
24
|
Sahin M, Sahin E, Gümüşlü S, Erdoğan A, Gültekin M. DNA methylation or histone modification status in metastasis and angiogenesis-related genes: a new hypothesis on usage of DNMT inhibitors and S-adenosylmethionine for genome stability. Cancer Metastasis Rev 2011; 29:655-76. [PMID: 20821252 DOI: 10.1007/s10555-010-9253-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Metastasis is a leading cause of mortality and morbidity in cancer. This process needs angiogenesis. The biology underlying cancer, metastasis, and angiogenesis has been investigated so as to determine the therapeutic targets. Invasive and metastatic cancer cells have undergone numerous genetic and epigenetic changes, manifested by cytoskeletal changes, loss of adhesion, and expression of proteolytic enzymes that degrade the basement membrane. Additionally, in endothelial cells, some epigenetic modifications occur during the formation of angiogenesis. Researchers have used some methylation inhibitors, histone deacetylase inhibitors, or methylating agents (such as S-adenosylmethionine, SAM) against cancer and angiogenesis. Although they are effective to beat these diseases, each one results in differentiation or changes in genome structure. We review epigenetically modified genes related with angiogenesis and metastasis in cancer and endothelial cells, and suggest a new proposal. This hypothesis has discussed the importance of the usage of DNA methylation inhibitors together with SAM to prevent tumor progression and genome instability or changes resulting in additional diseases.
Collapse
Affiliation(s)
- Mehmet Sahin
- Health Sciences Research Centre, Faculty of Medicine, Akdeniz University, 07070 Antalya, Turkey.
| | | | | | | | | |
Collapse
|
25
|
Abstract
Malignant melanoma remains one of the most deadly human cancers with no effective cures for metastatic disease. The poor efficacy of current therapy in advanced melanoma highlights the need for better understanding of molecular mechanisms contributing to the disease. Recent work has shown that epigenetic changes, including aberrant DNA methylation, lead to alterations in gene expression and are as important in the development of malignant melanoma as the specific and well-characterized genetic events. Reversion of these methylation patterns could thus lead to a more targeted therapy and are currently under clinical investigation. The purpose of this review is to compile recent information on aberrant DNA methylation of melanoma, to highlight key genes and molecular pathways in melanoma development, which have been found to be epigenetically altered and to provide insight as to how DNA methylation might serve as targeted treatment option as well as a molecular and prognostic marker in malignant melanoma.
Collapse
|
26
|
Onken MD, Worley LA, Tuscan MD, Harbour JW. An accurate, clinically feasible multi-gene expression assay for predicting metastasis in uveal melanoma. J Mol Diagn 2010; 12:461-8. [PMID: 20413675 DOI: 10.2353/jmoldx.2010.090220] [Citation(s) in RCA: 242] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Uveal (ocular) melanoma is an aggressive cancer that often forms undetectable micrometastases before diagnosis of the primary tumor. These micrometastases later multiply to generate metastatic tumors that are resistant to therapy and are uniformly fatal. We have previously identified a gene expression profile derived from the primary tumor that is extremely accurate for identifying patients at high risk of metastatic disease. Development of a practical clinically feasible platform for analyzing this expression profile would benefit high-risk patients through intensified metastatic surveillance, earlier intervention for metastasis, and stratification for entry into clinical trials of adjuvant therapy. Here, we migrate the expression profile from a hybridization-based microarray platform to a robust, clinically practical, PCR-based 15-gene assay comprising 12 discriminating genes and three endogenous control genes. We analyze the technical performance of the assay in a prospective study of 609 tumor samples, including 421 samples sent from distant locations. We show that the assay can be performed accurately on fine needle aspirate biopsy samples, even when the quantity of RNA is below detectable limits. Preliminary outcome data from the prospective study affirm the prognostic accuracy of the assay. This prognostic assay provides an important addition to the armamentarium for managing patients with uveal melanoma, and it provides a proof of principle for the development of similar assays for other cancers.
Collapse
Affiliation(s)
- Michael D Onken
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
27
|
Di Cesare S, Nantel A, Marshall JC, Fernandes BF, Antecka E, Orellana ME, Abourbih D, Saornil AM, Burnier MN. Expression profiling of formalin-fixed paraffin embedded primary human uveal melanomas using DASL matrices. J Cancer Res Clin Oncol 2010; 136:577-86. [PMID: 19823872 DOI: 10.1007/s00432-009-0692-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 09/18/2009] [Indexed: 10/20/2022]
Abstract
PURPOSE Fresh biopsied ocular tumor tissues are difficult to obtain for the purpose of performing microarray experiments on extracted nucleic acids. Present technology allows for extraction of total RNA from formalin-fixed paraffin embedded (FFPE) tissue analyzed by the cDNA mediated Annealing Sectioning and Ligation (DASL) method. We aimed to correlate gene transcript differences between two uveal melanoma (UM) clinical-histopathological parameters (metastasis, cell type). METHODS A total of 43 FFPE UM were used. The expression of RPL13a, a ribosomal protein gene, for each sample was used to evaluate the quality of RNA extracted from FFPE tissue. Gene expression values generated from the array were analyzed using the GeneSpring GX software (Agilent). Immunohistochemistry was used in order to validate transcriptional findings at the protein level. RESULTS A total of 106 genes were identified with (P < 0.05, Welch ANOVA test) a difference in transcript abundance for the metastasis clinical parameter. Furthermore, we identified 64 genes with a statistically significant (P < 0.05) difference in transcript abundance between the spindle and epithelioid cell types. Each individual sample for both groups (metastasis, cell type) exhibited distinct transcriptional profiles that were separated on a PCA. Positive nuclear immunostaining for LIG4-metastasis, ErbB3-cell type was found to be associated with better patient prognosis and outcome. CONCLUSIONS To the best of our knowledge, this is the first time that a successful retrospective analysis has been done with UM FFPE RNA. This data may lead to future customized therapeutic targets, which may improve the now unchanged mortality rate of this particular malignancy.
