1
|
Yang X, Zhang Z, Bi X. A nomogram for predicting colorectal cancer liver metastasis using circulating tumor cells from the first drainage vein. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2024; 50:108579. [PMID: 39121633 DOI: 10.1016/j.ejso.2024.108579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/05/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
PURPOSE To use circulating tumor cells (CTC) from the first drainage vein (FDV) of the primary lesion and other clinically relevant parameters to construct a nomogram for predicting liver metastasis in colorectal cancer (CRC) patients, and to provide a theoretical basis for clinical diagnosis and treatment. METHODS Information from 343 CRC patients was collected and a database was established. Multivariate logistic analysis was used to identify independent factors for colorectal cancer liver metastasis(mCRC) and nomograms were constructed. Receiver operating characteristic curves(ROC), calibration plots, and decision curve analysis (DCA) were used to assess discrimination, agreement with actual risk, and the clinical utility of the prediction model, respectively. RESULT CTC levels in FDV were significantly higher in patients with liver metastasis than in those without liver metastasis. Logistic multivariate analysis showed that vascular invasion, T stage, carcinoembryonic antigen (CEA), CA19-9, and CTC could be used as predictors to construct nomograms. The nomograms showed good discriminatory ability in predicting mCRC, with area under the curve (AUC) values of 0.871 [95 % CI: 0.817-0.924) and 0.891 (95 % CI: 0.817-0.964) for the training and validation sets, respectively.] The calibration curves of both the training and validation sets showed that the model was effective in predicting the probability of mCRC. DCA was used to evaluate this predictive model and showed good net clinical benefit. CONCLUSION We developed and validated a nomogram model based on the combination of CTC in the FDV with other clinical parameters to better predict the occurrence of mCRC.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, PR China
| | - Zhongguo Zhang
- Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, PR China.
| | - Xue Bi
- Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, PR China.
| |
Collapse
|
2
|
Cañellas-Socias A, Sancho E, Batlle E. Mechanisms of metastatic colorectal cancer. Nat Rev Gastroenterol Hepatol 2024; 21:609-625. [PMID: 38806657 DOI: 10.1038/s41575-024-00934-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 05/30/2024]
Abstract
Despite extensive research and improvements in understanding colorectal cancer (CRC), its metastatic form continues to pose a substantial challenge, primarily owing to limited therapeutic options and a poor prognosis. This Review addresses the emerging focus on metastatic CRC (mCRC), which has historically been under-studied compared with primary CRC despite its lethality. We delve into two crucial aspects: the molecular and cellular determinants facilitating CRC metastasis and the principles guiding the evolution of metastatic disease. Initially, we examine the genetic alterations integral to CRC metastasis, connecting them to clinically marked characteristics of advanced CRC. Subsequently, we scrutinize the role of cellular heterogeneity and plasticity in metastatic spread and therapy resistance. Finally, we explore how the tumour microenvironment influences metastatic disease, emphasizing the effect of stromal gene programmes and the immune context. The ongoing research in these fields holds immense importance, as its future implications are projected to revolutionize the treatment of patients with mCRC, hopefully offering a promising outlook for their survival.
Collapse
Affiliation(s)
- Adrià Cañellas-Socias
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
| | - Elena Sancho
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
3
|
Tzetzo SL, Kramer ED, Mohammadpour H, Kim M, Rosario SR, Yu H, Dolan MR, Oturkar CC, Morreale BG, Bogner PN, Stablewski AB, Benavides FJ, Brackett CM, Ebos JM, Das GM, Opyrchal M, Nemeth MJ, Evans SS, Abrams SI. Downregulation of IRF8 in alveolar macrophages by G-CSF promotes metastatic tumor progression. iScience 2024; 27:109187. [PMID: 38420590 PMCID: PMC10901102 DOI: 10.1016/j.isci.2024.109187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 01/16/2024] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
Tissue-resident macrophages (TRMs) are abundant immune cells within pre-metastatic sites, yet their functional contributions to metastasis remain incompletely understood. Here, we show that alveolar macrophages (AMs), the main TRMs of the lung, are susceptible to downregulation of the immune stimulatory transcription factor IRF8, impairing anti-metastatic activity in models of metastatic breast cancer. G-CSF is a key tumor-associated factor (TAF) that acts upon AMs to reduce IRF8 levels and facilitate metastasis. Translational relevance of IRF8 downregulation was observed among macrophage precursors in breast cancer and a CD68hiIRF8loG-CSFhi gene signature suggests poorer prognosis in triple-negative breast cancer (TNBC), a G-CSF-expressing subtype. Our data highlight the underappreciated, pro-metastatic roles of AMs in response to G-CSF and identify the contribution of IRF8-deficient AMs to metastatic burden. AMs are an attractive target of local neoadjuvant G-CSF blockade to recover anti-metastatic activity.
Collapse
Affiliation(s)
- Stephanie L. Tzetzo
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Elliot D. Kramer
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Hemn Mohammadpour
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Minhyung Kim
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Spencer R. Rosario
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Han Yu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Melissa R. Dolan
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Chetan C. Oturkar
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Brian G. Morreale
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Paul N. Bogner
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Aimee B. Stablewski
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Fernando J. Benavides
- Department of Epigenetics and Molecular Carcinogenesis, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Craig M. Brackett
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - John M.L. Ebos
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Gokul M. Das
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Mateusz Opyrchal
- Department of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Michael J. Nemeth
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Sharon S. Evans
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Scott I. Abrams
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
4
|
Huang R, Ding J, Xie WF. Liver cancer. SINUSOIDAL CELLS IN LIVER DISEASES 2024:349-366. [DOI: 10.1016/b978-0-323-95262-0.00017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
5
|
Bied M, Ho WW, Ginhoux F, Blériot C. Roles of macrophages in tumor development: a spatiotemporal perspective. Cell Mol Immunol 2023; 20:983-992. [PMID: 37429944 PMCID: PMC10468537 DOI: 10.1038/s41423-023-01061-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/16/2023] [Indexed: 07/12/2023] Open
Abstract
Macrophages are critical regulators of tissue homeostasis but are also abundant in the tumor microenvironment (TME). In both primary tumors and metastases, such tumor-associated macrophages (TAMs) seem to support tumor development. While we know that TAMs are the dominant immune cells in the TME, their vast heterogeneity and associated functions are only just being unraveled. In this review, we outline the various known TAM populations found thus far and delineate their specialized roles associated with the main stages of cancer progression. We discuss how macrophages may prime the premetastatic niche to enable the growth of a metastasis and then how subsequent metastasis-associated macrophages can support secondary tumor growth. Finally, we speculate on the challenges that remain to be overcome in TAM research.
Collapse
Affiliation(s)
- Mathilde Bied
- Institut Gustave Roussy, INSERM U1015, Villejuif, France
| | - William W Ho
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Florent Ginhoux
- Institut Gustave Roussy, INSERM U1015, Villejuif, France.
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore.
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China.
- Translational Immunology Institute, SingHealth Duke-NUS, Singapore, Singapore.
| | - Camille Blériot
- Institut Gustave Roussy, INSERM U1015, Villejuif, France.
- Institut Necker des Enfants Malades, INSERM, CNRS, Université Paris Cité, Paris, France.
| |
Collapse
|
6
|
Wang Y, Zhong X, He X, Hu Z, Huang H, Chen J, Chen K, Zhao S, Wei P, Li D. Liver metastasis from colorectal cancer: pathogenetic development, immune landscape of the tumour microenvironment and therapeutic approaches. J Exp Clin Cancer Res 2023; 42:177. [PMID: 37480104 PMCID: PMC10362774 DOI: 10.1186/s13046-023-02729-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/05/2023] [Indexed: 07/23/2023] Open
Abstract
Colorectal cancer liver metastasis (CRLM) is one of the leading causes of death among patients with colorectal cancer (CRC). Although immunotherapy has demonstrated encouraging outcomes in CRC, its benefits are minimal in CRLM. The complex immune landscape of the hepatic tumour microenvironment is essential for the development of a premetastatic niche and for the colonisation and metastasis of CRC cells; thus, an in-depth understanding of these mechanisms can provide effective immunotherapeutic targets for CRLM. This review summarises recent studies on the immune landscape of the tumour microenvironment of CRLM and highlights therapeutic prospects for targeting the suppressive immune microenvironment of CRLM.
Collapse
Affiliation(s)
- Yaxian Wang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xinyang Zhong
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xuefeng He
- ZJU-UCLA Joint Center for Medical Education and Research, Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zijuan Hu
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Huixia Huang
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Jiayu Chen
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Keji Chen
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Senlin Zhao
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Ping Wei
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China.
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.
- Institute of Pathology, Fudan University, Shanghai, China.
| | - Dawei Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Mödl B, Moritsch S, Zwolanek D, Eferl R. Type I and II interferon signaling in colorectal cancer liver metastasis. Cytokine 2023; 161:156075. [PMID: 36323190 DOI: 10.1016/j.cyto.2022.156075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
Metastatic colorectal cancer is one of the leading causes of cancer-related deaths worldwide. Traditional chemotherapy extended the lifespan of cancer patients by only a few months, but targeted therapies and immunotherapy prolonged survival and led to long-term remissions in some cases. Type I and II interferons have direct pro-apoptotic and anti-proliferative effects on cancer cells and stimulate anti-cancer immunity. As a result, interferon production by cells in the tumor microenvironment is in the spotlight of immunotherapies as it affects the responses of anti-cancer immune cells. However, promoting effects of interferons on colorectal cancer metastasis have also been reported. Here we summarize our knowledge about pro- and anti-metastatic effects of type I and II interferons in colorectal cancer liver metastasis and discuss possible therapeutic implications.
