1
|
Rzhevskiy AS, Sagitova GR, Karashaeva TA, Morozov AO, Fatyanova AS, Kazantseva VV, Joosse SA, Zvyagin AV, Warkini ME. A comprehensive review and meta-analysis of CTC isolation methods in breast cancer. Crit Rev Oncol Hematol 2025; 206:104579. [PMID: 39615710 DOI: 10.1016/j.critrevonc.2024.104579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 12/08/2024] Open
Abstract
The application of circulating tumor cells (CTCs) as diagnostic and prognostic markers in oncology is gaining increasing importance in clinical practice. Currently, various methods exist for detecting CTCs in patients' biological fluids. This systematic review aimed to compare the efficacy of different techniques for isolating and detecting CTCs from blood, against the FDA-cleared CellSearch® technology, in breast cancer patients. We performed a systematic literature search using two databases (PubMed and the Cochrane Library) with the following terms: ("Circulating tumor cells" OR CTC) AND "breast cancer", covering the period from 2004 to April 2023. The primary outcome measured was the sensitivity, specificity, and overall accuracy of various CTC enrichment methods in comparison with the CellSearch® System. Secondary outcomes included the prognostic value of CTCs in evaluating response to treatment based on survival rates. Generally, a high level of agreement between CellSearch and other methods was observed in isolating CTCs from patients' blood with both metastatic and early-stage disease. Studies asserting the superiority of new methods over CellSearch frequently used clinically unvalidated cut-off thresholds for their patient cohorts. Additionally, these studies sometimes included different nonoverlapping patient cohorts and lacked a standardized chemotherapy treatment protocol, which could affect the quantitative changes in CTC. It is evident that methods simultaneously composed of physical and immunomagnetic approaches for CTC isolation significantly surpass CellSearch, which relies solely on the expression of specific markers on the CTCs' surface. The count of CTCs has been established as a predictive marker in terms of clinically important parameters namely progression-free survival (PFS) and overall survival (OS). The CTC-count value was significantly correlated with PFS and OS rates.
Collapse
Affiliation(s)
- Alexey S Rzhevskiy
- Institute of Molecular Theranostics, Sechenov First Moscow State Medical University, Moscow 119991, Russia; Faculty of Computer Science, National Research University Higher School of Economics, Moscow 101000, Russia
| | - Guzel R Sagitova
- Institute of Molecular Theranostics, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Tamilla A Karashaeva
- Institute of Molecular Theranostics, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Andrey O Morozov
- Institute for Urology and Reproductive Health, Sechenov University, Moscow 119991, Russia
| | - Anastasia S Fatyanova
- Department of Oncology, Radiotherapy and Reconstructive Surgery, Institution of Clinical Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Vlada V Kazantseva
- Institute of Molecular Theranostics, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Simon A Joosse
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg 20246, Germany; Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg 20246, Germany
| | - Andrei V Zvyagin
- Institute of Molecular Theranostics, Sechenov First Moscow State Medical University, Moscow 119991, Russia; Australian Research Council Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, NSW 2109, Australia; Research Center for Translational Medicine, Sirius University of Science and Technology, Sochi 354340, Russia.
| | - Majid Ebrahimi Warkini
- Institute of Molecular Theranostics, Sechenov First Moscow State Medical University, Moscow 119991, Russia; School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
2
|
Janjua D, Chaudhary A, Joshi U, Tripathi T, Bharti AC. Circulating tumor cells in solid malignancies: From advanced isolation technologies to biological understanding and clinical relevance in early diagnosis and prognosis. Biochim Biophys Acta Rev Cancer 2025; 1880:189236. [PMID: 39662757 DOI: 10.1016/j.bbcan.2024.189236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024]
Abstract
Circulating tumor cells (CTCs) are shed from primary tumors and travel through the body via circulation, eventually settling to form micrometastases under favorable conditions. Numerous studies have identified CTCs as a negative prognostic indicator for survival across various cancer types. CTCs mirror the current heterogeneity and genetic and biological state of tumors, making their study invaluable for understanding tumor progression, cell senescence, and cancer dormancy. However, their isolation and characterization still poses a major challenge that limits their clinical translation. A wide array of methods, each with different levels of specificity, utility, cost, and sensitivity, have been developed to isolate and characterize CTCs. Moreover, innovative techniques are emerging to address the limitations of existing methods. In this review, we provide insights into CTC biology addressing spectra of markers employed for molecular analysis and functional characterization. It also emphasizes current label-dependent and label-independent isolation procedures, addressing their strengths and limitations. SIGNIFICANCE: A comprehensive overview of CTC biology, their molecular and functional characterization, along with their current clinical utility will help in understanding the present-day extent to which the clinical potential of CTCs is getting tapped in personalized medicine.
Collapse
Affiliation(s)
- Divya Janjua
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Apoorva Chaudhary
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Udit Joshi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India.
| |
Collapse
|
3
|
Dompé C, Chojnowska A, Ramlau R, Nowicki M, Alix-Panabières C, Budna-Tukan J. Unveiling the dynamics of circulating tumor cells in colorectal cancer: from biology to clinical applications. Front Cell Dev Biol 2024; 12:1498032. [PMID: 39539964 PMCID: PMC11557528 DOI: 10.3389/fcell.2024.1498032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
This review delves into the pivotal role of circulating tumor cells (CTCs) in colorectal cancer (CRC) metastasis, focusing on their biological properties, interactions with the immune system, advanced detection techniques, and clinical implications. We explored how metastasis-competent CTCs evade immune surveillance and proliferate, utilizing cutting-edge detection and isolation technologies, such as microfluidic devices and immunological assays, to enhance sensitivity and specificity. The review highlights the significant impact of CTC interactions with immune cells on tumor progression and patient outcomes. It discusses the application of these findings in clinical settings, including non-invasive liquid biopsies for early diagnosis, prognosis, and treatment monitoring. Despite advancements, challenges remain, such as the need for standardized methods to consistently capture and analyze CTCs. Addressing these challenges through further molecular and cellular research on CTCs could lead to improved interventions and outcomes for CRC patients, underscoring the importance of unraveling the complex dynamics of CTCs in cancer progression.
Collapse
Affiliation(s)
- Claudia Dompé
- Department of Immunology, Poznan University of Medical Sciences, Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Rodryg Ramlau
- Department of Oncology, Poznan University of Medical Sciences, Poznan, Poland
| | - Michal Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells and Liquid Biopsy (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- Centre de Recherche en Ecologie et Evolution du Cancer, Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, University of Montpellier, Centre National de la Recherche Scientifique, Institut de Recherche Pour le Dévelopement, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Joanna Budna-Tukan
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, Zielona Gora, Poland
| |
Collapse
|
4
|
Roumeliotou A, Strati A, Chamchougia F, Xagara A, Tserpeli V, Smilkou S, Lagopodi E, Christopoulou A, Kontopodis E, Drositis I, Androulakis N, Georgoulias V, Koinis F, Kotsakis A, Lianidou E, Kallergi G. Comprehensive Analysis of CXCR4, JUNB, and PD-L1 Expression in Circulating Tumor Cells (CTCs) from Prostate Cancer Patients. Cells 2024; 13:782. [PMID: 38727318 PMCID: PMC11083423 DOI: 10.3390/cells13090782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
CXCR4, JUNB and PD-L1 are implicated in cancer progression and metastasis. The current study investigated these biomarkers in CTCs isolated from metastatic prostate cancer (mPCa) patients at the RNA and protein levels. CTCs were isolated from 48 mPCa patients using the Ficoll density gradient and ISET system (17 out of 48). The (CK/PD-L1/CD45) and (CK/CXCR4/JUNB) phenotypes were identified using two triple immunofluorescence stainings followed by VyCAP platform analysis. Molecular analysis was conducted with an EpCAM-dependent method for 25/48 patients. CK-8, CK-18, CK-19, JUNB, CXCR4, PD-L1, and B2M (reference gene) were analyzed with RT-qPCR. The (CK+/PD-L1+/CD45-) and the (CK+/CXCR4+/JUNB+) were the most frequent phenotypes (61.1% and 62.5%, respectively). Furthermore, the (CK+/CXCR4+/JUNB-) phenotype was correlated with poorer progression-free survival [(PFS), HR: 2.5, p = 0.049], while the (CK+/PD-L1+/CD45-) phenotype was linked to decreased overall survival [(OS), HR: 262.7, p = 0.007]. Molecular analysis revealed that 76.0% of the samples were positive for CK-8,18, and 19, while 28.0% were positive for JUNB, 44.0% for CXCR4, and 48.0% for PD-L1. Conclusively, CXCR4, JUNB, and PD-L1 were highly expressed in CTCs from mPCa patients. The CXCR4 protein expression was associated with poorer PFS, while PD-L1 was correlated with decreased OS, providing new biomarkers with potential clinical relevance.
Collapse
Affiliation(s)
- Argyro Roumeliotou
- Laboratory of Biochemistry/Metastatic Signaling, Department of Biology, University of Patras, 26504 Patras, Greece; (A.R.); (F.C.)
| | - Areti Strati
- Analysis of Circulating Tumor Cells Lab, Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.S.); (V.T.); (S.S.); (E.L.); (E.L.)
| | - Foteini Chamchougia
- Laboratory of Biochemistry/Metastatic Signaling, Department of Biology, University of Patras, 26504 Patras, Greece; (A.R.); (F.C.)
| | - Anastasia Xagara
- Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece; (A.X.); (F.K.); (A.K.)
- Hellenic Oncology Research Group, 11526 Athens, Greece;
| | - Victoria Tserpeli
- Analysis of Circulating Tumor Cells Lab, Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.S.); (V.T.); (S.S.); (E.L.); (E.L.)
| | - Stavroula Smilkou
- Analysis of Circulating Tumor Cells Lab, Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.S.); (V.T.); (S.S.); (E.L.); (E.L.)
| | - Elina Lagopodi
- Analysis of Circulating Tumor Cells Lab, Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.S.); (V.T.); (S.S.); (E.L.); (E.L.)
| | | | - Emmanouil Kontopodis
- Department of Oncology, Venizeleion General Hospital of Heraklion, 71409 Heraklion, Greece; (E.K.); (I.D.); (N.A.)
| | - Ioannis Drositis
- Department of Oncology, Venizeleion General Hospital of Heraklion, 71409 Heraklion, Greece; (E.K.); (I.D.); (N.A.)
| | - Nikolaos Androulakis
- Department of Oncology, Venizeleion General Hospital of Heraklion, 71409 Heraklion, Greece; (E.K.); (I.D.); (N.A.)
| | - Vassilis Georgoulias
- Hellenic Oncology Research Group, 11526 Athens, Greece;
- First Department of Medical Oncology, Metropolitan General Hospital, 15562 Athens, Greece
| | - Filippos Koinis
- Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece; (A.X.); (F.K.); (A.K.)
- Hellenic Oncology Research Group, 11526 Athens, Greece;
| | - Athanasios Kotsakis
- Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece; (A.X.); (F.K.); (A.K.)
- Hellenic Oncology Research Group, 11526 Athens, Greece;
| | - Evi Lianidou
- Analysis of Circulating Tumor Cells Lab, Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.S.); (V.T.); (S.S.); (E.L.); (E.L.)
| | - Galatea Kallergi
- Laboratory of Biochemistry/Metastatic Signaling, Department of Biology, University of Patras, 26504 Patras, Greece; (A.R.); (F.C.)
| |
Collapse
|
5
|
Pu Y, Li L, Peng H, Liu L, Heymann D, Robert C, Vallette F, Shen S. Drug-tolerant persister cells in cancer: the cutting edges and future directions. Nat Rev Clin Oncol 2023; 20:799-813. [PMID: 37749382 DOI: 10.1038/s41571-023-00815-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2023] [Indexed: 09/27/2023]
Abstract
Drug-tolerant persister (DTP) cell populations were originally discovered in antibiotic-resistant bacterial biofilms. Similar populations with comparable features have since been identified among cancer cells and have been linked with treatment resistance that lacks an underlying genomic alteration. Research over the past decade has improved our understanding of the biological roles of DTP cells in cancer, although clinical knowledge of the role of these cells in treatment resistance remains limited. Nonetheless, targeting this population is anticipated to provide new treatment opportunities. In this Perspective, we aim to provide a clear definition of the DTP phenotype, discuss the underlying characteristics of these cells, their biomarkers and vulnerabilities, and encourage further research on DTP cells that might improve our understanding and enable the development of more effective anticancer therapies.
Collapse
Affiliation(s)
- Yi Pu
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Li
- Lung Cancer Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Haoning Peng
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Lunxu Liu
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Dominique Heymann
- Nantes Université, CNRS, UMR6286, US2B, Nantes, France
- Institut de Cancérologie de l'Ouest, Saint-Herblain, France
| | - Caroline Robert
- INSERM U981, Gustave Roussy Cancer Campus, Villejuif, France
- Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - François Vallette
- Institut de Cancérologie de l'Ouest, Saint-Herblain, France.