Collapse
Affiliation(s)
- Sebastian Di Cesare
- The Henry C. Witelson Ophthalmic Pathology Laboratory and Registry, McGill University Health Center, 3775 University St., Lyman Duff Building, Room 216, Montreal, QC, H3A 2B4, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Recently, it has been shown that epigenetic changes are involved in early stages of tumorigenesis, and they may trigger the genetic events leading to tumor development. In cancer epidemiology, there are several epigenetic alterations involved, such as DNA hypermethylation, DNA hypomethylation, and chromatin modifications with critical roles in the initiation and progression of human neoplasms. This chapter discusses the hypermethylation profiles of several tumor types, including bladder, brain, breast, colorectal, ovarian, prostate, and other cancers as well as DNA hypomethylation phenomena together with the chromatin modifications and their role in the complex mechanism of epigenetic silencing. Moreover, the involvement of environmental exposures in cancer susceptibility is addressed. In conclusion, these epigenetic changes are important characteristics of human neoplasia, and a better understanding of these modifications and the link between these changes for each tumor type will be important in early diagnosis of cancer and cancer prevention.
Collapse
Affiliation(s)
- Ramona G Dumitrescu
- Georgetown University Medical Center, Lombardi Cancer Center, Washington, DC, USA
| |
Collapse
|
29
|
Abstract
Epigenetics is the study of differences in phenotype, in the absence of variation in the genetic code. Epigenetics is relevant in the pathogenesis of many skin diseases. In the case of the common skin cancers, aberrant methylation of tumor suppressor gene promoters is associated with their transcriptional inactivation. Environmental carcinogens such as ultraviolet radiation and arsenic may act through epigenetic mechanisms. Hypomethylation is associated with activation of systemic autoimmune diseases, such as systemic lupus erythematosus, subacute cutaneous lupus erythematosus and scleroderma. This may be through a mechanism of immunological cross-reactivity with hypomethylated DNA from pathogenic bacteria. Epigenetic factors may also be relevant in the pathogenesis of psoriasis and other inflammatory skin diseases, as well as in the pathogenesis of the disorders of genomic imprinting with cutaneous features.
Collapse
Affiliation(s)
- George W M Millington
- Dermatology Department, Norfolk & Norwich University Hospitals, NHS Foundation Trust, Colney Lane, Norwich, NR4 7UZ, UK.
| |
Collapse
|
30
|
Bonazzi VF, Irwin D, Hayward NK. Identification of candidate tumor suppressor genes inactivated by promoter methylation in melanoma. Genes Chromosomes Cancer 2009; 48:10-21. [PMID: 18803327 DOI: 10.1002/gcc.20615] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tumor suppressor genes (TSGs) are sometimes inactivated by transcriptional silencing through promoter hypermethylation. To identify novel methylated TSGs in melanoma, we carried out global mRNA expression profiling on a panel of 12 melanoma cell lines treated with a combination of 5-Aza-2-deoxycytidine (5AzadC) and an inhibitor of histone deacetylase, Trichostatin A. Reactivation of gene expression after drug treatment was assessed using Illumina whole-genome microarrays. After qRT-PCR confirmation, we followed up 8 genes (AKAP12, ARHGEF16, ARHGAP27, ENC1, PPP1R3C, PPP1R14C, RARRES1, and TP53INP1) by quantitative DNA methylation analysis using mass spectrometry of base-specific cleaved amplification products in panels of melanoma cell lines and fresh tumors. PPP1R3C, ENC1, RARRES1, and TP53INP1, showed reduced mRNA expression in 35-59% of the melanoma cell lines compared to melanocytes and which was correlated with a high proportion of promoter methylation (>40-60%). The same genes also showed extensive promoter methylation in 6-25% of the tumor samples, thus confirming them as novel candidate TSGs in melanoma.