Collapse
Affiliation(s)
- Bernadette Mödl
- Center for Cancer Research, Medical University of Vienna & Comprehensive Cancer Center, 1090 Vienna, Austria
| | - Stefan Moritsch
- Center for Cancer Research, Medical University of Vienna & Comprehensive Cancer Center, 1090 Vienna, Austria
| | - Daniela Zwolanek
- Center for Cancer Research, Medical University of Vienna & Comprehensive Cancer Center, 1090 Vienna, Austria
| | - Robert Eferl
- Center for Cancer Research, Medical University of Vienna & Comprehensive Cancer Center, 1090 Vienna, Austria.
| |
Collapse
|
8
|
Liu C, Mohan SC, Wei J, Seki E, Liu M, Basho R, Giuliano AE, Zhao Y, Cui X. Breast cancer liver metastasis: Pathogenesis and clinical implications. Front Oncol 2022; 12:1043771. [PMID: 36387238 PMCID: PMC9641291 DOI: 10.3389/fonc.2022.1043771] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/04/2022] [Indexed: 09/30/2023] Open
Abstract
Breast cancer is the most common malignant disease in female patients worldwide and can spread to almost every place in the human body, most frequently metastasizing to lymph nodes, bones, lungs, liver and brain. The liver is a common metastatic location for solid cancers as a whole, and it is also the third most common metastatic site for breast cancer. Breast cancer liver metastasis (BCLM) is a complex process. Although the hepatic microenvironment and liver sinusoidal structure are crucial factors for the initial arrest of breast cancer and progression within the liver, the biological basis of BCLM remains to be elucidated. Importantly, further understanding of the interaction between breast cancer cells and hepatic microenvironment in the liver metastasis of breast cancer will suggest ways for the development of effective therapy and prevention strategies for BCLM. In this review, we provide an overview of the recent advances in the understanding of the molecular mechanisms of the hepatic microenvironment in BCLM formation and discuss current systemic therapies for treating patients with BCLM as well as potential therapeutic development based on the liver microenvironment-associated signaling proteins governing BCLM.
Collapse
Affiliation(s)
- Cuiwei Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Srivarshini C. Mohan
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Jielin Wei
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ekihiro Seki
- Department of Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Manran Liu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Reva Basho
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- The Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, United States
| | - Armando E. Giuliano
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Yanxia Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojiang Cui
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
9
|
Yang X, Bi X, Liu F, Huang J, Zhang Z. Predictive Efficacy of Circulating Tumor Cells in First Drainage Vein Blood from Patients with Colorectal Cancer liver Metastasis. Cancer Invest 2022; 40:767-776. [PMID: 35797354 DOI: 10.1080/07357907.2022.2098970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Circulating tumor cells (CTCs) are associated with metastasis. However, the low rate of detection of CTCs in peripheral vein blood (PVB) limits their clinical application. In this study, we observed higher positive rates of CTC in first drainage vein blood (FDVB) relative to peripheral venous blood (P < 0.001). Moreover, the CTC content was related to liver metastasis, T stage and CA19-9 levels. Our collective data suggest that CTCs in FDVB have good predictive utility for risk of liver metastasis of colorectal cancer (CRC), in particular, metachronous liver metastasis.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital &Institute, Shenyang, China
| | - Xue Bi
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital &Institute, Shenyang, China
| | - Fang Liu
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital &Institute, Shenyang, China
| | - Jiafei Huang
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital &Institute, Shenyang, China
| | - Zhongguo Zhang
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital &Institute, Shenyang, China
| |
Collapse
|
10
|
The Colorectal Cancer Tumor Microenvironment and Its Impact on Liver and Lung Metastasis. Cancers (Basel) 2021; 13:cancers13246206. [PMID: 34944826 PMCID: PMC8699466 DOI: 10.3390/cancers13246206] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Colorectal cancer (CRC) is the third most common cancer worldwide. Metastasis to secondary organs, such as the liver and lungs, is a key driver of CRC-related mortality. The tumor microenvironment, which consists of the primary cancer cells, as well as associated support and immune cells, significantly affects the behavior of CRC cells at the primary tumor site, as well as in metastatic lesions. In this paper, we review the role of the individual components of the tumor microenvironment on tumor progression, immune evasion, and metastasis, and we discuss the implications of these components on antitumor therapies. Abstract Colorectal cancer (CRC) is the third most common malignancy and the second most common cause of cancer-related mortality worldwide. A total of 20% of CRC patients present with distant metastases, most frequently to the liver and lung. In the primary tumor, as well as at each metastatic site, the cellular components of the tumor microenvironment (TME) contribute to tumor engraftment and metastasis. These include immune cells (macrophages, neutrophils, T lymphocytes, and dendritic cells) and stromal cells (cancer-associated fibroblasts and endothelial cells). In this review, we highlight how the TME influences tumor progression and invasion at the primary site and its function in fostering metastatic niches in the liver and lungs. We also discuss emerging clinical strategies to target the CRC TME.
Collapse
|
11
|
Li X, Ramadori P, Pfister D, Seehawer M, Zender L, Heikenwalder M. The immunological and metabolic landscape in primary and metastatic liver cancer. Nat Rev Cancer 2021; 21:541-557. [PMID: 34326518 DOI: 10.1038/s41568-021-00383-9] [Citation(s) in RCA: 324] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
Abstract
The liver is the sixth most common site of primary cancer in humans, and generally arises in a background of cirrhosis and inflammation. Moreover, the liver is frequently colonized by metastases from cancers of other organs (particularly the colon) because of its anatomical location and organization, as well as its unique metabolic and immunosuppressive environment. In this Review, we discuss how the hepatic microenvironment adapts to pathologies characterized by chronic inflammation and metabolic alterations. We illustrate how these immunological or metabolic changes alter immunosurveillance and thus hinder or promote the development of primary liver cancer. In addition, we describe how inflammatory and metabolic niches affect the spreading of cancer metastases into or within the liver. Finally, we review the current therapeutic options in this context and the resulting challenges that must be surmounted.
Collapse
Affiliation(s)
- Xin Li
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pierluigi Ramadori
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominik Pfister
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marco Seehawer
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen, Tuebingen, Germany
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Lars Zender
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
- German Cancer Research Consortium (DKTK), Partner Site Tübingen, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
12
|
Yu X, Zhu L, Liu J, Xie M, Chen J, Li J. Emerging Role of Immunotherapy for Colorectal Cancer with Liver Metastasis. Onco Targets Ther 2020; 13:11645-11658. [PMID: 33223838 PMCID: PMC7671511 DOI: 10.2147/ott.s271955] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/29/2020] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common malignant tumor in the world and the second leading cause of cancer-related deaths, with the liver as the most common site of distant metastasis. The prognosis of CRC with liver metastasis is poor, and most patients cannot undergo surgery. In addition, conventional antitumor approaches such as chemotherapy, radiotherapy, targeted therapy, and surgery result in unsatisfactory outcomes. In recent years, immunotherapy has shown good prospects in the treatment of assorted tumors by enhancing the host's antitumor immune function, and it may become a new effective treatment for liver metastasis of CRC. However, challenges remain in applying immunotherapy to CRC with liver metastasis. This review examines how the microenvironment and immunosuppressive landscape of the liver favor tumor progression. It also highlights the latest research advances in immunotherapy for colorectal liver metastasis and identifies immunotherapy as a treatment regimen with a promising future in clinical applications.
Collapse
Affiliation(s)
- Xianzhe Yu
- Gastrointestinal Department, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, People’s Republic of China
| | - Lingling Zhu
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Jiewei Liu
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Ming Xie
- Gastrointestinal Department, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, People’s Republic of China
| | - Jiang Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Jianguo Li
- Gastrointestinal Department, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, People’s Republic of China
| |
Collapse
|
13
|
Apraiz A, Benedicto A, Marquez J, Agüera-Lorente A, Asumendi A, Olaso E, Arteta B. Innate Lymphoid Cells in the Malignant Melanoma Microenvironment. Cancers (Basel) 2020; 12:cancers12113177. [PMID: 33138017 PMCID: PMC7692065 DOI: 10.3390/cancers12113177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Innate lymphoid cells (ILCs) are the innate counterparts of adaptive immune cells. Emerging data indicate that they are also key players in the progression of multiple tumors. In this review we briefly describe ILCs’ functions in the skin, lungs and liver. Next, we analyze the role of ILCs in primary cutaneous melanoma and in its most frequent and deadly metastases, those in liver and lung. We focus on their dual anti– and pro-tumoral functions, depending on the cross-interactions among them and with the surrounding stromal cells that form the tumor microenvironment (TME) in each organ. Next, we detail the role of extracellular vesicles secreted to the TME by ILCs and melanoma on both cell populations. We conclude that the identification of markers and tools to allow the modulation of individual ILC subsets, in addition to the development of standardized protocols, is essential for addressing the therapeutic modulation of ILCs. Abstract The role of innate lymphoid cells (ILCs) in cancer progression has been uncovered in recent years. ILCs are classified as Type 1, Type 2, and Type 3 ILCs, which are characterized by the transcription factors necessary for their development and the cytokines and chemokines they produce. ILCs are a highly heterogeneous cell population, showing both anti– and protumoral properties and capable of adapting their phenotypes and functions depending on the signals they receive from their surrounding environment. ILCs are considered the innate counterparts of the adaptive immune cells during physiological and pathological processes, including cancer, and as such, ILC subsets reflect different types of T cells. In cancer, each ILC subset plays a crucial role, not only in innate immunity but also as regulators of the tumor microenvironment. ILCs’ interplay with other immune and stromal cells in the metastatic microenvironment further dictates and influences this dichotomy, further strengthening the seed-and-soil theory and supporting the formation of more suitable and organ-specific metastatic environments. Here, we review the present knowledge on the different ILC subsets, focusing on their interplay with components of the tumor environment during the development of primary melanoma as well as on metastatic progression to organs, such as the liver or lung.
Collapse
|
14
|
Germanova D, Keirsse J, Köhler A, Hastir JF, Demetter P, Delbauve S, Elkrim Y, Verset L, Larbanoix L, Preyat N, Laurent S, Nedospasov S, Donckier V, Van Ginderachter JA, Flamand V. Myeloid tumor necrosis factor and heme oxygenase-1 regulate the progression of colorectal liver metastases during hepatic ischemia-reperfusion. Int J Cancer 2020; 148:1276-1288. [PMID: 33038274 DOI: 10.1002/ijc.33334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/03/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022]
Abstract
The liver ischemia-reperfusion (IR) injury that occurs consequently to hepatic resection performed in patients with metastases can lead to tumor relapse for not fully understood reasons. We assessed the effects of liver IR on tumor growth and the innate immune response in a mouse model of colorectal (CR) liver metastasis. Mice subjected to liver ischemia 2 days after intrasplenic injection of CR carcinoma cells displayed a higher metastatic load in the liver, correlating with Kupffer cells (KC) death through the activation of receptor-interating protein 3 kinase (RIPK3) and caspase-1 and a recruitment of monocytes. Interestingly, the immunoregulatory mediators, tumor necrosis factor-α (TNF-α) and heme oxygenase-1 (HO-1) were strongly upregulated in recruited monocytes and were also expressed in the surviving KC following IR. Using TNFflox/flox LysMcre/wt mice, we showed that TNF deficiency in macrophages and monocytes favors tumor progression after IR. The antitumor effect of myeloid cell-derived TNF involved direct tumor cell apoptosis and a reduced expression of immunosuppressive molecules such as transforming growth factor-β, interleukin (IL)-10, inducible nitric oxyde synthase (iNOS), IL-33 and HO-1. Conversely, a monocyte/macrophage-specific deficiency in HO-1 (HO-1flox/flox LysMcre/wt ) or the blockade of HO-1 function led to the control of tumor progression post-liver IR. Importantly, host cell RIPK3 deficiency maintains the KC number upon IR, inhibits the IR-induced innate cell recruitment, increases the TNF level, decreases the HO-1 level and suppresses the tumor outgrowth. In conclusion, tumor recurrence in host undergoing liver IR is associated with the death of antitumoral KC and the recruitment of monocytes endowed with immunosuppressive properties. In both of which HO-1 inhibition would reinforce their antitumoral activity.
