1
|
Santana JPP, Marcato PD, Massaro TNC, Godoy NL, Anibal FDF, Borra RC. Efficacy of instillation of MB49 cells and thermoreversible polymeric gel in urothelial bladder carcinoma immunization. Lab Anim Res 2022; 38:11. [PMID: 35513853 PMCID: PMC9069826 DOI: 10.1186/s42826-022-00122-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/25/2022] [Indexed: 12/03/2022] Open
Abstract
Background Activating the immune system for therapeutic benefit has long been a goal in immunology, especially in cancer treatment, but the low immunogenicity of antitumor vaccines remains a limiting factor in the fight against malignant neoplasms. The increase in the immunogenicity of weak antigens using biodegradable polymers, such as chitosan, has been observed in the field of cancer immunotherapy. However, the effects of the vaccine using a combination of tumor cells and a thermoreversible delivery system based on chitosan in bladder cancer models, mainly using the intravesical route to stimulate the antitumor immune response, are unknown. We propose to evaluate the efficacy of a polymeric gel matrix (TPG) formed by poloxamer 407 and chitosan, associated with MB49 cells, as an intravesical antitumor vaccine using a C57BL/6 murine model of bladder urothelial carcinoma. The effectiveness of immunization was analyzed with the formation of three experimental groups: Control, TPG and TPG + MB49. In the vaccination phase, the TPG + MB49 group underwent a traumatic injury to the bladder wall with immediate intravesical instillation of the vaccine compound containing MB49 cells embedded in TPG. The TPG group was subjected to the same procedures using the compound containing the gel diluted in medium, and the control group using only the medium. After 21 days, the animals were challenged with tumor induction.
Results In vitro tests showed loss of viability and inability to proliferate after exposure to TPG. In vivo tests showed that animals previously immunized with TPG + MB49 had higher cumulative survival, as well as significantly lower bladder weight and size in contrast to the other two groups that did not show a statistically different tumor evolution. In addition, the splenocytes of these animals also showed a higher rate of antitumor cytotoxicity in relation to the TPG and control groups.
Conclusions We can conclude that MB49 cells embedded in a polymeric thermoreversible gel matrix with chitosan used in the form of an intravesical vaccine are able to stimulate the immune response and affect the development of the bladder tumor in an orthotopic and syngeneic C57BL/6 murine model.
Collapse
Affiliation(s)
| | - Priscyla Daniely Marcato
- GNanoBio, School of Pharmaceutical Science of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Naiane Lima Godoy
- Department of Genetics and Evolution, Federal University of Sao Carlos, São Carlos, Brazil
| | | | - Ricardo Carneiro Borra
- Department of Genetics and Evolution, Federal University of Sao Carlos, São Carlos, Brazil
| |
Collapse
|
2
|
Silva MO, Almeida BS, Sales NS, Diniz MO, Aps LRMM, Rodrigues KB, Silva JR, Moreno ACR, Porchia BFMM, Sulczewski FB, Boscardin SB, Ferreira LCS. Antigen Delivery to DEC205 + Dendritic Cells Induces Immunological Memory and Protective Therapeutic Effects against HPV-Associated Tumors at Different Anatomical Sites. Int J Biol Sci 2021; 17:2944-2956. [PMID: 34345218 PMCID: PMC8326119 DOI: 10.7150/ijbs.57038] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 05/02/2021] [Indexed: 12/27/2022] Open
Abstract
The generation of successful anticancer vaccines relies on the ability to induce efficient and long-lasting immune responses to tumor antigens. In this scenario, dendritic cells (DCs) are essential cellular components in the generation of antitumor immune responses. Thus, delivery of tumor antigens to specific DC populations represents a promising approach to enhance the efficiency of antitumor immunotherapies. In the present study, we employed antibody-antigen conjugates targeting a specific DC C-type lectin receptor. For that purpose, we genetically fused the anti-DEC205 monoclonal antibody to the type 16 human papillomavirus (HPV-16) E7 oncoprotein to create a therapeutic vaccine to treat HPV-associated tumors in syngeneic mouse tumor models. The therapeutic efficacy of the αDEC205-E7 mAb was investigated in three distinct anatomical tumor models (subcutaneous, lingual and intravaginal). The immunization regimen comprised two doses of the αDEC205-E7 mAb coadministered with a DC maturation stimulus (Polyinosinic:polycytidylic acid, poly (I:C)) as an adjuvant. The combined immunotherapy produced robust antitumor effects on both the subcutaneous and orthotopic tumor models, stimulating rapid tumor regression and long-term survival. These outcomes were related to the activation of tumor antigen-specific CD8+ T cells in both systemic compartments and lymphoid tissues. The αDEC205-E7 antibody plus poly (I:C) administration induced long-lasting immunity and controlled tumor relapses. Our results highlight that the delivery of HPV tumor antigens to DCs, particularly via the DEC205 surface receptor, is a promising therapeutic approach, providing new opportunities for the development of alternative immunotherapies for patients with HPV-associated tumors at different anatomical sites.
Collapse
Affiliation(s)
- Mariângela O Silva
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Bianca S Almeida
- Laboratory of Antigen Targeting to Dendritic Cells, Department of Parasitology, Institute of Biomedical Sciences University of São Paulo, São Paulo, Brazil
| | - Natiely S Sales
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Mariana O Diniz
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Luana R M M Aps
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Karine B Rodrigues
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Jamile R Silva
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Ana C R Moreno
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Bruna F M M Porchia
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Fernando B Sulczewski
- Laboratory of Antigen Targeting to Dendritic Cells, Department of Parasitology, Institute of Biomedical Sciences University of São Paulo, São Paulo, Brazil
| | - Silvia B Boscardin
- Laboratory of Antigen Targeting to Dendritic Cells, Department of Parasitology, Institute of Biomedical Sciences University of São Paulo, São Paulo, Brazil
| | - Luís C S Ferreira
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
3
|
Wang H, Che Y, Yang Y, Suo J, Wang X. Inhibition of Orthotopic Genital Cancer Induced by Subcutaneous Administration of Human Papillomavirus Peptide Vaccine with CpG Oligodeoxynucleotides as an Adjuvant in Mice. Cancer Manag Res 2021; 13:5559-5572. [PMID: 34285577 PMCID: PMC8285235 DOI: 10.2147/cmar.s309226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/07/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose Persistent high-risk human papillomavirus (HPV) infection is the most common cause of cervical cancer and its precursor lesions. Although prophylactic HPV vaccines have been applied in the general population for the prevention of HPV infections, no licensed therapeutic HPV vaccine is currently available to treat preexisting HPV infections or HPV-associated diseases, including cervical cancer. Materials and Methods The most common murine cervical cancer model used for the evaluation of the efficacy of a therapeutic HPV vaccine in preclinical studies is the ectopic model, which is established by the subcutaneous inoculation of tumor cells, such as TC-1 cells, into the flank of an animal. We have previously demonstrated the efficacy of a therapeutic HPV peptide vaccine adjuvanted with unmethylated cytosine-phosphate-guanosine oligodeoxynucleotide in the clearance of ectopic subcutaneous tumors in C57BL/6 mice after vaccination. In the current study, we established orthotopic genital tumors by injecting TC-1 cells into the vaginal submucosa close to the cervix and assessed whether the subcutaneous administration of the therapeutic vaccine could inhibit the growth of genital tumors. Additionally, we evaluated the effect of the vaccination on the tumor microenvironment. Results The results showed that the vaccination induced an increase in infiltrating CD4+ and CD8+ T cells, a decrease in myeloid-derived suppressor cells and cancer-associated fibroblasts, as well as the differential expression of a panel of cytokines, chemokines, and matrix metalloproteinases within the tumor microenvironment. Conclusion The administration of the vaccine resulted in the inhibition of established implanted orthotopic genital tumors by inducing strong antitumor immune responses and reversed tolerogenic local immunosuppression in a mouse model of orthotopic genital cancer.