- Nantes Université, INSERM, U1307, CRCI2NA, Nantes, France.
| | - Shensi Shen
- Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Phenotypic Plasticity in Circulating Tumor Cells Is Associated with Poor Response to Therapy in Metastatic Breast Cancer Patients. Cancers (Basel) 2023; 15:cancers15051616. [PMID: 36900406 PMCID: PMC10000974 DOI: 10.3390/cancers15051616] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Circulating tumor cells (CTCs) are indicators of metastatic spread and progression. In a longitudinal, single-center trial of patients with metastatic breast cancer starting a new line of treatment, a microcavity array was used to enrich CTCs from 184 patients at up to 9 timepoints at 3-month intervals. CTCs were analyzed in parallel samples from the same blood draw by imaging and by gene expression profiling to capture CTC phenotypic plasticity. Enumeration of CTCs by image analysis relying primarily on epithelial markers from samples obtained before therapy or at 3-month follow-up identified the patients at the highest risk of progression. CTC counts decreased with therapy, and progressors had higher CTC counts than non-progressors. CTC count was prognostic primarily at the start of therapy in univariate and multivariate analyses but had less prognostic utility at 6 months to 1 year later. In contrast, gene expression, including both epithelial and mesenchymal markers, identified high-risk patients after 6-9 months of treatment, and progressors had a shift towards mesenchymal CTC gene expression on therapy. Cross-sectional analysis showed higher CTC-related gene expression in progressors 6-15 months after baseline. Furthermore, patients with higher CTC counts and CTC gene expression experienced more progression events. Longitudinal time-dependent multivariate analysis indicated that CTC count, triple-negative status, and CTC expression of FGFR1 significantly correlated with inferior progression-free survival while CTC count and triple-negative status correlated with inferior overall survival. This highlights the utility of protein-agnostic CTC enrichment and multimodality analysis to capture the heterogeneity of CTCs.
Collapse
|
7
|
Tsoneva DK, Ivanov MN, Conev NV, Manev R, Stoyanov DS, Vinciguerra M. Circulating Histones to Detect and Monitor the Progression of Cancer. Int J Mol Sci 2023; 24:ijms24020942. [PMID: 36674455 PMCID: PMC9860657 DOI: 10.3390/ijms24020942] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Liquid biopsies have emerged as a minimally invasive cancer detection and monitoring method, which could identify cancer-related alterations in nucleosome or histone levels and modifications in blood, saliva, and urine. Histones, the core component of the nucleosome, are essential for chromatin compaction and gene expression modulation. Increasing evidence suggests that circulating histones and histone complexes, originating from cell death or immune cell activation, could act as promising biomarkers for cancer detection and management. In this review, we provide an overview of circulating histones as a powerful liquid biopsy approach and methods for their detection. We highlight current knowledge on circulating histones in hematologic malignancies and solid cancer, with a focus on their role in cancer dissemination, monitoring, and tumorigenesis. Last, we describe recently developed strategies to identify cancer tissue-of-origin in blood plasma based on nucleosome positioning, inferred from nucleosomal DNA fragmentation footprint, which is independent of the genetic landscape.
Collapse
Affiliation(s)
- Desislava K. Tsoneva
- Department of Medical Genetics, Faculty of Medicine, Medical University of Varna, 9000 Varna, Bulgaria
- Department of Stem Cell Biology and Transplantology, Research Institute, Medical University of Varna, 9000 Varna, Bulgaria
| | - Martin N. Ivanov
- Department of Stem Cell Biology and Transplantology, Research Institute, Medical University of Varna, 9000 Varna, Bulgaria
- Department of Anatomy and Cell Biology, Research Institute, Medical University of Varna, 9000 Varna, Bulgaria
| | - Nikolay Vladimirov Conev
- Clinic of Medical Oncology, UMHAT “St. Marina”, 1 “Hristo Smirnenski” Blvd., 9000 Varna, Bulgaria
- Department of Propedeutics of Internal Diseases, Medical University of Varna, 9000 Varna, Bulgaria
| | - Rostislav Manev
- Clinic of Medical Oncology, UMHAT “St. Marina”, 1 “Hristo Smirnenski” Blvd., 9000 Varna, Bulgaria
- Department of Propedeutics of Internal Diseases, Medical University of Varna, 9000 Varna, Bulgaria
| | - Dragomir Svetozarov Stoyanov
- Clinic of Medical Oncology, UMHAT “St. Marina”, 1 “Hristo Smirnenski” Blvd., 9000 Varna, Bulgaria
- Department of Propedeutics of Internal Diseases, Medical University of Varna, 9000 Varna, Bulgaria
| | - Manlio Vinciguerra
- Department of Stem Cell Biology and Transplantology, Research Institute, Medical University of Varna, 9000 Varna, Bulgaria
- Correspondence:
| |
Collapse
|
8
|
Vasantharajan SS, Barnett E, Gray ES, Rodger EJ, Eccles MR, Pattison S, Munro F, Chatterjee A. Size-Based Method for Enrichment of Circulating Tumor Cells from Blood of Colorectal Cancer Patients. Methods Mol Biol 2023; 2588:231-248. [PMID: 36418692 DOI: 10.1007/978-1-0716-2780-8_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Circulating tumor cells (CTCs) are precursors of the metastatic cascade, which is responsible for 90% of all cancer-related deaths. CTCs arise from solid tumors and travel through the bloodstream and lymphatic system. Developments in the isolation and analysis of CTCs promise potential biomarker assays for detection and monitoring of cancer through a minimally invasive procedure. Despite this, the precise role of CTCs in metastasis remains poorly characterized, mainly due to the low density of CTCs (1-10 CTCs per 10 mL of blood) present in patient blood and the lack of robust methods for their isolation in a standard laboratory setting. CellSearch is currently the only FDA-approved CTC enrichment protocol, but limitations of this EpCAM-based method include cost, availability, and the use of a single surface marker for capture. To address these limitations, we have optimized an existing method, MetaCell, which exploits the differences in size of CTCs compared to other blood cells for CTC enrichment from blood. MetaCell contains a membrane with 8 μm pores, and blood is filtered through this kit by capillary action and CTCs, which are typically larger than the pores and remain on top of the membrane, while most leukocytes pass through the pores. The membrane along with these CTCs can be detached and transferred to 6-well plates for culturing or directly used for characterization. Here, we provide a detailed protocol for enrichment of CTCs using the filtration device MetaCell and a procedure for characterization of CTCs by immunohistochemical staining.
Collapse
Affiliation(s)
- Sai Shyam Vasantharajan
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.
| | - Edward Barnett
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Elin S Gray
- Centre for Precision Health, Edith Cowan University, Joondalup, Australia
| | - Euan J Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Sharon Pattison
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Fran Munro
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.
- UPES University, School of Health Sciences, Dehradun, India.
| |
Collapse
|
9
|
Foret T, Dufrost V, Heymonet M, Risse J, Faure GC, Louis H, Lagrange J, Lacolley P, Devreese K, Gibot S, Regnault V, Zuily S, Wahl D. Circulating Endothelial Cells are Associated with Thromboembolic Events in Patients with Antiphospholipid Antibodies. Thromb Haemost 2023; 123:76-84. [PMID: 35977699 DOI: 10.1055/a-1926-0453] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Endothelial damage has been described in antiphospholipid antibody (aPL)-positive patients. However, it is uncertain whether circulating endothelial cells (CECs)-which are released when endothelial injury occurs-can be a marker of patients at high risk for thrombosis. METHODS Ninety-seven patients with aPL and/or systemic lupus erythematosus (SLE) were included. CECs were determined by an automated CellSearch system. We also assayed plasma levels of tissue factor-bearing extracellular vesicles (TF+/EVs) and soluble triggering receptor expressed on myeloid cells 1 (sTREM-1) as markers of endothelial dysfunction/damage. RESULTS Patients' mean age was 46.1 ± 13.9 years, 77 were women. Thirty-seven had SLE and 75 patients were suffering from antiphospholipid syndrome. Thirty-seven percent of patients presented a medical history of arterial thrombosis and 46% a history of venous thromboembolism (VTE). Thirteen patients had increased levels of CECs (>20/mL), with a mean CEC level of 48.3 ± 21.3 per mL. In univariate analysis, patients with obesity or medical history of myocardial infarction (MI), VTE, or nephropathy had a significant increased CEC level. In multivariate analysis, obesity (odds ratio [OR] = 6.07, 95% confidence interval [CI]: 1.42-25.94), VTE (OR = 7.59 [95% CI: 1.38-41.66]), and MI (OR = 5.5 [95% CI: 1.1-26.6)] were independently and significantly associated with elevated CECs. We also identified significant correlations between CECs and other markers of endothelial dysfunction: sTREM-1 and TF+/EVs. CONCLUSION This study demonstrated that endothelial injury assessed by the levels of CECs was associated with thromboembolic events in patients with aPL and/or autoimmune diseases.
Collapse
Affiliation(s)
- Thomas Foret
- INSERM, DCAC, Université de Lorraine, Nancy, France.,Division of Vascular Medicine, CHRU-Nancy, Regional Competence Center for Rare Vascular and Systemic Autoimmune Diseases, Nancy, France
| | - Virginie Dufrost
- INSERM, DCAC, Université de Lorraine, Nancy, France.,Division of Vascular Medicine, CHRU-Nancy, Regional Competence Center for Rare Vascular and Systemic Autoimmune Diseases, Nancy, France
| | | | - Jessie Risse
- INSERM, DCAC, Université de Lorraine, Nancy, France.,Division of Vascular Medicine, CHRU-Nancy, Regional Competence Center for Rare Vascular and Systemic Autoimmune Diseases, Nancy, France.,CH de Sarreguemines, Sarreguemines, France
| | - Gilbert C Faure
- Laboratory of Immunology, CHRU-Nancy, Nancytomique, Pôle Laboratoire.,CRAN UMR CNRS 7039, Nancy, France
| | | | - Jeremy Lagrange
- INSERM, DCAC, Université de Lorraine, Nancy, France.,Délégation à la Recherche Clinique et à l'Innovation, CHRU-Nancy, Nancy, France
| | - Patrick Lacolley
- INSERM, DCAC, Université de Lorraine, Nancy, France.,Délégation à la Recherche Clinique et à l'Innovation, CHRU-Nancy, Nancy, France
| | - Katrien Devreese
- Department of Diagnostic Sciences, Coagulation Laboratory, Ghent University Hospital, Ghent University, Ghent, Belgium
| | | | - Veronique Regnault
- INSERM, DCAC, Université de Lorraine, Nancy, France.,Délégation à la Recherche Clinique et à l'Innovation, CHRU-Nancy, Nancy, France
| | - Stéphane Zuily
- INSERM, DCAC, Université de Lorraine, Nancy, France.,Division of Vascular Medicine, CHRU-Nancy, Regional Competence Center for Rare Vascular and Systemic Autoimmune Diseases, Nancy, France
| | - Denis Wahl
- INSERM, DCAC, Université de Lorraine, Nancy, France.,Division of Vascular Medicine, CHRU-Nancy, Regional Competence Center for Rare Vascular and Systemic Autoimmune Diseases, Nancy, France
| |
Collapse
|
10
|
Comparative application of microfluidic systems in circulating tumor cells and extracellular vesicles isolation; a review. Biomed Microdevices 2022; 25:4. [PMID: 36574057 DOI: 10.1007/s10544-022-00644-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2022] [Indexed: 12/28/2022]
Abstract
Cancer is a prevalent cause of mortality globally, where early diagnosis leads to a reduced death rate. Many researchers' common strategies are based on personalized diagnostic methods with rapid response and high accuracy. This technology was developed by applying liquid biopsy instead of tissue biopsies in the case of tumor cell analysis that facilitates point-of-care testing for cancer diagnosis and treatment. In recent years, significant progress in microfluidic technology led to the successful isolation, analysis, and monitoring of cancer biomarkers in body liquid biopsy with merits like high sensitivity and flexibility, low sample usage, cost effective, and the ability of automation. The most critical and informative markers in body liquid refer to circulating tumor cells (CTCs) and extracellular vesicles derived from tumors (EVs) that carry various biomarkers in their structure (DNAs, proteins, and RNAs) as compared to ctDNA. The released ctDNA has a low half-life and decreased sensitivity due to large amounts of nucleic acid in serum. This review intends to highlight different cancer screening tests with a particular focus on the details regarding the only FDA-approved and awaiting technologies for FDA clearance to isolate CTCs and EVs based on microfluidics systems.
Collapse
|
11
|
Gianni C, Palleschi M, Merloni F, Bleve S, Casadei C, Sirico M, Di Menna G, Sarti S, Cecconetto L, Mariotti M, De Giorgi U. Potential Impact of Preoperative Circulating Biomarkers on Individual Escalating/de-Escalating Strategies in Early Breast Cancer. Cancers (Basel) 2022; 15:96. [PMID: 36612091 PMCID: PMC9817806 DOI: 10.3390/cancers15010096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
The research on non-invasive circulating biomarkers to guide clinical decision is in wide expansion, including the earliest disease settings. Several new intensification/de-intensification strategies are approaching clinical practice, personalizing the treatment for each patient. Moreover, liquid biopsy is revealing its potential with multiple techniques and studies available on circulating biomarkers in the preoperative phase. Inflammatory circulating cells, circulating tumor cells (CTCs), cell-free DNA (cfDNA), circulating tumor DNA (ctDNA), and other biological biomarkers are improving the armamentarium for treatment selection. Defining the escalation and de-escalation of treatments is a mainstay of personalized medicine in early breast cancer. In this review, we delineate the studies investigating the possible application of these non-invasive tools to give a more enlightened approach to escalating/de-escalating strategies in early breast cancer.
