1
|
Trahearn N, Sakr C, Banerjee A, Lee SH, Baker A, Kocher HM, Angerilli V, Morano F, Bergamo F, Maddalena G, Intini R, Cremolini C, Caravagna G, Graham T, Pietrantonio F, Lonardi S, Fassan M, Sottoriva A. Computational pathology applied to clinical colorectal cancer cohorts identifies immune and endothelial cell spatial patterns predictive of outcome. J Pathol 2025; 265:198-210. [PMID: 39788558 PMCID: PMC11717494 DOI: 10.1002/path.6378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/04/2024] [Accepted: 11/06/2024] [Indexed: 01/12/2025]
Abstract
Colorectal cancer (CRC) is a histologically heterogeneous disease with variable clinical outcome. The role the tumour microenvironment (TME) plays in determining tumour progression is complex and not fully understood. To improve our understanding, it is critical that the TME is studied systematically within clinically annotated patient cohorts with long-term follow-up. Here we studied the TME in three clinical cohorts of metastatic CRC with diverse molecular subtype and treatment history. The MISSONI cohort included cases with microsatellite instability that received immunotherapy (n = 59, 24 months median follow-up). The BRAF cohort included BRAF V600E mutant microsatellite stable (MSS) cancers (n = 141, 24 months median follow-up). The VALENTINO cohort included RAS/RAF WT MSS cases who received chemotherapy and anti-EGFR therapy (n = 175, 32 months median follow-up). Using a Deep learning cell classifier, trained upon >38,000 pathologist annotations, to detect eight cell types within H&E-stained sections of CRC, we quantified the spatial tissue organisation and colocalisation of cell types across these cohorts. We found that the ratio of infiltrating endothelial cells to cancer cells, a possible marker of vascular invasion, was an independent predictor of progression-free survival (PFS) in the BRAF+MISSONI cohort (p = 0.033, HR = 1.44, CI = 1.029-2.01). In the VALENTINO cohort, this pattern was also an independent PFS predictor in TP53 mutant patients (p = 0.009, HR = 0.59, CI = 0.40-0.88). Tumour-infiltrating lymphocytes were an independent predictor of PFS in BRAF+MISSONI (p = 0.016, HR = 0.36, CI = 0.153-0.83). Elevated tumour-infiltrating macrophages were predictive of improved PFS in the MISSONI cohort (p = 0.031). We validated our cell classification using highly multiplexed immunofluorescence for 17 markers applied to the same sections that were analysed by the classifier (n = 26 cases). These findings uncovered important microenvironmental factors that underpin treatment response across and within CRC molecular subtypes, while providing an atlas of the distribution of 180 million cells in 375 clinically annotated CRC patients. © 2025 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Nicholas Trahearn
- Centre for Evolution and CancerThe Institute of Cancer ResearchLondonUK
- UCL Cancer InstituteUCLLondon, UK
| | - Chirine Sakr
- Centre for Evolution and CancerThe Institute of Cancer ResearchLondonUK
| | | | - Seung Hyun Lee
- Centre for Evolution and CancerThe Institute of Cancer ResearchLondonUK
- Systems Oncology group, Cancer Research UK Manchester InstituteThe University of ManchesterManchesterUK
| | - Ann‐Marie Baker
- Centre for Evolution and CancerThe Institute of Cancer ResearchLondonUK
- Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Hemant M Kocher
- Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | | | | | | | - Giulia Maddalena
- Veneto Institute of Oncology IOV‐IRCCSPaduaItaly
- Department of Surgical, Oncological and Gastroenterological SciencesUniversity of PaduaPaduaItaly
| | | | | | | | - Trevor Graham
- Centre for Evolution and CancerThe Institute of Cancer ResearchLondonUK
- Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | | | - Sara Lonardi
- Veneto Institute of Oncology IOV‐IRCCSPaduaItaly
| | - Matteo Fassan
- Department of Medicine (DIMED)University of PaduaPaduaItaly
- Veneto Institute of Oncology IOV‐IRCCSPaduaItaly
| | - Andrea Sottoriva
- Centre for Evolution and CancerThe Institute of Cancer ResearchLondonUK
- Computational Biology Research CentreHuman TechnopoleMilanItaly
| |
Collapse
|
2
|
Liu X, Liu D, Tan C, Wang J. Systemic immune profiling analysis identifying M2-TAM related genes predicted colon cancer prognosis and chemotherapy responses. Medicine (Baltimore) 2024; 103:e40979. [PMID: 39969348 PMCID: PMC11688056 DOI: 10.1097/md.0000000000040979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/27/2024] [Indexed: 02/20/2025] Open
Abstract
Colon cancer (COAD) poses great challenges to clinical treatment due to its heterogeneity and complex immune microenvironment. M2-like macrophages significantly influence COAD's onset, progression, and treatment. Yet, existing M2-like macrophage markers are limited in prognostic efficacy, prompting the exploration of new M2 signatures. Extensive data analysis aimed to unveil prognosis-associated M2-derived signatures. Bulk transcriptome, single-cell RNA sequencing, and clinical data from The Cancer Genome Atlas and Gene Expression Omnibus databases for patients with COAD were amassed. Cell-Type Identification by Estimating Relative Subsets of RNA Transcripts identified immune cell infiltration, and the Kaplan-Meier test identified crucial immune populations associated with prognosis. Genetic signatures linked to M2 tumor-associated macrophage were crafted utilizing weighted gene coexpression network analysis, least absolute shrinkage and selection operator, and Cox regression. The M2 tumor-associated macrophage gene signature was validated in GSE17536. The expression profile of the M2 gene signature was investigated in single-cell RNA sequencing dataset GSE166555. Systemic immune profile identified that M2-like macrophage has the most significant prognostic significance in The Cancer Genome Atlas-COAD. The core genes related to M2 macrophage infiltration were extracted by weighted gene coexpression network analysis. Least absolute shrinkage and selection operator-stepwise COX regression-derived M2-derived signatures (snail family zinc finger 1, gastrin-releasing peptide, gamma-aminobutyric acid type A receptor delta subunit, cluster of differentiation 1B, poly(A)-binding protein cytoplasmic 2, manic fringe, and death-associated protein kinase 1) as a risk model, which was confirmed as independent prognosis factors, validated by external dataset. This M2-based prognostic model reflected M2 macrophage infiltration. Mendelian randomization established cytotoxic T lymphocyte associate protein-4 and cluster of differentiation 274 immune checkpoints' causality with COAD. In conclusion, our study developed novel markers for discriminating M2-like macrophages and predicting the prognosis of patients with COAD, offering fresh perspectives for clinical interventions.
Collapse
Affiliation(s)
- Xiaopei Liu
- School of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Dan Liu
- Department of Anorectal, Xi’an Hospital of Traditional Chinese Medicine, Xianyang, China
| | - Cong’e Tan
- School of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jiehong Wang
- Department of Gastroenterology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
3
|
Kzhyshkowska J, Shen J, Larionova I. Targeting of TAMs: can we be more clever than cancer cells? Cell Mol Immunol 2024; 21:1376-1409. [PMID: 39516356 PMCID: PMC11607358 DOI: 10.1038/s41423-024-01232-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024] Open
Abstract
АBSTRACT: With increasing incidence and geography, cancer is one of the leading causes of death, reduced quality of life and disability worldwide. Principal progress in the development of new anticancer therapies, in improving the efficiency of immunotherapeutic tools, and in the personification of conventional therapies needs to consider cancer-specific and patient-specific programming of innate immunity. Intratumoral TAMs and their precursors, resident macrophages and monocytes, are principal regulators of tumor progression and therapy resistance. Our review summarizes the accumulated evidence for the subpopulations of TAMs and their increasing number of biomarkers, indicating their predictive value for the clinical parameters of carcinogenesis and therapy resistance, with a focus on solid cancers of non-infectious etiology. We present the state-of-the-art knowledge about the tumor-supporting functions of TAMs at all stages of tumor progression and highlight biomarkers, recently identified by single-cell and spatial analytical methods, that discriminate between tumor-promoting and tumor-inhibiting TAMs, where both subtypes express a combination of prototype M1 and M2 genes. Our review focuses on novel mechanisms involved in the crosstalk among epigenetic, signaling, transcriptional and metabolic pathways in TAMs. Particular attention has been given to the recently identified link between cancer cell metabolism and the epigenetic programming of TAMs by histone lactylation, which can be responsible for the unlimited protumoral programming of TAMs. Finally, we explain how TAMs interfere with currently used anticancer therapeutics and summarize the most advanced data from clinical trials, which we divide into four categories: inhibition of TAM survival and differentiation, inhibition of monocyte/TAM recruitment into tumors, functional reprogramming of TAMs, and genetic enhancement of macrophages.