Collapse
Affiliation(s)
- Huan Wang
- Department of Microbiology and Parasitology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning, People's Republic of China.,Nursing College, Jinzhou Medical University, Jinzhou, Liaoning, People's Republic of China
| | - Yuxin Che
- Department of Microbiology and Parasitology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yang Yang
- Department of Microbiology and Parasitology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Jinguo Suo
- Department of Microbiology and Parasitology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Xuelian Wang
- Department of Microbiology and Parasitology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
4
|
Arribillaga L, Echeverria I, Belsue V, Gomez T, Lozano T, Casares N, Villanueva L, Domingos-Pereira S, Romero PJ, Nardelli-Haefliger D, Hervás-Stubbs S, Sarobe P, Rodriguez MJ, Carrascosa JL, Zürcher T, Lasarte JJ. Bivalent therapeutic vaccine against HPV16/18 genotypes consisting of a fusion protein between the extra domain A from human fibronectin and HPV16/18 E7 viral antigens. J Immunother Cancer 2021; 8:jitc-2020-000704. [PMID: 32581060 PMCID: PMC7319778 DOI: 10.1136/jitc-2020-000704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2020] [Indexed: 12/21/2022] Open
Abstract
Background In vivo targeting of human papillomavirus (HPV) derived antigens to dendritic cells might constitute an efficient immunotherapeutic strategy against cervical cancer. In previous works, we have shown that the extra domain A from murine fibronectin (mEDA) can be used to target antigens to toll-like receptor 4 (TLR4) expressing dendritic cells and induce strong antigen-specific immune responses. In the present study, we have produced a bivalent therapeutic vaccine candidate consisting of the human EDA (hEDA) fused to E7 proteins from HPV16 and HPV18 (hEDA-HPVE7-16/18) and evaluate its potential as a therapeutic vaccine against cervical cancer. Materials and methods Recombinant fusion proteins containing HPV E7 proteins from HPV16 and HPV18 virus subtypes fused to hEDA were produced and tested in vitro on their capacity to bind TLR4 and induce the production of tumor necrosis factor-α or interleukin (IL)-12 by human monocytes and dendritic cells. The immunogenicity and potential therapeutic activity of the vaccine in combination with cisplatin or with the TLR3 agonist molecules polyinosinic‐polycytidylic acid (Poly IC) or Poly ICLC was evaluated in mice bearing subcutaneous or genital orthotopic HPV16 TC-1 tumors. Results hEDA-HPVE7-16/18 prototype vaccine binds human TLR4 and stimulate TLR4-dependent signaling pathways and IL-12 production by human monocyte-derived dendritic cell. Vaccination with hEDA-HPVE7-16/18 induced strong HPVE7-specific Cytotoxic T lymphocyte (CTL) responses and eliminated established tumors in the TC-1-based tumor model. The antitumor efficacy was significantly improved by combining the fusion protein with cisplatin or with the TLR-3 ligand Poly IC and especially with the stabilized analog Poly ICLC. Moreover, hEDA-HPVE7-16/18+Poly ICLC induced full tumor regression in 100% of mice bearing orthotopic genital HPV tumors. Conclusion Our results suggest that this therapeutic vaccine formulation may be an effective treatment for cervical tumors that do not respond to current therapies.
Collapse
Affiliation(s)
| | | | | | | | - Teresa Lozano
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada, University of Navarra, IdisNA, Pamplona, Navarra, Spain
| | - Noelia Casares
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada, University of Navarra, IdisNA, Pamplona, Navarra, Spain
| | - Lorea Villanueva
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada, University of Navarra, IdisNA, Pamplona, Navarra, Spain
| | - Sonia Domingos-Pereira
- Department of Urology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Pedro J Romero
- Oncology, Centre Hospitalier Universitaire Vaudois Département d'oncologie CHUV-UNIL, Lausanne, Switzerland
| | | | - Sandra Hervás-Stubbs
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada, University of Navarra, IdisNA, Pamplona, Navarra, Spain
| | - Pablo Sarobe
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada, University of Navarra, IdisNA, Pamplona, Navarra, Spain
| | - María Josefa Rodriguez
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - José L Carrascosa
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | | | - Juan José Lasarte
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada, University of Navarra, IdisNA, Pamplona, Navarra, Spain
| |
Collapse
|
5
|
Nardelli-Haefliger D, Romero P, Jichlinski P. What is the influence of vaccination's routes on the regression of tumors located at mucosal sites? Oncoimmunology 2021; 1:242-243. [PMID: 22720257 PMCID: PMC3376991 DOI: 10.4161/onci.1.2.18204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Tumor-regressions following tumor-associated-antigen vaccination in animal models contrast with the limited clinical outcomes in cancer patients. Most animal studies however used subcutaneous-tumor-models and questions arise as whether these are relevant for tumors growing in mucosae; whether specific mucosal-homing instructions are required; and how this may be influenced by the tumor.
Collapse
|
6
|
Zottnick S, Voß AL, Riemer AB. Inducing Immunity Where It Matters: Orthotopic HPV Tumor Models and Therapeutic Vaccinations. Front Immunol 2020; 11:1750. [PMID: 32922389 PMCID: PMC7457000 DOI: 10.3389/fimmu.2020.01750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/30/2020] [Indexed: 12/24/2022] Open
Abstract
Anogenital and oropharyngeal cancers caused by human papillomavirus (HPV) infections account for 4.5% of all cancer cases worldwide. So far, only the initial infection with selected high-risk types can be prevented by prophylactic vaccination. Already existing persistent HPV infections, however, can currently only be treated by surgical removal of resulting lesions. Therapeutic HPV vaccination, promoting cell-based anti-HPV immunity, would be ideal to eliminate and protect against HPV-induced lesions and tumors. A multitude of vaccination approaches has been tested to date, many of which led to high amounts of HPV-specific T cells in vivo. However, growing evidence suggests that not the induction of systemic but of local immunity is paramount for tackling mucosal infections and tumors. Therefore, recent therapeutic vaccination studies have focused on how to induce tissue-resident T cells in the anogenital and oropharyngeal mucosa. These approaches include direct mucosal vaccinations and influencing the migration of systemic T cells toward the mucosa. The efficacy of these new vaccination approaches is best tested in vivo by utilizing orthotopic tumor models, i.e. HPV-positive tumors being located in the animal's mucosa. In line with this, we here review existing HPV tumor models and describe two novel tumorigenic cell lines for the MHC-humanized mouse model A2.DR1. These were used for the establishment of an HPV16 E6/E7-positive vaginal tumor model, suitable for testing therapeutic vaccines containing HLA-A2-restricted HPV16-derived epitopes. The newly developed MHC-humanized orthotopic HPV16-positive tumor model is likely to improve the translatability of in vivo findings to the clinical setting.