Collapse
Affiliation(s)
- Vanessa F Bonazzi
- Oncogenomics Laboratory, Queensland Institute of Medical Research, Herston, QLD 4006, Australia
| | | | | |
Collapse
|
31
|
Canovas D, Rennie IG, Nichols CE, Sisley K. Local environmental influences on uveal melanoma: vitreous humor promotes uveal melanoma invasion, whereas the aqueous can be inhibitory. Cancer 2008; 112:1787-94. [PMID: 18300240 DOI: 10.1002/cncr.23358] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Uveal melanomas of the choroid and ciliary body are aggressive tumors causing the death of approximately 50% of patients. In contrast, iris melanomas only infrequently metastasize; why these differences exist is not known. The local environment can regulate cancer growth and development, and it is probable the aqueous and vitreous humors have an important role in regulating uveal melanoma behavior. METHODS To explore this possibility cultures of uveal melanoma were exposed to aqueous and vitreous and the effects investigated using invasion and proliferation assays. ChemiArrays (Chemicon International, Temecula, Calif) were performed to determine which regulatory factors might influence the process. RESULTS The vitreous universally promoted uveal melanoma invasion, whereas the aqueous mainly had no effect or was inhibitory. Tumor location, and the baseline invasion of the melanoma, affected the ability of aqueous and vitreous from different patients to regulate invasive behavior. Proliferation was not significantly altered as a result of exposure to the aqueous or vitreous. The ability of the humors to regulate uveal melanomas may involve TIMP-2, TIMP-3, and TGF-beta2, as high expression was found by ChemiArray analysis and there were differences in the levels of the regulators in the aqueous compared with the vitreous. CONCLUSIONS The findings suggest that in situ uveal melanoma development reflects an interaction between the tumor and the environment of the eye. Exposure to the aqueous would therefore contribute to the benign nature of iris melanomas, whereas potential interaction with the vitreous appears to promote the aggressive behavior of posterior uveal melanomas.
Collapse
Affiliation(s)
- David Canovas
- Academic Unit of Ophthalmology and Orthoptics, Section of Oncology, School of Medicine and Biomedical Sciences, University of Sheffield, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | | | | | | |
Collapse
|
32
|
Rodenhiser DI. Epigenetic contributions to cancer metastasis. Clin Exp Metastasis 2008; 26:5-18. [PMID: 18386135 DOI: 10.1007/s10585-008-9166-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Accepted: 03/13/2008] [Indexed: 12/31/2022]
Abstract
The molecular basis of cancer encompasses both genetic and epigenetic alterations. These epigenetic changes primarily involve global DNA methylation changes in the form of widespread loss of methylation along with concurrent hypermethylation events in gene regulatory regions that can repress tissue-specific gene expression. Increasingly, the importance of these epigenetic changes to the metastatic process is being realized. Cells may acquire an epi-genotype that permits their dissemination from the primary tumour mass or the ability to survive and proliferate at a secondary tissue site. These epigenetic changes may be cancer-type specific, or in some cases may involve a common target gene providing a selective advantage to multiple metastatic cell types. In this review, I examine the growing volume of literature related to the epigenetic contributions to cancer metastasis. I discuss the functional importance of these epigenetic phenomena and how new epigenetic biomarkers may permit the identification of diagnostic signatures of metastasis and the development of new cancer therapies.
Collapse
Affiliation(s)
- David I Rodenhiser
- Departments of Biochemistry, Oncology and Paediatrics, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
33
|
Lai K, Conway RM, Crouch R, Jager MJ, Madigan MC. Expression and distribution of MMPs and TIMPs in human uveal melanoma. Exp Eye Res 2008; 86:936-41. [PMID: 18423620 DOI: 10.1016/j.exer.2008.03.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 02/29/2008] [Accepted: 03/06/2008] [Indexed: 11/18/2022]
Abstract
Matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs) are involved in tumour invasion, metastasis and angiogenesis, and have been implicated as progression markers in uveal melanoma, although their topographical expression has not been fully described. In this study we compared the distribution and specificity of several classes of MMPs (MMP-1, -2, -9, -19, and MT1-MMP) and physiological MMP inhibitors (TIMP-2 and -3) in different regions of the tumour microenvironment and adjacent choroid in a series of primary uveal melanomas. Paraffin sections of untreated uveal melanomas (n=18, 3/18 spindle; 11/18 mixed, and 4/18 epithelioid) were examined for MMP-1 (collagenase 1), MMP-2 and MMP-9 (gelatinases A and B), MT1-MMP (membrane-type 1-MMP), MMP-19, TIMP-2 and TIMP-3 (tissue inhibitors of MMPs), using indirect peroxidase immunohistochemistry. The distribution and intensity of immunolabelling was graded semi-quantitatively (0-3) by 2 independent observers. Non-parametric analyses were used to test for associations between tumour cell type, and the average grade of MMP or TIMP expression. Immunostaining for MMP-1, -9, -19 and MT1-MMP was > or =Grade 2 in more than 70% of specimens, and a heterogeneous pattern of MMP-1, -9, MT1-MMP and TIMP-3 expression was observed. At the tumour-scleral interface (TSI), melanoma cells had a flattened morphology and a much reduced MMP and TIMP expression, with a high expression in tumour areas adjacent to the TSI. Tumour vasculature and stromal cells strongly expressed MMP-2. We also observed heterogeneous immunostaining of the vasculature by MMP-1, -9, MT1-MMP and TIMP-2 antibodies, and of the extravascular matrix by MMP-9 antibody. The distinct immunostaining patterns observed for MMPs and TIMPs within uveal melanoma are consistent with their involvement in tumour growth and angiogenesis. In particular, the heterogeneous expression within regions of the tumours, and the localized expression in vasculature and stromal cells emphasises the importance of the tumour microenvironment in the pathogenesis of uveal melanoma (and other tumours).