Collapse
Affiliation(s)
- Julia Kzhyshkowska
- Department of Innate Immunity and Tolerance, Institute of Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer, 1-3, 68167, Mannheim, Germany.
- German Red Cross Blood Service Baden-Württemberg - Hessen, Friedrich-Ebert Str. 107, 68167, Mannheim, Germany.
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050, Lenina av.36, Tomsk, Russia.
- Bashkir State Medical University of the Ministry of Health of Russia, 450000, Teatralnaya Street, 2a, Ufa, Russia.
| | - Jiaxin Shen
- Department of Innate Immunity and Tolerance, Institute of Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer, 1-3, 68167, Mannheim, Germany
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050, Lenina av.36, Tomsk, Russia
- Bashkir State Medical University of the Ministry of Health of Russia, 450000, Teatralnaya Street, 2a, Ufa, Russia
- Laboratory of Molecular Therapy of Cancer, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009, Kooperativnyi st, Tomsk, Russia
| |
Collapse
|
4
|
Ji M, Chen Y, Zhang L, Ying L, Huang C, Liu L. Construction and Evaluation of an M2 Macrophage-Related Prognostic Model for Colon Cancer. Appl Biochem Biotechnol 2024; 196:4934-4953. [PMID: 37987949 DOI: 10.1007/s12010-023-04789-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2023] [Indexed: 11/22/2023]
Abstract
Colon cancer (CC) is a primary human malignancy. Recently, the mechanism of the tumor microenvironment (TME) in CC has been a hot topic of research. However, there is uncertainty regarding the contribution of M2 macrophages and related genes to the prognosis for CC. M2 macrophage-related genes (M2RGs) were obtained from The Cancer Genome Atlas (TCGA) database. Immune cell infiltration in CC tissue was assessed by Cibersort. Based on the TCGA-COAD training set, a Least Absolute Shrinkage and Selection Operator (LASSO) Cox risk model was constructed and its efficiency was evaluated by analyzing risk profiles and survival profiles. Using gene set enrichment analysis (GSEA), the functional distinctions between high-risk and low-risk categories were further investigated. Finally, potential immune checkpoints, immunotherapy efficiency, and clinical treatment of high-risk patients were evaluated. A total of 1063 M2RGs were identified in TCGA-COAD, 32 of these were confirmed to be strongly related to overall survival (OS), and 14 of these were picked to construct an OS-oriented prognostic model in CC patients. The M2RG signature had a positive correlation with unfavorable prognosis according to the survival analysis. Correlation analysis revealed that the risk model was positively associated with clinicopathological characteristics, immune cell infiltration, immune checkpoint inhibitor targets, the risk of immune escape, and the efficiency of anti-cancer medications. The risk model created using M2RGs may be useful in predicting the prognosis of CC.
Collapse
Affiliation(s)
- Min Ji
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yanping Chen
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
- Department of Oncology, Zhong-Da Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Lu Zhang
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Leqian Ying
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Chunchun Huang
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Lin Liu
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.
- Department of Oncology, Zhong-Da Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
5
|
Li MY, Ye W, Luo KW. Immunotherapies Targeting Tumor-Associated Macrophages (TAMs) in Cancer. Pharmaceutics 2024; 16:865. [PMID: 39065562 PMCID: PMC11280177 DOI: 10.3390/pharmaceutics16070865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are one of the most plentiful immune compositions in the tumor microenvironment, which are further divided into anti-tumor M1 subtype and pro-tumor M2 subtype. Recent findings found that TAMs play a vital function in the regulation and progression of tumorigenesis. Moreover, TAMs promote tumor vascularization, and support the survival of tumor cells, causing an impact on tumor growth and patient prognosis. Numerous studies show that reducing the density of TAMs, or modulating the polarization of TAMs, can inhibit tumor growth, indicating that TAMs are a promising target for tumor immunotherapy. Recently, clinical trials have found that treatments targeting TAMs have achieved encouraging results, and the U.S. Food and Drug Administration has approved a number of drugs for use in cancer treatment. In this review, we summarize the origin, polarization, and function of TAMs, and emphasize the therapeutic strategies targeting TAMs in cancer treatment in clinical studies and scientific research, which demonstrate a broad prospect of TAMs-targeted therapies in tumor immunotherapy.
Collapse
Affiliation(s)
- Mei-Ye Li
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (M.-Y.L.); (W.Y.)
| | - Wei Ye
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (M.-Y.L.); (W.Y.)
| | - Ke-Wang Luo
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (M.-Y.L.); (W.Y.)
- People’s Hospital of Longhua, The affiliated hospital of Southern Medical University, Shenzhen 518109, China
| |
Collapse
|
6
|
Li H, Wang S, Yang Z, Meng X, Niu M. Nanomaterials modulate tumor-associated macrophages for the treatment of digestive system tumors. Bioact Mater 2024; 36:376-412. [PMID: 38544737 PMCID: PMC10965438 DOI: 10.1016/j.bioactmat.2024.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/25/2024] [Accepted: 03/03/2024] [Indexed: 11/25/2024] Open
Abstract
The treatment of digestive system tumors presents challenges, particularly in immunotherapy, owing to the advanced immune tolerance of the digestive system. Nanomaterials have emerged as a promising approach for addressing these challenges. They provide targeted drug delivery, enhanced permeability, high bioavailability, and low toxicity. Additionally, nanomaterials target immunosuppressive cells and reshape the tumor immune microenvironment (TIME). Among the various cells in the TIME, tumor-associated macrophages (TAMs) are the most abundant and play a crucial role in tumor progression. Therefore, investigating the modulation of TAMs by nanomaterials for the treatment of digestive system tumors is of great significance. Here, we present a comprehensive review of the utilization of nanomaterials to modulate TAMs for the treatment of gastric cancer, colorectal cancer, hepatocellular carcinoma, and pancreatic cancer. We also investigated the underlying mechanisms by which nanomaterials modulate TAMs to treat tumors in the digestive system. Furthermore, this review summarizes the role of macrophage-derived nanomaterials in the treatment of digestive system tumors. Overall, this research offers valuable insights into the development of nanomaterials tailored for the treatment of digestive system tumors.
Collapse
Affiliation(s)
- Hao Li
- Department of Interventional Radiology, First Hospital of China Medical University, Shenyang, China
| | - Shuai Wang
- Department of Interventional Radiology, First Hospital of China Medical University, Shenyang, China
| | - Zhengqiang Yang
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Meng Niu
- China Medical University, Shenyang, China
| |
Collapse
|
7
|
Khanduri I, Maki H, Verma A, Katkhuda R, Anandappa G, Pandurengan R, Zhang S, Mejia A, Tong Z, Solis Soto LM, Jadhav A, Wistuba II, Menter D, Kopetz S, Parra ER, Vauthey JN, Maru DM. New insights into macrophage polarization and its prognostic role in patients with colorectal cancer liver metastasis. BJC REPORTS 2024; 2:37. [PMID: 39516662 PMCID: PMC11523988 DOI: 10.1038/s44276-024-00056-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND As liver metastasis is the most common cause of mortality in patients with colorectal cancer, studying colorectal cancer liver metastasis (CLM) microenvironment is essential for improved understanding of tumor biology and to identify novel therapeutic targets. METHODS We used a multiplex immunofluorescence platform to study tumor associated macrophage (TAM) polarization and adaptive T cell subtypes in tumor samples from 105 CLM patients (49 without and 56 with preoperative chemotherapy). RESULTS CLM exhibited M2 macrophage polarization, and helper T cells were the prevalent adaptive T cell subtype. The density of total, M2 and TGFβ-expressing macrophages, and regulatory T cells was lower in CLM treated with preoperative chemotherapy. CLM with right-sided primary demonstrated enrichment of TGFβ-expressing macrophages, and with left-sided primary had higher densities of helper and cytotoxic T cells. In multivariate analysis, high density of M2 macrophages correlated with longer recurrence-free survival (RFS) in the entire cohort [hazard ratio (HR) 0.425, 95% CI 0.219-0.825, p = 0.011) and in patients without preoperative chemotherapy (HR 0.45, 95% CI 0.221-0.932, p = 0.032). High pSMAD3-expressing macrophages were associated with shorter RFS in CLM after preoperative chemotherapy. CONCLUSIONS Our results highlight the significance of a multi-marker approach to define the macrophage subtypes and identify M2 macrophages as a predictor of favorable prognosis in CLM.