Collapse
Affiliation(s)
- Samantha Zottnick
- Immunotherapy and Immunoprevention, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Vaccine Design, German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Alessa L Voß
- Immunotherapy and Immunoprevention, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Vaccine Design, German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Angelika B Riemer
- Immunotherapy and Immunoprevention, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Vaccine Design, German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| |
Collapse
|
7
|
Kuai R, Singh PB, Sun X, Xu C, Najafabadi AH, Scheetz L, Yuan W, Xu Y, Hong H, Keskin DB, Wu CJ, Jain R, Schwendeman A, Moon JJ. Robust anti-tumor T cell response with efficient intratumoral infiltration by nanodisc cancer immunotherapy. ADVANCED THERAPEUTICS 2020; 3:2000094. [PMID: 38317797 PMCID: PMC10843840 DOI: 10.1002/adtp.202000094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Indexed: 12/30/2022]
Abstract
Potent anti-tumor T cell response and efficient intratumoral T cell infiltration are the major challenges for therapeutic cancer vaccines. To address these issues, a nano-vaccine system has been designed to promote anti-tumor T cell responses, and intratumoral infiltration was examined in various murine tumor models. Subcutaneous vaccination with nanodiscs carrying human papillomavirus (HPV)-16 E7 antigen elicits as high as ~32% E7-specific CD8 α + T cell responses in circulation, representing a 29-fold improvement over the soluble peptide vaccination. Importantly, nanodisc vaccination also promotes robust intratumoral T cell infiltration and eliminates HPV16 E6/E7-expressing TC-1 tumors at mucosal sites, including lungs, inner lip, and intravaginal tissues. In a benchmark study with a live Listeria vaccine combined with anti-PD-1 IgG, nanodiscs plus anti-PD-1 immune checkpoint blockade elicits comparable levels of T cell responses with anti-tumor efficacy. Furthermore, compared with Complete Freund's Adjuvant combined with tetanus toxoid, nanodisc vaccination in HLA-A02 mice generates >200-fold stronger IFN-γ+ T cell responses against a neoantigen from an HLA-A02 melanoma patient. Overall, these results show that the nanodisc system is a promising cancer vaccine platform for inducing anti-tumor T cell responses.
Collapse
Affiliation(s)
- Rui Kuai
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | | | - Xiaoqi Sun
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Cheng Xu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Alireza Hassani Najafabadi
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Lindsay Scheetz
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Wenmin Yuan
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Yao Xu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Hao Hong
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing University, Nanjing, 210093, China
| | - Derin B. Keskin
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- The Translational Immunogenomics Lab (TIGL), Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Catherine J. Wu
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- The Translational Immunogenomics Lab (TIGL), Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Renu Jain
- Bristol Myers Squibb, Redwood City, CA, USA
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - James J. Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Ferber S, Gonzalez RJ, Cryer AM, von Andrian UH, Artzi N. Immunology-Guided Biomaterial Design for Mucosal Cancer Vaccines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903847. [PMID: 31833592 DOI: 10.1002/adma.201903847] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/11/2019] [Indexed: 05/23/2023]
Abstract
Cancer of mucosal tissues is a major cause of worldwide mortality for which only palliative treatments are available for patients with late-stage disease. Engineered cancer vaccines offer a promising approach for inducing antitumor immunity. The route of vaccination plays a major role in dictating the migratory pattern of lymphocytes, and thus vaccine efficacy in mucosal tissues. Parenteral immunization, specifically subcutaneous and intramuscular, is the most common vaccination route. However, this induces marginal mucosal protection in the absence of tissue-specific imprinting signals. To circumvent this, the mucosal route can be utilized, however degradative mucosal barriers must be overcome. Hence, vaccine administration route and selection of materials able to surmount transport barriers are important considerations in mucosal cancer vaccine design. Here, an overview of mucosal immunity in the context of cancer and mucosal cancer clinical trials is provided. Key considerations are described regarding the design of biomaterial-based vaccines that will afford antitumor immune protection at mucosal surfaces, despite limited knowledge surrounding mucosal vaccination, particularly aided by biomaterials and mechanistic immune-material interactions. Finally, an outlook is given of how future biomaterial-based mucosal cancer vaccines will be shaped by new discoveries in mucosal vaccinology, tumor immunology, immuno-therapeutic screens, and material-immune system interplay.
Collapse
Affiliation(s)
- Shiran Ferber
- Department of Medicine, Engineering in Medicine Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Rodrigo J Gonzalez
- Department of Immunology, Harvard Medical School, Boston, MA, 02115, USA
| | - Alexander M Cryer
- Department of Medicine, Engineering in Medicine Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ulrich H von Andrian
- Department of Immunology, Harvard Medical School, Boston, MA, 02115, USA
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Boston, MA, 02139, USA
| | - Natalie Artzi
- Department of Medicine, Engineering in Medicine Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02139, USA
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Dumauthioz N, Labiano S, Romero P. Tumor Resident Memory T Cells: New Players in Immune Surveillance and Therapy. Front Immunol 2018; 9:2076. [PMID: 30258445 PMCID: PMC6143788 DOI: 10.3389/fimmu.2018.02076] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 08/21/2018] [Indexed: 12/11/2022] Open
Abstract
Tissue resident memory T cells (Trm) are a subset of memory T cells mainly described in inflammation and infection settings. Their location in peripheral tissues, such as lungs, gut, or skin, makes them the earliest T cell population to respond upon antigen recognition or under inflammatory conditions. The study of Trm cells in the field of cancer, and particularly in cancer immunotherapy, has recently gained considerable momentum. Different reports have shown that the vaccination route is critical to promote Trm generation in preclinical cancer models. Cancer vaccines administered directly at the mucosa, frequently result in enhanced Trm formation in mucosal cancers compared to vaccinations via intramuscular or subcutaneous routes. Moreover, the intratumoral presence of T cells expressing the integrin CD103 has been reported to strongly correlate with a favorable prognosis for cancer patients. In spite of recent progress, the full spectrum of Trm anti-tumoral functions still needs to be fully established, particularly in cancer patients, in different clinical contexts. In this mini-review we focus on the recent vaccination strategies aimed at generating Trm cells, as well as evidence supporting their association with patient survival in different cancer types. We believe that collectively, this information provides a strong rationale to target Trm for cancer immunotherapy.