Collapse
Affiliation(s)
- K Lai
- Save Sight Institute & Discipline of Ophthalmology, University of Sydney, Sydney, NSW, Australia
| | | | | | | | | |
Collapse
|
34
|
Hoek KS. DNA microarray analyses of melanoma gene expression: a decade in the mines. ACTA ACUST UNITED AC 2007; 20:466-84. [DOI: 10.1111/j.1600-0749.2007.00412.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
35
|
Lai K, Sharma V, Jager MJ, Conway RM, Madigan MC. Expression and distribution of MUC18 in human uveal melanoma. Virchows Arch 2007; 451:967-76. [PMID: 17786470 DOI: 10.1007/s00428-007-0498-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 07/31/2007] [Accepted: 08/01/2007] [Indexed: 12/12/2022]
Abstract
The immunoglobulin superfamily protein MUC18 is involved in transendothelial migration and signal transduction, and is expressed in malignancies including cutaneous melanoma. Recent in vitro studies showed evidence of increased MUC18 protein in some uveal melanoma cell lines with an increased potential for invasion. We assessed seven uveal and three metastasis-derived melanoma cell lines for the expression of MUC18 mRNA and protein by RT-PCR, and immunoblotting and immunocytochemistry, respectively. We also examined the expression and distribution of MUC18 in paraffin sections of primary uveal melanomas (n = 23; 5/23 spindle; 18/23 mixed and epithelioid) and normal eyes (n = 3) using a polyclonal goat anti-human antibody to MUC18 visualized with peroxidase and Vector NovaRED. Distribution and intensity of immunostaining was graded semi-quantitatively (grade 0 to 3) by 2 independent observers. All cell lines expressed MUC18 mRNA and protein ( approximately 130 kDa), and showed punctate cell membrane MUC18 immunostaining. Primary melanomas displayed heterogeneous cell membrane and cytoplasmic MUC18, with moderate to strong immunolabelling (> or =grade 2) in approximately 70% of tumours. Vasculature in tumours and in retina and choroid of all melanoma-affected and normal eyes showed intense MUC18 immunostaining. These observations further suggest a role for MUC18 in uveal melanoma growth; moreover, interactions between MUC18-positive melanoma cells and vasculature may be important for the hematogenous spread of cells during metastases.
Collapse
Affiliation(s)
- Kenneth Lai
- Save Sight Institute, Discipline of Clinical Ophthalmology, University of Sydney, Sydney NSW 2006, Australia
| | | | | | | | | |
Collapse
|
36
|
Nobeyama Y, Okochi-Takada E, Furuta J, Miyagi Y, Kikuchi K, Yamamoto A, Nakanishi Y, Nakagawa H, Ushijima T. Silencing of tissue factor pathway inhibitor-2 gene in malignant melanomas. Int J Cancer 2007; 121:301-7. [PMID: 17372906 DOI: 10.1002/ijc.22637] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To identify tumor-suppressor genes inactivated by aberrant methylation of promoter CpG islands (CGIs) in human malignant melanomas, genes upregulated by treatment of cells with a demethylating agent, 5-aza-2'-deoxycytidine (5-aza-dC), were searched for using oligonucleotide microarrays in melanoma cell lines, HMV-I, MeWo and WM-115. Seventy-nine known genes with CGIs were identified as being upregulated (>or=16-fold), and 18 of them had methylation of their putative promoter CGIs in 1 or more of 8 melanoma cell lines. Among the 18 genes, TFPI-2, which is involved in repression of the invasive potential of malignant melanomas, was further analyzed. Its expression was repressed in a melanoma cell line with its complete methylation, and was restored by 5-aza-dC treatment. It was unmethylated in cultured neonatal normal epidermal melanocyte, and was induced by ultraviolet B. In surgical melanoma specimens, TFPI-2 methylation was detected in 5 of 17 metastatic site specimens (29%), while it was not detected in 20 primary site specimens (0%) (p=0.009). By immunohistochemistry, the 5 specimens with promoter methylation lacked immunoreactivity for TFPI-2. The results showed that TFPI-2 is silenced in human malignant melanomas by methylation of its promoter CGI and suggested that its silencing is involved in melanoma metastasis.
Collapse
Affiliation(s)
- Yoshimasa Nobeyama
- Carcinogenesis Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Pardo M, Dwek RA, Zitzmann N. Proteomics in uveal melanoma research: opportunities and challenges in biomarker discovery. Expert Rev Proteomics 2007; 4:273-86. [PMID: 17425462 DOI: 10.1586/14789450.4.2.273] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Uveal melanoma (UM) is the most frequent primary intraocular tumor in adult humans. Despite the significant advances in diagnosis and treatment of UM in the last decades, the prognosis of UM sufferers is still poor. Metastatic liver disease is the leading cause of death in UM and can develop after a long disease-free interval, suggesting the presence of occult micrometastasis. Proteomics technology has opened new opportunities for elucidating the molecular mechanism of complex diseases, such as cancer. This article will review the recent developments in biomarker discovery for UM research by proteomics. In the last few years, the first UM proteomics-based analyses have been launched, yielding promising results. An update on recent developments on this field is presented.