Collapse
Affiliation(s)
- Isha Khanduri
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Harufumi Maki
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anuj Verma
- Department of Pathology, Yale-New Haven Hospital, New Haven, CT, USA
| | - Riham Katkhuda
- Department of Pathology, The University of Chicago Medical Center, Chicago, IL, USA
| | - Gayathri Anandappa
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Renganayaki Pandurengan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shanyu Zhang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alicia Mejia
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhimin Tong
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luisa M Solis Soto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Akshaya Jadhav
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Menter
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Scott Kopetz
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Edwin R Parra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jean-Nicolas Vauthey
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dipen M Maru
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
8
|
Gan Q, Li Y, Li Y, Liu H, Chen D, Liu L, Peng C. Pathways and molecules for overcoming immunotolerance in metastatic gastrointestinal tumors. Front Immunol 2024; 15:1359914. [PMID: 38646539 PMCID: PMC11026648 DOI: 10.3389/fimmu.2024.1359914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Worldwide, gastrointestinal (GI) cancer is recognized as one of the leading malignancies diagnosed in both genders, with mortality largely attributed to metastatic dissemination. It has been identified that in GI cancer, a variety of signaling pathways and key molecules are modified, leading to the emergence of an immunotolerance phenotype. Such modifications are pivotal in the malignancy's evasion of immune detection. Thus, a thorough analysis of the pathways and molecules contributing to GI cancer's immunotolerance is vital for advancing our comprehension and propelling the creation of efficacious pharmacological treatments. In response to this necessity, our review illuminates a selection of groundbreaking cellular signaling pathways associated with immunotolerance in GI cancer, including the Phosphoinositide 3-kinases/Akt, Janus kinase/Signal Transducer and Activator of Transcription 3, Nuclear Factor kappa-light-chain-enhancer of activated B cells, Transforming Growth Factor-beta/Smad, Notch, Programmed Death-1/Programmed Death-Ligand 1, and Wingless and INT-1/beta-catenin-Interleukin 10. Additionally, we examine an array of pertinent molecules like Indoleamine-pyrrole 2,3-dioxygenase, Human Leukocyte Antigen G/E, Glycoprotein A Repetitions Predominant, Clever-1, Interferon regulatory factor 8/Osteopontin, T-cell immunoglobulin and mucin-domain containing-3, Carcinoembryonic antigen-related cell adhesion molecule 1, Cell division control protein 42 homolog, and caspases-1 and -12.
Collapse
Affiliation(s)
- Qixin Gan
- 1Department of Radiology, First Affiliated Hospital of Hunan College of TCM (Hunan Province Directly Affiliated TCM Hospital), Zhuzhou, Hunan, China
| | - Yue Li
- Department of Cardiovascular Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yuejun Li
- Department of Oncology, First Affiliated Hospital of Hunan College of TCM (Hunan Province Directly Affiliated TCM Hospital), Zhuzhou, Hunan, China
| | - Haifen Liu
- 1Department of Radiology, First Affiliated Hospital of Hunan College of TCM (Hunan Province Directly Affiliated TCM Hospital), Zhuzhou, Hunan, China
| | - Daochuan Chen
- 1Department of Radiology, First Affiliated Hospital of Hunan College of TCM (Hunan Province Directly Affiliated TCM Hospital), Zhuzhou, Hunan, China
| | - Lanxiang Liu
- 1Department of Radiology, First Affiliated Hospital of Hunan College of TCM (Hunan Province Directly Affiliated TCM Hospital), Zhuzhou, Hunan, China
| | - Churan Peng
- 1Department of Radiology, First Affiliated Hospital of Hunan College of TCM (Hunan Province Directly Affiliated TCM Hospital), Zhuzhou, Hunan, China
| |
Collapse
|
9
|
Kim SW, Kim CW, Moon YA, Kim HS. Reprogramming of tumor-associated macrophages by metabolites generated from tumor microenvironment. Anim Cells Syst (Seoul) 2024; 28:123-136. [PMID: 38577621 PMCID: PMC10993762 DOI: 10.1080/19768354.2024.2336249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/17/2024] [Indexed: 04/06/2024] Open
Abstract
The tumor microenvironment comprises both tumor and non-tumor stromal cells, including tumor-associated macrophages (TAMs), endothelial cells, and carcinoma-associated fibroblasts. TAMs, major components of non-tumor stromal cells, play a crucial role in creating an immunosuppressive environment by releasing cytokines, chemokines, growth factors, and immune checkpoint proteins that inhibit T cell activity. During tumors develop, cancer cells release various mediators, including chemokines and metabolites, that recruit monocytes to infiltrate tumor tissues and subsequently induce an M2-like phenotype and tumor-promoting properties. Metabolites are often overlooked as metabolic waste or detoxification products but may contribute to TAM polarization. Furthermore, macrophages display a high degree of plasticity among immune cells in the tumor microenvironment, enabling them to either inhibit or facilitate cancer progression. Therefore, TAM-targeting has emerged as a promising strategy in tumor immunotherapy. This review provides an overview of multiple representative metabolites involved in TAM phenotypes, focusing on their role in pro-tumoral polarization of M2.
Collapse
Affiliation(s)
- Seung Woo Kim
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Chan Woo Kim
- Cancer Immunotherapy Evaluation Team, Non-Clinical Evaluation Center, Osong Medical Innovation Foundation (KBIO Health), Cheongju, Republic of Korea
| | - Young-Ah Moon
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Hong Seok Kim
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon, Republic of Korea
| |
Collapse
|
10
|
Karjula T, Elomaa H, Väyrynen SA, Kuopio T, Ahtiainen M, Mustonen O, Puro I, Niskakangas A, Mecklin JP, Böhm J, Wirta EV, Seppälä TT, Sihvo E, Yannopoulos F, Helminen O, Väyrynen JP. Multiplexed analysis of macrophage polarisation in pulmonary metastases of microsatellite stable colorectal cancer. Cancer Immunol Immunother 2024; 73:59. [PMID: 38386105 PMCID: PMC10884151 DOI: 10.1007/s00262-024-03646-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/29/2024] [Indexed: 02/23/2024]
Abstract
Tumour-associated macrophages (TAMs) express a continuum of phenotypes ranging from an anti-tumoural M1-like phenotype to a pro-tumoural M2-like phenotype. During cancer progression, TAMs may shift to a more M2-like polarisation state, but the role of TAMs in CRC metastases is unclear. We conducted a comprehensive spatial and prognostic analysis of TAMs in CRC pulmonary metastases and corresponding primary tumours using multiplexed immunohistochemistry and machine learning-based image analysis. We obtained data from 106 resected pulmonary metastases and 74 corresponding primary tumours. TAMs in the resected pulmonary metastases were located closer to the cancer cells and presented a more M2-like polarised state in comparison to the primary tumours. Higher stromal M2-like macrophage densities in the invasive margin of pulmonary metastases were associated with worse 5-year overall survival (HR 3.19, 95% CI 1.35-7.55, p = 0.008). The results of this study highlight the value of multiplexed analysis of macrophage polarisation in cancer metastases and might have clinical implications in future cancer therapy.
Collapse
Affiliation(s)
- Topias Karjula
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.