Collapse
Affiliation(s)
- Nina Dumauthioz
- Department of Oncology, Faculty of Biology and Medicine, University of Lausanne, Épalinges, Switzerland
| | - Sara Labiano
- Department of Oncology, Faculty of Biology and Medicine, University of Lausanne, Épalinges, Switzerland
| | - Pedro Romero
- Department of Oncology, Faculty of Biology and Medicine, University of Lausanne, Épalinges, Switzerland
| |
Collapse
|
10
|
Hojeij R, Domingos-Pereira S, Nkosi M, Gharbi D, Derré L, Schiller JT, Jichlinski P, Nardelli-Haefliger D. Immunogenic Human Papillomavirus Pseudovirus-Mediated Suicide-Gene Therapy for Bladder Cancer. Int J Mol Sci 2016; 17:ijms17071125. [PMID: 27428950 PMCID: PMC4964499 DOI: 10.3390/ijms17071125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 02/07/2023] Open
Abstract
Bladder cancer is the second most common urological malignancy in the world. In 70% of cases it is initially diagnosed as non-muscle-invasive bladder cancer (NMIBC) and it is amenable to local treatments, with intravesical (IVES) Bacillus-Calmette-Guerin (BCG) immunotherapy being routinely used after transurethral resection of the lesion. However, this treatment is associated with significant side-effects and treatment failures, highlighting the necessity of novel strategies. One potent approach is the suicide-gene mediated therapy/prodrug combination, provided tumor-specificity can be ensured and anti-tumor immune responses induced. Using the mouse syngeneic orthotopic MB49-bladder tumor model, here we show that IVES human papillomavirus non-replicative pseudovirions (PsV) can pseudoinfect tumors with a ten-fold higher efficacy than normal bladders. In addition, PsV carrying the suicide-gene herpes-simplex virus thymidine kinase (PsV-TK) combined to Ganciclovir (GCV) led to immunogenic cell-death of tumor cells in vitro and to MB49-specific CD8 T-cells in vivo. This was associated with reduction in bladder-tumor growth and increased mice survival. Altogether, our data show that IVES PsV-TK/GCV may be a promising alternative or combinatory treatment for NMIBC.
Collapse
Affiliation(s)
- Rim Hojeij
- Department of Urology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Lausanne 1011, Switzerland.
| | - Sonia Domingos-Pereira
- Department of Urology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Lausanne 1011, Switzerland.
| | - Marianne Nkosi
- Department of Urology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Lausanne 1011, Switzerland.
| | - Dalila Gharbi
- Department of Urology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Lausanne 1011, Switzerland.
| | - Laurent Derré
- Department of Urology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Lausanne 1011, Switzerland.
| | - John T Schiller
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Patrice Jichlinski
- Department of Urology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Lausanne 1011, Switzerland.
| | - Denise Nardelli-Haefliger
- Department of Urology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Lausanne 1011, Switzerland.
| |
Collapse
|
11
|
Nizard M, Diniz MO, Roussel H, Tran T, Ferreira LC, Badoual C, Tartour E. Mucosal vaccines: novel strategies and applications for the control of pathogens and tumors at mucosal sites. Hum Vaccin Immunother 2015; 10:2175-87. [PMID: 25424921 DOI: 10.4161/hv.29269] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mucosal immune system displays several adaptations reflecting the exposure to the external environment. The efficient induction of mucosal immune responses also requires specific approaches, such as the use of appropriate administration routes and specific adjuvants and/or delivery systems. In contrast to vaccines delivered via parenteral routes, experimental, and clinical evidences demonstrated that mucosal vaccines can efficiently induce local immune responses to pathogens or tumors located at mucosal sites as well as systemic response. At least in part, such features can be explained by the compartmentalization of mucosal B and T cell populations that play important roles in the modulation of local immune responses. In the present review, we discuss molecular and cellular features of the mucosal immune system as well as novel immunization approaches that may lead to the development of innovative and efficient vaccines targeting pathogens and tumors at different mucosal sites.
Collapse
Affiliation(s)
- Mevyn Nizard
- a INSERM U970; Universite Paris Descartes; Sorbonne Paris-Cité; Paris, France
| | | | | | | | | | | | | |
Collapse
|
12
|
Domingos-Pereira S, Hojeij R, Reggi E, Derré L, Chevalier MF, Romero P, Jichlinski P, Nardelli-Haefliger D. Local Salmonella immunostimulation recruits vaccine-specific CD8 T cells and increases regression of bladder tumor. Oncoimmunology 2015; 4:e1016697. [PMID: 26140240 DOI: 10.1080/2162402x.2015.1016697] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 02/02/2015] [Accepted: 02/03/2015] [Indexed: 12/13/2022] Open
Abstract
The efficacy of antitumoral responses can be increased using combinatorial vaccine strategies. We recently showed that vaccination could be optimized by local administration of diverse molecular or bacterial agents to target and augment antitumoral CD8 T cells in the genital mucosa (GM) and increase regression of cervical cancer in an animal model. Non muscle-invasive bladder cancer is another disease that is easily amenable to local therapies. In contrast to data obtained in the GM, in this study we show that intravesical (IVES) instillation of synthetic toll-like receptor (TLR) agonists only modestly induced recruitment of CD8 T cells to the bladder. However, IVES administration of Ty21a, a live bacterial vaccine against typhoid fever, was much more effective and increased the number of total and vaccine-specific CD8 T cells in the bladder approximately 10 fold. Comparison of chemokines induced in the bladder by either CpG (a TLR-9 agonist) or Ty21a highlighted the preferential increase in complement component 5a, CXCL5, CXCL2, CCL8, and CCL5 by Ty21a, suggesting their involvement in the attraction of T cells to the bladder. IVES treatment with Ty21a after vaccination also significantly increased tumor regression compared to vaccination alone, resulting in 90% survival in an orthotopic murine model of bladder cancer expressing a prototype tumor antigen. Our data demonstrate that combining vaccination with local immunostimulation may be an effective treatment strategy for different types of cancer and also highlight the great potential of the Ty21a vaccine, which is routinely used worldwide, in such combinatorial therapies.
Collapse
Key Words
- BCG, Bacillus Calmette Guerin
- BMDC, bone marrow-derived dendritic cell
- C5a, complement component 5a
- ESL, E-selectin ligands
- GM, genital mucosa
- IVAG, intravaginal
- IVES, intravesical
- NMIBC, non-muscle invasive bladder cancer
- PBS, phosphate buffered saline
- PE, phycoerythrin
- PIC, poly (I:C)
- SEM, standard error of the mean
- Salmonella Ty21a
- TLR, toll-like receptor
- TUR, transurethral resection
- bacterial immunostimulant
- bladder cancer
- combinatorial therapy
- s.c., subcutaneously
- therapeutic vaccination
Collapse
Affiliation(s)
| | - Rim Hojeij
- Dept. Urology; Lausanne University Hospital (CHUV); Lausanne, Switzerland
| | - Erica Reggi
- Dept. Urology; Lausanne University Hospital (CHUV); Lausanne, Switzerland
| | - Laurent Derré
- Dept. Urology; Lausanne University Hospital (CHUV); Lausanne, Switzerland
| | | | - Pedro Romero
- Ludwig Center for Cancer Research of University of Lausanne ; Lausanne, Switzerland
| | - Patrice Jichlinski
- Dept. Urology; Lausanne University Hospital (CHUV); Lausanne, Switzerland
| | | |
Collapse
|
13
|
Mac Keon S, Ruiz MS, Gazzaniga S, Wainstok R. Dendritic cell-based vaccination in cancer: therapeutic implications emerging from murine models. Front Immunol 2015; 6:243. [PMID: 26042126 PMCID: PMC4438595 DOI: 10.3389/fimmu.2015.00243] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 05/06/2015] [Indexed: 01/29/2023] Open
Abstract
Dendritic cells (DCs) play a pivotal role in the orchestration of immune responses, and are thus key targets in cancer vaccine design. Since the 2010 FDA approval of the first cancer DC-based vaccine (Sipuleucel-T), there has been a surge of interest in exploiting these cells as a therapeutic option for the treatment of tumors of diverse origin. In spite of the encouraging results obtained in the clinic, many elements of DC-based vaccination strategies need to be optimized. In this context, the use of experimental cancer models can help direct efforts toward an effective vaccine design. This paper reviews recent findings in murine models regarding the antitumoral mechanisms of DC-based vaccination, covering issues related to antigen sources, the use of adjuvants and maturing agents, and the role of DC subsets and their interaction in the initiation of antitumoral immune responses. The summary of such diverse aspects will highlight advantages and drawbacks in the use of murine models, and contribute to the design of successful DC-based translational approaches for cancer treatment.