Collapse
Affiliation(s)
- Caterina Gianni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Shirai K, Guan G, Meihui T, Xiaoling P, Oka Y, Takahashi Y, Bhagat AAS, Yanagida M, Iwanaga S, Matsubara N, Mukohara T, Yoshida T. Hybrid double-spiral microfluidic chip for RBC-lysis-free enrichment of rare cells from whole blood. LAB ON A CHIP 2022; 22:4418-4429. [PMID: 36305222 DOI: 10.1039/d2lc00713d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Drug selection and treatment monitoring via minimally invasive liquid biopsy using circulating tumor cells (CTCs) are expected to be realized in the near future. For clinical applications of CTCs, simple, high-throughput, single-step CTC isolation from whole blood without red blood cell (RBC) lysis and centrifugation remains a crucial challenge. In this study, we developed a novel cancer cell separation chip, "hybrid double-spiral chip", that involves the serial combination of two different Dean flow fractionation (DFF) separation modes of half and full Dean cycles, which is the hybrid DFF separation mode for ultra-high-throughput blood processing at high precision and size-resolution separation. The chip allows fast processing of 5 mL whole blood within 30 min without RBC lysis and centrifugation. RBC and white blood cell (WBC) depletion rates of over 99.9% and 99%, respectively, were achieved. The average recovery rate of spiked A549 cancer cells was 87% with as low as 200 cells in 5 mL blood. The device can achieve serial reduction in the number of cells from approximately 1010 cells of whole blood to 108 cells, and subsequently to an order of 106 cells. The developed method can be combined with measurements of all recovered cells using imaging flow cytometry. As proof of concept, CTCs were successfully enriched and enumerated from the blood of metastatic breast cancer patients (N = 10, 1-69 CTCs per 5 mL) and metastatic prostate cancer patients (N = 10, 1-39 CTCs per 5 mL). We believe that the developed method will be beneficial for automated clinical analysis of rare CTCs from whole blood.
Collapse
Affiliation(s)
- Kentaro Shirai
- Sysmex Corporation, 4-4-4, Takatsuka-dai, Nishi-ku, Kobe, Hyogo, Japan.
| | - Guofeng Guan
- Biolidics Limited, 37 Jalan Pemimpin, 577177 Singapore
| | - Tan Meihui
- Biolidics Limited, 37 Jalan Pemimpin, 577177 Singapore
| | - Peng Xiaoling
- Sysmex Corporation, 4-4-4, Takatsuka-dai, Nishi-ku, Kobe, Hyogo, Japan.
| | - Yuma Oka
- Sysmex Corporation, 4-4-4, Takatsuka-dai, Nishi-ku, Kobe, Hyogo, Japan.
| | - Yusuke Takahashi
- Sysmex Corporation, 4-4-4, Takatsuka-dai, Nishi-ku, Kobe, Hyogo, Japan.
| | | | | | - Shigeki Iwanaga
- Sysmex Corporation, 4-4-4, Takatsuka-dai, Nishi-ku, Kobe, Hyogo, Japan.
| | - Nobuaki Matsubara
- Department of Medical Oncology, National Cancer Center Hospital East, Kashiwanoha, Kashiwa, Japan
| | - Toru Mukohara
- Department of Medical Oncology, National Cancer Center Hospital East, Kashiwanoha, Kashiwa, Japan
| | - Tomokazu Yoshida
- Sysmex Corporation, 4-4-4, Takatsuka-dai, Nishi-ku, Kobe, Hyogo, Japan.
| |
Collapse
|
13
|
Noubissi Nzeteu GA, Geismann C, Arlt A, Hoogwater FJH, Nijkamp MW, Meyer NH, Bockhorn M. Role of Epithelial-to-Mesenchymal Transition for the Generation of Circulating Tumors Cells and Cancer Cell Dissemination. Cancers (Basel) 2022; 14:5483. [PMID: 36428576 PMCID: PMC9688619 DOI: 10.3390/cancers14225483] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Tumor-related death is primarily caused by metastasis; consequently, understanding, preventing, and treating metastasis is essential to improving clinical outcomes. Metastasis is mainly governed by the dissemination of tumor cells in the systemic circulation: so-called circulating tumor cells (CTCs). CTCs typically arise from epithelial tumor cells that undergo epithelial-to-mesenchymal transition (EMT), resulting in the loss of cell-cell adhesions and polarity, and the reorganization of the cytoskeleton. Various oncogenic factors can induce EMT, among them the transforming growth factor (TGF)-β, as well as Wnt and Notch signaling pathways. This entails the activation of numerous transcription factors, including ZEB, TWIST, and Snail proteins, acting as transcriptional repressors of epithelial markers, such as E-cadherin and inducers of mesenchymal markers such as vimentin. These genetic and phenotypic changes ultimately facilitate cancer cell migration. However, to successfully form distant metastases, CTCs must primarily withstand the hostile environment of circulation. This includes adaption to shear stress, avoiding being trapped by coagulation and surviving attacks of the immune system. Several applications of CTCs, from cancer diagnosis and screening to monitoring and even guided therapy, seek their way into clinical practice. This review describes the process leading to tumor metastasis, from the generation of CTCs in primary tumors to their dissemination into distant organs, as well as the importance of subtyping CTCs to improve personalized and targeted cancer therapy.
Collapse
Affiliation(s)
- Gaetan Aime Noubissi Nzeteu
- University Hospital of General and Visceral Surgery, Department of Human Medicine, University of Oldenburg and Klinikum Oldenburg, 26129 Oldenburg, Germany
| | - Claudia Geismann
- Laboratory of Molecular Gastroenterology & Hepatology, Department of Internal Medicine I, UKSH-Campus Kiel, 24118 Kiel, Germany
| | - Alexander Arlt
- Department for Gastroenterology and Hepatology, University Hospital Oldenburg, Klinikum Oldenburg AöR, European Medical School (EMS), 26133 Oldenburg, Germany
| | - Frederik J. H. Hoogwater
- Section of HPB Surgery & Liver Transplantation, Department of Surgery, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Maarten W. Nijkamp
- Section of HPB Surgery & Liver Transplantation, Department of Surgery, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - N. Helge Meyer
- University Hospital of General and Visceral Surgery, Department of Human Medicine, University of Oldenburg and Klinikum Oldenburg, 26129 Oldenburg, Germany
| | - Maximilian Bockhorn
- University Hospital of General and Visceral Surgery, Department of Human Medicine, University of Oldenburg and Klinikum Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
14
|
Fridrichova I, Kalinkova L, Ciernikova S. Clinical Relevancy of Circulating Tumor Cells in Breast Cancer: Epithelial or Mesenchymal Characteristics, Single Cells or Clusters? Int J Mol Sci 2022; 23:12141. [PMID: 36292996 PMCID: PMC9603393 DOI: 10.3390/ijms232012141] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 07/30/2023] Open
Abstract
Metastatic breast cancer (MBC) is typically an incurable disease with high mortality rates; thus, early identification of metastatic features and disease recurrence through precise biomarkers is crucial. Circulating tumor cells (CTCs) consisting of heterogeneous subpopulations with different morphology and genetic, epigenetic, and gene expression profiles represent promising candidate biomarkers for metastatic potential. The experimentally verified role of epithelial-to-mesenchymal transition in cancer dissemination has not been clearly described in BC patients, but the stemness features of CTCs strongly contributes to metastatic potency. Single CTCs have been shown to be protected in the bloodstream against recognition by the immune system through impaired interactions with T lymphocytes and NK cells, while associations of heterotypic CTC clusters with platelets, leucocytes, neutrophils, tumor-associated macrophages, and fibroblasts improve their tumorigenic behavior. In addition to single CTC and CTC cluster characteristics, we reviewed CTC evaluation methods and clinical studies in early and metastatic BCs. The variable CTC tests were developed based on specific principles and strategies. However, CTC count and the presence of CTC clusters were shown to be most clinically relevant in existing clinical trials. Despite the known progress in CTC research and sampling of BC patients, implementation of CTCs and CTC clusters in routine diagnostic and treatment strategies still requires improvement in detection sensitivity and precise molecular characterizations, focused predominantly on the role of CTC clusters for their higher metastatic potency.
Collapse
|
15
|
Shah UJ, Alsulimani A, Ahmad F, Mathkor DM, Alsaieedi A, Harakeh S, Nasiruddin M, Haque S. Bioplatforms in liquid biopsy: advances in the techniques for isolation, characterization and clinical applications. Biotechnol Genet Eng Rev 2022; 38:339-383. [PMID: 35968863 DOI: 10.1080/02648725.2022.2108994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tissue biopsy analysis has conventionally been the gold standard for cancer prognosis, diagnosis and prediction of responses/resistances to treatments. The existing biopsy procedures used in clinical practice are, however, invasive, painful and often associated with pitfalls like poor recovery of tumor cells and infeasibility for repetition in single patients. To circumvent these limitations, alternative non-invasive, rapid and economical, yet sturdy, consistent and dependable, biopsy techniques are required. Liquid biopsy is an emerging technology that fulfills these criteria and potentially much more in terms of subject-specific real-time monitoring of cancer progression, determination of tumor heterogeneity and treatment responses, and specific identification of the type and stages of cancers. The present review first briefly revisits the state-of-the-art technique of liquid biopsy and then proceeds to address in detail, the advances in the potential clinical applications of four major biological agencies present in liquid biopsy samples (circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), exosomes and tumor-educated platelets (TEPs)). Finally, the authors conclude with the limitations that need to be addressed in order for liquid biopsy to effectively replace the conventional invasive biopsy methods in the clinical settings.
Collapse
Affiliation(s)
- Ushma Jaykamal Shah
- MedGenome Labs Ltd, Kailash Cancer Hospital and Research Center, Vadodara, India
| | - Ahmad Alsulimani
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology, Vellore, India
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Ahdab Alsaieedi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, and Yousef Abdullatif Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Nasiruddin
- MedGenome Labs Ltd, Narayana Health City, Bangalore, India.,Genomics Lab, Orbito Asia Diagnostics, Coimbatore, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
16
|
Hirotsu A, Kikuchi H, Yamada H, Ozaki Y, Haneda R, Kawata S, Murakami T, Matsumoto T, Hiramatsu Y, Kamiya K, Yamashita D, Fujimori Y, Ueda Y, Okazaki S, Kitagawa M, Konno H, Takeuchi H. Artificial intelligence-based classification of peripheral blood nucleated cells using label-free imaging flow cytometry. LAB ON A CHIP 2022; 22:3464-3474. [PMID: 35942978 DOI: 10.1039/d2lc00166g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Label-free image identification of circulating rare cells, such as circulating tumor cells within peripheral blood nucleated cells (PBNCs), the vast majority of which are white blood cells (WBCs), remains challenging. We previously described developing label-free image cytometry for classifying live cells using computer vision technology for pattern recognition, based on the subcellular structure of the quantitative phase microscopy images. We applied our image recognition methods to cells flowing in a flow cytometer microfluidic channel, and differentiated WBCs from cancer cell lines (area under receiver operating characteristic curve = 0.957). We then applied this method to healthy volunteers' and advanced cancer patients' blood samples and found that the non-WBC fraction rates (NWBC-FRs), defined as the percentage of cells classified as non-WBCs of the total PBNCs, were significantly higher in cancer patients than in healthy volunteers. Furthermore, we monitored NWBC-FRs over the therapeutic courses in cancer patients, which revealed the potential ability in monitoring the clinical status during therapy. Our image recognition system has the potential to provide a morphological diagnostic tool for circulating rare cells as non-WBC fractions.
Collapse
Affiliation(s)
- Amane Hirotsu
- Department of Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.
| | - Hirotoshi Kikuchi
- Department of Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.
| | - Hidenao Yamada
- Central Research Laboratory, Hamamatsu Photonics K.K, Hamamatsu, Shizuoka, Japan
| | - Yusuke Ozaki
- Department of Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.
| | - Ryoma Haneda
- Department of Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.
| | - Sanshiro Kawata
- Department of Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.
| | - Tomohiro Murakami
- Department of Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.
| | - Tomohiro Matsumoto
- Department of Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.
| | - Yoshihiro Hiramatsu
- Department Perioperative Functioning Care and Support, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Kinji Kamiya
- Department of Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.
| | - Daisuke Yamashita
- Central Research Laboratory, Hamamatsu Photonics K.K, Hamamatsu, Shizuoka, Japan
| | - Yuki Fujimori
- Central Research Laboratory, Hamamatsu Photonics K.K, Hamamatsu, Shizuoka, Japan
| | - Yukio Ueda
- Central Research Laboratory, Hamamatsu Photonics K.K, Hamamatsu, Shizuoka, Japan
| | - Shigetoshi Okazaki
- HAMAMATSU BioPhotonics Innovation Chair, Institute for Medical Photonics Research, Preeminent Medical Photonics Education and Research Centre, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Masatoshi Kitagawa
- Department of Molecular Biology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
- Laboratory Animal Facilities and Services, Preeminent Medical Photonics Education and Research Centre, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Hiroyuki Konno
- Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Hiroya Takeuchi
- Department of Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.
| |
Collapse
|
17
|
Vasantharajan SS, Barnett E, Gray ES, McCall JL, Rodger EJ, Eccles MR, Munro F, Pattison S, Chatterjee A. Assessment of a Size-Based Method for Enriching Circulating Tumour Cells in Colorectal Cancer. Cancers (Basel) 2022; 14:3446. [PMID: 35884509 PMCID: PMC9319975 DOI: 10.3390/cancers14143446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/01/2022] [Accepted: 07/12/2022] [Indexed: 12/07/2022] Open
Abstract
Circulating tumour cells (CTC) from solid tumours are a prerequisite for metastasis. Isolating CTCs and understanding their biology is essential for developing new clinical tests and precision oncology. Currently, CellSearch is the only FDA (U.S. Food and Drug Administration)-approved method for CTC enrichment but possesses several drawbacks owing to a reliance on the epithelial cell adhesion molecule (EpCAM) and a resource-intensive nature. Addressing these shortcomings, we optimised an existing size-based method, MetaCell, to enrich CTCs from blood of colorectal cancer (CRC) patients. We evaluated the ability of MetaCell to enrich CTCs by spiking blood with CRC cell lines and assessing the cell recovery rates and WBC depletion via immunostaining and gene expression. We then applied MetaCell to samples from 17 CRC patients and seven controls. Recovery rates were >85% in cell lines, with >95% depletion in WBCs. MetaCell yielded CTCs and CTC clusters in 52.9% and 23.5% of the patients, respectively, without false positives in control patients. CTCs and cluster detection did not correlate with histopathological parameters. Overall, we demonstrated that the MetaCell platform enriched CRC cells with high recovery rates and high purity. Our pilot study also demonstrated the ability of MetaCell to detect CTCs in CRC patients.