| | - Hanna Elomaa
- Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland
- Department of Education and Research, Hospital Nova of Central Finland, Well Being Services County of Central Finland, 40620, Jyväskylä, Finland
| | - Sara A Väyrynen
- Department of Internal Medicine, Oulu University Hospital, Oulu, Finland
| | - Teijo Kuopio
- Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland
- Department of Pathology, Hospital Nova of Central Finland, Well Being Services County of Central Finland, 40620, Jyväskylä, Finland
| | - Maarit Ahtiainen
- Department of Pathology, Hospital Nova of Central Finland, Well Being Services County of Central Finland, 40620, Jyväskylä, Finland
| | - Olli Mustonen
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Iiris Puro
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Anne Niskakangas
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Jukka-Pekka Mecklin
- Department of Education and Research, Hospital Nova of Central Finland, Well Being Services County of Central Finland, 40620, Jyväskylä, Finland
- Faculty of Sport and Health Sciences, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Jan Böhm
- Department of Pathology, Hospital Nova of Central Finland, Well Being Services County of Central Finland, 40620, Jyväskylä, Finland
| | - Erkki-Ville Wirta
- Faculty of Medicine and Health Technology, Tampere University and TAYS Cancer Center, Tampere University Hospital, 33520, Tampere, Finland
- Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital and TAYS Cancer Centre, 33520, Tampere, Finland
| | - Toni T Seppälä
- Department of Gastrointestinal Surgery, Helsinki University Central Hospital, University of Helsinki, 00290, Helsinki, Finland
- Applied Tumor Genomics, Research Program Unit, University of Helsinki, 00290, Helsinki, Finland
- Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital and TAYS Cancer Centre, 33520, Tampere, Finland
| | - Eero Sihvo
- Central Hospital of Central Finland, 40014, Jyväskylä, Finland
| | - Fredrik Yannopoulos
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Department of Cardiothoracic Surgery, Oulu University Hospital, Oulu, Finland
| | - Olli Helminen
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Juha P Väyrynen
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| |
Collapse
|
11
|
Wohlfeil SA, Olsavszky A, Irkens AL, Häfele V, Dietsch B, Straub N, Goerdt S, Géraud C. Deficiency of Stabilin-1 in the Context of Hepatic Melanoma Metastasis. Cancers (Basel) 2024; 16:441. [PMID: 38275881 PMCID: PMC10814973 DOI: 10.3390/cancers16020441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND This study analyzed the role of Stabilin-1 on hepatic melanoma metastasis in preclinical mouse models. METHODS In Stabilin-1-/- mice (Stab1 KO), liver colonization of B16F10 luc2 and Wt31 melanoma was investigated. The numbers, morphology, and vascularization of hepatic metastases and the hepatic microenvironment were analyzed by immunofluorescence. RESULTS While hepatic metastasis of B16F10 luc2 or Wt31 melanoma was unaltered between Stab1 KO and wildtype (Ctrl) mice, metastases of B16F10 luc2 tended to be smaller in Stab1 KO. The endothelial differentiation of both types of liver metastases was similar in Stab1 KO and Ctrl. No differences in initial tumor cell adhesion and retention to the liver vasculature were detected in the B16F10 luc2 model. Analysis of the immune microenvironment revealed a trend towards higher levels of CD45+Gr-1+ cells in Stab1 KO as compared to Ctrl in the B16F10 luc2 model. Interestingly, significantly higher levels of POSTN were found in the matrix of hepatic metastases of Wt31, while liver metastases of B16F10 luc2 showed a trend towards increased deposition of RELN. CONCLUSIONS Hepatic melanoma metastases show resistance to Stabilin-1 targeting approaches. This suggests that anti-Stab1 therapies should be considered with respect to the tumor entity or target organs.
Collapse
Affiliation(s)
- Sebastian A. Wohlfeil
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, 68135 Mannheim, Germany (A.L.I.); (V.H.); (B.D.); (N.S.); (S.G.); (C.G.)
- Section of Clinical and Molecular Dermatology, Medical Faculty Mannheim, Heidelberg University, 68135 Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Ana Olsavszky
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, 68135 Mannheim, Germany (A.L.I.); (V.H.); (B.D.); (N.S.); (S.G.); (C.G.)
- Section of Clinical and Molecular Dermatology, Medical Faculty Mannheim, Heidelberg University, 68135 Mannheim, Germany
| | - Anna Lena Irkens
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, 68135 Mannheim, Germany (A.L.I.); (V.H.); (B.D.); (N.S.); (S.G.); (C.G.)
- Section of Clinical and Molecular Dermatology, Medical Faculty Mannheim, Heidelberg University, 68135 Mannheim, Germany
| | - Verena Häfele
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, 68135 Mannheim, Germany (A.L.I.); (V.H.); (B.D.); (N.S.); (S.G.); (C.G.)
- Section of Clinical and Molecular Dermatology, Medical Faculty Mannheim, Heidelberg University, 68135 Mannheim, Germany
| | - Bianca Dietsch
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, 68135 Mannheim, Germany (A.L.I.); (V.H.); (B.D.); (N.S.); (S.G.); (C.G.)
- Section of Clinical and Molecular Dermatology, Medical Faculty Mannheim, Heidelberg University, 68135 Mannheim, Germany
| | - Niklas Straub
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, 68135 Mannheim, Germany (A.L.I.); (V.H.); (B.D.); (N.S.); (S.G.); (C.G.)
- Section of Clinical and Molecular Dermatology, Medical Faculty Mannheim, Heidelberg University, 68135 Mannheim, Germany
| | - Sergij Goerdt
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, 68135 Mannheim, Germany (A.L.I.); (V.H.); (B.D.); (N.S.); (S.G.); (C.G.)
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68135 Mannheim, Germany
| | - Cyrill Géraud
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, 68135 Mannheim, Germany (A.L.I.); (V.H.); (B.D.); (N.S.); (S.G.); (C.G.)
- Section of Clinical and Molecular Dermatology, Medical Faculty Mannheim, Heidelberg University, 68135 Mannheim, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68135 Mannheim, Germany
| |
Collapse
|
12
|
Liu H, Shi H, Sun Y. Identification of a novel lymphangiogenesis signature associated with immune cell infiltration in colorectal cancer based on bioinformatics analysis. BMC Med Genomics 2024; 17:2. [PMID: 38167072 PMCID: PMC10763205 DOI: 10.1186/s12920-023-01781-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/16/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Lymphangiogenesis plays an important role in tumor progression and is significantly associated with tumor immune infiltration. However, the role and mechanisms of lymphangiogenesis in colorectal cancer (CRC) are still unknown. Thus, the objective is to identify the lymphangiogenesis-related genes associated with immune infiltration and investigation of their prognosis value. METHODS mRNA expression profiles and corresponding clinical information of CRC samples were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The lymphangiogenesis-related genes (LymRGs) were collected from the Molecular Signatures database (MSigDB). Lymphangiogenesis score (LymScore) and immune cell infiltrating levels were quantified using ssGSEA. LymScore) and immune cell infiltrating levels-related hub genes were identified using weighted gene co-expression network analysis (WGCNA). Univariate Cox and LASSO regression analyses were performed to identify the prognostic gene signature and construct a risk model. Furthermore, a predictive nomogram was constructed based on the independent risk factor generated from a multivariate Cox model. RESULTS A total of 1076 LymScore and immune cell infiltrating levels-related hub genes from three key modules were identified by WGCNA. Lymscore is positively associated with natural killer cells as well as regulator T cells infiltrating. These modular genes were enriched in extracellular matrix and structure, collagen fibril organization, cell-substrate adhesion, etc. NUMBL, TSPAN11, PHF21A, PDGFRA, ZNF385A, and RIMKLB were eventually identified as the prognostic gene signature in CRC. And patients were divided into high-risk and low-risk groups based on the median risk score, the patients in the high-risk group indicated poor survival and were predisposed to metastasis and advanced stages. NUMBL and PHF21A were upregulated but PDGFRA was downregulated in tumor samples compared with normal samples in the Human Protein Atlas (HPA) database. CONCLUSION Our finding highlights the critical role of lymphangiogenesis in CRC progression and metastasis and provides a novel gene signature for CRC and novel therapeutic strategies for anti-lymphangiogenic therapies in CRC.
Collapse
Affiliation(s)
- Hong Liu
- Department of General Surgery, Wuxi Fifth People's Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu, China
| | - Huiwen Shi
- Department of General Surgery, No.971 Hospital of PLA Navy, Qingdao, China
| | - Yinggang Sun
- Department of General Surgery, The 960th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Jinan, China.