Collapse
Affiliation(s)
- Soledad Mac Keon
- Laboratorio de Cancerología, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires IIBBA-CONICET , Buenos Aires , Argentina
| | - María Sol Ruiz
- Centro de Investigaciones Oncológicas, Fundación para la Investigación, Docencia y Prevención del Cáncer (FUCA) , Buenos Aires , Argentina
| | - Silvina Gazzaniga
- Laboratorio de Biología Tumoral, Departamento de Química Biológica IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , Buenos Aires , Argentina
| | - Rosa Wainstok
- Laboratorio de Cancerología, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires IIBBA-CONICET , Buenos Aires , Argentina ; Laboratorio de Biología Tumoral, Departamento de Química Biológica IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , Buenos Aires , Argentina
| |
Collapse
|
14
|
Russell MW, Whittum-Hudson J, Fidel PL, Hook EW, Mestecky J. Immunity to Sexually Transmitted Infections. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00112-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Gebril A, Alsaadi M, Acevedo R, Mullen AB, Ferro VA. Optimizing efficacy of mucosal vaccines. Expert Rev Vaccines 2014; 11:1139-55. [DOI: 10.1586/erv.12.81] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
Chevalier MF, Nardelli-Haefliger D, Domingos-Pereira S, Jichlinski P, Derré L. Immunotherapeutic strategies for bladder cancer. Hum Vaccin Immunother 2014; 10:977-81. [PMID: 24384699 PMCID: PMC4896526 DOI: 10.4161/hv.27621] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Bladder cancer is a common urologic malignancy with rising incidence in the elderly population. In most cases, bladder cancer is non-muscle-invasive at diagnosis and shows dramatically high recurrence rates, although current treatments often reduce the risk of disease progression. Immunotherapy using intravesical instillation of Bacillus Calmette-Guérin (BCG) remains the most effective therapy for patients with high risk tumors. However, BCG-therapy has important limitations including substantial adverse events and frequent treatment failure. Thus, it appears crucial to either improve or replace current therapy using new immunotherapeutic strategies. Here, we discuss the clinical trials that assessed therapeutic vaccination of bladder cancer patients using tumor associated antigens and we also argue for novel approaches arising from murine models. Vaccination routes to induce appropriate T-cell homing in the tumor site as well as the use of local immunostimulation to enhance recruitment of vaccine-induced T cells are discussed to highlight what we believe is a promising therapeutic vaccination strategy for patients with non-muscle-invasive bladder cancer.
Collapse
Affiliation(s)
- Mathieu F Chevalier
- Department of Urology; Centre Hospitalier Universitaire Vaudois and University of Lausanne; Lausanne, Switzerland
| | - Denise Nardelli-Haefliger
- Department of Urology; Centre Hospitalier Universitaire Vaudois and University of Lausanne; Lausanne, Switzerland
| | - Sonia Domingos-Pereira
- Department of Urology; Centre Hospitalier Universitaire Vaudois and University of Lausanne; Lausanne, Switzerland
| | - Patrice Jichlinski
- Department of Urology; Centre Hospitalier Universitaire Vaudois and University of Lausanne; Lausanne, Switzerland
| | - Laurent Derré
- Department of Urology; Centre Hospitalier Universitaire Vaudois and University of Lausanne; Lausanne, Switzerland
| |
Collapse
|
17
|
Budimir N, de Haan A, Meijerhof T, Gostick E, Price DA, Huckriede A, Wilschut J. Heterosubtypic cross-protection induced by whole inactivated influenza virus vaccine in mice: influence of the route of vaccine administration. Influenza Other Respir Viruses 2013; 7:1202-9. [PMID: 24102979 PMCID: PMC4112805 DOI: 10.1111/irv.12142] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2013] [Indexed: 12/17/2022] Open
Abstract
Background Development of influenza vaccines capable of inducing broad protection against different virus subtypes is necessary given the ever‐changing viral genetic landscape. Previously, we showed that vaccination with whole inactivated virus (WIV) induces heterosubtypic protection against lethal virus infection in mice. Whole inactivated virus‐induced cross‐protection was found to be mediated primarily by flu‐specific CD8+ T cells. Objectives As it has been demonstrated that the route of vaccine administration strongly influences both the quantity and quality of vaccine‐induced immunity, in this study, we determined which route of WIV administration induces optimal heterosubtypic cross‐protection. Methods We compared the magnitude of the immune response and heterosubtypic protection against lethal A/PR/8/34 (H1N1) infection after subcutaneous (SC), intramuscular (IM), and intranasal (IN) vaccination with A/NIBRG‐14 (H5N1) WIV. Results Subcutaneous and IM administration was superior to IN administration of influenza WIV in terms of flu‐specific CD8+ T‐cell induction and protection of mice against lethal heterosubtypic challenge. Surprisingly, despite the very low flu‐specific CD8+ T‐cell responses detected in IN‐vaccinated mice, these animals were partially protected, most likely due to cross‐reactive IgA antibodies. Conclusion The results of this study show that the magnitude of WIV‐induced flu‐specific CD8+ T‐cell activity depends on the applied vaccination route. We conclude that parenteral administration of WIV vaccine, in particular IM injection, is superior to IN vaccine delivery for the induction of heterosubtypic cross‐protection and generally appears to elicit stronger immune responses than mucosal vaccination with WIV.
Collapse
Affiliation(s)
- Natalija Budimir
- Department of Medical Microbiology, Molecular Virology Section, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
18
|
Intravaginal and subcutaneous immunization induced vaccine specific CD8 T cells and tumor regression in the bladder. J Urol 2013; 191:814-22. [PMID: 23954582 DOI: 10.1016/j.juro.2013.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2013] [Indexed: 12/30/2022]
Abstract
PURPOSE Vaccines targeting tumor associated antigens are in development for bladder cancer. Most of these cancers are nonmuscle invasive at diagnosis and confined in the mucosa and submucosa. However, to our knowledge how vaccination may induce the regression of tumors at such mucosal sites has not been examined previously. We compared different immunization routes for the ability to induce vaccine specific antitumor CD8 T cells in the bladder and bladder tumor regression in mice. MATERIALS AND METHODS In the absence of a murine bladder tumor model expressing a tumor antigen relevant for human use we established an orthotopic model expressing the HPV-16 tumor antigen E7 as a model. We used an adjuvant E7 polypeptide to induce CD8 T cell mediated tumor regression. RESULTS Subcutaneous and intravaginal but not intranasal vaccination induced a high number of TetE7(+)CD8(+) T cells in the bladder as well as bladder tumor regression. The entry of vaccine specific T cells in the bladder was not the only key since persistent regression of established bladder tumors by intravaginal or subcutaneous immunization was associated with tumor infiltration of total CD4 and CD8 T cells. This resulted in an increase in TetE7(+)CD8(+) T cells and a decrease in T regulatory cells, leading to an increased number of effector interferon-γ secreting vaccine specific CD8 T cells in the regressing bladder tumor. CONCLUSIONS These data show that immunization routes should be tailored to each mucosal tumor site. Subcutaneous or intravaginal vaccination may be of additional value to treat patients with bladder cancer.