Collapse
Affiliation(s)
- Desislava Germanova
- Institut d'Immunologie Médicale, Université Libre de Bruxelles, Belgium.,ULB Center for Research in Immunology (U-CRI), Belgium
| | - Jiri Keirsse
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Arnaud Köhler
- Institut d'Immunologie Médicale, Université Libre de Bruxelles, Belgium.,ULB Center for Research in Immunology (U-CRI), Belgium
| | - Jean-François Hastir
- Institut d'Immunologie Médicale, Université Libre de Bruxelles, Belgium.,ULB Center for Research in Immunology (U-CRI), Belgium
| | - Peter Demetter
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Sandrine Delbauve
- Institut d'Immunologie Médicale, Université Libre de Bruxelles, Belgium.,ULB Center for Research in Immunology (U-CRI), Belgium
| | - Yvon Elkrim
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Laurine Verset
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Lionel Larbanoix
- Center for Microscopy and Molecular Imaging, Université de Mons, Belgium
| | - Nicolas Preyat
- Laboratory of Immunobiology, Université Libre de Bruxelles, Belgium
| | - Sophie Laurent
- Center for Microscopy and Molecular Imaging, Université de Mons, Belgium
| | - Sergei Nedospasov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences and Lomonosov Moscow State University, Moscow, Russia
| | - Vincent Donckier
- Service de Chirurgie, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Jo A Van Ginderachter
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Véronique Flamand
- Institut d'Immunologie Médicale, Université Libre de Bruxelles, Belgium.,ULB Center for Research in Immunology (U-CRI), Belgium
| |
Collapse
|
15
|
Ciner AT, Jones K, Muschel RJ, Brodt P. The unique immune microenvironment of liver metastases: Challenges and opportunities. Semin Cancer Biol 2020; 71:143-156. [PMID: 32526354 DOI: 10.1016/j.semcancer.2020.06.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023]
Abstract
Liver metastases from gastrointestinal and non-gastrointestinal malignancies remain a major cause of cancer-related mortality and a major clinical challenge. The liver has unique properties that facilitate metastatic expansion, including a complex immune system that evolved to dampen immunity to neoantigens entering the liver from the gut, through the portal circulation. In this review, we describe the unique microenvironment encountered by cancer cells in the liver, focusing on elements of the innate and adaptive immune response that can act as a double-edge sword, contributing to the elimination of cancer cells on the one hand and promoting their survival and growth, on the other. We discuss this microenvironment in a clinical context, particularly for colorectal carcinoma, and highlight how a better understanding of the role of the microenvironment has spurred an intense effort to develop novel and innovative strategies for targeting liver metastatic disease, some of which are currently being tested in the clinic.
Collapse
Affiliation(s)
- Aaron T Ciner
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Keaton Jones
- Oxford Institute for Radiation Oncology, Department of Surgery, University of Oxford, Oxford, UK
| | - Ruth J Muschel
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Pnina Brodt
- Departments of Surgery, Medicine and Oncology, McGill University, and the Research Institute of the McGill University Health Center, Montreal, QC, Canada.
| |
Collapse
|
16
|
Abstract
The liver is the largest organ in the human body and is prone for cancer metastasis. Although the metastatic pattern can differ depending on the cancer type, the liver is the organ to which cancer cells most frequently metastasize for the majority of prevalent malignancies. The liver is unique in several aspects: the vascular structure is highly permeable and has unparalleled dual blood connectivity, and the hepatic tissue microenvironment presents a natural soil for the seeding of disseminated tumor cells. Although 70% of the liver is composed of the parenchymal hepatocytes, the remaining 30% is composed of nonparenchymal cells including Kupffer cells, liver sinusoidal endothelial cells, and hepatic stellate cells. Recent discoveries show that both the parenchymal and the nonparenchymal cells can modulate each step of the hepatic metastatic cascade, including the initial seeding and colonization as well as the decision to undergo dormancy versus outgrowth. Thus, a better understanding of the molecular mechanisms orchestrating the formation of a hospitable hepatic metastatic niche and the identification of the drivers supporting this process is critical for the development of better therapies to stop or at least decrease liver metastasis. The focus of this perspective is on the bidirectional interactions between the disseminated cancer cells and the unique hepatic metastatic niche.
Collapse
Affiliation(s)
- Ainhoa Mielgo
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, L69 3GE, United Kingdom
| | - Michael C Schmid
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, L69 3GE, United Kingdom
| |
Collapse
|
17
|
Keirsse J, Van Damme H, Geeraerts X, Beschin A, Raes G, Van Ginderachter JA. The role of hepatic macrophages in liver metastasis. Cell Immunol 2018; 330:202-215. [PMID: 29661474 DOI: 10.1016/j.cellimm.2018.03.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 03/12/2018] [Accepted: 03/29/2018] [Indexed: 12/21/2022]
Abstract
The liver is a major target organ for metastasis of both gastrointestinal and extra-gastrointestinal cancers. Due to its frequently inoperable nature, liver metastasis represents a leading cause of cancer-associated death worldwide. In the past years, the pivotal role of the immune system in this process is being increasingly recognised. In particular, the role of the hepatic macrophages, both recruited monocyte-derived macrophages (Mo-Mfs) and tissue-resident Kupffer cells (KCs), has been shown to be more versatile than initially imagined. However, the lack of tools to easily distinguish between these two macrophage populations has hampered the assignment of particular functionalities to specific hepatic macrophage subsets. In this Review, we highlight the most remarkable findings regarding the origin and functions of hepatic macrophage populations, and we provide a detailed description of their distinct roles in the different phases of the liver metastatic process.
Collapse
Affiliation(s)
- Jiri Keirsse
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Helena Van Damme
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Xenia Geeraerts
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Alain Beschin
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Geert Raes
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jo A Van Ginderachter
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
18
|
Michaels AD, Newhook TE, Adair SJ, Morioka S, Goudreau BJ, Nagdas S, Mullen MG, Persily JB, Bullock TNJ, Slingluff CL, Ravichandran KS, Parsons JT, Bauer TW. CD47 Blockade as an Adjuvant Immunotherapy for Resectable Pancreatic Cancer. Clin Cancer Res 2017; 24:1415-1425. [PMID: 29288236 DOI: 10.1158/1078-0432.ccr-17-2283] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/19/2017] [Accepted: 12/21/2017] [Indexed: 12/23/2022]
Abstract
Purpose: Patients with pancreatic ductal adenocarcinoma (PDAC) who undergo surgical resection and adjuvant chemotherapy have an expected survival of only 2 years due to disease recurrence, frequently in the liver. We investigated the role of liver macrophages in progression of PDAC micrometastases to identify adjuvant treatment strategies that could prolong survival.Experimental Design: A murine splenic injection model of hepatic micrometastatic PDAC was used with five patient-derived PDAC tumors. The impact of liver macrophages on tumor growth was assessed by (i) depleting mouse macrophages in nude mice with liposomal clodronate injection, and (ii) injecting tumor cells into nude versus NOD-scid-gamma mice. Immunohistochemistry and flow cytometry were used to measure CD47 ("don't eat me signal") expression on tumor cells and characterize macrophages in the tumor microenvironment. In vitro engulfment assays and mouse experiments were performed with CD47-blocking antibodies to assess macrophage engulfment of tumor cells, progression of micrometastases in the liver and mouse survival.Results:In vivo clodronate depletion experiments and NOD-scid-gamma mouse experiments demonstrated that liver macrophages suppress the progression of PDAC micrometastases. Five patient-derived PDAC cell lines expressed variable levels of CD47. In in vitro engulfment assays, CD47-blocking antibodies increased the efficiency of PDAC cell clearance by macrophages in a manner which correlated with CD47 receptor surface density. Treatment of mice with CD47-blocking antibodies resulted in increased time-to-progression of metastatic tumors and prolonged survival.Conclusions: These findings suggest that following surgical resection of PDAC, adjuvant immunotherapy with anti-CD47 antibody could lead to substantially improved outcomes for patients. Clin Cancer Res; 24(6); 1415-25. ©2017 AACR.
Collapse
Affiliation(s)
- Alex D Michaels
- Department of Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Timothy E Newhook
- Department of Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Sara J Adair
- Department of Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Sho Morioka
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, Virginia
| | - Bernadette J Goudreau
- Department of Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Sarbajeet Nagdas
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, Virginia
| | - Matthew G Mullen
- Department of Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Jesse B Persily
- Department of Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Timothy N J Bullock
- Department of Pathology, University of Virginia Health System, Charlottesville, Virginia
| | - Craig L Slingluff
- Department of Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Kodi S Ravichandran
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, Virginia
| | - J Thomas Parsons
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, Virginia
| | - Todd W Bauer
- Department of Surgery, University of Virginia Health System, Charlottesville, Virginia.
| |
Collapse
|
19
|
Brodt P. Role of the Microenvironment in Liver Metastasis: From Pre- to Prometastatic Niches. Clin Cancer Res 2016; 22:5971-5982. [PMID: 27797969 DOI: 10.1158/1078-0432.ccr-16-0460] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 09/19/2016] [Accepted: 09/22/2016] [Indexed: 01/14/2023]
Abstract
Liver metastases remain a major barrier to successful management of malignant disease, particularly for cancers of the gastrointestinal tract but also for other malignancies, such as breast carcinoma and melanoma. The ability of metastatic cells to survive and proliferate in the liver is determined by the outcome of complex, reciprocal interactions between tumor cells and different local resident subpopulations, including the sinusoidal endothelium, stellate, Kupffer, and inflammatory cells that are mediated through cell-cell and cell-extracellular matrix adhesion and the release of soluble factors. Cross-communication between different hepatic resident cells in response to local tissue damage and inflammation and the recruitment of bone marrow cells further enhance this intercellular communication network. Both resident and recruited cells can play opposing roles in the progression of metastasis, and the balance of these divergent effects determines whether the tumor cells will die, proliferate, and colonize the new site or enter a state of dormancy. Moreover, this delicate balance can be tilted in favor of metastasis, if factors produced by the primary tumor precondition the microenvironment to form niches of activated resident cells that promote tumor expansion. This review aims to summarize current knowledge on these diverse interactions and the impact they can have on the clinical management of hepatic metastases. Clin Cancer Res; 22(24); 5971-82. ©2016 AACR.