| |
Collapse
|
13
|
Khanduri I, Maki H, Verma A, Katkhuda R, Anandappa G, Pandurengan R, Zhang S, Mejia A, Tong Z, Soto LMS, Jadhav A, Wistuba II, Kopetz S, Parra ER, Vauthey JN, Maru DM. New Insights into Macrophage Polarization and its Prognostic Role in Patients with Colorectal Cancer Liver Metastasis. RESEARCH SQUARE 2023:rs.3.rs-3439308. [PMID: 37886575 PMCID: PMC10602157 DOI: 10.21203/rs.3.rs-3439308/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Background As liver metastasis is the most common cause of mortality in patients with colorectal cancer, studying colorectal cancer liver metastasis (CLM) microenvironment is essential for improved understanding of tumor biology and to identify novel therapeutic targets. Methods We used multiplex immunofluorescence platform to study tumor associated macrophage (TAM) polarization and adaptive T cell subtypes in tumor samples from 105 CLM patients (49 without and 56 with preoperative chemotherapy). Results CLM exhibited M2 macrophage polarization, and helper T cells were the prevalent adaptive T cell subtype. The density of total, M2 and TGFβ-expressing macrophages, and regulatory T cells was lower in CLM treated with preoperative chemotherapy. CLM with right-sided primary demonstrated enrichment of TGFβ-expressing macrophages, and with left-sided primary had higher densities of helper and cytotoxic T cells. In multivariate analysis, high density of M2 macrophages correlated with longer recurrence-free survival (RFS) in the entire cohort [hazard ratio (HR) 0.425, 95% CI 0.219-0.825, p=0.011) and in patients without preoperative chemotherapy (HR 0.45, 95% CI 0.221-0.932, p=0.032). High pSMAD3-expressing macrophages were associated with shorter RFS in CLM after preoperative chemotherapy. Conclusions Our results highlight the significance of a multi-marker approach to define the macrophage subtypes and identify M2 macrophages as a predictor of favorable prognosis in CLM.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shanyu Zhang
- The University of Texas MD Anderson Cancer Center
| | - Alicia Mejia
- The University of Texas MD Anderson Cancer Center
| | - Zhimin Tong
- The University of Texas MD Anderson Cancer Center
| | | | | | | | - Scott Kopetz
- The University of Texas MD Anderson Cancer Center
| | | | | | - Dipen M Maru
- The University of Texas MD Anderson Cancer Center
| |
Collapse
|
14
|
Chauvin C, Radulovic K, Boulard O, Delacre M, Waldschmitt N, Régnier P, Legris G, Bouchez C, Sleimi MY, Rosenstiel P, Darrasse-Jèze G, Chamaillard M, Poulin LF. Loss of NOD2 in macrophages improves colitis and tumorigenesis in a lysozyme-dependent manner. Front Immunol 2023; 14:1252979. [PMID: 37876927 PMCID: PMC10590911 DOI: 10.3389/fimmu.2023.1252979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/14/2023] [Indexed: 10/26/2023] Open
Abstract
Background Crohn's disease (CD) is a complex and poorly understood myeloid-mediated disorder. Genetic variants with loss of function in the NOD2 gene confer an increased susceptibility to ileal CD. While Nod2 in myeloid cells may confer protection against T-cell mediated ileopathy, it remains unclear whether it may promote resolution of the inflamed colon. In this study, we evaluated the function of Nod2 in myeloid cells in a model of acute colitis and colitis-associated colon cancer (CAC). Methods To ablate Nod2 specifically within the myeloid compartment, we generated LysMCre/+;Nod2fl/fl mice. The role of NOD2 was studied in a setting of Dextran Sodium Sulfate (DSS)-induced colitis and in azoxymethane (AOM)/DSS model. Clinical parameters were quantified by colonoscopy, histological, flow cytometry, and qRT-PCR analysis. Results Upon DSS colitis model, LysMCre/+;Nod2fl/fl mice lost less weight than control littermates and had less severe damage to the colonic epithelium. In the AOM/DSS model, endoscopic monitoring of tumor progression revealed a lowered number of adenomas within the colon of LysMCre/+;Nod2fl/fl mice, associated with less expression of Tgfb. Mechanistically, lysozyme M was required for the improved disease severity in mice with a defect of NOD2 in myeloid cells. Conclusion Our results indicate that loss of Nod2 signaling in myeloid cells aids in the tissue repair of the inflamed large intestine through lysozyme secretion by myeloid cells. These results may pave the way to design new therapeutics to limit the inflammatory and tumorigenic functions of NOD2.
Collapse
Affiliation(s)
- Camille Chauvin
- Univ. Lille, Institut National de la Santé Et de la Recherche Médicale (Inserm), Centre de Recherche Hospitalier Universitaire (CHU) Lille, Institut Pasteur de Lille, U1019, Lille, France
- Institut national de la santé et de la recherche médicale (INSERM) U1138, Centre de Recherche des Cordeliers, Paris, France
| | - Katarina Radulovic
- Unité de Recherche Clinique, Centre Hospitalier de Valenciennes, Valenciennes, France
| | | | - Myriam Delacre
- Univ. Lille, Institut National de la Santé Et de la Recherche Médicale (Inserm), Centre de Recherche Hospitalier Universitaire (CHU) Lille, Institut Pasteur de Lille, U1019, Lille, France
| | - Nadine Waldschmitt
- Chair of Nutrition and Immunology, School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany
| | - Paul Régnier
- Immunology-Immunopathology-Immunotherapy (i3) Laboratory, Institut national de la santé et de la recherche médicale (INSERM) UMR-S 959, Sorbonne Université, Paris, France
- Biotherapy Unit (CIC-BTi), Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | | | | | | | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian Albrechts University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Guillaume Darrasse-Jèze
- Immunology-Immunopathology-Immunotherapy (i3) Laboratory, Institut national de la santé et de la recherche médicale (INSERM) UMR-S 959, Sorbonne Université, Paris, France
- Université de Paris, Paris Descartes, Faculté de Médecine, Paris, France
- Université Paris Cité, Faculté de Médecine, Paris, France
| | | | | |
Collapse
|
15
|
Gao H, Ma L, Zou Q, Hu B, Cai K, Sun Y, Lu L, Ren D. Unraveling dynamic interactions between tumor-associated macrophages and consensus molecular subtypes in colorectal cancer: An integrative analysis of single-cell and bulk RNA transcriptome. Heliyon 2023; 9:e19224. [PMID: 37662758 PMCID: PMC10470276 DOI: 10.1016/j.heliyon.2023.e19224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023] Open
Abstract
Background Accumulating research substantiated that tumor-associated macrophages (TAMs) have a significant impact on the tumorigenesis, progression, and distant metastasis, representing a novel target for various cancers. However, the underlying dynamic changes and interactions between TAMs and tumor cells remain largely elusive in colorectal cancer (CRC). Methods We depicted the dynamic changes of macrophages using sing-cell RNA-seq data and extracted TAM differentiation-related genes. Next, we utilized the weighted gene co-expression network analysis (WGCNA) to acquire CMS-related modular genes using bulk RNA-seq data. Finally, we utilized univariate Cox and Lasso Cox regression analyses to identify TAM differentiation-related biomarkers and established a novel risk signature model. We employed quantitative real-time polymerase chain reaction (qRT-PCR) on CRC tissue samples and used immunohistochemistry (IHC) data frome the HPA database to validate the mRNA and protein expression of prognostic genes. The interaction of TAMs and each consensus molecular subtype (CMS) subpopulation was analyzed at the cellular level. Results A total of 47,285 cells from single-cell dataset and 1197 CRC patients from bulk dataset were obtained. Among those, 6400 myeloid cells were re-clustered and annotated. RNASE1, F13A1, DAPK1, CLEC10A, RPN2, REG4 and RGS19 were identified as prognostic genes and the risk signature model was established based on the above genes. The qRT-PCR analysis indicated that the expression of RNASE1 and DAPK1 were significantly up-regulated in CRC tumor tissues. The cell-cell communication analysis demonstrated complex interactions between TAMs and CMS malignant cell subpopulations. Conclusion This study presents an in-depth dissection of the dynamic features of TAMs in the tumor microenvironment and provides promising therapeutic targets for CRC.
Collapse
Affiliation(s)
- Han Gao
- Department of Coloproctology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Linyun Ma
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qi Zou
- Department of Coloproctology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bang Hu
- Department of Coloproctology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Keyu Cai
- Department of Coloproctology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yi Sun
- Kingmed Pathology Center, Guangzhou, China
| | - Li Lu
- Department of Coloproctology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Donglin Ren
- Department of Coloproctology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
16
|
Jahandideh A, Yarizadeh M, Noei-Khesht Masjedi M, Fatehnejad M, Jahandideh R, Soheili R, Eslami Y, Zokaei M, Ahmadvand A, Ghalamkarpour N, Kumar Pandey R, Nabi Afjadi M, Payandeh Z. Macrophage's role in solid tumors: two edges of a sword. Cancer Cell Int 2023; 23:150. [PMID: 37525217 PMCID: PMC10391843 DOI: 10.1186/s12935-023-02999-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023] Open
Abstract
The tumor microenvironment is overwhelmingly dictated by macrophages, intimately affiliated with tumors, exercising pivotal roles in multiple processes, including angiogenesis, extracellular matrix reconfiguration, cellular proliferation, metastasis, and immunosuppression. They further exhibit resilience to chemotherapy and immunotherapy via meticulous checkpoint blockades. When appropriately stimulated, macrophages can morph into a potent bidirectional component of the immune system, engulfing malignant cells and annihilating them with cytotoxic substances, thus rendering them intriguing candidates for therapeutic targets. As myelomonocytic cells relentlessly amass within tumor tissues, macrophages rise as prime contenders for cell therapy upon the development of chimeric antigen receptor effector cells. Given the significant incidence of macrophage infiltration correlated with an unfavorable prognosis and heightened resistance to chemotherapy in solid tumors, we delve into the intricate role of macrophages in cancer propagation and their promising potential in confronting four formidable cancer variants-namely, melanoma, colon, glioma, and breast cancers.