Collapse
|
19
|
Nardelli-Haefliger D, Dudda JC, Romero P. Vaccination route matters for mucosal tumors. Sci Transl Med 2013; 5:172fs4. [PMID: 23408051 DOI: 10.1126/scitranslmed.3005638] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Denise Nardelli-Haefliger
- Department of Urology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, CH-1011 Lausanne, Switzerland. denise.nardelli-haef
| | | | | |
Collapse
|
20
|
Sandoval F, Terme M, Nizard M, Badoual C, Bureau MF, Freyburger L, Clement O, Marcheteau E, Gey A, Fraisse G, Bouguin C, Merillon N, Dransart E, Tran T, Quintin-Colonna F, Autret G, Thiebaud M, Suleman M, Riffault S, Wu TC, Launay O, Danel C, Taieb J, Richardson J, Zitvogel L, Fridman WH, Johannes L, Tartour E. Mucosal imprinting of vaccine-induced CD8⁺ T cells is crucial to inhibit the growth of mucosal tumors. Sci Transl Med 2013; 5:172ra20. [PMID: 23408053 DOI: 10.1126/scitranslmed.3004888] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although many human cancers are located in mucosal sites, most cancer vaccines are tested against subcutaneous tumors in preclinical models. We therefore wondered whether mucosa-specific homing instructions to the immune system might influence mucosal tumor outgrowth. We showed that the growth of orthotopic head and neck or lung cancers was inhibited when a cancer vaccine was delivered by the intranasal mucosal route but not the intramuscular route. This antitumor effect was dependent on CD8⁺ T cells. Indeed, only intranasal vaccination elicited mucosal-specific CD8⁺ T cells expressing the mucosal integrin CD49a. Blockade of CD49a decreased intratumoral CD8⁺ T cell infiltration and the efficacy of cancer vaccine on mucosal tumor. We then showed that after intranasal vaccination, dendritic cells from lung parenchyma, but not those from spleen, induced the expression of CD49a on cocultured specific CD8⁺ T cells. Tumor-infiltrating lymphocytes from human mucosal lung cancer also expressed CD49a, which supports the relevance and possible extrapolation of these results in humans. We thus identified a link between the route of vaccination and the induction of a mucosal homing program on induced CD8⁺ T cells that controlled their trafficking. Immunization route directly affected the efficacy of the cancer vaccine to control mucosal tumors.
Collapse
Affiliation(s)
- Federico Sandoval
- INSERM U970 PARCC, 75015 Paris, France.,Université Paris Descartes, Faculté de Médecine, 75006 Paris, France
| | - Magali Terme
- INSERM U970 PARCC, 75015 Paris, France.,Université Paris Descartes, Faculté de Médecine, 75006 Paris, France
| | - Mevyn Nizard
- INSERM U970 PARCC, 75015 Paris, France.,Université Paris Descartes, Faculté de Médecine, 75006 Paris, France
| | - Cécile Badoual
- INSERM U970 PARCC, 75015 Paris, France.,Université Paris Descartes, Faculté de Médecine, 75006 Paris, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Européen Georges Pompidou (HEGP), 75015 Paris, France
| | - Michel-Francis Bureau
- Laboratoire de Pharmacologie Chimique et Génétique, UMR 8151 CNRS, 75270 Paris, France
| | | | - Olivier Clement
- INSERM U970 PARCC, 75015 Paris, France.,Université Paris Descartes, Faculté de Médecine, 75006 Paris, France
| | - Elie Marcheteau
- INSERM U970 PARCC, 75015 Paris, France.,Université Paris Descartes, Faculté de Médecine, 75006 Paris, France.,INSERM, CIC-BT-505, 75014 Paris, France.,AP-HP, Groupe Hospitalier Cochin Broca Hotel-Dieu, Centre d'investigation clinique de vaccinologie Cochin Pasteur, 75014 Paris, France
| | - Alain Gey
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Européen Georges Pompidou (HEGP), 75015 Paris, France
| | - Guillaume Fraisse
- INSERM U970 PARCC, 75015 Paris, France.,Université Paris Descartes, Faculté de Médecine, 75006 Paris, France
| | - Cécilia Bouguin
- INSERM U970 PARCC, 75015 Paris, France.,Université Paris Descartes, Faculté de Médecine, 75006 Paris, France
| | - Nathalie Merillon
- INSERM U970 PARCC, 75015 Paris, France.,Université Paris Descartes, Faculté de Médecine, 75006 Paris, France
| | - Estelle Dransart
- Institut Curie, Centre de Recherche, Traffic, Signaling, and Delivery Laboratory, 75248 Paris Cedex 05, France.,UMR144 CNRS, 75005 Paris, France
| | - Thi Tran
- INSERM U970 PARCC, 75015 Paris, France.,Université Paris Descartes, Faculté de Médecine, 75006 Paris, France
| | - Françoise Quintin-Colonna
- INSERM U970 PARCC, 75015 Paris, France.,Université Paris Descartes, Faculté de Médecine, 75006 Paris, France.,Ecole Nationale Vétérinaire d'Alfort, Maisons Alfort 94700, France
| | - Gwennhael Autret
- INSERM U970 PARCC, 75015 Paris, France.,Université Paris Descartes, Faculté de Médecine, 75006 Paris, France
| | - Marine Thiebaud
- Institut Curie, Centre de Recherche, Traffic, Signaling, and Delivery Laboratory, 75248 Paris Cedex 05, France.,UMR144 CNRS, 75005 Paris, France
| | - Muhammad Suleman
- UMR 1161 Virologie Inra, Anses, ENVA, 7 avenue du Général de Gaulle, 94704 Maisons-Alfort, France
| | | | - Tzyy-Choou Wu
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | - Odile Launay
- INSERM, CIC-BT-505, 75014 Paris, France.,AP-HP, Groupe Hospitalier Cochin Broca Hotel-Dieu, Centre d'investigation clinique de vaccinologie Cochin Pasteur, 75014 Paris, France
| | - Claire Danel
- Hopital Bichat, Service d'Anatomie Pathologique, 75018 Paris, France
| | - Julien Taieb
- INSERM U970 PARCC, 75015 Paris, France.,Université Paris Descartes, Faculté de Médecine, 75006 Paris, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Européen Georges Pompidou (HEGP), 75015 Paris, France
| | - Jennifer Richardson
- UMR 1161 Virologie Inra, Anses, ENVA, 7 avenue du Général de Gaulle, 94704 Maisons-Alfort, France
| | - Laurence Zitvogel
- Institut Gustave Roussy, INSERM U1015, CIC-BT507, Faculté Paris Sud Université Paris XI, 94805 Paris, France
| | - Wolf H Fridman
- Université Paris Descartes, Faculté de Médecine, 75006 Paris, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Européen Georges Pompidou (HEGP), 75015 Paris, France
| | - Ludger Johannes
- Institut Curie, Centre de Recherche, Traffic, Signaling, and Delivery Laboratory, 75248 Paris Cedex 05, France.,UMR144 CNRS, 75005 Paris, France
| | - Eric Tartour
- INSERM U970 PARCC, 75015 Paris, France.,Université Paris Descartes, Faculté de Médecine, 75006 Paris, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Européen Georges Pompidou (HEGP), 75015 Paris, France.,INSERM, CIC-BT-505, 75014 Paris, France
| |
Collapse
|
21
|