Collapse
Affiliation(s)
- Sai Shyam Vasantharajan
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (S.S.V.); (E.B.); (E.J.R.); (M.R.E.)
| | - Edward Barnett
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (S.S.V.); (E.B.); (E.J.R.); (M.R.E.)
| | - Elin S. Gray
- Centre for Precision Health and School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia;
| | - John L. McCall
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand; (J.L.M.); (F.M.)
| | - Euan J. Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (S.S.V.); (E.B.); (E.J.R.); (M.R.E.)
| | - Michael R. Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (S.S.V.); (E.B.); (E.J.R.); (M.R.E.)
| | - Fran Munro
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand; (J.L.M.); (F.M.)
| | - Sharon Pattison
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (S.S.V.); (E.B.); (E.J.R.); (M.R.E.)
- School of Health Sciences and Technology, UPES University, Dehradun 248007, India
| |
Collapse
|
18
|
Senhaji N, Squalli Houssaini A, Lamrabet S, Louati S, Bennis S. Molecular and Circulating Biomarkers in Patients with Glioblastoma. Int J Mol Sci 2022; 23:7474. [PMID: 35806478 PMCID: PMC9267689 DOI: 10.3390/ijms23137474] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma is the most aggressive malignant tumor of the central nervous system with a low survival rate. The difficulty of obtaining this tumor material represents a major limitation, making the real-time monitoring of tumor progression difficult, especially in the events of recurrence or resistance to treatment. The identification of characteristic biomarkers is indispensable for an accurate diagnosis, the rigorous follow-up of patients, and the development of new personalized treatments. Liquid biopsy, as a minimally invasive procedure, holds promise in this regard. The purpose of this paper is to summarize the current literature regarding the identification of molecular and circulating glioblastoma biomarkers and the importance of their integration as a valuable tool to improve patient care.
Collapse
Affiliation(s)
- Nadia Senhaji
- Department of Biology, Faculty of Sciences, Moulay Ismail University, Meknes 50000, Morocco
- Laboratory of Biomedical and Translational Research, Faculty of Medicine, Pharmacy and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez 30070, Morocco; (A.S.H.); (S.L.); (S.B.)
| | - Asmae Squalli Houssaini
- Laboratory of Biomedical and Translational Research, Faculty of Medicine, Pharmacy and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez 30070, Morocco; (A.S.H.); (S.L.); (S.B.)
| | - Salma Lamrabet
- Laboratory of Biomedical and Translational Research, Faculty of Medicine, Pharmacy and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez 30070, Morocco; (A.S.H.); (S.L.); (S.B.)
| | - Sara Louati
- Medical Biotechnology Laboratory, Faculty of Medicine and Pharmacy of Rabat, Mohammed Vth University, Rabat 10000, Morocco;
| | - Sanae Bennis
- Laboratory of Biomedical and Translational Research, Faculty of Medicine, Pharmacy and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez 30070, Morocco; (A.S.H.); (S.L.); (S.B.)
| |
Collapse
|
19
|
Sankar K, Zeinali M, Nagrath S, Ramnath N. Molecular biomarkers and liquid biopsies in lung cancer. Semin Oncol 2022; 49:275-284. [PMID: 35820969 DOI: 10.1053/j.seminoncol.2022.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 12/27/2022]
Abstract
Liquid biopsy refers to the identification of tumor-derived materials in body fluids including in blood circulation. In the age of immunotherapy and targeted therapies used for the treatment of advanced malignancies, molecular analysis of the tumor is considered a crucial step to guide management. In lung cancer, the concept of liquid biopsies is particularly relevant given the invasiveness of tumor biopsies in certain locations, and the potential risks of biopsy in a patient population with significant co-morbidities. Liquid biopsies have many advantages including non-invasiveness, lower cost, potential for genomic testing, ability to monitor tumor evolution through treatment, and the ability to overcome spatial and temporal intertumoral heterogeneity. The potential clinical applications of liquid biopsy are vast and include screening, detection of minimal residual disease and/or early relapse after curative intent treatment, monitoring response to immunotherapy, and identifying mutations that might be targetable or can confer resistance. Herein, we review the potential role of circulating tumor DNA and circulating tumor cells as forms of liquid biopsies and blood biomarkers in non-small cell lung cancer. We discuss the methodologies/platforms available for each, clinical applications, and limitations/challenges in incorporation into clinical practice. We additionally review emerging forms of liquid biopsies including tumor educated platelets, circular RNA, and exosomes.
Collapse
Affiliation(s)
- Kamya Sankar
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Mina Zeinali
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI; Biointerfaces Institute, University of Michigan, Ann Arbor, MI; Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| | - Sunitha Nagrath
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI; Biointerfaces Institute, University of Michigan, Ann Arbor, MI; Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| | - Nithya Ramnath
- Division of Medical Oncology, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI.
| |
Collapse
|
20
|
Meisami AH, Abbasi M, Mosleh-Shirazi S, Azari A, Amani AM, Vaez A, Golchin A. Self-propelled micro/nanobots: A new insight into precisely targeting cancerous cells through intelligent and deep cancer penetration. Eur J Pharmacol 2022; 926:175011. [PMID: 35568064 DOI: 10.1016/j.ejphar.2022.175011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/13/2022]
Abstract
Cancer overlooks are globally one of the most dangerous and life-threatening tribulations. While significant advances have been made in the targeted delivery of anti-cancer medications over the last few years, several challenges, such as low efficacy and strong toxic effects, remain to be addressed. Micro/nanomotors have been thoroughly studied for both effective cancer detection and treatment, as demonstrated by significant advancements in the architecture of smart and functional micro/nanomotor biomedical systems. Able to self-propelled within fluid media, micro/nanomotors have attractive vehicles to maximize the efficacy of tumor delivery. Here, we present the current developments in the delivery, detection, and imaging-guided treatment of micro/nanomotors in the clinical field, including cancer-related specific targeted drug delivery, and then discuss the barriers and difficulties encountered by micro/nanomotors throughout the medical process. Furthermore, this paper addresses the potential growth of micro/nanomotors for medical applications, and sets out the current drawbacks and future research directions for more advancement.
Collapse
Affiliation(s)
- Amir Hossein Meisami
- Department of Emergency Medicine, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sareh Mosleh-Shirazi
- Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz, Iran
| | - Arezo Azari
- Department of Applied Cell Sciences and Tissue Engineering, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Golchin
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
21
|
Lone SN, Nisar S, Masoodi T, Singh M, Rizwan A, Hashem S, El-Rifai W, Bedognetti D, Batra SK, Haris M, Bhat AA, Macha MA. Liquid biopsy: a step closer to transform diagnosis, prognosis and future of cancer treatments. Mol Cancer 2022; 21:79. [PMID: 35303879 PMCID: PMC8932066 DOI: 10.1186/s12943-022-01543-7] [Citation(s) in RCA: 384] [Impact Index Per Article: 128.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/21/2022] [Indexed: 02/07/2023] Open
Abstract
Over the past decade, invasive techniques for diagnosing and monitoring cancers are slowly being replaced by non-invasive methods such as liquid biopsy. Liquid biopsies have drastically revolutionized the field of clinical oncology, offering ease in tumor sampling, continuous monitoring by repeated sampling, devising personalized therapeutic regimens, and screening for therapeutic resistance. Liquid biopsies consist of isolating tumor-derived entities like circulating tumor cells, circulating tumor DNA, tumor extracellular vesicles, etc., present in the body fluids of patients with cancer, followed by an analysis of genomic and proteomic data contained within them. Methods for isolation and analysis of liquid biopsies have rapidly evolved over the past few years as described in the review, thus providing greater details about tumor characteristics such as tumor progression, tumor staging, heterogeneity, gene mutations, and clonal evolution, etc. Liquid biopsies from cancer patients have opened up newer avenues in detection and continuous monitoring, treatment based on precision medicine, and screening of markers for therapeutic resistance. Though the technology of liquid biopsies is still evolving, its non-invasive nature promises to open new eras in clinical oncology. The purpose of this review is to provide an overview of the current methodologies involved in liquid biopsies and their application in isolating tumor markers for detection, prognosis, and monitoring cancer treatment outcomes.
Collapse
Affiliation(s)
- Saife N Lone
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, Jammu & Kashmir, India
| | - Sabah Nisar
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, PO BOX 26999, Doha, Qatar
| | - Tariq Masoodi
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, PO BOX 26999, Doha, Qatar
| | - Mayank Singh
- Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Arshi Rizwan
- Department of Nephrology, All India Institute of Medical Sciences, New Delhi, India
| | - Sheema Hashem
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, PO BOX 26999, Doha, Qatar
| | - Wael El-Rifai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Veterans Affairs, Miami Healthcare System, Miami, FL, USA
| | - Davide Bedognetti
- Cancer Research Department, Research Branch, Sidra Medicince, Doha, Qatar
- Department of Internal Medicine and Medical Specialities, University of Genova, Genova, Italy
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, NE 68198, Omaha, USA
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center , Omaha, NE 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, University of Nebraska Medical Center, NE 68198, Omaha, USA
| | - Mohammad Haris
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, PO BOX 26999, Doha, Qatar
- Laboratory Animal Research Center, Qatar University, Doha, Qatar
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Ajaz A Bhat
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, PO BOX 26999, Doha, Qatar.
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, (IUST), 192122, Awantipora, Jammu & Kashmir, India.
| |
Collapse
|
22
|
Advances in microfluidics devices and its applications in personalized medicines. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 186:191-201. [PMID: 35033284 DOI: 10.1016/bs.pmbts.2021.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Microfluidics is an exponentially growing area and is being used for numerous applications from basic science to advanced biotechnology and medicines. Microfluidics provides a platform to the research community for studying and building new strategies for the diagnosis and therapeutics applications. In the last decade, microfluidic have enriched the field of diagnostics by providing new solutions which was not possible with conventional detection and treatment methods. Microfluidics has the ability to precisely control and perform high-throughput functions. It has been proven as an efficient and rapid method for biological sample preparation, analysis and controlled drug delivery system. Microfluidics plays significant role in personalized medicine. These personalized medicines are used for medical decisions, practices and other interventions as well as for individual patients based on their predicted response or risk of disease. This chapter highlights microfluidics in developing personalized medical applications for its applications in diseases such as cancer, cardiovascular disease, diabetes, pulmonary disease and several others.
Collapse
|
23
|
Danila DC. Liquid biopsy as a cancer biomarker-potential, and challenges. Cancer Biomark 2022. [DOI: 10.1016/b978-0-12-824302-2.00013-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Circulating Tumor Cells: Technologies and Their Clinical Potential in Cancer Metastasis. Biomedicines 2021; 9:biomedicines9091111. [PMID: 34572297 PMCID: PMC8467892 DOI: 10.3390/biomedicines9091111] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/21/2021] [Accepted: 08/26/2021] [Indexed: 02/07/2023] Open
Abstract
Circulating tumor cells (CTCs) are single cells or clusters of cells within the circulatory system of a cancer patient. While most CTCs will perish, a small proportion will proceed to colonize the metastatic niche. The clinical importance of CTCs was reaffirmed by the 2008 FDA approval of CellSearch®, a platform that could extract EpCAM-positive, CD45-negative cells from whole blood samples. Many further studies have demonstrated the presence of CTCs to stratify patients based on overall and progression-free survival, among other clinical indices. Given their unique role in metastasis, CTCs could also offer a glimpse into the genetic drivers of metastasis. Investigation of CTCs has already led to groundbreaking discoveries such as receptor switching between primary tumors and metastatic nodules in breast cancer, which could greatly affect disease management, as well as CTC-immune cell interactions that enhance colonization. In this review, we will highlight the growing variety of isolation techniques for investigating CTCs. Next, we will provide clinically relevant context for CTCs, discussing key clinical trials involving CTCs. Finally, we will provide insight into the future of CTC studies and some questions that CTCs are primed to answer.
Collapse
|
25
|
Yang CS, Kim IH, Chae HD, Kim DD, Jeon CH. Detection of Circulating Gastrointestinal Cancer Cells in Conditionally Reprogrammed Cell Culture. In Vivo 2021; 35:1515-1520. [PMID: 33910829 DOI: 10.21873/invivo.12404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND/AIM The aim of this study was to detect circulating tumor cells (CTC) in the peripheral blood of gastrointestinal cancer patients using conditionally reprogrammed cell (CRC) culture. MATERIALS AND METHODS We confirmed the sensitivity of the CRC culture method. Five ml of blood were obtained from 81 cancer patients (56 colorectal and 25 gastric). The collected mononuclear cells were cultured for 4 weeks in the CRC condition. Finally, cultured cells were characterized by RT-PCR for the expression of hTERT and MAGE A1-6 mRNA. RESULTS The CRC method had a CTC detection limit of 6 cells for gastric cancer cells. After culture of 81 blood specimens, 38 formed visible cells, including 5 colonies. Among the 38 cells, 13 were hTERT positive and 4 were MAGE A1-6 positive. The final CTC detection rate was 16.0%. CONCLUSION The CRC culture may potentially be used to evaluate the metastatic cancer cells in the circulation.