Collapse
Affiliation(s)
- Pnina Brodt
- Departments of Surgery, Medicine, and Oncology, McGill University and the McGill University Health Centre, Montreal, Quebec, Canada.
| |
Collapse
|
20
|
Clark AM, Ma B, Taylor DL, Griffith L, Wells A. Liver metastases: Microenvironments and ex-vivo models. Exp Biol Med (Maywood) 2016; 241:1639-52. [PMID: 27390264 DOI: 10.1177/1535370216658144] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The liver is a highly metastasis-permissive organ, tumor seeding of which usually portends mortality. Its unique and diverse architectural and cellular composition enable the liver to undertake numerous specialized functions, however, this distinctive biology, notably its hemodynamic features and unique microenvironment, renders the liver intrinsically hospitable to disseminated tumor cells. The particular focus for this perspective is the bidirectional interactions between the disseminated tumor cells and the unique resident cell populations of the liver; notably, parenchymal hepatocytes and non-parenchymal liver sinusoidal endothelial, Kupffer, and hepatic stellate cells. Understanding the early steps in the metastatic seeding, including the decision to undergo dormancy versus outgrowth, has been difficult to study in 2D culture systems and animals due to numerous limitations. In response, tissue-engineered biomimetic systems have emerged. At the cutting-edge of these developments are ex vivo 'microphysiological systems' (MPS) which are cellular constructs designed to faithfully recapitulate the structure and function of a human organ or organ regions on a milli- to micro-scale level and can be made all human to maintain species-specific interactions. Hepatic MPSs are particularly attractive for studying metastases as in addition to the liver being a main site of metastatic seeding, it is also the principal site of drug metabolism and therapy-limiting toxicities. Thus, using these hepatic MPSs will enable not only an enhanced understanding of the fundamental aspects of metastasis but also allow for therapeutic agents to be fully studied for efficacy while also monitoring pharmacologic aspects and predicting toxicities. The review discusses some of the hepatic MPS models currently available and although only one MPS has been validated to relevantly modeling metastasis, it is anticipated that the adaptation of the other hepatic models to include tumors will not be long in coming.
Collapse
Affiliation(s)
- Amanda M Clark
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Bo Ma
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - D Lansing Taylor
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA University of Pittsburgh Cancer Institute, University of Pittsburgh, PA 15213, USA
| | - Linda Griffith
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA
| | - Alan Wells
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA Pittsburgh VA Medical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| |
Collapse
|
21
|
Shi H, Li J, Fu D. Process of hepatic metastasis from pancreatic cancer: biology with clinical significance. J Cancer Res Clin Oncol 2016; 142:1137-1161. [PMID: 26250876 DOI: 10.1007/s00432-015-2024-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 07/23/2015] [Indexed: 12/14/2022]
Abstract
PURPOSE Pancreatic cancer shows a remarkable preference for the liver to establish secondary tumors. Selective metastasis to the liver is attributed to the development of potential microenvironment for the survival of pancreatic cancer cells. This review aims to provide a full understanding of the hepatic metastatic process from circulating pancreatic cancer cells to their settlement in the liver, serving as a basic theory for efficient prediction and treatment of metastatic diseases. METHODS A systematic search of relevant original articles and reviews was performed on PubMed, EMBASE and Cochrane Library for the purpose of this review. RESULTS Three interrelated phases are delineated as the contributions of the interaction between pancreatic cancer cells and the liver to hepatic metastasis process. Chemotaxis of disseminated pancreatic cancer cells and simultaneous defensive formation of platelets or neutrophils facilitate specific metastasis toward the liver. Remodeling of extracellular matrix and stromal cells in hepatic lobules and angiogenesis induced by proangiogenic factors support the survival and growth of clinical micrometastasis colonizing the liver. The bimodal role of the immune system or prevalence of cancer cells over the immune system makes metastatic progression successfully proceed from micrometastasis to macrometastasis. CONCLUSIONS Pancreatic cancer is an appropriate research object of cancer metastasis representing more than a straight cascade. If any of the successive or simultaneous phases, especially tumor-induced immunosuppression, is totally disrupted, hepatic metastasis will be temporarily under control or even cancelled forever. To shrink cancers on multiple fronts and prolong survival for patients, novel oral or intravenous anti-cancer agents covering one or different phases of metastatic pancreatic cancer are expected to be integrated into innovative strategies on the premise of safety and efficacious biostability.
Collapse
Affiliation(s)
- Haojun Shi
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China
| | - Ji Li
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China
| | - Deliang Fu
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China.
| |
Collapse
|
22
|
Ukawa M, Fujiwara Y, Ando H, Shimizu T, Ishida T. Hepatic Tumor Metastases Cause Enhanced PEGylated Liposome Uptake by Kupffer Cells. Biol Pharm Bull 2016; 39:215-20. [DOI: 10.1248/bpb.b15-00611] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Masami Ukawa
- Department of Pharmacokinetics and Biopharmaceutics, Subdivision of Biopharmaceutical Sciences, Institute of Biomedical Sciences, Tokushima University
| | - Yukako Fujiwara
- Department of Pharmacokinetics and Biopharmaceutics, Subdivision of Biopharmaceutical Sciences, Institute of Biomedical Sciences, Tokushima University
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Subdivision of Biopharmaceutical Sciences, Institute of Biomedical Sciences, Tokushima University
- Department of Cancer Metabolism and Therapy, Subdivision of Biopharmaceutical Sciences, Institute of Biomedical Sciences, Tokushima University
| | - Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Subdivision of Biopharmaceutical Sciences, Institute of Biomedical Sciences, Tokushima University
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Subdivision of Biopharmaceutical Sciences, Institute of Biomedical Sciences, Tokushima University
- Department of Cancer Metabolism and Therapy, Subdivision of Biopharmaceutical Sciences, Institute of Biomedical Sciences, Tokushima University
| |
Collapse
|
23
|
Matsumura H, Kondo T, Ogawa K, Tamura T, Fukunaga K, Murata S, Ohkohchi N. Kupffer cells decrease metastasis of colon cancer cells to the liver in the early stage. Int J Oncol 2014; 45:2303-10. [PMID: 25231346 DOI: 10.3892/ijo.2014.2662] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 08/27/2014] [Indexed: 11/05/2022] Open
Abstract
Although Kupffer cells (KCs) play an important role in the liver's immune response, their role in colon cancer metastasis to the liver is unclear. We here analyzed the relationship between KCs and tumor cells (TCs) in colon cancer metastasis to the liver. Fischer 344 (F344) rats were divided into control group (KC+ group) and KC elimination group (KC‑ group), in which KC elimination was induced by Cl2MDP liposome injection. RCN‑H4 colon cancer cells were injected into the rats of both groups, and the relationship between the two types of cells was observed by intravital microscopy (IVM) for 6 h. Moreover, to investigate the effect of KCs on liver metastasis formation, KCs were eliminated at different time points before and after the TC injection. The number of metastatic nodules 2 weeks after the injection was evaluated. In the KC‑ group, IVM revealed that the number of adherent TCs had increased 1.5‑fold at 6 h after the TC injection as compared with in the KC+ group. Moreover, in the KC+ group, 74% of the TCs adhered to the KCs, and KC activation and KC phagocytosis of the TCs were observed. Two weeks after the injection, the number of metastatic nodules was significantly increased in rats in which the KCs had been eliminated before the injection, but not in rats in which the KCs had been eliminated after the injection. KC activation and KC phagocytosis of TCs decreased colon cancer cell metastasis to the liver.
Collapse
Affiliation(s)
- Hideki Matsumura
- Department of Surgery, Doctoral Program in Clinical Science, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305‑8575, Japan
| | - Tadashi Kondo
- Department of Surgery, Doctoral Program in Clinical Science, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305‑8575, Japan
| | - Koichi Ogawa
- Department of Surgery, Doctoral Program in Clinical Science, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305‑8575, Japan
| | - Takafumi Tamura
- Department of Surgery, Doctoral Program in Clinical Science, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305‑8575, Japan
| | - Kiyoshi Fukunaga
- Department of Surgery, Doctoral Program in Clinical Science, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305‑8575, Japan
| | - Soichiro Murata
- Department of Surgery, Doctoral Program in Clinical Science, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305‑8575, Japan
| | - Nobuhiro Ohkohchi
- Department of Surgery, Doctoral Program in Clinical Science, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305‑8575, Japan
| |
Collapse
|
24
|
Paschos KA, Majeed AW, Bird NC. Natural history of hepatic metastases from colorectal cancer - pathobiological pathways with clinical significance. World J Gastroenterol 2014; 20:3719-3737. [PMID: 24744570 PMCID: PMC3983432 DOI: 10.3748/wjg.v20.i14.3719] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/12/2013] [Accepted: 01/06/2014] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer hepatic metastases represent the final stage of a multi-step biological process. This process starts with a series of mutations in colonic epithelial cells, continues with their detachment from the large intestine, dissemination through the blood and/or lymphatic circulation, attachment to the hepatic sinusoids and interactions with the sinusoidal cells, such as sinusoidal endothelial cells, Kupffer cells, stellate cells and pit cells. The metastatic sequence terminates with colorectal cancer cell invasion, adaptation and colonisation of the hepatic parenchyma. All these events, termed the colorectal cancer invasion-metastasis cascade, include multiple molecular pathways, intercellular interactions and expression of a plethora of chemokines and growth factors, and adhesion molecules, such as the selectins, the integrins or the cadherins, as well as enzymes including matrix metalloproteinases. This review aims to present recent advances that provide insights into these cell-biological events and emphasizes those that may be amenable to therapeutic targeting.