Collapse
Affiliation(s)
- María Pardo
- Universidad de Santiago de Compostela, Laboratorio de Endocrinología Molecular, Departamento de Medicina, Complejo Hospitalario Universitario de Santiago, Santiago de Compostela, Spain.
| | | | | |
Collapse
|
38
|
Li B, Smith CC, Laing JM, Gober MD, Liu L, Aurelian L. Overload of the heat-shock protein H11/HspB8 triggers melanoma cell apoptosis through activation of transforming growth factor-beta-activated kinase 1. Oncogene 2007; 26:3521-31. [PMID: 17173073 PMCID: PMC2643355 DOI: 10.1038/sj.onc.1210145] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Revised: 09/05/2006] [Accepted: 10/13/2006] [Indexed: 12/27/2022]
Abstract
Molecular therapeutics is a recognized promising approach for melanoma, but relevant target genes remain elusive. We report that overload of the recently cloned H11/HspB8 induces apoptosis in 55% of examined melanoma cultures. Apoptosis was determined by activation of caspases-9 and -3 and terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL), and was not seen in normal melanocytes. It was associated with H11/HspB8 complexation with transforming growth factor-beta-activated kinase (TAK) 1 and activation of TAK1 and p38 mitogen activated protein 3 kinases. TAK1 was not bound, nor activated by the H11/HspB8 mutant W51C, which has dominant antiapoptotic activity. beta-Catenin was phosphorylated by activated TAK1, inhibiting its nuclear accumulation and mictophthalmia-associated transcription factor and cyclin dependent kinase 2 expression. The dominant-negative TAK1 mutant K63W inhibited beta-catenin phosphorylation and caspase activation. The data indicate that H11/HspB8 overload causes melanoma growth arrest and apoptosis through TAK1 activation and suggest that H11/HspB8 is a promising molecular therapy target.
Collapse
Affiliation(s)
| | | | - Jennifer M. Laing
- Departments of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Michael D. Gober
- Departments of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | | | - Laure Aurelian
- Departments of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
39
|
Singh AD, Sisley K, Xu Y, Li J, Faber P, Plummer SJ, Mudhar HS, Rennie IG, Kessler PM, Casey G, Williams BG. Reduced expression of autotaxin predicts survival in uveal melanoma. Br J Ophthalmol 2007; 91:1385-92. [PMID: 17475713 PMCID: PMC2001033 DOI: 10.1136/bjo.2007.116947] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIM In an effort to identify patients with uveal melanoma at high risk of metastasis, the authors undertook correlation of gene expression profiles with histopathology data and tumour-related mortality. METHODS The RNA was isolated from 27 samples of uveal melanoma from patients who had consented to undergo enucleation, and transcripts profiled using a cDNA array comprised of sequence-verified cDNA clones representing approximately 4000 genes implicated in cancer development. Two multivariate data mining techniques--hierarchical cluster analysis and multidimensional scaling--were used to investigate the grouping structure in the gene expression data. Cluster analysis was performed with a subset of 10,000 randomly selected genes and the cumulative contribution of all the genes in making the correct grouping was recorded. RESULTS Hierarchical cluster analysis and multidimensional scaling revealed two distinct classes. When correlated with the data on metastasis, the two molecular classes corresponded very well to the survival data for the 27 patients. Thirty two discrete genes (corresponding to 44 probe sets) that correctly defined the molecular classes were selected. A single gene (ectonucleotide pyrophosphatase/phosphodiesterase 2; autotaxin) could classify the molecular types. The expression pattern was confirmed using real-time quantitative PCR. CONCLUSIONS Gene expression profiling identifies two distinct prognostic classes of uveal melanoma. Underexpression of autotaxin in class 2 uveal melanoma with a poor prognosis needs to be explored further.
Collapse
Affiliation(s)
- Arun D Singh
- Department of Ophthalmic Oncology, Cole Eye Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Wang Q, Kumar S, Mitsios N, Slevin M, Kumar P. Investigation of downstream target genes of PAX3c, PAX3e and PAX3g isoforms in melanocytes by microarray analysis. Int J Cancer 2007; 120:1223-31. [PMID: 17187370 DOI: 10.1002/ijc.22316] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
PAX3 encodes a transcription factor, which with Zic1 is necessary for induction of the neural crest during early embryonic development. There are 7 human PAX3 isoforms (a-h). PAX3e is the full length isoform comprising 10 exons. PAX3c comprises 8 exons plus 5 codons of intron 8, while PAX3g has a truncated transactivation domain. Previous studies by us indicated that these isoforms have different activities in melanocytes in vitro. In this study, a mouse gene oligo array ( approximately 7.5 k oligos), from the Human Genome Mapping Project (HGMP) Resource Centre, was used to screen for alterations in downstream gene expression in PAX3c, PAX3e and PAX3g melanocyte transfectants, compared with empty vector controls. The data analyses identified 109 genes up or downregulated, at least 2-fold, and involved in cell differentiation, proliferation, migration, adhesion, apoptosis and angiogenesis. Semi-quantitative RT-PCR and Western blotting confirmed the changes identified by microarrays for several putative targets of PAX3, including Met, MyoD and Muc18, and previously undescribed targets, including Dhh, Fgf17, Kitl and Rac1. Thus, our data reveal that PAX3 isoforms regulate distinct but overlapping sets of genes in melanocytes in vitro.