Collapse
Affiliation(s)
- Chun-Seok Yang
- Department of General Surgery, Medical School, Daegu Catholic University Medical Center, Daegu, Republic of Korea
| | - In-Hwan Kim
- Department of General Surgery, Medical School, Daegu Catholic University Medical Center, Daegu, Republic of Korea
| | - Hyun-Dong Chae
- Department of General Surgery, Medical School, Daegu Catholic University Medical Center, Daegu, Republic of Korea
| | - Dae-Dong Kim
- Department of General Surgery, Medical School, Yonsei University, Seoul, Republic of Korea
| | - Chang-Ho Jeon
- Department of Laboratory Medicine, Medical School, Daegu Catholic University Medical Center, Daegu, Republic of Korea
| |
Collapse
|
26
|
Circulating Tumor Cells from Enumeration to Analysis: Current Challenges and Future Opportunities. Cancers (Basel) 2021; 13:cancers13112723. [PMID: 34072844 PMCID: PMC8198976 DOI: 10.3390/cancers13112723] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/25/2021] [Indexed: 01/19/2023] Open
Abstract
Simple Summary With estimated numbers of 1–10 per mL of blood, circulating tumor cells (CTCs) are extremely rare compared to white (a few million) or red (billions) blood cells. Given their critical role in metastasis, CTCs have enormous potential as a biomarker for cancer diagnosis, prognosis, and monitoring of treatment response. There are now efforts to characterize CTCs more precisely through molecular and functional analysis, expanding the CTC effort from one of diagnosis and prognosis to now include the use of CTCs to specifically target cancers and discover therapeutic solutions, establishing CTCs as critical in precision medicine. This article summarizes current knowledge about CTC isolation technologies and discusses the translational benefits of different types of downstream analysis approaches, including single-CTC analysis, ex vivo expansion of CTCs, and characterization of CTC-associated cells. Abstract Circulating tumor cells (CTCs) have been recognized as a major contributor to distant metastasis. Their unique role as metastatic seeds renders them a potential marker in the circulation for early cancer diagnosis and prognosis as well as monitoring of therapeutic response. In the past decade, researchers mainly focused on the development of isolation techniques for improving the recovery rate and purity of CTCs. These developed techniques have significantly increased the detection sensitivity and enumeration accuracy of CTCs. Currently, significant efforts have been made toward comprehensive molecular characterization, ex vivo expansion of CTCs, and understanding the interactions between CTCs and their associated cells (e.g., immune cells and stromal cells) in the circulation. In this review, we briefly summarize existing CTC isolation technologies and specifically focus on advances in downstream analysis of CTCs and their potential applications in precision medicine. We also discuss the current challenges and future opportunities in their clinical utilization.
Collapse
|
27
|
Vasantharajan SS, Eccles MR, Rodger EJ, Pattison S, McCall JL, Gray ES, Calapre L, Chatterjee A. The Epigenetic landscape of Circulating tumour cells. Biochim Biophys Acta Rev Cancer 2021; 1875:188514. [PMID: 33497709 DOI: 10.1016/j.bbcan.2021.188514] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 12/31/2022]
Abstract
Cancer metastasis is the main reason for the high mortality in patients, contributing to 90% of cancer-related deaths. Biomarkers for early detection and therapeutic monitoring are essential to improve cancer outcomes. Circulating tumour cells (CTCs) arise from solid tumours and are capable of metastatic dissemination via the bloodstream or lymphatic system. Thus, CTCs can potentially be developed as a minimally invasive biomarker for early detection and therapeutic monitoring. Despite its clinical potential, research on CTCs remains limited, and this is likely due to their low numbers, short half-life, and the lack of robust methods for their isolation. There is also a need for molecular characterisation of CTCs to identify tumour-specific features, such as epigenetic signatures of metastasis. This review provides an overview of the epigenetic landscape of CTCs. We discuss the role of epigenetic modifications in CTC dissemination,metastatic tumour formation and progression and highlight its clinical implications.
Collapse
Affiliation(s)
| | - Michael R Eccles
- Department of Pathology, Otago Medical School-Dunedin Campus, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand.
| | - Euan J Rodger
- Department of Pathology, Otago Medical School-Dunedin Campus, New Zealand.
| | - Sharon Pattison
- Department of Medicine, Otago Medical School-Dunedin Campus, New Zealand.
| | - John L McCall
- Department of Surgical Sciences, Otago Medical School-Dunedin Campus, New Zealand.
| | - Elin S Gray
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia.
| | - Leslie Calapre
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia.
| | - Aniruddha Chatterjee
- Department of Pathology, Otago Medical School-Dunedin Campus, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand.
| |
Collapse
|
28
|
Farshchi F, Hasanzadeh M. Microfluidic biosensing of circulating tumor cells (CTCs): Recent progress and challenges in efficient diagnosis of cancer. Biomed Pharmacother 2020; 134:111153. [PMID: 33360045 DOI: 10.1016/j.biopha.2020.111153] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 10/22/2022] Open
Abstract
Cancer metastasis is one of the foremost causes of cancer incidence and fatality in the whole of the world. Circulating tumor cells (CTC) have been confirmed to be among the most significant stimuli of metastasis in recent years and presently are the subject of extensive research aiming to be accurately identified by using biological and physical properties. Among the various studies conducted for isolation, identification, and characterization of CTCs, microfluidic systems have aroused great attention owing to their unique advantages such as low-cost, simplicity, reduction in reagent consumption, miniaturization, fast and precise control. The purpose of this review is to provide an overview of current state of the microfluidic biosensors for the screening of CTCs. Additionally, given the recent progress in this field, future outlook for the development of the microfluidics biosensing is briefly discussed.
Collapse
Affiliation(s)
- Fatemeh Farshchi
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
29
|
Li J, Guan X, Fan Z, Ching LM, Li Y, Wang X, Cao WM, Liu DX. Non-Invasive Biomarkers for Early Detection of Breast Cancer. Cancers (Basel) 2020; 12:E2767. [PMID: 32992445 PMCID: PMC7601650 DOI: 10.3390/cancers12102767] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the most common cancer in women worldwide. Accurate early diagnosis of breast cancer is critical in the management of the disease. Although mammogram screening has been widely used for breast cancer screening, high false-positive and false-negative rates and radiation from mammography have always been a concern. Over the last 20 years, the emergence of "omics" strategies has resulted in significant advances in the search for non-invasive biomarkers for breast cancer diagnosis at an early stage. Circulating carcinoma antigens, circulating tumor cells, circulating cell-free tumor nucleic acids (DNA or RNA), circulating microRNAs, and circulating extracellular vesicles in the peripheral blood, nipple aspirate fluid, sweat, urine, and tears, as well as volatile organic compounds in the breath, have emerged as potential non-invasive diagnostic biomarkers to supplement current clinical approaches to earlier detection of breast cancer. In this review, we summarize the current progress of research in these areas.
Collapse
Affiliation(s)
- Jiawei Li
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand; (J.L.); (X.G.); (Y.L.)
| | - Xin Guan
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand; (J.L.); (X.G.); (Y.L.)
- Department of Breast Surgery, the First Hospital of Jilin University, Jilin University, Changchun 130021, China;
| | - Zhimin Fan
- Department of Breast Surgery, the First Hospital of Jilin University, Jilin University, Changchun 130021, China;
| | - Lai-Ming Ching
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand;
| | - Yan Li
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand; (J.L.); (X.G.); (Y.L.)
| | - Xiaojia Wang
- Department of Breast Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital & Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China;
| | - Wen-Ming Cao
- Department of Breast Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital & Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China;
| | - Dong-Xu Liu
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand; (J.L.); (X.G.); (Y.L.)
| |
Collapse
|
30
|
A Direct Comparison between the Lateral Magnetophoretic Microseparator and AdnaTest for Isolating Prostate Circulating Tumor Cells. MICROMACHINES 2020; 11:mi11090870. [PMID: 32961814 PMCID: PMC7570110 DOI: 10.3390/mi11090870] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 12/22/2022]
Abstract
Circulating tumor cells (CTCs) are important biomarkers for the diagnosis, prognosis, and treatment of cancer. However, because of their extreme rarity, a more precise technique for isolating CTCs is required to gain deeper insight into the characteristics of cancer. This study compares the performance of a lateral magnetophoretic microseparator (“CTC-μChip”), as a representative microfluidic device, and AdnaTest ProstateCancer (Qiagen), as a commercially available specialized method, for isolating CTCs from the blood of patients with prostate cancer. The enumeration and genetic analysis results of CTCs isolated via the two methods were compared under identical conditions. In the CTC enumeration experiment, the number of CTCs isolated by the CTC-μChip averaged 17.67 CTCs/mL, compared to 1.56 CTCs/mL by the AdnaTest. The number of contaminating white blood cells (WBCs) and the CTC purity with the CTC-μChip averaged 772.22 WBCs/mL and 3.91%, respectively, whereas those with the AdnaTest averaged 67.34 WBCs/mL and 1.98%, respectively. Through genetic analysis, using a cancer-specific gene panel (AR (androgen receptor), AR-V7 (A\androgen receptor variant-7), PSMA (prostate specific membrane antigen), KRT19 (cytokeratin-19), CD45 (PTPRC, Protein tyrosine phosphatase, receptor type, C)) with reverse transcription droplet digital PCR, three genes (AR, AR-V7, and PSMA) were more highly expressed in cells isolated by the CTC-μChip, while KRT19 and CD45 were similarly detected using both methods. Consequently, this study showed that the CTC-μChip can be used to isolate CTCs more reliably than AdnaTest ProstateCancer, as a specialized method for gene analysis of prostate CTCs, as well as more sensitively obtain cancer-associated gene expressions.
Collapse
|
31
|
Yap K, Cohen EN, Reuben JM, Khoury JD. Circulating Tumor Cells: State-of-the-art Update on Technologies and Clinical Applications. Curr Hematol Malig Rep 2020; 14:353-357. [PMID: 31364034 DOI: 10.1007/s11899-019-00531-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE OF REVIEW Circulating tumor cells represent rare events in the peripheral blood of patients with cancer that can provide insight into tumor biology. CTC enumeration, isolation, and analysis represent liquid biopsy approaches whose role in the management of patients with cancer continues to evolve in the era of precision medicine. This review presents an overview of technologies central to studying CTCs. RECENT FINDINGS Technologies for CTC isolation can be divided into two categories: label-dependent and label-independent. Label-dependent techniques utilize biological properties such as cell surface proteins, while label-independent techniques utilize distinctive physical properties such as cell size, density, and plasticity. Advances in microfluidics designs as well as hybrid combinations of label-dependent and label-independent techniques have resulted in unprecedented improvements in CTC isolation, permitting not only the detection and enumeration of these rare events but also providing the means for studying them and exploring them as a new dimension of cancer biomarkers. With advances in tools for isolating and studying CTCs in hand, questions regarding the clinical utility of CTC enumeration in peripheral blood, detection of CTC-associated biomarkers, and analysis of dynamic changes in CTCs during the course of cancer therapy represent exciting new opportunities for cancer research.
Collapse
Affiliation(s)
- Kristofor Yap
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, MS-072, Houston, TX, 77030, USA
| | - Evan N Cohen
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, MS-072, Houston, TX, 77030, USA
| | - James M Reuben
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, MS-072, Houston, TX, 77030, USA
| | - Joseph D Khoury
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, MS-072, Houston, TX, 77030, USA.
| |
Collapse
|
32
|
Vafaei S, Roudi R, Madjd Z, Aref AR, Ebrahimi M. Potential theranostics of circulating tumor cells and tumor-derived exosomes application in colorectal cancer. Cancer Cell Int 2020; 20:288. [PMID: 32655320 PMCID: PMC7339440 DOI: 10.1186/s12935-020-01389-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/27/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND At the present time, colorectal cancer (CRC) is still known as a disease with a high mortality rate. Theranostics are flawless scenarios that link diagnosis with therapy, including precision medicine as a critical platform that relies on the development of biomarkers particularly "liquid biopsy". Circulating tumor cells (CTCs) and tumor-derived exosomes (TDEs) in a liquid biopsy approach are of substantial importance in comparison with traditional ones, which cannot generally be performed to determine the dynamics of the tumor due to its wide restriction of range. Thus, recent attempts has shifted towards minimally noninvasive methods. MAIN TEXT CTCs and TDEs, as significant signals emitted from the tumor microenvironment, which are also detectable in the blood, prove themselves to be promising novel biomarkers for cancer diagnosis, prognosis, and treatment response prediction. The therapeutic potential of them is still limited, and studies are at its infancy. One of the major challenges for the implementation of CTCs and TDEs which are new trends in translational medicine is the development of isolation and characterization; a standardizable approach. This review highlights and discusses the current challenges to find the bio fluids application in CRC early detection and clinical management. CONCLUSION Taken together, CTCs and TDEs as silent drivers of metastasis can serve in the management of cancer patient treatment and it is of the upmost importance to expand our insight into this subject. However, due to the limited data available from clinical trials, further validations are required before addressing their putative application in oncology.