Collapse
|
25
|
Jun HY, Lee YH, Juhng SK, Lee MS, Oh J, Yoon KH. Micro-CT measurements of tumoral vessels supplied by portal circulation in hepatic colorectal metastasis mouse model. Microsc Res Tech 2014; 77:415-21. [PMID: 24659362 DOI: 10.1002/jemt.22361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 02/24/2014] [Accepted: 03/11/2014] [Indexed: 12/17/2022]
Abstract
The purpose of this study was to elucidate the micro CT findings of tumoral vessels supplied by portal circulation during establishment of hepatic metastasis of colorectal cancer in a mouse model. Hepatic metastases were induced in 15 BALB/c mice through the injection of murine colonic adenocarcinoma tumor cells into the mesenteric vein. Micro-CT imaging of the tumoral vessels was obtained to clarify the microvascular architecture. We evaluated the sinusoidal structure, diameter of the tumoral vessels (DTV) and blood vessel density (BVD) according to tumor sizes ranging from 201 to 3,000 µm in diameter. A total of 116 tumors were observed on day 15 after cell injection. The mean diameter of a normal hepatic sinusoid was 11.7 ± 2.0 µm on micro CT. The DTV supplied by the portal vein of tumors measuring 1,001-1,500 µm in diameter was greater than that of tumors 200-1,000 µm in diameter. The mean BVD from the portal vein gradually decrease according to size of tumor from 201 to 3,000 µm in diameter (r(2) = -0.584, P < 0.01). The characteristics of tumoral vessels supplied by portal circulation during establishment of hepatic colorectal metastases were well visualized with micro-CT imaging.
Collapse
Affiliation(s)
- Hong Young Jun
- Imaging Science-Based Lung and Bone Diseases Research Center, Wonkwang University, Iksan, Jeonbuk, Korea; BK21plus Program and Department of Smart Life-Care Convergence, Wonkwang University, Graduate School, Iksan, Jeonbuk, Korea
| | | | | | | | | | | |
Collapse
|
26
|
Lieber J, Ellerkamp V, Vogt F, Wenz J, Warmann SW, Fuchs J, Armeanu-Ebinger S. BH3-mimetic drugs prevent tumour onset in an orthotopic mouse model of hepatoblastoma. Exp Cell Res 2013; 322:217-25. [PMID: 24355809 DOI: 10.1016/j.yexcr.2013.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/02/2013] [Accepted: 12/05/2013] [Indexed: 01/04/2023]
Abstract
Drug resistance and metastasis remain major challenges in the treatment of high-risk hepatoblastoma (HB) and require the development of alternative therapeutic strategies. Modulation of apoptosis in HB cells enhances the sensitivity of these cells towards various drugs and has been discussed to enforce treatment. We investigated the impact of apoptosis sensitisers, BH3-mimetics, on the interaction between the host and HB to reduce tumour growth and dissemination while enhancing immunity. BH3-mimetics, such as obatoclax and ABT-737, enhanced the apoptosis-inducing effect of TRAIL and TNF-α resistant HB cells (HepT1 and HUH6). Tumour cell migration was inhibited by ABT-737 and more markedly by obatoclax. In an orthotopic model of HB, tumour uptake was reduced when the cells were pretreated with low concentrations of obatoclax. Only 1 of 7 mice developed HB in the liver, compared with an incidence of 0.8 in the control group. In summary, our study showed that apoptosis sensitisers had broader effects on HB cells than expected including migration and susceptibility to cytokines in addition to the known effects on drug sensitization. Sensitising HB to apoptosis may also allow resistant HB to be targeted by immune cells and prevent tumour cell dissemination.
Collapse
Affiliation(s)
- Justus Lieber
- University Children's Hospital, Department of Pediatric Surgery and Pediatric Urology, Hoppe-Seyler-Strasse 1, D-72076 Tübingen, Germany.
| | - Verena Ellerkamp
- University Children's Hospital, Department of Pediatric Surgery and Pediatric Urology, Hoppe-Seyler-Strasse 1, D-72076 Tübingen, Germany.
| | - Fabian Vogt
- University Children's Hospital, Department of Pediatric Surgery and Pediatric Urology, Hoppe-Seyler-Strasse 1, D-72076 Tübingen, Germany.
| | - Julia Wenz
- University Children's Hospital, Department of Pediatric Surgery and Pediatric Urology, Hoppe-Seyler-Strasse 1, D-72076 Tübingen, Germany.
| | - Steven W Warmann
- University Children's Hospital, Department of Pediatric Surgery and Pediatric Urology, Hoppe-Seyler-Strasse 1, D-72076 Tübingen, Germany.
| | - Jörg Fuchs
- University Children's Hospital, Department of Pediatric Surgery and Pediatric Urology, Hoppe-Seyler-Strasse 1, D-72076 Tübingen, Germany.
| | - Sorin Armeanu-Ebinger
- University Children's Hospital, Department of Pediatric Surgery and Pediatric Urology, Hoppe-Seyler-Strasse 1, D-72076 Tübingen, Germany.
| |
Collapse
|
27
|
Kruse J, von Bernstorff W, Evert K, Albers N, Hadlich S, Hagemann S, Günther C, van Rooijen N, Heidecke CD, Partecke LI. Macrophages promote tumour growth and liver metastasis in an orthotopic syngeneic mouse model of colon cancer. Int J Colorectal Dis 2013; 28:1337-49. [PMID: 23657400 DOI: 10.1007/s00384-013-1703-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/23/2013] [Indexed: 02/04/2023]
Abstract
PURPOSE Tumour-associated macrophages have been shown to promote proliferation, angiogenesis and metastasis in several carcinomas. The effect on colon cancer has not yet been clarified. Furthermore, Kupffer cells in the liver might initiate the formation of metastases by directly binding tumour cells. METHODS An orthotopic syngeneic mouse model of colon cancer as well as a liver metastases model has been studied, using murine CT-26 colon cancer cells in Balb/c-mice. Macrophages were depleted in both models by clodronate liposomes. Tumour sizes and metastases were determined using 7-Tesla MRI. The macrophage and vascular density in the orthotopic tumours as well as the Kupffer cell density in the livers were evaluated using immunohistochemistry. RESULTS Animals in the macrophage-depleted group displayed significantly smaller primary tumours (37 ± 20 mm(3)) compared to the control group (683 ± 389 mm(3), p = 0.0072). None of the mice in the depleted group showed liver or peritoneal metastases, whereas four of six control mice displayed liver and five out of six mice peritoneal metastases. The vascular density was significantly lower in the macrophage-depleted group (p = 0.0043). In the liver metastases model, animals of the Kupffer cell-depleted group (14.3 ± 7.7) showed significantly less liver metastases than mice of the two control groups (PBS liposomes, 118.5 ± 28.2, p = 0.0117; NaCl, 81.7 ± 23.2, p = 0.0266). The number of liver metastases correlated directly with the Kupffer cell density (p = 0.0221). CONCLUSION Macrophages promote tumour growth, angiogenesis and metastases in this orthotopic syngeneic mouse model. Kupffer cells enhance the formation of metastases in the liver.
Collapse
Affiliation(s)
- J Kruse
- Department of General, Visceral, Thoracic and Vascular Surgery, University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse, 17475, Greifswald, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wen SW, Ager EI, Neo J, Christophi C. The renin angiotensin system regulates Kupffer cells in colorectal liver metastases. Cancer Biol Ther 2013; 14:720-7. [PMID: 23792575 DOI: 10.4161/cbt.25092] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Blockade of the renin angiotensin system (RAS) can inhibit tumor growth and this may be mediated via undefined immunomodulatory actions. This study investigated the effects of RAS blockade on liver macrophages (Kupffer cells; KCs) in an orthotopic murine model of colorectal cancer (CRC) liver metastases. Here we showed that pharmacological targeting of the RAS [ANG II (31.25 µg/kg/h i.p.), ANG-(1-7) (24 µg/kg/h i.p.) or the ACE inhibitor; captopril (750 mg/kg/d i.p.)] altered endogenous KC numbers in the tumor-bearing liver throughout metastatic growth. Captopril, and to a lesser extent ANG-(1-7), increased KC numbers in the liver but not tumor. KCs were found to express the key RAS components: ACE and AT1R. Treatment with captopril and ANG II increased the number of AT1R-expressing KCs, although total KC numbers were not affected by ANG II. Captopril (0.1 µM) also increased macrophage invasion in vitro. Additionally, captopril was administered with KC depletion before tumor induction (day 0) or at established metastatic growth (day 18) using gadolinium chloride (GdCl 3; 20 mg/kg). Livers were collected at day 21 and quantitative stereology used as a measure of tumor burden. Captopril reduced growth of CRC liver metastases. However, when captopril was combined with early KC depletion (day 0) tumor growth was significantly increased compared with captopril alone. In contrast, late KC depletion (day 18) failed to influence the anti-tumor effects of captopril. The result of these studies suggests that manipulation of the RAS can alter KC numbers and may subsequently influence progression of CRC liver metastases.
Collapse
Affiliation(s)
- Shu Wen Wen
- Department of Surgery, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia.
| | | | | | | |
Collapse
|
29
|
Wen SW, Ager EI, Christophi C. Bimodal role of Kupffer cells during colorectal cancer liver metastasis. Cancer Biol Ther 2013; 14:606-13. [PMID: 23792646 DOI: 10.4161/cbt.24593] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Kupffer cells (KCs) are resident liver macrophages that play a crucial role in liver homeostasis and in the pathogenesis of liver disease. Evidence suggests KCs have both stimulatory and inhibitory functions during tumor development but the extent of these functions remains to be defined. Using KC depletion studies in an orthotopic murine model of colorectal cancer (CRC) liver metastases we demonstrated the bimodal role of KCs in determining tumor growth. KC depletion with gadolinium chloride before tumor induction was associated with an increased tumor burden during the exponential growth phase. In contrast, KC depletion at the late stage of tumor growth (day 18) decreased liver tumor load compared with non-depleted animals. This suggests KCs exhibit an early inhibitory and a later stimulatory effect. These two opposing functions were associated with changes in iNOS and VEGF expression as well as T-cell infiltration. KC depletion at day 18 increased numbers of CD3 (+) T cells and iNOS-expressing infiltrating cells in the tumor, but decreased the number of VEGF-expressing infiltrating cells. These alterations may be responsible for the observed reduction in tumor burden following depletion of pro-tumor KCs at the late stage of metastatic growth. Taken together, our results indicate that the bimodal role of KC activity in liver tumors may provide the key to timing immunomodulatory intervention for the treatment of CRC liver metastases.