Collapse
Affiliation(s)
- Qiuyu Wang
- School of Biology, Chemistry and Health Science, Manchester Metropolitan University, Manchester, United Kingdom
| | | | | | | | | |
Collapse
|
41
|
Abstract
Irreversible changes in the DNA sequence, including chromosomal deletions or amplification, activating or inactivating mutations in genes, have been implicated in the development and progression of melanoma. However, increasing attention is being turned towards the participation of 'epigenetic' events in melanoma progression that do not affect DNA sequence, but which nevertheless may lead to stable inherited changes in gene expression. Epigenetic events including histone modifications and DNA methylation play a key role in normal development and are crucial to establishing the correct program of gene expression. In contrast, mistargeting of such epigenetic modifications can lead to aberrant patterns of gene expression and loss of anti-cancer checkpoints. Thus, to date at least 50 genes have been reported to be dysregulated in melanoma by aberrant DNA methylation and accumulating evidence also suggests that mistargetting of histone modifications and altered chromatin remodeling activities will play a key role in melanoma. This review gives an overview of the many different types of epigenetic modifications and their involvement in cancer and especially in melanoma development and progression.
Collapse
Affiliation(s)
- Tanja Rothhammer
- Institute of Pathology, University of Regensburg Medical School, Franz-Josef-Strauss-Allee 11, D-93053 Regensburg, Germany
| | | |
Collapse
|
42
|
Abstract
Aberrant gene methylation plays an important role in human tumorigenesis, including thyroid tumorigenesis. Many tumor suppressor genes are aberrantly methylated in thyroid cancer, and some even in benign thyroid tumors, suggesting a role of this epigenetic event in early thyroid tumorigenesis. Methylation of some of these genes tends to occur in certain types of thyroid cancer and is related to specific signaling pathways. For example, methylation of PTEN and RASSF1A genes occurs mostly in follicular thyroid cancer, and its tumorigenic role may be related to the phosphatidylinositol 3-kinase/Akt signaling pathway, whereas methylation of genes for tissue inhibitor of metalloproteinase-3, SLC5A8, and death-associated protein kinase occurs in papillary thyroid cancer and is related to the BRAF/MAPK kinase/MAPK pathway. Methylation of thyroid-specific genes, such as those for sodium/iodide symporter and thyroid-stimulating hormone receptor, is also common in thyroid cancer. Although its tumorigenic role is not clear, methylation, and hence silencing, of these thyroid-specific genes is a cause for the failure of clinical radioiodine treatment of thyroid cancer. Unlike gene methylation, histone modifications have been relatively poorly investigated in thyroid tumors. Future studies need to emphasize the mechanistic aspects of these two types of epigenetic alterations to uncover new molecular mechanisms in thyroid tumorigenesis and to provide novel therapeutic targets for thyroid cancer.
Collapse
Affiliation(s)
- Mingzhao Xing
- Division of Endocrinology and Metabolism, The Johns Hopkins University School of Medicine, 1830 East Monument Street, Suite 333, Baltimore, MD 21287, USA.
| |
Collapse
|
43
|
Hu S, Liu D, Tufano RP, Carson KA, Rosenbaum E, Cohen Y, Holt EH, Kiseljak-Vassiliades K, Rhoden KJ, Tolaney S, Condouris S, Tallini G, Westra WH, Umbricht CB, Zeiger MA, Califano JA, Vasko V, Xing M. Association of aberrant methylation of tumor suppressor genes with tumor aggressiveness and BRAF mutation in papillary thyroid cancer. Int J Cancer 2006; 119:2322-9. [PMID: 16858683 DOI: 10.1002/ijc.22110] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The role of aberrant tumor suppressor gene methylation in the aggressiveness of papillary thyroid cancer (PTC) has not been documented. By showing promoter methylation-induced gene silencing in PTC-derived cell lines, we first demonstrated the functional consequence of methylation of several recently identified tumor suppressor genes, including those for tissue inhibitor of metalloproteinase-3 (TIMP3), SLC5A8, death-associated protein kinase (DAPK) and retinoic acid receptor beta2 (RARbeta2). We then investigated the role of methylation of these genes in the aggressiveness of PTC by examining the relationship of their aberrant methylation to clinicopathological characteristics and BRAF mutation in 231 primary PTC tumors. Methylation of TIMP3, SLC5A8 and DAPK was significantly associated with several aggressive features of PTC, including extrathyroidal invasion, lymph node metastasis, multifocality and advanced tumor stages. Methylation of these genes was also significantly associated with BRAF mutation in PTC, either individually or collectively in various combinations. Methylation of these genes, either individually or collectively, occurred more frequently in more aggressive classical and tall-cell PTC subtypes than in less aggressive follicular-variant PTC, with the latter known to infrequently harbor BRAF mutation. Several other tumor suppressor genes investigated were not methylated. These results suggest that aberrant methylation and hence silencing of TIMP3, SLC5A8, DAPK and RARbeta2, in association with BRAF mutation, may be an important step in PTC tumorigenesis and progression.