Collapse
Affiliation(s)
- Arian Jahandideh
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- Usern Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahsa Yarizadeh
- Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | - Maryam Noei-Khesht Masjedi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Fatehnejad
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Romina Jahandideh
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Roben Soheili
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Yeganeh Eslami
- Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Zokaei
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ardavan Ahmadvand
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nogol Ghalamkarpour
- Department of Clinical Laboratory Sciences, School of Allied Medicine, Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Rajan Kumar Pandey
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Zahra Payandeh
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
17
|
Goswami S, Anandhan S, Raychaudhuri D, Sharma P. Myeloid cell-targeted therapies for solid tumours. Nat Rev Immunol 2023; 23:106-120. [PMID: 35697799 DOI: 10.1038/s41577-022-00737-w] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2022] [Indexed: 02/04/2023]
Abstract
Myeloid cells are the most abundant immune components of the tumour microenvironment, where they have a variety of functions, ranging from immunosuppressive to immunostimulatory roles. The myeloid cell compartment comprises many different cell types, including monocytes, macrophages, dendritic cells and granulocytes, that are highly plastic and can differentiate into diverse phenotypes depending on cues received from their microenvironment. In the past few decades, we have gained a better appreciation of the complexity of myeloid cell subsets and how they are involved in tumour progression and resistance to cancer therapies, including immunotherapy. In this Review, we highlight key features of monocyte and macrophage biology that are being explored as potential targets for cancer therapies and what aspects of myeloid cells need a deeper understanding to identify rational combinatorial strategies to improve clinical outcomes of patients with cancer. We discuss therapies that aim to modulate the functional activities of myeloid cell populations, impacting their recruitment, survival and activity in the tumour microenvironment, acting at the level of cell surface receptors, signalling pathways, epigenetic machinery and metabolic regulators. We also describe advances in the development of genetically engineered myeloid cells for cancer therapy.
Collapse
Affiliation(s)
- Sangeeta Goswami
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Swetha Anandhan
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,MD Anderson UT Health Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Deblina Raychaudhuri
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Padmanee Sharma
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,The Immunotherapy Platform, The University of Texas MD Anderson Cancer, Center, Houston, TX, USA.
| |
Collapse
|
18
|
Guo Z, Zhang R, Yang AG, Zheng G. Diversity of immune checkpoints in cancer immunotherapy. Front Immunol 2023; 14:1121285. [PMID: 36960057 PMCID: PMC10027905 DOI: 10.3389/fimmu.2023.1121285] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
Finding effective treatments for cancer remains a challenge. Recent studies have found that the mechanisms of tumor evasion are becoming increasingly diverse, including abnormal expression of immune checkpoint molecules on different immune cells, in particular T cells, natural killer cells, macrophages and others. In this review, we discuss the checkpoint molecules with enhanced expression on these lymphocytes and their consequences on immune effector functions. Dissecting the diverse roles of immune checkpoints in different immune cells is crucial for a full understanding of immunotherapy using checkpoint inhibitors.
Collapse
Affiliation(s)
- Zhangyan Guo
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi’an, China
| | - Rui Zhang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi’an, China
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
| | - An-Gang Yang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi’an, China
- *Correspondence: Guoxu Zheng, ; An-Gang Yang,
| | - Guoxu Zheng
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi’an, China
- *Correspondence: Guoxu Zheng, ; An-Gang Yang,
| |
Collapse
|
19
|
Dong Y, Yang Q, Niu R, Zhang Z, Huang Y, Bi Y, Liu G. Modulation of tumor‐associated macrophages in colitis‐associated colorectal cancer. J Cell Physiol 2022; 237:4443-4459. [DOI: 10.1002/jcp.30906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Yingjie Dong
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences Beijing Normal University Beijing China
| | - Qiuli Yang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences Beijing Normal University Beijing China
| | - Ruiying Niu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences Beijing Normal University Beijing China
| | - Zhiyuan Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences Beijing Normal University Beijing China
| | - Yijin Huang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences Beijing Normal University Beijing China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity Beijing Institute of Microbiology and Epidemiology Beijing China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences Beijing Normal University Beijing China
| |
Collapse
|
20
|
Spourquet C, Delcorte O, Lemoine P, Dauguet N, Loriot A, Achouri Y, Hollmén M, Jalkanen S, Huaux F, Lucas S, Meerkeeck PV, Knauf JA, Fagin JA, Dessy C, Mourad M, Henriet P, Tyteca D, Marbaix E, Pierreux CE. BRAFV600E Expression in Thyrocytes Causes Recruitment of Immunosuppressive STABILIN-1 Macrophages. Cancers (Basel) 2022; 14:cancers14194687. [PMID: 36230610 PMCID: PMC9563029 DOI: 10.3390/cancers14194687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 11/22/2022] Open
Abstract
Simple Summary Incidence of thyroid cancer, including papillary thyroid cancer, is rapidly increasing. Oncogenes, such as the BRAFV600E, have been identified, and their effect on thyroid cancer cells have been studied in vitro and in mouse models. What is less understood is the impact of these mutations on thyroid cancer microenvironment and, in turn, the effect of changes in the microenvironment on tumor progression. We investigated the modifications in the cellular composition of thyroid cancer microenvironment using an inducible mouse model. We focused on a subpopulation of macrophages, expressing the STABILIN-1 protein, recruited in the thyroid tumor microenvironment following BRAFV600E expression. CRISPR/Cas9 genetic inactivation of Stablin-1 did not change macrophage recruitment but highlighted the immunosuppressive role of STABILIN-1-expressing macrophages. The identification of a similar subpopulation of STABILIN-1 macrophages in human thyroid diseases supports a conserved role for these macrophages and offers an opportunity for intervention. Abstract Papillary thyroid carcinoma (PTC) is the most frequent histological subtype of thyroid cancers (TC), and BRAFV600E genetic alteration is found in 60% of this endocrine cancer. This oncogene is associated with poor prognosis, resistance to radioiodine therapy, and tumor progression. Histological follow-up by anatomo-pathologists revealed that two-thirds of surgically-removed thyroids do not present malignant lesions. Thus, continued fundamental research into the molecular mechanisms of TC downstream of BRAFV600E remains central to better understanding the clinical behavior of these tumors. To study PTC, we used a mouse model in which expression of BRAFV600E was specifically switched on in thyrocytes by doxycycline administration. Upon daily intraperitoneal doxycycline injection, thyroid tissue rapidly acquired histological features mimicking human PTC. Transcriptomic analysis revealed major changes in immune signaling pathways upon BRAFV600E induction. Multiplex immunofluorescence confirmed the abundant recruitment of macrophages, among which a population of LYVE-1+/CD206+/STABILIN-1+ was dramatically increased. By genetically inactivating the gene coding for the scavenger receptor STABILIN-1, we showed an increase of CD8+ T cells in this in situ BRAFV600E-dependent TC. Lastly, we demonstrated the presence of CD206+/STABILIN-1+ macrophages in human thyroid pathologies. Altogether, we revealed the recruitment of immunosuppressive STABILIN-1 macrophages in a PTC mouse model and the interest to further study this macrophage subpopulation in human thyroid tissues.