Domingos-Pereira S, Decrausaz L, Derré L, Bobst M, Romero P, Schiller JT, Jichlinski P, Nardelli-Haefliger D. Intravaginal TLR agonists increase local vaccine-specific CD8 T cells and human papillomavirus-associated genital-tumor regression in mice. Mucosal Immunol 2013; 6:393-404. [PMID: 22968420 PMCID: PMC3573262 DOI: 10.1038/mi.2012.83] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Human papillomaviruses (HPV)-related cervical cancer is the second leading cause of cancer death in women worldwide. Despite active development, HPV E6/E7 oncogene-specific therapeutic vaccines have had limited clinical efficacy to date. Here, we report that intravaginal (IVAG) instillation of CpG-ODN (TLR9 agonist) or poly-(I:C) (TLR3 agonist) after subcutaneous E7 vaccination increased ~fivefold the number of vaccine-specific interferon-γ-secreting CD8 T cells in the genital mucosa (GM) of mice, without affecting the E7-specific systemic response. The IVAG treatment locally increased both E7-specific and total CD8 T cells, but not CD4 T cells. This previously unreported selective recruitment of CD8 T cells from the periphery by IVAG CpG-ODN or poly-(I:C) was mediated by TLR9 and TLR3/melanoma differentiation-associated gene 5 signaling pathways, respectively. For CpG, this recruitment was associated with a higher proportion of GM-localized CD8 T cells expressing both CCR5 and CXCR3 chemokine receptors and E-selectin ligands. Most interestingly, IVAG CpG-ODN following vaccination led to complete regression of large genital HPV tumors in 75% of mice, instead of 20% with vaccination alone. These findings suggest that mucosal application of immunostimulatory molecules might substantially increase the effectiveness of parenterally administered vaccines.
Collapse
Affiliation(s)
- Sonia Domingos-Pereira
- Dpt. Urology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Loane Decrausaz
- Dpt. Urology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Laurent Derré
- Dpt. Urology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Martine Bobst
- Dpt. Urology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Pedro Romero
- Ludwig Center for Cancer, Research of the University of Lausanne, CH-1011 Lausanne, Switzerland
| | - John T. Schiller
- Laboratory of Cellular Oncology, National Cancer Institute, NIH Bethesda, MD, USA
| | - Patrice Jichlinski
- Dpt. Urology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Denise Nardelli-Haefliger
- Dpt. Urology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, CH-1011 Lausanne, Switzerland
| |
Collapse
|
22
|
Zonneveld-Huijssoon E, Albani S, Prakken BJ, van Wijk F. Heat shock protein bystander antigens for peptide immunotherapy in autoimmune disease. Clin Exp Immunol 2013. [PMID: 23199319 DOI: 10.1111/j.1365-2249.2012.04627.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mucosal administration of an antigen eliciting bystander suppression at the site of inflammation results in effective antigen-specific immunotherapy for autoimmune diseases. Heat shock proteins are bystander antigens that are effective in peptide-specific immunotherapy in both experimental and human autoimmune disease. The efficacy of preventive peptide immunotherapy is increased by enhancing peptide-specific immune responses with proinflammatory agents. Combining peptide-specific immunotherapy with general suppression of inflammation may improve its therapeutic effect.
Collapse
Affiliation(s)
- E Zonneveld-Huijssoon
- Department of Pediatric Immunology, Centre for Cellular and Molecular Intervention, University Medical Centre Utrecht, Utrecht, the Netherlands
| | | | | | | |
Collapse
|
23
|
Çuburu N, Graham BS, Buck CB, Kines RC, Pang YYS, Day PM, Lowy DR, Schiller JT. Intravaginal immunization with HPV vectors induces tissue-resident CD8+ T cell responses. J Clin Invest 2012; 122:4606-20. [PMID: 23143305 DOI: 10.1172/jci63287] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The induction of persistent intraepithelial CD8+ T cell responses may be key to the development of vaccines against mucosally transmitted pathogens, particularly for sexually transmitted diseases. Here we investigated CD8+ T cell responses in the female mouse cervicovaginal mucosa after intravaginal immunization with human papillomavirus vectors (HPV pseudoviruses) that transiently expressed a model antigen, respiratory syncytial virus (RSV) M/M2, in cervicovaginal keratinocytes. An HPV intravaginal prime/boost with different HPV serotypes induced 10-fold more cervicovaginal antigen-specific CD8+ T cells than priming alone. Antigen-specific T cell numbers decreased only 2-fold after 6 months. Most genital antigen-specific CD8+ T cells were intra- or subepithelial, expressed αE-integrin CD103, produced IFN-γ and TNF-α, and displayed in vivo cytotoxicity. Using a sphingosine-1-phosphate analog (FTY720), we found that the primed CD8+ T cells proliferated in the cervicovaginal mucosa upon HPV intravaginal boost. Intravaginal HPV prime/boost reduced cervicovaginal viral titers 1,000-fold after intravaginal challenge with vaccinia virus expressing the CD8 epitope M2. In contrast, intramuscular prime/boost with an adenovirus type 5 vector induced a higher level of systemic CD8+ T cells but failed to induce intraepithelial CD103+CD8+ T cells or protect against recombinant vaccinia vaginal challenge. Thus, HPV vectors are attractive gene-delivery platforms for inducing durable intraepithelial cervicovaginal CD8+ T cell responses by promoting local proliferation and retention of primed antigen-specific CD8+ T cells.
Collapse
Affiliation(s)
- Nicolas Çuburu
- Laboratory of Cellular Oncology, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Salehi M, Taheri T, Mohit E, Zahedifard F, Seyed N, Taslimi Y, Sattari M, Bolhassani A, Rafati S. Recombinant Leishmania tarentolae encoding the HPV type 16 E7 gene in tumor mice model. Immunotherapy 2012. [DOI: 10.2217/imt.12.110] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: Cervical cancer, the third most prevalent cause of cancer in women worldwide, is associated with HPVs. The critical role of E7 protein in HPV-related malignancies has designated it as a strong contender for generating vaccines against HPV. Materials & methods: In this study, we developed a novel live vaccine using recombinant Leishmania tarentolae expressing E7-green fluorescent protein (GFP) fusion protein for the protection of mice against HPV-associated tumors. In order to transfect L. tarentolae with E7-GFP fusion construct, pLEXSY-neo2 system was applied. Followed by PCR, fluorescence imaging and fluorescence-activated cell sorting analysis, integration of E7-GFP gene into parasites genome was confirmed. A comparative study of six groups of C57BL/6 mice was performed to analyze antigen-specific humoral and cellular immune responses against E7 encoding live and DNA vaccines. Furthermore, the anti-tumor protective effect of L. tarentolae-E7-GFP was compared to other vaccination strategies, namely pcDNA-E7 as the DNA vaccine and pcDNA-E7/L. tarentolae-E7-GFP as the prime-boost regimen. Results: We found that E7-GFP expressing recombinant L. tarentolae induces significant levels of IgG2a and IFN-γ, while there is no significant IL-5 production compared with that of other strategies and control groups before and after challenge with TC-1 tumor cells. It is noteworthy that the designed live vaccine showed the best protection and minimum tumor size among all groups against TC-1-induced tumors. Conclusion: Overall, the results obtained revealed that the E7-GFP recombinant L. tarentolae could be a potential live vaccine for induction of immune responses in vivo.