Collapse
Affiliation(s)
- Shuiying Hu
- Department of Medicine, Division of Endocrinology and Metabolism, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Lai K, Di Girolamo N, Conway RM, Jager MJ, Madigan MC. The effect of ultraviolet radiation on choroidal melanocytes and melanoma cell lines: cell survival and matrix metalloproteinase production. Graefes Arch Clin Exp Ophthalmol 2006; 245:715-24. [PMID: 17043807 DOI: 10.1007/s00417-006-0444-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Revised: 07/12/2006] [Accepted: 08/19/2006] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Ultraviolet radiation (UVR) can induce DNA damage and regulate the expression of factors important for tumour growth and metastasis, including matrix metalloproteinases (MMPs). Epidemiological studies suggest that chronic UVR exposure, especially during early adulthood, may be a risk factor in patients with choroidal melanoma. However, the effects of UV(R)-B on human choroidal melanocyte survival and growth are unknown. In this study, we investigated if UV(R)-B affected the in vitro survival, growth and MMP production of choroidal melanocytes and melanoma cells. METHODS Cultures of primary choroidal melanocytes and melanoma cell lines (OCM-1 and OCM-8) were exposed to UV(R)-B (0-30 mJ/cm(2)). The cell morphology and growth were examined, and cell viability was assessed using an MTT assay. Gelatin zymography was used to assess the enzymatic activity for MMP-2 and -9 in conditioned media following UV(R)-B treatment. RESULTS UV(R)-B > or =20 mJ/cm(2) was cytotoxic for choroidal melanocytes. Cytotoxic doses of 5 to 10 mJ/cm(2) were found for OCM-8 and OCM-1 melanoma cell lines. Low levels of UV(R)-B (2.5 and 3.5 mJ/cm(2)) significantly reduced melanoma cell viability after 48 h, although melanocyte viability was not affected by doses of UV(R)-B <10 mJ/cm(2). Conditioned media from melanoma cells and melanocytes displayed pro-MMP-2 activity independent of UV(R)-B. Control and UV(R)-B-treated OCM-1 cells secreted active MMP-2 up to 72 h. Pro-MMP-9 activity was seen from 36 h for control and UV(R)-B-treated OCM-1 and OCM-8 cells. CONCLUSIONS Melanocytes appeared more resistant to physiological doses of UV(R)-B than melanoma cells; the potential of melanocytes to initially survive DNA damage following UV(R)-B exposure may be relevant to the subsequent transformation of melanocytes to melanomas. Although UV(R)-B did not induce the production and/or activation of MMP-2 and -9 in melanocytes or melanoma cells, we are currently investigating whether DNA damage-response genes such as p53 and p21 can be regulated following UVR exposure, and whether they are important for choroidal melanoma development.
Collapse
Affiliation(s)
- Kenneth Lai
- Save Sight Institute, Discipline of Clinical Ophthalmology, University of Sydney, Sydney, NSW, Australia.
| | | | | | | | | |
Collapse
|
45
|
Pavey S, Zuidervaart W, van Nieuwpoort F, Packer L, Jager M, Gruis N, Hayward N. Increased p21-activated kinase-1 expression is associated with invasive potential in uveal melanoma. Melanoma Res 2006; 16:285-96. [PMID: 16845324 DOI: 10.1097/01.cmr.0000222589.30117.f2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Prognosis in patients with uveal melanoma is poor as approximately half of all tumors metastasize and currently there are no effective treatments for disseminated disease. Differences in invasiveness between uveal melanomas could therefore be of major significance regarding clinical outcome. To identify genes associated with invasive potential, we have used microarray expression profiling combined with phenotypic characterization of uveal melanoma and melanocyte cell lines to define a gene signature associated with cellular invasion. A panel of 14 uveal cell cultures was assessed using three assays of invasiveness: matrigel invasion chamber system, scratch wound closure and cell motility. We identified a set of 853 differentially expressed transcripts (Wilcoxon-Mann-Whitney test, P<0.01) that discriminated between samples with high or low invasive capacity based on a composite phenotype that takes into account behavior across all three assays. Of particular interest, expression of two members of the p21-activated kinase (PAK) family, PAK1 and PAK7, was elevated in the more invasive cultures. PAK1 has previously been shown to play a central role in regulating cell motility and invasiveness in other cell types, and increased expression has been observed in breast and colorectal carcinomas. Using small interfering RNA-mediated PAK1 knockdown, we showed up to a five-fold decrease in invasion through matrigel, indicating that elevated levels of PAK1 are associated with invasive potential in uveal melanoma. These data implicate PAK1 as a potential new target for therapy of these tumors.
Collapse
Affiliation(s)
- Sandra Pavey
- Human Genetics Laboratory, Queensland Institute of Medical Research, Herston, Queensland, Australia.
| | | | | | | | | | | | | |
Collapse
|
46
|
Mischiati C, Natali PG, Sereni A, Sibilio L, Giorda E, Cappellacci S, Nicotra MR, Mariani G, Di Filippo F, Catricalà C, Gambari R, Grammatico P, Giacomini P. cDNA-array profiling of melanomas and paired melanocyte cultures. J Cell Physiol 2006; 207:697-705. [PMID: 16523488 DOI: 10.1002/jcp.20610] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Three paired (from the same donor) sets of melanoma cells and normal melanocytes, established as early-passage cultures from metastatic lesions and the uninvolved skin of three patients, were comparatively cDNA profiled by macroarrays (approximately 1,200 genes) and reverse transcription (RT)-PCR. While 145 gene products were significantly (at least twofold) upregulated or downregulated in at least 1 pair, and 23 were in at least 2 pairs, only 3 (the signal transducer and activator of transcription STAT2, collagen type VI, and CD9) were concordantly modulated (downregulation) in all 3 pairs. Array results were validated by RT-PCR on a small panel of surgically removed nevocellular nevi and metastatic melanoma lesions, and by immunohistochemistry on a large panel of benign and malignant lesions of the nevomelanocytic lineage. The three gene products were downregulated at different stages of melanoma progression. STAT2 was detectable in nevi (5/5) and most primary melanomas (11/12), but was lost in 10/15 metastatic lesions. Collagen type VI was expressed in nevi (5/5) and primary melanomas below a Breslow thickness of 1 mm (3/3), but was lost in 24/24 primary melanomas above this threshold, and in metastatic melanomas (10/10). The tetraspanin CD9 molecule was expressed in 18/18 nevi, but was lost in 20/28 primary melanomas (including thin lesions), and in 24/52 metastatic lesions. These data provide the proof of principle that cDNA profiling of paired melanocyte/melanoma cultures sorts out novel, early signatures of melanocyte transformation that could contribute to the clinical management of patients at high risk of metastatic disease.