Collapse
Affiliation(s)
- Somayeh Vafaei
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Raheleh Roudi
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
33
|
Akpe V, Kim TH, Brown CL, Cock IE. Circulating tumour cells: a broad perspective. J R Soc Interface 2020; 17:20200065. [PMCID: PMC7423436 DOI: 10.1098/rsif.2020.0065] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/09/2020] [Indexed: 08/13/2023] Open
Abstract
Circulating tumour cells (CTCs) have recently been identified as valuable biomarkers for diagnostic and prognostic evaluations, as well for monitoring therapeutic responses to treatments. CTCs are rare cells which may be present as one CTC surrounded by approximately 1 million white blood cells and 1 billion red blood cells per millilitre of peripheral blood. Despite the various challenges in CTC detection, considerable progress in detection methods have been documented in recent times, particularly for methodologies incorporating nanomaterial-based platforms and/or integrated microfluidics. Herein, we summarize the importance of CTCs as biological markers for tumour detection, highlight their mechanism of cellular invasion and discuss the various challenges associated with CTC research, including vulnerability, heterogeneity, phenotypicity and size differences. In addition, we describe nanomaterial agents used for electrochemistry and surface plasmon resonance applications, which have recently been used to selectively capture cancer cells and amplify signals for CTC detection. The intrinsic properties of nanomaterials have also recently been exploited to achieve photothermal destruction of cancer cells. This review describes recent advancements and future perspectives in the CTC field.
Collapse
Affiliation(s)
- Victor Akpe
- School of Environment and Science, Griffith University, Nathan Campus, Queensland 4111, Australia
- Environmental Futures Research Institute, Griffith University, Nathan Campus, Queensland 4111, Australia
| | - Tak H. Kim
- School of Environment and Science, Griffith University, Nathan Campus, Queensland 4111, Australia
- Environmental Futures Research Institute, Griffith University, Nathan Campus, Queensland 4111, Australia
| | - Christopher L. Brown
- School of Environment and Science, Griffith University, Nathan Campus, Queensland 4111, Australia
- Environmental Futures Research Institute, Griffith University, Nathan Campus, Queensland 4111, Australia
| | - Ian E. Cock
- School of Environment and Science, Griffith University, Nathan Campus, Queensland 4111, Australia
- Environmental Futures Research Institute, Griffith University, Nathan Campus, Queensland 4111, Australia
| |
Collapse
|
34
|
Harigopal M, Kowalski D, Vosoughi A. Enumeration and molecular characterization of circulating tumor cells as an innovative tool for companion diagnostics in breast cancer. Expert Rev Mol Diagn 2020; 20:815-828. [PMID: 32546017 DOI: 10.1080/14737159.2020.1784009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Circulating tumor cells (CTC) and more recently, CTC clusters are implicated as a fundamental mechanism by which tumor cells break away from the primary site and travel to distant sites. Enumeration of CTC and CTC clusters represents a new approach to prognosis, prediction, and response to therapy in patients with early and metastatic breast cancer. Several recent studies have shown the predictive importance of monitoring CTCs levels in progression-free and overall survival in breast cancer patients. This review will focus on CTC enumeration and characterization in breast cancers. AREAS COVERED We will provide a historical perspective and clinical background of CTC detection in peripheral blood. The current methodologies for studying CTCs and newer technologies for CTC detection will be reviewed together with the current state of the art of CTCs as a biomarker in risk stratification and prognostication in breast cancers. EXPERT OPINION Currently, there is an FDA approved CTC assessment method for clinical use. While CTC enumeration, is a marker for prognostication and survival, molecular characterization of CTC, may be more accurate in monitoring response to treatment due to tumor heterogeneity rather than the tumor phenotype at the primary or metastatic sites.
Collapse
Affiliation(s)
- Malini Harigopal
- Department of Pathology, Yale School of Medicine New Haven, Connecticut ., 06520-8023, New Haven, CT, United States
| | - Diane Kowalski
- Department of Pathology, Yale School of Medicine New Haven, Connecticut ., 06520-8023, New Haven, CT, United States
| | - Aram Vosoughi
- Department of Pathology, Yale School of Medicine New Haven, Connecticut ., 06520-8023, New Haven, CT, United States
| |
Collapse
|
35
|
Iyer A, Gupta K, Sharma S, Hari K, Lee YF, Ramalingam N, Yap YS, West J, Bhagat AA, Subramani BV, Sabuwala B, Tan TZ, Thiery JP, Jolly MK, Ramalingam N, Sengupta D. Integrative Analysis and Machine Learning based Characterization of Single Circulating Tumor Cells. J Clin Med 2020; 9:jcm9041206. [PMID: 32331451 PMCID: PMC7230872 DOI: 10.3390/jcm9041206] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/06/2020] [Accepted: 04/16/2020] [Indexed: 12/28/2022] Open
Abstract
We collated publicly available single-cell expression profiles of circulating tumor cells (CTCs) and showed that CTCs across cancers lie on a near-perfect continuum of epithelial to mesenchymal (EMT) transition. Integrative analysis of CTC transcriptomes also highlighted the inverse gene expression pattern between PD-L1 and MHC, which is implicated in cancer immunotherapy. We used the CTCs expression profiles in tandem with publicly available peripheral blood mononuclear cell (PBMC) transcriptomes to train a classifier that accurately recognizes CTCs of diverse phenotype. Further, we used this classifier to validate circulating breast tumor cells captured using a newly developed microfluidic system for label-free enrichment of CTCs.
Collapse
Affiliation(s)
- Arvind Iyer
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi 110020, India;
| | - Krishan Gupta
- Department of Computer Science and Engineering, Indraprastha Institute of Information Technology, New Delhi 110020, India; (K.G.); (S.S.)
| | - Shreya Sharma
- Department of Computer Science and Engineering, Indraprastha Institute of Information Technology, New Delhi 110020, India; (K.G.); (S.S.)
| | - Kishore Hari
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India; (K.H.); (M.K.J.)
| | - Yi Fang Lee
- Biolidics Limited, 81 Science Park Drive, 02-03 The Chadwick, Singapore 118257, Singapore; (Y.F.L.); (A.A.B.)
| | - Neevan Ramalingam
- Qualcomm Incorporated, 5775 Morehouse Drive, San Diego, CA 92121, USA;
| | - Yoon Sim Yap
- National Cancer Centre Singapore, 11 Hospital Dr, Singapore 169610, Singapore;
| | - Jay West
- Fluidigm Corporation, 2 Tower Place, Suite 2000, South San Francisco, CA 94080, USA;
| | - Ali Asgar Bhagat
- Biolidics Limited, 81 Science Park Drive, 02-03 The Chadwick, Singapore 118257, Singapore; (Y.F.L.); (A.A.B.)
| | - Balaram Vishnu Subramani
- School of Mathematics, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India;
| | - Burhanuddin Sabuwala
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India;
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Center for Translational Medicine, Singapore 117599, Singapore;
| | - Jean Paul Thiery
- Guangzhou Regenerative Medicine and Health; Guangdong laboratory, Chinese Academy of Science, Guangzhou 510530, China;
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India; (K.H.); (M.K.J.)
| | - Naveen Ramalingam
- Fluidigm Corporation, 2 Tower Place, Suite 2000, South San Francisco, CA 94080, USA;
- Correspondence: (N.R.); (D.S.); Tel.: +91-11-26907446 (D.S.)
| | - Debarka Sengupta
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi 110020, India;
- Department of Computer Science and Engineering, Indraprastha Institute of Information Technology, New Delhi 110020, India; (K.G.); (S.S.)
- Center for Artificial Intelligence, Indraprastha Institute of Information Technology, New Delhi 110020, India
- Correspondence: (N.R.); (D.S.); Tel.: +91-11-26907446 (D.S.)
| |
Collapse
|
36
|
Nini A, Hoffmann MJ, Lampignano R, Große Siemer R, van Dalum G, Szarvas T, Cotarelo CL, Schulz WA, Niederacher D, Neubauer H, Stoecklein NH, Niegisch G. Evaluation of HER2 expression in urothelial carcinoma cells as a biomarker for circulating tumor cells. CYTOMETRY PART B-CLINICAL CYTOMETRY 2020; 98:355-367. [PMID: 32212383 DOI: 10.1002/cyto.b.21877] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 02/25/2020] [Accepted: 03/12/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Detection of circulating tumor cells (CTC) by techniques based on epithelial cell adhesion molecule (EpCAM) is suboptimal in urothelial carcinoma (UC). As HER2 is thought to be broadly expressed in UC, we explored its utility for CTC detection. METHODS HER2 and EpCAM expression was analyzed in 18 UC cell lines (UCCs) by qRT-PCR, western blot and fluorescence-activated cell scanning (FACS) and compared to the strongly HER2-expressing breast cancer cell line SKBR3 and other controls. HER2 expression in UC patient tissues was measured by qRT PCR and correlated with data on survival and risk for metastasis. UCCs with high EpCAM and variable HER2 expression were used for spike-in experiments in the CellSearch system. Twenty-one blood samples from 13 metastatic UC patients were analyzed for HER2-positive CTCs with CellSearch. RESULTS HER2 mRNA and protein were broadly expressed in UCC, with some heterogeneity, but at least 10-fold lower than in the HER-2+ SKBR3 cells. Variations were unrelated to cellular phenotype or clinicopathological characteristics. EpCAM expression was essentially restricted to UCCs with epitheloid phenotypes. Heterogeneity of EpCAM and HER2 expression was observed also in spike-in experiments. The 7 of 21 blood samples from 6 of 13 patients were enumerated as CTC positive via EpCAM, but only one sample stained weakly positive (1+) for HER2. CONCLUSIONS Detection rate of CTCs by EpCAM in UC is poor, even in metastatic patients. Because of its widespread expression, particularly in patients with high risk of metastasis, detection of HER2 could improve identification of UC CTCs, which is why combined detection using antibodies for EpCAM and HER2 may be beneficial.
Collapse
Affiliation(s)
- Alessandro Nini
- Department of Urology, Medical Faculty, University Hospital of the Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany.,Department of Urology, Saarland University, Homburg/Saar, Germany
| | - Michèle Janine Hoffmann
- Department of Urology, Medical Faculty, University Hospital of the Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Rita Lampignano
- Department of Gynecology and Obstetrics, Medical Faculty, University Hospital of the Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Robert Große Siemer
- Department of Urology, Medical Faculty, University Hospital of the Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Guus van Dalum
- Department of General, Visceral and Pediatric Surgery, Medical Faculty, University Hospital of the Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Tibor Szarvas
- Department of Urology, Medical Faculty, University of Duisburg-Essen, Essen, Germany.,Department of Urology, Semmelweis University Budapest, Budapest, Hungary
| | - Cristina Lopez Cotarelo
- Department of Pathology, Medical Faculty, University Hospital of the Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Wolfgang Arthur Schulz
- Department of Urology, Medical Faculty, University Hospital of the Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Dieter Niederacher
- Department of Gynecology and Obstetrics, Medical Faculty, University Hospital of the Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany.,Disseminated Cancer Cell Network (DCCNet) Duesseldorf, Heinrich-Heine-University, Duesseldorf, Germany
| | - Hans Neubauer
- Department of Gynecology and Obstetrics, Medical Faculty, University Hospital of the Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany.,Disseminated Cancer Cell Network (DCCNet) Duesseldorf, Heinrich-Heine-University, Duesseldorf, Germany
| | - Nikolas Hendrik Stoecklein
- Department of General, Visceral and Pediatric Surgery, Medical Faculty, University Hospital of the Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany.,Disseminated Cancer Cell Network (DCCNet) Duesseldorf, Heinrich-Heine-University, Duesseldorf, Germany
| | - Günter Niegisch
- Department of Urology, Medical Faculty, University Hospital of the Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
37
|
Aghamir SMK, Heshmat R, Ebrahimi M, Khatami F. Liquid Biopsy: The Unique Test for Chasing the Genetics of Solid Tumors. Epigenet Insights 2020; 13:2516865720904052. [PMID: 32166219 PMCID: PMC7050026 DOI: 10.1177/2516865720904052] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022] Open
Abstract
Blood test is a kind of liquid biopsy that checks cancer cells or cancer nucleic acids circulating freely from cells in the blood. A liquid biopsy may be used to distinguish cancer at early stages and it could be a game-changer for both cancer diagnosis and prognosis strategies. Liquid biopsy tests consider several tumor components, such as DNA, RNA, proteins, and the tiny vesicles originating from tumor cells. Actually, liquid biopsy signifies the genetic alterations of tumors through nucleic acids or cells in various body fluids, including blood, urine, cerebrospinal fluid, or saliva in a noninvasive manner. In this review, we present an overall description of liquid biopsy in which circulating tumor cells, cell-free nucleic acids, exosomes, and extrachromosomal circular DNA are included.