Collapse
Affiliation(s)
- Catherine Spourquet
- CELL Unit, de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Ophélie Delcorte
- CELL Unit, de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Pascale Lemoine
- CELL Unit, de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Nicolas Dauguet
- CYTF Platform, de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Axelle Loriot
- CBIO Unit, de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Younes Achouri
- Transgenesis Platform, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Maija Hollmén
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, 20500 Turku, Finland
| | - Sirpa Jalkanen
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, 20500 Turku, Finland
| | - François Huaux
- LTAP Unit, IREC, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Sophie Lucas
- GECE Unit, de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), 1300 Wavre, Belgium
| | - Pierre Van Meerkeeck
- GECE Unit, de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Jeffrey A. Knauf
- Department of Otolaryngology Head & Neck Surgery in the Cleveland Clinic Lerner, College of Medicine of Case Western Reserve University, Cleveland, OH 44106, USA
| | - James A. Fagin
- Department of Medicine and Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chantal Dessy
- FATH & MORF Unit, IREC, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Michel Mourad
- Surgery and Abdominal Transplantation Division, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Patrick Henriet
- CELL Unit, de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Donatienne Tyteca
- CELL Unit, de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Etienne Marbaix
- CELL Unit, de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Christophe E. Pierreux
- CELL Unit, de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
- Correspondence: ; Tel.:+32-2-764-65-22
| |
Collapse
|
21
|
Noti L, Galván JA, Dawson H, Lugli A, Kirsch R, Assarzadegan N, Messenger D, Krebs P, Berger MD, Zlobec I. A combined spatial score of granzyme B and CD68 surpasses CD8 as an independent prognostic factor in TNM stage II colorectal cancer. BMC Cancer 2022; 22:987. [PMID: 36114487 PMCID: PMC9482175 DOI: 10.1186/s12885-022-10048-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/31/2022] [Indexed: 12/24/2022] Open
Abstract
Background Previous assessments of peritumoral inflammatory infiltrate in colorectal cancer (CRC) have focused on the role of CD8+ T lymphocytes. We sought to compare the prognostic value of CD8 with downstream indicators of active immune cell function, specifically granzyme B (GZMB) and CD68 in the tumour microenvironment. Methods Immunohistochemical (IHC) staining was performed for CD8, GZMB, CD68 and CD163 on next-generation tissue microarrays (ngTMAs) in a primary cohort (n = 107) and a TNM stage II validation cohort (n = 151). Using digital image analysis, frequency of distinct immune cell types was calculated for tumour proximity (TP) zones with varying radii (10 μm-100 μm) around tumour cells. Results Associations notably of advanced TNM stage were observed for low density of CD8 (p = 0.002), GZMB (p < 0.001), CD68 (p = 0.034) and CD163 (p = 0.011) in the primary cohort. In the validation cohort only low GZMB (p = 0.036) was associated with pT4 stage. Survival analysis showed strongest prognostic effects in the TP25μm zone at the tumour centre for CD8, GZMB and CD68 (all p < 0.001) in the primary cohort and for CD8 (p = 0.072), GZMB (p = 0.035) and CD68 (p = 0.004) in the validation cohort with inferior prognostic effects observed at the tumour invasive margin. In a multivariate survival analysis, joint analysis of GZMB and CD68 was similarly prognostic to CD8 in the primary cohort (p = 0.007 vs. p = 0.002) and superior to CD8 in the validation cohort (p = 0.005 vs. p = 0.142). Conclusion Combined high expression of GZMB and CD68 within 25 μm to tumour cells is an independent prognostic factor in CRC and of superior prognostic value to the well-established CD8 in TNM stage II cancers. Thus, assessment of antitumoral effect should consider the quality of immune activation in peritumoral inflammatory cells and their actual proximity to tumour cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10048-x.
Collapse
|
22
|
Ghilas S, O’Keefe R, Mielke LA, Raghu D, Buchert M, Ernst M. Crosstalk between epithelium, myeloid and innate lymphoid cells during gut homeostasis and disease. Front Immunol 2022; 13:944982. [PMID: 36189323 PMCID: PMC9524271 DOI: 10.3389/fimmu.2022.944982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/29/2022] [Indexed: 12/05/2022] Open
Abstract
The gut epithelium not only provides a physical barrier to separate a noxious outside from a sterile inside but also allows for highly regulated interactions between bacteria and their products, and components of the immune system. Homeostatic maintenance of an intact epithelial barrier is paramount to health, requiring an intricately regulated and highly adaptive response of various cells of the immune system. Prolonged homeostatic imbalance can result in chronic inflammation, tumorigenesis and inefficient antitumor immune control. Here we provide an update on the role of innate lymphoid cells, macrophages and dendritic cells, which collectively play a critical role in epithelial barrier maintenance and provide an important linkage between the classical innate and adaptive arm of the immune system. These interactions modify the capacity of the gut epithelium to undergo continuous renewal, safeguard against tumor formation and provide feedback to the gut microbiome, which acts as a seminal contributor to cellular homeostasis of the gut.
Collapse
Affiliation(s)
- Sonia Ghilas
- Mucosal Immunity Laboratory, Olivia Newton-John Cancer Research Institute, and La Trobe University - School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Ryan O’Keefe
- Cancer and Inflammation Program, Olivia Newton-John Cancer Research Institute, and La Trobe University - School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Lisa Anna Mielke
- Mucosal Immunity Laboratory, Olivia Newton-John Cancer Research Institute, and La Trobe University - School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Dinesh Raghu
- Mucosal Immunity Laboratory, Olivia Newton-John Cancer Research Institute, and La Trobe University - School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Michael Buchert
- Cancer and Inflammation Program, Olivia Newton-John Cancer Research Institute, and La Trobe University - School of Cancer Medicine, Heidelberg, VIC, Australia
- *Correspondence: Michael Buchert, ; Matthias Ernst,
| | - Matthias Ernst
- Cancer and Inflammation Program, Olivia Newton-John Cancer Research Institute, and La Trobe University - School of Cancer Medicine, Heidelberg, VIC, Australia
- *Correspondence: Michael Buchert, ; Matthias Ernst,
| |
Collapse
|
23
|
Loh AHP, Angelina C, Wong MK, Tan SH, Sukhatme SA, Yeo T, Lim SB, Lee YT, Soh SY, Leung W, Chang KTE, Chua YW, Alkaff SMF, Lim TKH, Lim CT, Chen ZX. Pro-metastatic and mesenchymal gene expression signatures characterize circulating tumor cells of neuroblastoma patients with bone marrow metastases and relapse. Front Oncol 2022; 12:939460. [PMID: 36176417 PMCID: PMC9513238 DOI: 10.3389/fonc.2022.939460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Existing marker-based methods of minimal residual disease (MRD) determination in neuroblastoma do not effectively enrich for the circulating disease cell population. Given the relative size differential of neuroblastoma tumor cells over normal hematogenous cells, we hypothesized that cell size-based separation could enrich circulating tumor cells (CTCs) from blood samples and disseminated tumor cells (DTCs) from bone marrow aspirates (BMA) of neuroblastoma patients, and that their gene expression profiles could vary dynamically with various disease states over the course of treatment. Using a spiral microfluidic chip, peripheral blood of 17 neuroblastoma patients at 3 serial treatment timepoints (diagnosis, n=17; post-chemotherapy, n=11; and relapse, n=3), and bone marrow samples at diagnosis were enriched for large intact circulating cells. Profiling the resulting enriched samples with immunohistochemistry and mRNA expression of 1490 cancer-related genes via NanoString, 13 of 17 samples contained CTCs displaying cytologic atypia, TH and PHOX2B expression and/or upregulation of cancer-associated genes. Gene signatures reflecting pro-metastatic processes and the neuroblastoma mesenchymal super-enhancer state were consistently upregulated in 7 of 13 samples, 6 of which also had metastatic high-risk disease. Expression of 8 genes associated with PI3K and GCPR signaling were significantly upregulated in CTCs of patients with bone marrow metastases versus patients without. Correspondingly, in patients with marrow metastases, differentially-expressed gene signatures reflected upregulation of immune regulation in bone marrow DTCs versus paired CTCs samples. In patients who later developed disease relapse, 5 genes involved in immune cell regulation, JAK/STAT signaling and the neuroblastoma mesenchymal super-enhancer state (OLFML2B, STAT1, ARHGDIB, STAB1, TLR2) were upregulated in serial CTC samples over their disease course, despite urinary catecholamines and bone marrow aspirates not indicating the disease recurrences. In summary, using a label-free cell size-based separation method, we enriched and characterized intact circulating cells in peripheral blood indicative of neuroblastoma CTCs, as well as their DTC counterparts in the bone marrow. Expression profiles of pro-metastatic genes in CTCs correlated with the presence of bone marrow metastases at diagnosis, while longitudinal profiling identified persistently elevated expression of genes in CTCs that may serve as novel predictive markers of hematogenous MRD in neuroblastoma patients that subsequently relapse.