Collapse
Affiliation(s)
- Carlo Mischiati
- Department of Biochemistry and Molecular Biology, University of Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Harbour JW. Eye cancer: unique insights into oncogenesis: the Cogan Lecture. Invest Ophthalmol Vis Sci 2006; 47:1736-45. [PMID: 16638975 PMCID: PMC1769553 DOI: 10.1167/iovs.05-1291] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- J William Harbour
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| |
Collapse
|
48
|
Liu MM, Weissman SM, Tang L. Identification of coding single nucleotide polymorphisms and mutations by combination of genome tiling arrays and enrichment/depletion of mismatch cDNAs. Anal Biochem 2006; 356:117-24. [PMID: 16777053 DOI: 10.1016/j.ab.2006.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 05/11/2006] [Accepted: 05/11/2006] [Indexed: 11/27/2022]
Abstract
Genome tiling array technology combined with a method for both enrichment and depletion of mismatch-containing cDNA fragments offers a useful approach for detecting coding single nucleotide polymorphisms (cSNPs) and mutations in pooled cDNA samples. Enriched mismatch and perfect match cDNA samples from human primary melanoma cells and normal melanocytes were obtained by selection using mismatch repair thymine DNA glycosylase-bound beads. These cDNA samples were then labeled and hybridized to Encyclopedia of DNA Elements genome tiling arrays. The results revealed that the hybridization intensity values of potential cDNA variation regions of the enriched mismatch samples increased, whereas the hybridization intensity values of corresponding regions of the enriched perfect match samples decreased. Six potential mutations were confirmed by polymerase chain reaction product sequencing, including two novel heterozygous mutations in melanoma cells. We suggest that this strategy should increase the efficiency of both cSNP and mutation detection throughout the entire human genome and decrease the cost and complexity of genomewide analysis of cDNA variations.
Collapse
Affiliation(s)
- Meng-Min Liu
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.
| | | | | |
Collapse
|
49
|
|
50
|
Hughes S, Damato BE, Giddings I, Hiscott PS, Humphreys J, Houlston RS. Microarray comparative genomic hybridisation analysis of intraocular uveal melanomas identifies distinctive imbalances associated with loss of chromosome 3. Br J Cancer 2005; 93:1191-6. [PMID: 16251874 PMCID: PMC2361503 DOI: 10.1038/sj.bjc.6602834] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Revised: 08/26/2005] [Accepted: 09/20/2005] [Indexed: 12/21/2022] Open
Abstract
Defining regions of genomic imbalance can identify genes involved in tumour development. Conventional cytogenetics has identified several nonrandom copy number alterations (CNA) in uveal melanomas (UVM), which include monosomy 3, chromosome 6 abnormalities and gain of 8q. To gain further insight into the CNAs and define the regions involved more precisely we analysed 18 primary UVMs using 1 Mb BAC microarray comparative genomic hybridisation (CGH). Our analysis showed that the most common genomic imbalances were 8q gain (78%), 6p gain (67%) and monosomy 3 (56%). Two distinct CGH profiles could be delineated on the basis of the chromosome 3 status. The most common genetic changes in monosomy 3 tumours, in our study, were gain of 8q11.21-q24.3, 6p25.1-p21.2, 21q21.2-q21.3 and 21q22.13-q22.3 and loss of 1p36.33-p34.3, 1p31.1-p21.2, 6q16.2-q25.3 and 8p23.3-p11.23. In contrast, disomy 3 tumours showed recurrent gains of only 6p25.3-p22.3 and 8q23.2-q24.3. Our approach allowed definition of the smallest overlapping regions of imbalance, which may be important in the development of UVM.
Collapse
Affiliation(s)
- S Hughes
- Section of Cancer Genetics, Institute of Cancer Research, Sutton, SM2 5NG, UK
| | - B E Damato
- Liverpool Ocular Oncology Center, Royal Liverpool University Hospital, Liverpool L7 8XP, UK
| | - I Giddings
- Section of Molecular Carcinogenesis, Institute of Cancer Research, Sutton SM2 5NG, UK
| | - P S Hiscott
- Liverpool Ocular Oncology Center, Royal Liverpool University Hospital, Liverpool L7 8XP, UK
| | - J Humphreys
- Section of Molecular Carcinogenesis, Institute of Cancer Research, Sutton SM2 5NG, UK
| | - R S Houlston
- Section of Cancer Genetics, Institute of Cancer Research, Sutton, SM2 5NG, UK
| |
Collapse
|