Collapse
Affiliation(s)
- Shu Wen Wen
- Department of Surgery, The University of Melbourne, Austin Health, Heidelberg, Australia.
| | | | | |
Collapse
|
30
|
Georgiadou M, Notas G, Xidakis C, Drygiannakis I, Sfakianaki O, Klironomos S, Valatas V, Kouroumalis E. TNF receptors in Kupffer cells. J Recept Signal Transduct Res 2011; 31:291-8. [DOI: 10.3109/10799893.2011.586354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Ohmori H, Luo Y, Kuniyasu H. Non-histone nuclear factor HMGB1 as a therapeutic target in colorectal cancer. Expert Opin Ther Targets 2011; 15:183-93. [DOI: 10.1517/14728222.2011.546785] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
32
|
The Tumor Microenvironment at Different Stages of Hepatic Metastasis. LIVER METASTASIS: BIOLOGY AND CLINICAL MANAGEMENT 2011. [DOI: 10.1007/978-94-007-0292-9_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
van der Bij GJ, Bögels M, Otten MA, Oosterling SJ, Kuppen PJ, Meijer S, Beelen RHJ, van Egmond M. Experimentally induced liver metastases from colorectal cancer can be prevented by mononuclear phagocyte-mediated monoclonal antibody therapy. J Hepatol 2010; 53:677-85. [PMID: 20619916 DOI: 10.1016/j.jhep.2010.04.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 03/29/2010] [Accepted: 04/13/2010] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS Development of liver metastases is a frequent complication in patients with colorectal cancer (CRC), even after successful resection of the primary tumor. As such, post-operative adjuvant therapies that aim to eliminate residual disease after surgery may improve patient outcome. METHODS We used a colon carcinoma liver metastases model, in which CC531s colon carcinoma cells are injected into the portal circulation by a surgical procedure. As injected tumor cells are arrested in the liver, this model is suitable for investigating the interaction of tumor cells with the liver microenvironment. By administering tumor specific monoclonal antibodies (mAb) directly post-operatively, we were able to determine the effect of antibody therapy on eradication of arrested tumor cells and subsequent liver metastases outgrowth. RESULTS We showed that post-operative treatment with tumor specific monoclonal antibodies (mAb) prevents liver metastases outgrowth. Antibody-dependent phagocytosis (ADPh) was the main mechanism involved, as enhanced uptake of tumor cells by innate mononuclear phagocytes in the liver was observed after mAb therapy. Furthermore, Kupffer cells (KC) were identified as the most prominent effector cells, as depletion of KC abolished therapeutic efficacy. This was partly compensated by monocytes when animals were treated with a high mAb dose, but monocytes were unable to phagocytose tumor cells when rats were treated with low mAb doses. CONCLUSIONS The finding that KC and monocytes can eliminate tumor cells through ADPh has important and promising clinical implications for designing new adjuvant therapies for patients undergoing CRC resection.
Collapse
Affiliation(s)
- Gerben J van der Bij
- Department of Surgical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Colorectal cancer is one of the commonest malignancies in the "developed" world. The liver constitutes the main host organ for its distant metastases which, when present, augur a bad prognosis for the disease. Kupffer cells (KCs) are macrophages that constantly reside within the liver and form an effective first line defence against multiple harmful agents which reach the hepatic sinusoids via the portal circulation. KCs remove chemical compounds and dead or damaged cells, eliminate bacteria and protect against invading tumour cells. They may play a crucial tumouricidal role, exerting cytotoxic and cytostatic functions through the release of multiple cytokines and chemokines. Subsequently, colorectal metastasising cells are destroyed either by KC-performed phagocytosis or via the stimulation of other immune cells which migrate into the sinusoids and act accordingly. On the contrary, KC products, including cytokines, growth factors and matrix-degrading enzymes may promote liver metastasis, supporting tumour cell extravasation, motility and invasion. Current research aims to exploit the antineoplastic properties of KCs in new therapeutic approaches of colorectal cancer liver metastasis. Numerous agents, such as the granulocyte macrophage-colony stimulating factor, interferon gamma, muramyl peptide analogues and various antibody based treatments, have been tested in experimental models with promising results. Future trials may investigate their use in everyday clinical practice and compare their therapeutic value with current treatment of the disease.
Collapse
Affiliation(s)
- Konstantinos A Paschos
- Liver Research Group, Section of Oncology, School of Medicine, Royal Hallamshire Hospital, The University of Sheffield, Sheffield, UK
| | | | | |
Collapse
|
35
|
Luo Y, Ohmori H, Fujii K, Moriwaka Y, Sasahira T, Kurihara M, Tatsumoto N, Sasaki T, Yamashita Y, Kuniyasu H. HMGB1 attenuates anti-metastatic defence of the liver in colorectal cancer. Eur J Cancer 2009; 46:791-9. [PMID: 20018503 DOI: 10.1016/j.ejca.2009.11.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2009] [Revised: 11/12/2009] [Accepted: 11/19/2009] [Indexed: 12/15/2022]
Abstract
High mobility group box (HMGB) 1 induces apoptosis of monocyte-lineage cells. We examined the effect of HMGB1 on Kupffer cells (KCs). In 50 Dukes C and 12 liver-metastasised Dukes D colorectal cancers (CRCs), higher HMGB1 concentration in the primary tumours and metastatic foci, and fewer KCs were found in Dukes D cases than in Dukes C cases. The portal blood HMGB1 concentration was higher in Dukes D cases than in Dukes C cases. HMGB1 induced growth inhibition and apoptosis in mouse KCs in a dose-dependent manner, which was associated with the phosphorylation of c-Jun N-terminal kinase (JNK). JNK inhibition and knockdown of HMGB1 receptor abrogated growth inhibition and apoptosis. In a nude mouse liver metastasis model, the caecal administration of HMGB1 decreased the number of KCs and increased the embedment of Colo320 CRC cells in a dose-dependent manner. HMGB1 transfection increased the liver metastasis of Colo320 cells, and the metastasis was inhibited by anti-HMGB1 antibody administration. These results suggest that HMGB1 secreted from primary tumours decreases the number of KCs and attenuates the anti-metastatic defence of the liver in patients with CRCs.
Collapse
Affiliation(s)
- Yi Luo
- Department of Molecular Pathology, Nara Medical University, Kashihara, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Yates C, Shepard CR, Papworth G, Dash A, Beer Stolz D, Tannenbaum S, Griffith L, Wells A. Novel three-dimensional organotypic liver bioreactor to directly visualize early events in metastatic progression. Adv Cancer Res 2009; 97:225-46. [PMID: 17419948 DOI: 10.1016/s0065-230x(06)97010-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Metastatic seeding leads to most of the morbidity from carcinomas. However, little is known of this key event as current methods to study the cellular behaviors utilize nonrepresentative in vitro models or follow indirect subsequent developments in vivo. Therefore, we developed a system to visualize over a multiday to multiweek period the interactions between tumor cells and target organ parenchyma. We employ an ex vivo microscale perfusion culture system that provides a tissue-relevant environment to assess metastatic seeding behavior. The bioreactor recreates many features of the fluid flow, scale, and biological functionality of a hepatic parenchyma, a common site of metastatic spread for a wide range of carcinomas. As a test of this model, prostate and breast carcinoma cells were introduced. Tumor cell invasion and expansion could be observed by two-photon microscopy of red fluorescent protein (RFP)- and CellTracker-labeled carcinoma cells against a green fluorescent protein (GFP)-labeled hepatic tissue bed over a 14-day period. Tumors visible to the naked eye could be formed by day 25, without evident necrosis in the >0.3-mm tumor mass. These tumor cells failed to grow in the absence of the supporting three-dimensional (3D) hepatic microtissue, suggesting paracrine or stromal support function for the liver structure in tumor progression. Initial ultrastructural studies suggest that early during the tumor-parenchyma interactions, there are extensive interactions between and accommodations of the cancer and host cells, suggesting that the tumor-related epithelial-mesenchymal transition (EMT) reverts, at least transiently, to promote metastatic seeding. In sum, our 3D ex vivo organotypic liver tissue system presents a critical vehicle to examine tumor-host interactions during cancer metastasis and/or invasion. It also circumvents current limitations in assays to assess early events in metastasis, and provides new approaches to study molecular events during tumor progression.
Collapse
Affiliation(s)
- Clayton Yates
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Smedsrød B, Le Couteur D, Ikejima K, Jaeschke H, Kawada N, Naito M, Knolle P, Nagy L, Senoo H, Vidal-Vanaclocha F, Yamaguchi N. Hepatic sinusoidal cells in health and disease: update from the 14th International Symposium. Liver Int 2009; 29:490-501. [PMID: 19210626 DOI: 10.1111/j.1478-3231.2009.01979.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review aims to give an update of the field of the hepatic sinusoid, supported by references to presentations given at the 14th International Symposium on Cells of the Hepatic Sinusoid (ISCHS2008), which was held in Tromsø, Norway, August 31-September 4, 2008. The subtitle of the symposium, 'Integrating basic and clinical hepatology', signified the inclusion of both basal and applied clinical results of importance in the field of liver sinusoidal physiology and pathophysiology. Of nearly 50 oral presentations, nine were invited tutorial lectures. The authors of the review have avoided writing a 'flat summary' of the presentations given at ISCHS2008, and instead focused on important novel information. The tutorial presentations have served as a particularly important basis in the preparation of this update. In this review, we have also included references to recent literature that may not have been covered by the ISCHS2008 programme. The sections of this review reflect the scientific programme of the symposium (http://www.ub.uit.no/munin/bitstream/10037/1654/1/book.pdf): 1. Liver sinusoidal endothelial cells. 2. Kupffer cells. 3. Hepatic stellate cells. 4. Immunology. 5. Tumor/metastasis. Symposium abstracts are referred to by a number preceded by the letter A.