Collapse
Affiliation(s)
| | - Ramin Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Ebrahimi
- Department of Internal Medicine, Faculty of Medicine, Sina Hospital, Tehran University of Medical Sciences, Tehran Iran
| | - Fatemeh Khatami
- Urology Research Center (URC), Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Siemer S, Wünsch D, Khamis A, Lu Q, Scherberich A, Filippi M, Krafft MP, Hagemann J, Weiss C, Ding GB, Stauber RH, Gribko A. Nano Meets Micro-Translational Nanotechnology in Medicine: Nano-Based Applications for Early Tumor Detection and Therapy. NANOMATERIALS 2020; 10:nano10020383. [PMID: 32098406 PMCID: PMC7075286 DOI: 10.3390/nano10020383] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/03/2020] [Accepted: 02/15/2020] [Indexed: 02/07/2023]
Abstract
Nanomaterials have great potential for the prevention and treatment of cancer. Circulating tumor cells (CTCs) are cancer cells of solid tumor origin entering the peripheral blood after detachment from a primary tumor. The occurrence and circulation of CTCs are accepted as a prerequisite for the formation of metastases, which is the major cause of cancer-associated deaths. Due to their clinical significance CTCs are intensively discussed to be used as liquid biopsy for early diagnosis and prognosis of cancer. However, there are substantial challenges for the clinical use of CTCs based on their extreme rarity and heterogeneous biology. Therefore, methods for effective isolation and detection of CTCs are urgently needed. With the rapid development of nanotechnology and its wide applications in the biomedical field, researchers have designed various nano-sized systems with the capability of CTCs detection, isolation, and CTCs-targeted cancer therapy. In the present review, we summarize the underlying mechanisms of CTC-associated tumor metastasis, and give detailed information about the unique properties of CTCs that can be harnessed for their effective analytical detection and enrichment. Furthermore, we want to give an overview of representative nano-systems for CTC isolation, and highlight recent achievements in microfluidics and lab-on-a-chip technologies. We also emphasize the recent advances in nano-based CTCs-targeted cancer therapy. We conclude by critically discussing recent CTC-based nano-systems with high therapeutic and diagnostic potential as well as their biocompatibility as a practical example of applied nanotechnology.
Collapse
Affiliation(s)
- Svenja Siemer
- Nanobiomedicine Department, University Medical Center Mainz/ENT, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Désirée Wünsch
- Nanobiomedicine Department, University Medical Center Mainz/ENT, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Aya Khamis
- Nanobiomedicine Department, University Medical Center Mainz/ENT, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Qiang Lu
- Nanobiomedicine Department, University Medical Center Mainz/ENT, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Arnaud Scherberich
- Laboratory of Tissue Engineering, Universitätspital Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland (M.F.)
| | - Miriam Filippi
- Laboratory of Tissue Engineering, Universitätspital Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland (M.F.)
| | - Marie Pierre Krafft
- Institut Charles Sadron (CNRS), University of Strasbourg, 23 rue du Loess, 67034 Strasbourg Cedex, France
| | - Jan Hagemann
- Nanobiomedicine Department, University Medical Center Mainz/ENT, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Carsten Weiss
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Postfach 3640, 76021 Karlsruhe, Germany
| | - Guo-Bin Ding
- Institute for Biotechnology, Shanxi University, No. 92 Wucheng Road, 030006 Taiyuan, China
| | - Roland H. Stauber
- Nanobiomedicine Department, University Medical Center Mainz/ENT, Langenbeckstrasse 1, 55131 Mainz, Germany
- Institute for Biotechnology, Shanxi University, No. 92 Wucheng Road, 030006 Taiyuan, China
- Correspondence: (R.H.S.); (A.G.); Tel.: +49-6131-176030 (A.G.)
| | - Alena Gribko
- Nanobiomedicine Department, University Medical Center Mainz/ENT, Langenbeckstrasse 1, 55131 Mainz, Germany
- Correspondence: (R.H.S.); (A.G.); Tel.: +49-6131-176030 (A.G.)
| |
Collapse
|
39
|
Afreen S, He Z, Xiao Y, Zhu JJ. Nanoscale metal-organic frameworks in detecting cancer biomarkers. J Mater Chem B 2020; 8:1338-1349. [PMID: 31999289 DOI: 10.1039/c9tb02579k] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Following the efficient performance of metal-organic frameworks (MOFs) as recognition elements in gas sensors, biosensors based on MOFs are now being investigated to capture and quantify potential cancer biomarkers, such as circulating tumor cells (CTCs), nucleic acids and proteins. The current status of MOF-based biosensors in the detection of early stages of cancer is in its infancy, although it has significantly emerged since the beginning of this decade. That said, salient research has been conducted in the past five years to utilize the distinctive porous crystalline structure of MOFs for highly sensitive and selective detection of cancer biomarkers. In this pursual, MOFs designed with bimetallic assembly, doped with magnetic nanoparticles, coated with polymers, and even conjugated with peptides or oligonucleotides have shown promising outcomes in detecting CTCs, nucleic acids and proteins. In particular, aptamer-conjugated MOFs are able to perform at a lower limit of detection down to the femtomolar, implying their efficacy for the point of care testing in clinical trials. In this way, aptasensors based on aptamer-conjugated MOFs present a newer sub-branch, to be coined as a MOFTA sensor in the current review. Considering the emerging progress and promising outcomes of MOFTA sensors as well as a variety of MOF-based techniques of detecting cancer biomarkers, this review will highlight their significant advances and related aspects in the recent five years on the context of detecting CTCs, nucleic acids and proteins for the early-stage detection of cancer.
Collapse
Affiliation(s)
- Sadia Afreen
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | | | | | | |
Collapse
|
40
|
Dietz MS, Beach CZ, Barajas R, Parappilly MS, Sengupta SK, Baird LC, Ciporen JN, Han SJ, Loret de Mola R, Cho YJ, Nazemi KJ, McClelland S, Wong MH, Jaboin JJ. Measure Twice: Promise of Liquid Biopsy in Pediatric High-Grade Gliomas. Adv Radiat Oncol 2020; 5:152-162. [PMID: 32280814 PMCID: PMC7136635 DOI: 10.1016/j.adro.2019.12.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/07/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022] Open
Abstract
Purpose To review and critique the current state of liquid biopsy in pHGG. Materials and Methods Published literature was reviewed for articles related to liquid biopsy in pediatric glioma and adult glioma with a focus on high-grade gliomas. Results This review discusses the current state of liquid biomarkers of pHGG and their potential applications for liquid biopsy development. Conclusions While nascent, the progress toward identifying circulating analytes of pHGG primes the field of neuro-oncoogy for liquid biopsy development.
Collapse
Affiliation(s)
- Matthew S Dietz
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon
| | - Catherine Z Beach
- Department of Radiation Medicine, Oregon Health & Science University, Portland, Oregon
| | - Ramon Barajas
- Department of Diagnostic Radiology, Oregon Health & Science University, Portland, Oregon.,Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon
| | - Michael S Parappilly
- Department of Diagnostic Radiology, Oregon Health & Science University, Portland, Oregon
| | - Sidharth K Sengupta
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - Lissa C Baird
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon
| | - Jeremy N Ciporen
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon
| | - Seunggu J Han
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon
| | | | - Yoon Jae Cho
- Department of Neurology, Oregon Health & Science University, Portland, Oregon.,The Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Kellie J Nazemi
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon
| | - Shearwood McClelland
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Melissa H Wong
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, Oregon.,The Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Jerry J Jaboin
- Department of Radiation Medicine, Oregon Health & Science University, Portland, Oregon.,The Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
41
|
Cieślikowski WA, Budna-Tukan J, Świerczewska M, Ida A, Hrab M, Jankowiak A, Mazel M, Nowicki M, Milecki P, Pantel K, Alix-Panabières C, Zabel M, Antczak A. Circulating Tumor Cells as a Marker of Disseminated Disease in Patients with Newly Diagnosed High-Risk Prostate Cancer. Cancers (Basel) 2020; 12:E160. [PMID: 31936460 PMCID: PMC7017349 DOI: 10.3390/cancers12010160] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to investigate whether the enumeration of circulating tumor cells (CTCs) in blood can differentiate between true localized and metastatic prostate cancer. A cross-sectional study of 104 prostate cancer patients with newly diagnosed high-risk prostate cancer was conducted. In total, 19 patients presented metastatic disease and 85 were diagnosed with localized disease. Analyses included intergroup comparison of CTC counts, determined using the CellSearch® system, EPISPOT assay and GILUPI CellCollector®, and ROC analysis verifying the accuracy of CTC count as a maker of disseminated prostate cancer. The vast majority (94.7%) of patients with advanced-stage cancer tested positively for CTCs in at least one of the assays. However, significantly higher CTC counts were determined with the CellSearch® system compared to EPISPOT assay and GILUPI CellCollector®. Identification of ≥4 CTCs with the CellSearch® system was the most accurate predictor of metastatic disease (sensitivity 0.500; specificity 0.900; AUC (95% CI) 0.760 (0.613-0.908). Furthermore, we tried to create a model to enhance the specificity and sensitivity of metastatic prediction with CTC counts by incorporating patient's clinical data, including PSA serum levels, Gleason score and clinical stage. The composite biomarker panel achieved the following performance: sensitivity, 0.611; specificity, 0.971; AUC (95% CI), 0.901 (0.810-0.993). Thus, although the sensitivity of CTC detection needs to be further increased, our findings suggest that high CTC counts might contribute to the identification of high-risk prostate cancer patients with occult metastases at the time of diagnosis.
Collapse
Affiliation(s)
- Wojciech A. Cieślikowski
- Department of Urology, Poznan University of Medical Sciences, 61-285 Poznan, Poland; (A.I.); (M.H.); (A.A.)
| | - Joanna Budna-Tukan
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (J.B.-T.); (M.Ś.); (A.J.); (M.N.)
| | - Monika Świerczewska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (J.B.-T.); (M.Ś.); (A.J.); (M.N.)
| | - Agnieszka Ida
- Department of Urology, Poznan University of Medical Sciences, 61-285 Poznan, Poland; (A.I.); (M.H.); (A.A.)
| | - Michał Hrab
- Department of Urology, Poznan University of Medical Sciences, 61-285 Poznan, Poland; (A.I.); (M.H.); (A.A.)
| | - Agnieszka Jankowiak
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (J.B.-T.); (M.Ś.); (A.J.); (M.N.)
| | - Martine Mazel
- Laboratory of Rare Human Circulating Cells, University Medical Center, 34093 Montpellier CEDEX 5, France; (M.M.); (C.A.-P.)
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (J.B.-T.); (M.Ś.); (A.J.); (M.N.)
| | - Piotr Milecki
- Department of Electroradiology, Poznan University of Medical Sciences, 61-868 Poznan, Poland;
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells, University Medical Center, 34093 Montpellier CEDEX 5, France; (M.M.); (C.A.-P.)
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
- Division of Anatomy and Histology, University of ZielonaGóra, 65-046 ZielonaGóra, Poland
| | - Andrzej Antczak
- Department of Urology, Poznan University of Medical Sciences, 61-285 Poznan, Poland; (A.I.); (M.H.); (A.A.)
| |
Collapse
|
42
|
Wang J, Dong R, Wu H, Cai Y, Ren B. A Review on Artificial Micro/Nanomotors for Cancer-Targeted Delivery, Diagnosis, and Therapy. NANO-MICRO LETTERS 2019; 12:11. [PMID: 34138055 PMCID: PMC7770680 DOI: 10.1007/s40820-019-0350-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 11/27/2019] [Indexed: 05/27/2023]
Abstract
Micro/nanomotors have been extensively explored for efficient cancer diagnosis and therapy, as evidenced by significant breakthroughs in the design of micro/nanomotors-based intelligent and comprehensive biomedical platforms. Here, we demonstrate the recent advances of micro/nanomotors in the field of cancer-targeted delivery, diagnosis, and imaging-guided therapy, as well as the challenges and problems faced by micro/nanomotors in clinical applications. The outlook for the future development of micro/nanomotors toward clinical applications is also discussed. We hope to highlight these new advances in micro/nanomotors in the field of cancer diagnosis and therapy, with the ultimate goal of stimulating the successful exploration of intelligent micro/nanomotors for future clinical applications.
Collapse
Affiliation(s)
- Jiajia Wang
- School of Chemistry and Environment, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangdong Provincial Engineering Technology Research Center for Materials for Energy Conversion and Storage, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Renfeng Dong
- School of Chemistry and Environment, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangdong Provincial Engineering Technology Research Center for Materials for Energy Conversion and Storage, South China Normal University, Guangzhou, 510006, People's Republic of China.
| | - Huiying Wu
- School of Chemistry and Environment, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangdong Provincial Engineering Technology Research Center for Materials for Energy Conversion and Storage, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Yuepeng Cai
- School of Chemistry and Environment, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangdong Provincial Engineering Technology Research Center for Materials for Energy Conversion and Storage, South China Normal University, Guangzhou, 510006, People's Republic of China.
| | - Biye Ren
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China.
| |
Collapse
|
43
|
Hasegawa N, Takeda Nakamura I, Ueno T, Kojima S, Kawazu M, Akaike K, Okubo T, Takagi T, Suehara Y, Hayashi T, Saito T, Kaneko K, Mano H, Kohsaka S. Detection of circulating sarcoma tumor cells using a microfluidic chip-type cell sorter. Sci Rep 2019; 9:20047. [PMID: 31882696 PMCID: PMC6934608 DOI: 10.1038/s41598-019-56377-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/09/2019] [Indexed: 12/11/2022] Open
Abstract
Analyses of circulating tumor cells have been shown to be effective for the detection of cancer relapse and prognosis prediction. However, research regarding its utility in sarcoma remains scarce. In this study, the microfluidic chip-type cell sorter On-chip Sort was used to construct a system for detecting circulating sarcoma cells (CSCs). A pilot study using normal fibroblast or sarcoma cell lines was designed to establish a reliable protocol to separate CSCs by On-chip Sort. A single CSC was separated and recovered from 10 ml of whole blood from a patient with locally advanced myxofibrosarcoma. The nonsynonymous mutation for KMT2B p.Ile2602Val identified in the formalin-fixed paraffin-embedded tumor sample was also confirmed in the CSC. Use of the developed protocol may allow CSCs to become an early predictor for metastasis and recurrence of sarcoma. Further, it may aid in optimizing post-operative therapies for patients without metastasis.