Collapse
Affiliation(s)
- Maryam Salehi
- Molecular Immunology & Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
- Department of Immunology, Medical School, Shahid Beheshti University of Medical Sciences & Health Services, Tehran, Iran
| | - Tahereh Taheri
- Molecular Immunology & Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Mohit
- Molecular Immunology & Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Farnaz Zahedifard
- Molecular Immunology & Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Negar Seyed
- Molecular Immunology & Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Yasaman Taslimi
- Molecular Immunology & Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Mandana Sattari
- Department of Immunology, Medical School, Shahid Beheshti University of Medical Sciences & Health Services, Tehran, Iran
| | - Azam Bolhassani
- Molecular Immunology & Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Sima Rafati
- Molecular Immunology & Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
25
|
Zonneveld-Huijssoon E, van Wijk F, Roord S, Delemarre E, Meerding J, de Jager W, Klein M, Raz E, Albani S, Kuis W, Boes M, Prakken BJ. TLR9 agonist CpG enhances protective nasal HSP60 peptide vaccine efficacy in experimental autoimmune arthritis. Ann Rheum Dis 2012; 71:1706-15. [PMID: 22562976 DOI: 10.1136/annrheumdis-2011-201131] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Peptide-based immune tolerance induction is considered an attractive treatment option for autoimmune diseases. The authors have developed a novel method that can enhance the induction of protective peptide-specific T-cell responses, using a rat arthritis model. The authors focused on the Toll-like receptor 9 ligand CpG, which was shown to stimulate regulatory T-cell proliferation when added to plasmacytoid dendritic cells (pDC) using in-vitro cultures. METHODS The peptide used is a heat shock protein 60 epitope (p1) that elicits tolerogenic peptide-specific immune responses in human arthritis patients and was recently shown to have protective capacity as a bystander antigen in the rat adjuvant arthritis model. Rats were treated with three nasal doses of p1, CpG or a combination of p1 and CpG. Antigen-presenting cells were studied in nose-draining lymph nodes (mandibular lymph nodes; MLN) after nasal treatment, and T-cell responses were analysed in joint-draining lymph nodes after arthritis induction. RESULTS Nasal co-administration of p1/CpG significantly augmented the arthritis-protective effect of p1, while CpG treatment alone did not. Co-treatment of p1/CpG increased both the number and activation status of pDC in draining MLN, which was accompanied by amplified p1-specific T-cell proliferation and interleukin (IL)-10 production. During early arthritis, p1-specific IL-10 production was identified at the site of inflammation. P1 and p1/CpG-treated rats showed a greater amount of CD4+FoxP3+ regulatory T cells in the joint-draining lymph nodes, which correlated with lower arthritis scores. CONCLUSIONS These clinical and immunological data suggest the use of CpG as a potent adjuvant for mucosal peptide-specific immune therapy in arthritis.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Administration, Intranasal
- Animals
- Arthritis, Experimental/immunology
- Arthritis, Rheumatoid/immunology
- Chaperonin 60/administration & dosage
- Chaperonin 60/immunology
- Dendritic Cells/immunology
- Disease Models, Animal
- Epitopes, T-Lymphocyte/immunology
- Lymphocyte Activation/immunology
- Male
- Oligodeoxyribonucleotides/administration & dosage
- Oligodeoxyribonucleotides/immunology
- Rats
- Rats, Inbred Lew
- T-Lymphocytes, Regulatory/immunology
- Toll-Like Receptor 9/agonists
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/immunology
Collapse
Affiliation(s)
- Evelien Zonneveld-Huijssoon
- Department of Pediatric Immunology, University Medical Centre Utrecht, Centre for Molecular and Cellular Intervention, Lundlaan 6, 3584 EA Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Huston WM, Harvie M, Mittal A, Timms P, Beagley KW. Vaccination to protect against infection of the female reproductive tract. Expert Rev Clin Immunol 2012; 8:81-94. [PMID: 22149343 DOI: 10.1586/eci.11.80] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Infection of the female genital tract can result in serious morbidities and mortalities from reproductive disability, pelvic inflammatory disease and cancer, to impacts on the fetus, such as infant blindness. While therapeutic agents are available, frequent testing and treatment is required to prevent the occurrence of the severe disease sequelae. Hence, sexually transmitted infections remain a major public health burden with ongoing social and economic barriers to prevention and treatment. Unfortunately, while there are two success stories in the development of vaccines to protect against HPV infection of the female reproductive tract, many serious infectious agents impacting on the female reproductive tract still have no vaccines available. Vaccination to prevent infection of the female reproductive tract is an inherently difficult target, with many impacting factors, such as appropriate vaccination strategies/mechanisms to induce a suitable protective response locally in the genital tract, variation in the local immune responses due to the hormonal cycle, selection of vaccine antigen(s) that confers effective protection against multiple variants of a single pathogen (e.g., the different serovars of Chlamydia trachomatis) and timing of the vaccine administration prior to infection exposure. Despite these difficulties, there are numerous ongoing efforts to develop effective vaccines against these infectious agents and it is likely that this important human health field will see further major developments in the next 5 years.
Collapse
Affiliation(s)
- Wilhelmina M Huston
- Institute of Health and Biomedical Innovation, 60 Musk Avenue, Queensland University of Technology, Kelvin Grove, Queensland, Australia.
| | | | | | | | | |
Collapse
|
27
|
New insights in mucosal vaccine development. Vaccine 2011; 30:142-54. [PMID: 22085556 DOI: 10.1016/j.vaccine.2011.11.003] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 10/25/2011] [Accepted: 11/01/2011] [Indexed: 12/30/2022]
Abstract
Mucosal surfaces are the major entrance for infectious pathogens and therefore mucosal immune responses serve as a first line of defence. Most current immunization procedures are obtained by parenteral injection and only few vaccines are administered by mucosal route, because of its low efficiency. However, targeting of mucosal compartments to induce protective immunity at both mucosal sites and systemic level represents a great challenge. Major efforts are made to develop new mucosal candidate vaccines by selecting appropriate antigens with high immunogenicity, designing new mucosal routes of administration and selecting immune-stimulatory adjuvant molecules. The aim of mucosal vaccines is to induce broad potent protective immunity by specific neutralizing antibodies at mucosal surfaces and by induction of cellular immunity. Moreover, an efficient mucosal vaccine would make immunization procedures easier and be better suited for mass administration. This review focuses on contemporary developments of mucosal vaccination approaches using different routes of administration.
Collapse
|