Collapse
Affiliation(s)
- Bård Smedsrød
- Department of Cell Biology and Histology, Institute of Medical Biology, University of Tromsø, Tromsø, Norway.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Otten MA, van der Bij GJ, Verbeek SJ, Nimmerjahn F, Ravetch JV, Beelen RHJ, van de Winkel JGJ, van Egmond M. Experimental Antibody Therapy of Liver Metastases Reveals Functional Redundancy between FcγRI and FcγRIV. THE JOURNAL OF IMMUNOLOGY 2008; 181:6829-36. [DOI: 10.4049/jimmunol.181.10.6829] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
39
|
Kobayashi Y, Nishikawa M, Hyoudou K, Yamashita F, Hashida M. Hydrogen peroxide-mediated nuclear factor kappaB activation in both liver and tumor cells during initial stages of hepatic metastasis. Cancer Sci 2008; 99:1546-52. [PMID: 18754865 PMCID: PMC11158348 DOI: 10.1111/j.1349-7006.2008.00856.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Various factors involved in tumor metastasis are regulated by the transcription factor nuclear factor kappaB (NF-kappaB). Because NF-kappaB activation may contribute to establishment of hepatic metastasis, its activation in liver cells and tumor cells was separately evaluated in a mouse model of hepatic metastasis. pNF-kappaB-Luc, a firefly luciferase-expressing plasmid DNA depending on the NF-kappaB activity, was injected into the tail vein of mice by the hydrodynamics-based procedure, a well-established method for gene transfer to BALB/c male mouse liver. The luciferase activity in the liver was significantly increased by an intraportal inoculation of murine adenocarcinoma colon26 cells, but not of peritoneal macrophages, suggesting that the NF-kappaB in liver cells is activated when tumor cells enter the hepatic circulation. Then, colon26 cells stably transfected with pNF-kappaB-Luc were inoculated. The firefly luciferase activity, an indicator of NF-kappaB activity in tumor cells, was significantly increased when colon26/NFkappaB-Luc cells were inoculated into the portal vein of BALB/c male mice. The NF-kappaB activation in both liver and tumor cells was significantly inhibited by injection of catalase derivatives, which have been reported to inhibit hepatic metastasis of tumor cells. These findings indicate for the first time that NF-kappaB, a key agent regulating the expression of various molecules involved in tumor metastasis, is activated in both liver and tumor cells during the initial stages of tumor metastasis through a hydrogen peroxide mediated pathway. Thus, the removal of hydrogen peroxide will be a promising approach to treating hepatic metastasis.
Collapse
Affiliation(s)
- Yuki Kobayashi
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
40
|
The prometastatic microenvironment of the liver. CANCER MICROENVIRONMENT 2008; 1:113-29. [PMID: 19308690 PMCID: PMC2654354 DOI: 10.1007/s12307-008-0011-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Accepted: 03/13/2008] [Indexed: 02/07/2023]
Abstract
The liver is a major metastasis-susceptible site and majority of patients with hepatic metastasis die from the disease in the absence of efficient treatments. The intrahepatic circulation and microvascular arrest of cancer cells trigger a local inflammatory reaction leading to cancer cell apoptosis and cytotoxicity via oxidative stress mediators (mainly nitric oxide and hydrogen peroxide) and hepatic natural killer cells. However, certain cancer cells that resist or even deactivate these anti-tumoral defense mechanisms still can adhere to endothelial cells of the hepatic microvasculature through proinflammatory cytokine-mediated mechanisms. During their temporary residence, some of these cancer cells ignore growth-inhibitory factors while respond to proliferation-stimulating factors released from tumor-activated hepatocytes and sinusoidal cells. This leads to avascular micrometastasis generation in periportal areas of hepatic lobules. Hepatocytes and myofibroblasts derived from portal tracts and activated hepatic stellate cells are next recruited into some of these avascular micrometastases. These create a private microenvironment that supports their development through the specific release of both proangiogenic factors and cancer cell invasion- and proliferation-stimulating factors. Moreover, both soluble factors from tumor-activated hepatocytes and myofibroblasts also contribute to the regulation of metastatic cancer cell genes. Therefore, the liver offers a prometastatic microenvironment to circulating cancer cells that supports metastasis development. The ability to resist anti-tumor hepatic defense and to take advantage of hepatic cell-derived factors are key phenotypic properties of liver-metastasizing cancer cells. Knowledge on hepatic metastasis regulation by microenvironment opens multiple opportunities for metastasis inhibition at both subclinical and advanced stages. In addition, together with metastasis-related gene profiles revealing the existence of liver metastasis potential in primary tumors, new biomarkers on the prometastatic microenvironment of the liver may be helpful for the individual assessment of hepatic metastasis risk in cancer patients.
Collapse
|
41
|
Inderbitzin DT, Marti GR, Eichenberger S, Hoogewoud HM, Kraehenbuehl L. Enhanced tumour growth and impaired cellular antitumoural defense in hepatic colorectal carcinoma metastasis in rats after laparoscopy compared to open surgery. Ann Surg Oncol 2008; 15:1239-48. [PMID: 18247094 DOI: 10.1245/s10434-007-9801-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 12/20/2007] [Accepted: 12/21/2007] [Indexed: 11/18/2022]
Abstract
BACKGROUND This study aims to assess postoperative hepatic growth of colorectal adenocarcinoma metastasis and peritumoural macrophage counts after laparoscopy in an experimental animal model. METHODS Thirty male syngenic WAG/Rij rats were randomised into two surgical groups: laparoscopy (LS; n = 15) using CO(2) at 12 mmHg and laparotomy (LT; n = 15; negative control) during an operating time of 90 min. At 45 min after setup, CC531s colon adenocarcinoma cells were injected into two liver lobes. Postoperative tumour volumes were determined by abdominal magnetic resonance imaging (MRI) and computed three-dimensional volumetry. Peritumoural macrophages were counted by local stereology using a confocal laser-scanning fluorescence microscope. RESULTS The median postoperative tumour volume was significantly higher after LS in both lobes (L): after 10, 15 and 20 days in L2 and L5: 24/12, 54/38, 275/62 mm(3) and 0/0, 15/11, 55/24 mm(3) (LS/LT). Significantly fewer peritumoural macrophages were found after LS at all postoperative time points (Mann-Whitney: p < 0.05). CONCLUSIONS Increased hepatic growth of colorectal adenocarcinoma metastasis and impaired cellular antitumoural defence after LS cast doubt on the use of LS in colorectal cancer and needs further clinical investigation.
Collapse
Affiliation(s)
- D Th Inderbitzin
- Department of General Surgery, Hôpital Cantonal Fribourg, CH-1708, Fribourg, Switzerland
| | | | | | | | | |
Collapse
|
42
|
van der Bij GJ, Oosterling SJ, Bögels M, Bhoelan F, Fluitsma DM, Beelen RHJ, Meijer S, van Egmond M. Blocking alpha2 integrins on rat CC531s colon carcinoma cells prevents operation-induced augmentation of liver metastases outgrowth. Hepatology 2008; 47:532-43. [PMID: 18098323 DOI: 10.1002/hep.22013] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UNLABELLED Currently, an operation is the only curative option for patients with colorectal cancer. Unfortunately, many patients will develop liver metastases even after successful resection of the primary tumor. Removal of primary colorectal carcinoma may paradoxically increase the risk of metastases development, because accumulating evidence suggests that surgical trauma can stimulate tumor growth. In the present study, we investigated the effects of abdominal trauma on liver metastases development. Surgical trauma dramatically increased adhesion of tumor cells in the liver, leading to enhanced outgrowth of metastases. Endothelial stress was observed rapidly after an operation, suggesting that abdominal trauma resulted in impairment of blood vessel integrity. Tumor cells preferentially adhered to extracellular matrix (ECM). Furthermore, preincubation of tumor cells with anti-alpha2 integrin antibodies completely reverted operation-induced augmentation of CC531s adhesion and liver metastases outgrowth. As such, we postulate that blood vessel integrity in the liver is compromised after abdominal trauma, resulting in enhanced ECM exposure, which enables tumor cell adhesion and metastases outgrowth. CONCLUSION Perioperative treatments that either aim to reduce endothelial stress or block the interaction between tumor cells and ECM represent promising new therapeutic strategies for the prevention of liver metastases development after resection of the primary tumor.
Collapse
Affiliation(s)
- Gerben J van der Bij
- Department of Surgical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Mook ORF, van Marle J, Jonges R, Vreeling-Sindelárová H, Frederiks WM, Van Noorden CJF. Interactions between colon cancer cells and hepatocytes in rats in relation to metastasis. J Cell Mol Med 2008; 12:2052-61. [PMID: 18208563 PMCID: PMC4506170 DOI: 10.1111/j.1582-4934.2008.00242.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Adhesion of cancer cells to endothelium is considered an essential step in metastasis. However, we have shown in a previous study that when rat colon cancer cells are administered to the vena portae, they get stuck mechanically in liver sinusoids. Then, endothelial cells retract rapidly and cancer cells bind to hepatocytes. We investigated the molecular nature of these interactions between colon cancer cells and hepatocytes. Cancer cells in coculture with hepatocytes became rapidly activated with distinct morphological changes. Cancer cells formed long cytoplasmic protrusions towards hepatocytes in their close vicinity and these protrusions attached to microvilli of hepatocytes. Then, adhering membrane areas were formed by both cell types. Integrin subunits alphav, alpha6 and beta1 but not alphaL, beta2, beta3 and CD44 and CD44v6 were expressed on the cancer cells. In conclusion, colon cancer cells show an active behaviour to bind to hepatocytes, likely involving the integrin subunits alphav, alpha6 and beta1, indicating that early events in colon cancer metastasis in liver are distinctly different than assumed thus far.
Collapse
Affiliation(s)
- O R F Mook
- Department of Cell Biology and Histology, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
44
|
The tumor cell-host organ interface in the early onset of metastatic organ colonisation. Clin Exp Metastasis 2007; 25:171-81. [PMID: 18058027 DOI: 10.1007/s10585-007-9130-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Accepted: 11/15/2007] [Indexed: 01/26/2023]
Abstract
Metastatic lesions are the leading cause of death among cancer patients. These lesions usually originate from clonal proliferation of single tumor cells dispersed from the primary tumor into the circulation which finally arrest in the capillary bed of distant organs. The microenvironment within the circulation of potential metastatic target organs provides a variety of pro- and anti- metastatic stimuli regulating the onset of organ colonisation by metastatic tumor cells. Mechanical shear stress, anoikis and cell mediated cytotoxicity within the microcirculation probably clear most circulating tumor cells. Adhesion, and eventually extravasation, are essential initial interactions of circulating tumor cells with distant organs and can provide escape from the cytotoxic environment within the circulation. Adhesion to the capillary wall is mostly controlled by the organ-specific availability of adhesion molecules on tumor cells, the endothelium, and the composition of the underlying extracellular matrix. The availability of pro-adhesive and pro-migratory paracrine signals provided by the organ specific microenvironment can further initiate the onset of metastatic organ colonisation. Tumor cell and microenvironment factors regulating survival within the microcirculation, adhesion and extravasation of tumor cells are highlighted in the review.