Collapse
Affiliation(s)
- Nobuhiko Hasegawa
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Department of Orthopedic Surgery, Juntendo University, Graduate School of Medicine, Tokyo, 113-8431, Japan
| | - Ikuko Takeda Nakamura
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Department of Respiratory Medicine, Juntendo University, Graduate School of Medicine, Tokyo, 113-8431, Japan
| | - Toshihide Ueno
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shinya Kojima
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Masahito Kawazu
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Keisuke Akaike
- Department of Orthopedic Surgery, Juntendo University, Graduate School of Medicine, Tokyo, 113-8431, Japan
| | - Taketo Okubo
- Department of Orthopedic Surgery, Juntendo University, Graduate School of Medicine, Tokyo, 113-8431, Japan
| | - Tatsuya Takagi
- Department of Orthopedic Surgery, Juntendo University, Graduate School of Medicine, Tokyo, 113-8431, Japan
| | - Yoshiyuki Suehara
- Department of Orthopedic Surgery, Juntendo University, Graduate School of Medicine, Tokyo, 113-8431, Japan
| | - Takuo Hayashi
- Department of Human Pathology, Juntendo University, Graduate School of Medicine, Tokyo, 113-8431, Japan
| | - Tsuyoshi Saito
- Department of Human Pathology, Juntendo University, Graduate School of Medicine, Tokyo, 113-8431, Japan
| | - Kazuo Kaneko
- Department of Orthopedic Surgery, Juntendo University, Graduate School of Medicine, Tokyo, 113-8431, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Shinji Kohsaka
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
44
|
The Prognostic Value of Circulating Tumor Cells in Asian Neuroendocrine Tumors. Sci Rep 2019; 9:19917. [PMID: 31882775 PMCID: PMC6934482 DOI: 10.1038/s41598-019-56539-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/08/2019] [Indexed: 01/14/2023] Open
Abstract
Circulating tumor cells (CTC) play important roles in various cancers; however, few studies have assessed their clinical utility in neuroendocrine tumors. This study aimed to prospectively evaluate the prognostic value of CTC counts in Asian patients with neuroendocrine tumors before and during anti-cancer therapy. Patients who were diagnosed with unresectable histological neuroendocrine tumors between September 2011 and September 2017 were enrolled. CTC testing was performed before and during anti-cancer therapy using a negative selection protocol. Chromogranin A levels were also assessed. Univariate and multivariate Cox’s proportional hazard model with forward LR model was performed to investigate the impact of independent factors on overall survival and progression-free survival. Kaplan–Meier method with log-rank tests were used to determine the difference among different clinicopathological signatures and CTC cutoff. The baseline CTC detection rate was 94.3% (33/35). CTC counts were associated with cancer stages (I-III vs. IV, P = 0.015), liver metastasis (P = 0.026), and neuroendocrine tumor grading (P = 0.03). The median progression-free survival and overall survivals were 12.3 and 30.4 months, respectively. In multivariate Cox regression model, neuroendocrine tumors grading and baseline CTC counts were both independent prognostic factors for progression-free survival (PFS, P = 0.005 and 0.015, respectively) and overall survival (OS, P = 0.018 and 0.023, respectively). In Kaplan-Meier analysis, lower baseline chromogranin A levels were associated with longer PFS (P = 0.024). Baseline CTC counts are associated with the clinicopathologic features of neuroendocrine tumors and are an independent prognostic factor for this malignancy.
Collapse
|
45
|
Jiménez-Zenteno AK, Cerf A. Liquid Biopsy Based on Circulating Cancer-Associated Cells: Bridging the Gap from an Emerging Concept to a Mainstream Tool in Precision Medicine. ACTA ACUST UNITED AC 2019; 4:e1900164. [PMID: 32293131 DOI: 10.1002/adbi.201900164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/15/2019] [Indexed: 01/01/2023]
Abstract
The concept of liquid biopsy and the isolation and analysis of circulating biomarkers from blood samples is proposed as a surrogate to solid biopsies and can have the potential to revolutionize the management of patients with cancer. The relevance of circulating tumor cells (CTCs) and the importance of the information they carry is acknowledged by the medical community. But what are the barriers to clinical adoption? This review draws a panorama of the biological implications of CTCs, their physical and biochemical properties, and the current technological bottlenecks for their analysis in relation with the medical needs. Keys and considerations to bridge the technological and clinical gaps that still need to be overcome to be able to introduce CTCs in clinical routine are finally synthesized.
Collapse
Affiliation(s)
| | - Aline Cerf
- Université de Toulouse, CNRS, 7 Avenue du Colonel Roche, 31400, Toulouse, France
| |
Collapse
|
46
|
Wang P, Sun S, Ma H, Sun S, Zhao D, Wang S, Liang X. Treating tumors with minimally invasive therapy: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110198. [PMID: 31923997 DOI: 10.1016/j.msec.2019.110198] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 09/01/2019] [Accepted: 09/11/2019] [Indexed: 12/13/2022]
Abstract
With high level of morbidity and mortality, tumor is one of the deadliest diseases worldwide. Aiming to tackle tumor, researchers have developed a lot of strategies. Among these strategies, the minimally invasive therapy (MIT) is very promising, for its capability of targeting tumor cells and resulting in a small incision or no incisions. In this review, we will first illustrate some mechanisms and characteristics of tumor metastasis from the primary tumor to the secondary tumor foci. Then, we will briefly introduce the history, characteristics, and advantages of some of the MITs. Finally, emphasis will be, respectively, focused on an overview of the state-of-the-art of the HIFU-, PDT-, PTT-and SDT-based anti-tumor strategies on each stage of tumor metastasis.
Collapse
Affiliation(s)
- Ping Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
| | - Suhui Sun
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
| | - Huide Ma
- Ordos Center Hospital, Ordos, Inner Mongolia, 017000, China
| | - Sujuan Sun
- Ordos Center Hospital, Ordos, Inner Mongolia, 017000, China
| | - Duo Zhao
- Ordos Center Hospital, Ordos, Inner Mongolia, 017000, China
| | - Shumin Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China.
| | - Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
47
|
Todenhöfer T, Pantel K, Stenzl A, Werner S. Pathophysiology of Tumor Cell Release into the Circulation and Characterization of CTC. Recent Results Cancer Res 2019; 215:3-24. [PMID: 31605221 DOI: 10.1007/978-3-030-26439-0_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The traditional model of metastatic progression postulates that the ability to form distant metastases is driven by random mutations in cells of the primary tumor.
Collapse
Affiliation(s)
- Tilman Todenhöfer
- Department of Urology, Eberhard-Karls-University, Tuebingen, Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Arnulf Stenzl
- Department of Urology, Eberhard-Karls-University, Tuebingen, Germany
| | - Stefan Werner
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
48
|
Goodsaid FM. The Labyrinth of Product Development and Regulatory Approvals in Liquid Biopsy Diagnostics. Clin Transl Sci 2019; 12:431-439. [PMID: 31162800 PMCID: PMC6742934 DOI: 10.1111/cts.12657] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023] Open
Abstract
The evolution of chemistries and instrument platforms for next‐generation sequencing has led to sequencing of genomic variants in both tumor biopsies as well as in circulating tumor cells (CTCs) and cell‐free DNA liquid biopsies. The transition of these analytical platforms into clinical ones has led to challenges in product development as well as regulatory strategies for the approval of diagnostic products with these platforms. Regulatory strategies for liquid biopsy diagnostics depend on a framework that has been developed over the past few years by the US Food and Drug Administration (FDA). This framework includes both guidances that cover enrichment biomarkers and companion diagnostics, as well as regulatory approval precedents, which can be used to design regulatory strategies for new liquid biopsy diagnostic products. However, the regulatory paths for these liquid biopsy diagnostics can also be tortuous, as is the example of CTC—platform liquid biopsies. The ultimate success of regulatory pathways of liquid biopsy diagnostics has been driven by the incremental value of FDA approval for Clinical Laboratory Improvement Amendment (CLIA)‐developed tests and by the inherent complexity of these diagnostics, which are practical barriers for the widespread replication of these tests throughout CLIA laboratories. The framework for FDA approval of sequence information from these liquid biopsies has been focused on single‐site approvals of diagnostics where sequencing information is considered at different diagnostic risk levels, ranging from novel or follow‐on companion diagnostics to variant calls in genomic targets considered independently valuable for therapeutic decision making.
Collapse
|
49
|
Budna-Tukan J, Świerczewska M, Mazel M, Cieślikowski WA, Ida A, Jankowiak A, Antczak A, Nowicki M, Pantel K, Azria D, Zabel M, Alix-Panabières C. Analysis of Circulating Tumor Cells in Patients with Non-Metastatic High-Risk Prostate Cancer before and after Radiotherapy Using Three Different Enumeration Assays. Cancers (Basel) 2019; 11:cancers11060802. [PMID: 31185699 PMCID: PMC6627099 DOI: 10.3390/cancers11060802] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 05/28/2019] [Accepted: 06/06/2019] [Indexed: 12/14/2022] Open
Abstract
The characterization of circulating tumor cells (CTCs) can lead to a promising strategy for monitoring residual or relapsing prostate cancer (PCa) after local therapy. The aim of this study was to compare three innovative technologies for CTC enumeration in 131 high-risk patients with PCa, before and after radiotherapy, combined with androgen deprivation. The CTC number was tested using the FDA-cleared CellSearch® system, the dual fluoro-EPISPOT assay that only detects functional CTCs, and the in vivo CellCollector® technology. The highest percentage of CTC-positive patients was detected with the CellCollector® (48%) and dual fluoro-EPISPOT (42%) assays, while the CellSearch® system presented the lowest rate (14%). Although the concordance among methods was only 23%, the cumulative positivity rate was 79%. A matched-pair analysis of the samples before, and after, treatment suggested a trend toward a decrease in CTC count after treatment with all methods. CTC tended to be positivity correlated with age for the fluoro-EPISPOT assay and with PSA level from the data of three assays. Combining different CTC assays improved CTC detection rates in patients with non-metastatic high-risk PCa before and after treatment. Our findings do not support the hypothesis that radiotherapy leads to cancer cell release in the circulation.
Collapse
Affiliation(s)
- Joanna Budna-Tukan
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland.
| | - Monika Świerczewska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland.
| | - Martine Mazel
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, 34093 Montpellier, France.
| | | | - Agnieszka Ida
- Department of Urology, Poznan University of Medical Sciences, 61-285 Poznan, Poland.
| | - Agnieszka Jankowiak
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland.
| | - Andrzej Antczak
- Department of Urology, Poznan University of Medical Sciences, 61-285 Poznan, Poland.
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland.
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - David Azria
- Radiation Oncology Department, Montpellier Cancer Institute, 34298 Montpellier, France.
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland.
- Division of Anatomy and Histology, University of Zielona Góra, 65-046 Zielona Góra, Poland.
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, 34093 Montpellier, France.
| |
Collapse
|
50
|
Gribko A, Künzel J, Wünsch D, Lu Q, Nagel SM, Knauer SK, Stauber RH, Ding GB. Is small smarter? Nanomaterial-based detection and elimination of circulating tumor cells: current knowledge and perspectives. Int J Nanomedicine 2019; 14:4187-4209. [PMID: 31289440 PMCID: PMC6560927 DOI: 10.2147/ijn.s198319] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Circulating tumor cells (CTCs) are disseminated cancer cells. The occurrence and circulation of CTCs seem key for metastasis, still the major cause of cancer-associated deaths. As such, CTCs are investigated as predictive biomarkers. However, due to their rarity and heterogeneous biology, CTCs’ practical use has not made it into the clinical routine. Clearly, methods for the effective isolation and reliable detection of CTCs are urgently needed. With the development of nanotechnology, various nanosystems for CTC isolation and enrichment and CTC-targeted cancer therapy have been designed. Here, we summarize the relationship between CTCs and tumor metastasis, and describe CTCs’ unique properties hampering their effective enrichment. We comment on nanotechnology-based systems for CTC isolation and recent achievements in microfluidics and lab-on-a-chip technologies. We discuss recent advances in CTC-targeted cancer therapy exploiting the unique properties of nanomaterials. We conclude by introducing developments in CTC-directed nanosystems and other advanced technologies currently in (pre)clinical research.
Collapse
Affiliation(s)
- Alena Gribko
- Nanobiomedicine Department/ENT, University Medical Center Mainz, Mainz 55131, Germany, ;
| | - Julian Künzel
- Nanobiomedicine Department/ENT, University Medical Center Mainz, Mainz 55131, Germany, ;
| | - Désirée Wünsch
- Nanobiomedicine Department/ENT, University Medical Center Mainz, Mainz 55131, Germany, ;
| | - Qiang Lu
- Nanobiomedicine Department/ENT, University Medical Center Mainz, Mainz 55131, Germany, ;
| | - Sophie Madeleine Nagel
- Nanobiomedicine Department/ENT, University Medical Center Mainz, Mainz 55131, Germany, ;
| | - Shirley K Knauer
- Department of Molecular Biology II, Center for Medical Biotechnology (ZMB)/Center for Nanointegration (CENIDE), University Duisburg-Essen, Essen 45117, Germany
| | - Roland H Stauber
- Nanobiomedicine Department/ENT, University Medical Center Mainz, Mainz 55131, Germany, ;
| | - Guo-Bin Ding
- Nanobiomedicine Department/ENT, University Medical Center Mainz, Mainz 55131, Germany, ; .,Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, People's Republic of China,
| |
Collapse
|