Collapse
|
45
|
Kruskal JB, Azouz A, Korideck H, El-Hallak M, Robson SC, Thomas P, Goldberg SN. Hepatic colorectal cancer metastases: imaging initial steps of formation in mice. Radiology 2007; 243:703-11. [PMID: 17431127 DOI: 10.1148/radiol.2432060604] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE To prospectively use optical imaging to study the cell-specific mechanisms of entrapment and subsequent growth of two human colon cancer cell lines differing in their propensity to form hepatic metastases. MATERIALS AND METHODS In this Animal Care Committee-approved study, intravital optical imaging was performed in exteriorized livers of three groups of mice after intrasplenic inoculation of human colon cancer cells. Group 1 mice (control group; n=12) received a cell-maintaining solution only. Groups 2 and 3 (n=12 in each) were administered poorly (MIP-101 colon cancer cells) or highly (CX-1 colon cancer cells) metastatic cells. Imaging was performed on postinoculation days 0, 1, 3, and 6 to document sites and mechanisms of tumor cell entrapment and presence and sites of endothelial cell activation and of tumor cell interactions with systemic macrophages and Kupffer cells. Fluorescence intensity of Kupffer cells was compared by using the Mann-Whitney test. Immunohistochemistry served as the reference standard for all in vivo observations. RESULTS Whereas both MIP-101 and CX-1 colon cancer cells adhered to periportal Kupffer cells, the CX-1 cells resulted in Kupffer cell activation, evidenced in vivo by increased visible peroxidase activity (P<.05). Only CX-1 cells were associated with subsequent downstream endothelial cell activation, evidenced by in vivo expression of E-selectin. By day 6, regression of periportal MIP-101 tumor growth correlated with ingrowth of systemic macrophages, while CX-1 tumor growth, originating in the outflow venous regions, correlated with translobular migration and ingrowth of activated Kupffer cells. CONCLUSION Formation of hepatic colon cancer metastases is cancer cell-type specific, with cell lines differing in their mechanisms and intrahepatic locations of initial entrapment and Kupffer cell activation and subsequent growth.
Collapse
Affiliation(s)
- Jonathan B Kruskal
- Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, West Clinical Center-CC302B, 1 Deaconess Rd, Boston, MA 02215, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Xidakis C, Mastrodimou N, Notas G, Renieri E, Kolios G, Kouroumalis E, Thermos K. RT-PCR and immunocytochemistry studies support the presence of somatostatin, cortistatin and somatostatin receptor subtypes in rat Kupffer cells. ACTA ACUST UNITED AC 2007; 143:76-82. [PMID: 17481746 DOI: 10.1016/j.regpep.2007.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 03/14/2007] [Accepted: 03/18/2007] [Indexed: 01/31/2023]
Abstract
The present study investigated the presence of somatostatin receptor subtypes (ssts) and the endogenous peptides somatostatin and cortistatin in rat Kupffer cells, since modulation of these cells by somatostatin may be important for the beneficial effect of somatostatin analogues in a selected group of hepatocellular carcinoma patients. Kupffer cells were isolated from rat liver in agreement with national and EU guidelines. RT-PCR was employed to assess the expression of somatostatin, cortistatin and ssts in Kupffer cells. Western blot analysis and immunocytochemistry were employed to assess the expression and the localization of the receptors, respectively. Quiescent Kupffer cells were found to express sst(1-4) mRNA, while immunocytochemical studies supported the presence of only the sst(3) and sst(4) receptors, which were found to be internalized. However, sst1 and sst(2A) receptors were detected by western blotting. RT-PCR and RIA measurements support the presence of both somatostatin and cortistatin. Stimulation of the cells with LPS activated the expression of the sst(2), sst(3) and sst(4) receptors. The present data provide evidence to support the presence of ssts and the endogenous neuropeptides somatostatin and CST in rat Kupffer cells. Both peptides may act in an autocrine manner to regulate sst receptor distribution. Studies are in progress in order to further characterize the role of ssts in Kupffer cells and in hepatic therapeutics.
Collapse
Affiliation(s)
- C Xidakis
- Laboratory of Pharmacology, Department Basic Sciences, University of Crete, Faculty of Medicine, Heraklion, Crete, Greece
| | | | | | | | | | | | | |
Collapse
|
47
|
Braet F, Nagatsuma K, Saito M, Soon L, Wisse E, Matsuura T. The hepatic sinusoidal endothelial lining and colorectal liver metastases. World J Gastroenterol 2007; 13:821-5. [PMID: 17352008 PMCID: PMC4065914 DOI: 10.3748/wjg.v13.i6.821] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a common malignant disease and the severe nature of cases in men and women who develop colorectal cancer makes this an important socio-economic health issue. Major challenges such as understanding and modeling colorectal cancer pathways rely on our understanding of simple models such as outlined in this paper. We discuss that the development of novel standardized approaches of multidimensional (correlative) biomolecular microscopy methods facilitates the collection of (sub) cellular tissue information in the early onset of colorectal liver metastasis and that this approach will be crucial in designing new effective strategies for CRC treatment. The application of X-ray micro-computed tomography and its potential in correlative imaging of the liver vasculature will be discussed.
Collapse
|
48
|
Berg M, Wingender G, Djandji D, Hegenbarth S, Momburg F, Hämmerling G, Limmer A, Knolle P. Cross-presentation of antigens from apoptotic tumor cells by liver sinusoidal endothelial cells leads to tumor-specific CD8+ T cell tolerance. Eur J Immunol 2007; 36:2960-70. [PMID: 17039564 DOI: 10.1002/eji.200636033] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Development of tumor-specific T cell tolerance contributes to the failure of the immune system to eliminate tumor cells. Here we report that hematogenous dissemination of tumor cells followed by their elimination and local removal of apoptotic tumor cells in the liver leads to subsequent development of T cell tolerance towards antigens associated with apoptotic tumor cells. We provide evidence that liver sinusoidal endothelial cells (LSEC) remove apoptotic cell fragments generated by induction of tumor cell apoptosis through hepatic NK1.1+ cells. Antigen associated with apoptotic cell material is processed and cross-presented by LSEC to CD8+ T cells, leading to induction of CD8+ T cell tolerance. Adoptive transfer of LSEC isolated from mice challenged previously with tumor cells promotes development of CD8+ T cell tolerance towards tumor-associated antigen in vivo. Our results indicate that hematogenous dissemination of tumor cells, followed by hepatic tumor cell elimination and local cross-presentation of apoptotic tumor cells by LSEC and subsequent CD8+ T cell tolerance induction, represents a novel mechanism operative in tumor immune escape.
Collapse
Affiliation(s)
- Martina Berg
- Institut für Molekulare Medizin und Experimentelle Immunologie Bonn, Germany
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Mezhir JJ, Smith KD, Kimchi ET, Park JO, Lopez CA, Mauceri HJ, Beckett MA, Hellman S, Weichselbaum RR, Posner MC. Establishment of a syngeneic model of hepatic colorectal oligometastases. J Surg Res 2006; 136:288-93. [PMID: 16930623 DOI: 10.1016/j.jss.2006.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Accepted: 05/01/2006] [Indexed: 11/28/2022]
Abstract
BACKGROUND Regional and systemic therapies aimed at improving the outcome for patients with colorectal hepatic metastases have met with modest yet tangible success. Currently, liver resection remains the only curative treatment, but only a minority of patients are candidates for surgery. Animal models are an ideal way to study new treatments for patients with metastatic colorectal cancer. We propose a syngeneic animal model of hepatic colorectal metastases that simulates oligometastases, which is a clinical state considered amenable to regional therapeutic strategies. MATERIALS AND METHODS BDIX (BD-9) rats underwent intrasplenic injection of DHD/K12/TRb (Prob/K12) cells to create hepatic metastases via the portal system. After injection of 5 x 10(6) cells, rats underwent laparotomy to determine metastatic burden. Histological analysis confirmed the presence of metastases from resected tumors. RESULTS Fifty-three animals were prospectively treated and observed for the development of oligometastases defined as between 1 and 10 hepatic lesions. Thirty-six (68%) of the animals developed detectable metastases while 32 (60%) developed oligometastases (average = 4.40 +/- 2.67). Four animals had overwhelming metastatic liver and peritoneal disease. All animals underwent peritoneal examination and thoracotomy to ensure localized disease. Histological analysis of five hepatectomy specimens confirmed the presence of metastatic cancer. Animals with oligometastases were healthy as evidenced by normal feeding and grooming behavior. CONCLUSIONS An animal model of oligometastatic colorectal cancer to the liver can reproducibly mimic the stage IV state in humans conducive to regional therapy and can be used reliably to test novel treatments and mechanisms of metastatic colorectal cancer.
Collapse
Affiliation(s)
- James J Mezhir
- Department of Surgery, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Wu XZ, Zhang L, Shi BZ, Hu P. Inhibitory effects of N-(4-hydrophenyl) retinamide on liver cancer and malignant melanoma cells. World J Gastroenterol 2005; 11:5763-9. [PMID: 16270382 PMCID: PMC4479673 DOI: 10.3748/wjg.v11.i37.5763] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of N-(4-hydrophenyl) retinamide (4-HPR), the derivative of retinoic acid, on inhibition of migration, invasion, cell growth, and induction of apoptosis in hepatocellular carcinoma cells (HCCs) and malignant melanoma cells.
METHODS: 4-HPR was chemically synthesized. Cellular migration and invasion were assayed by Borden chamber experiment. Cell growth was assayed by MTT chromometry. Apoptosis effect was measured using Hoechst 32258 staining and flow cytometry. Gene transfection was performed with lipofectamine.
RESULTS: We observed that the migration of HCC and melanoma cells was significantly suppressed by 4-HPR and the migration cells were reduced to 585.03 (control 20127.2, P < 0.05, n = 4) in SMMC 7721-k3 HCC, and to 25425.04 (control 30230.1, P < 0.05, n = 4) in melanoma cells after 6-h incubation with 4-HPR. The invasion through reconstituted basement membrane was also significantly reduced by 4-HPR treatment to 11.23.3 in SMMC 7721-k3 HCC (control 2713.1), and to 24.33.2 in melanoma cells (control 67.510.1, P < 0.05, n = 3). Cell growth, especially in melanoma cells, was also significantly inhibited. Furthermore, 3 mmol/L of 4-HPR induced apoptosis in B16 melanoma cells (37.110.94%) more significantly than all-trans retinoic acid (P < 0.05), but it failed to induce apoptosis in SMMC 7721-k3 HCC. The mechanism for 4-HPR-induced apoptosis was not clear, but we observed that 4-HPR could regulate p27kip1, and overexpression of cerebroside sulfotransferase (CST) diminished the apoptosis induced by 4-HPR in melanoma cells.
CONCLUSION: 4-HPR is a potent inhibitor of HCC migration and inducer of melanoma cell apoptosis. CST and p27kip1expression might be associated with 4-HPR-induced apoptosis.
Collapse
Affiliation(s)
- Xing-Zhong Wu
- Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | | | | | | |
Collapse
|