Collapse
Affiliation(s)
- Amos H. P. Loh
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children’s Blood and Cancer Centre, KK Women’s and Children’s Hospital, Singapore, Singapore
- Department of Paediatric Surgery, KK Women’s and Children’s Hospital, Singapore, Singapore
- Duke NUS Medical School, Singapore, Singapore
| | - Clara Angelina
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Meng Kang Wong
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children’s Blood and Cancer Centre, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Sheng Hui Tan
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children’s Blood and Cancer Centre, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Sarvesh A. Sukhatme
- Mechanobiology Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Trifanny Yeo
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Su Bin Lim
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - York Tien Lee
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children’s Blood and Cancer Centre, KK Women’s and Children’s Hospital, Singapore, Singapore
- Department of Paediatric Surgery, KK Women’s and Children’s Hospital, Singapore, Singapore
- Duke NUS Medical School, Singapore, Singapore
| | - Shui Yen Soh
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children’s Blood and Cancer Centre, KK Women’s and Children’s Hospital, Singapore, Singapore
- Duke NUS Medical School, Singapore, Singapore
- Department of Paediatric Subspecialties Haematology/Oncology Service, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Wing Leung
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children’s Blood and Cancer Centre, KK Women’s and Children’s Hospital, Singapore, Singapore
- Duke NUS Medical School, Singapore, Singapore
- Department of Paediatric Subspecialties Haematology/Oncology Service, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Kenneth T. E. Chang
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children’s Blood and Cancer Centre, KK Women’s and Children’s Hospital, Singapore, Singapore
- Duke NUS Medical School, Singapore, Singapore
- Department of Pathology and Laboratory Medicine, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Yong Wei Chua
- Department of Anatomic Pathology, Singapore General Hospital, Singapore, Singapore
| | - Syed M. F. Alkaff
- Department of Anatomic Pathology, Singapore General Hospital, Singapore, Singapore
| | - Tony K. H. Lim
- Duke NUS Medical School, Singapore, Singapore
- Department of Anatomic Pathology, Singapore General Hospital, Singapore, Singapore
| | - Chwee Teck Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Mechanobiology Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
- Institute of Health Innovation and Technology, National University of Singapore, Singapore, Singapore
| | - Zhi Xiong Chen
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children’s Blood and Cancer Centre, KK Women’s and Children’s Hospital, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National University Cancer Institute, National University Health System, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- *Correspondence: Zhi Xiong Chen,
| |
Collapse
|
24
|
Genetic and microenvironmental intra-tumor heterogeneity impacts colorectal cancer evolution and metastatic development. Commun Biol 2022; 5:937. [PMID: 36085309 PMCID: PMC9463147 DOI: 10.1038/s42003-022-03884-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/23/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractColorectal cancer (CRC) is a highly diverse disease, where different genomic instability pathways shape genetic clonal diversity and tumor microenvironment. Although intra-tumor heterogeneity has been characterized in primary tumors, its origin and consequences in CRC outcome is not fully understood. Therefore, we assessed intra- and inter-tumor heterogeneity of a prospective cohort of 136 CRC samples. We demonstrate that CRC diversity is forged by asynchronous forms of molecular alterations, where mutational and chromosomal instability collectively boost CRC genetic and microenvironment intra-tumor heterogeneity. We were able to depict predictor signatures of cancer-related genes that can foresee heterogeneity levels across the different tumor consensus molecular subtypes (CMS) and primary tumor location. Finally, we show that high genetic and microenvironment heterogeneity are associated with lower metastatic potential, whereas late-emerging copy number variations favor metastasis development and polyclonal seeding. This study provides an exhaustive portrait of the interplay between genetic and microenvironment intra-tumor heterogeneity across CMS subtypes, depicting molecular events with predictive value of CRC progression and metastasis development.
Collapse
|
25
|
Mutka M, Virtakoivu R, Joensuu K, Hollmén M, Heikkilä P. Clever-1 positive macrophages in breast cancer. Breast Cancer Res Treat 2022; 195:237-248. [PMID: 35917053 PMCID: PMC9464734 DOI: 10.1007/s10549-022-06683-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/06/2022] [Indexed: 11/28/2022]
Abstract
Purpose Common Lymphatic Endothelial and Vascular Endothelial Receptor 1 (Clever-1) is expressed by a subset of immunosuppressive macrophages and targeting the receptor with therapeutic antibodies has been shown to activate T-cell-mediated anti-cancer immunity. The aim of this research was to study Clever-1 expression in breast cancer. Specifically, how Clever-1 + macrophages correlate with clinicopathologic factors, Tumor Infiltrating Lymphocytes (TILs) and prognosis. Methods Tissue microarray blocks were made from 373 primary breast cancer operation specimens. Hematoxylin and Eosin (H&E-staining) and immunohistochemical staining with Clever-1, CD3, CD4 and CD8 antibodies were performed. Differences in quantities of Clever-1 + macrophages and TILs were analyzed. Clever-1 + cell numbers were correlated with 25-year follow-up survival data and with breast cancer clinicopathologic parameters. Results Low numbers of intratumoral Clever-1 + cells were found to be an independent adverse prognostic sign. Increased numbers of Clever-1 + cells were found in high grade tumors and hormone receptor negative tumors. Tumors that had higher amounts of Clever-1 + cells also tended to have higher amounts of TILs. Conclusion The association of intratumoral Clever-1 + macrophages with better prognosis might stem from the function of Clever as a scavenger receptor that modulates tumor stroma. The association of Clever-1 + macrophages with high number of TILs and better prognosis indicates that immunosuppression by M2 macrophages is not necessarily dampening adaptive immune responses but instead keeping them in control to avoid excess inflammation.
Collapse
Affiliation(s)
- Minna Mutka
- Department of Pathology, HUSLAB, Helsinki University Hospital and University of Helsinki, N00290, Helsinki, Finland.
| | | | | | - Maija Hollmén
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Päivi Heikkilä
- Department of Pathology, HUSLAB, Helsinki University Hospital and University of Helsinki, N00290, Helsinki, Finland
| |
Collapse
|
26
|
Timperi E, Gueguen P, Molgora M, Magagna I, Kieffer Y, Lopez-Lastra S, Sirven P, Baudrin LG, Baulande S, Nicolas A, Champenois G, Meseure D, Vincent-Salomon A, Tardivon A, Laas E, Soumelis V, Colonna M, Mechta-Grigoriou F, Amigorena S, Romano E. Lipid-associated macrophages are induced by cancer-associated fibroblasts and mediate immune suppression in breast cancer. Cancer Res 2022; 82:3291-3306. [PMID: 35862581 DOI: 10.1158/0008-5472.can-22-1427] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/29/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022]
Abstract
Tumor-associated macrophages (TAM) play a detrimental role in triple-negative breast cancer (TNBC). In-depth analysis of TAM characteristics and interactions with stromal cells, such as cancer-associated fibroblast (CAF), could provide important biological and therapeutic insights. Here we identify at the single-cell level a monocyte-derived-STAB1+TREM2high lipid-associated macrophage (LAM) subpopulation with immune suppressive capacities that is expanded in patients resistant to immune checkpoint blockade (ICB). Genetic depletion of this LAM subset in mice suppressed TNBC tumor growth. Flow cytometry and bulk-RNA sequencing data demonstrated that co-culture with TNBC-derived CAFs led to reprogramming of blood monocytes towards immune suppressive STAB1+TREM2high LAMs, which inhibit T cell activation and proliferation. Cell-to-cell interaction modeling and assays in vitro demonstrated the role of the inflammatory CXCL12-CXCR4 axis in CAF-myeloid cell crosstalk and recruitment of monocytes in tumor sites. Altogether, these data suggest an inflammation model whereby monocytes recruited to the tumor via the CAF-driven CXCL12-CXCR4 axis acquire pro-tumorigenic LAM capacities to support an immunosuppressive microenvironment.
Collapse
Affiliation(s)
| | | | - Martina Molgora
- Washington University School of Medicine, St Louis, United States
| | | | | | | | | | | | | | | | | | | | | | - Anne Tardivon
- Institut Curie, Service de Radiologie, Paris, France
| | - Enora Laas
- PSL Research University, Institut Curie, Paris, F-75248, France, Paris, France, France
| | | | - Marco Colonna
- Washington University School of Medicine, St Louis, MO, USA, St Louis, United States
| | | | | | - Emanuela Romano
- Institut Curie, Center of Cancer Immunotherapy, Paris, France
| |
Collapse
|
27
|
Manzoor S, Muhammad JS, Maghazachi AA, Hamid Q. Autophagy: A Versatile Player in the Progression of Colorectal Cancer and Drug Resistance. Front Oncol 2022; 12:924290. [PMID: 35912261 PMCID: PMC9329589 DOI: 10.3389/fonc.2022.924290] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer (CRC) is among the topmost malignancies for both genders. Despite the high incidence rate and advances in diagnostic tools, treatment in many cases is still ineffective. Most cancerous lesions in CRC begin as benign, followed by the development of invasive forms and metastases. The development of CRC has been linked to defects in autophagy, which plays both a pro-and anti-tumor role and is mainly context-dependent. Autophagy suppression could enhance apoptosis via p53 activation, or autophagy also promotes tumor progression by maintaining tumor growth and increasing resistance to chemotherapy. Autophagy promotes the invasion and metastasis of CRC cells via increased epithelial-mesenchymal transition (EMT). Moreover, dysbiosis of gut microbiota upregulated autophagy and metastasis markers. Autophagy responses may also modulate the tumor microenvironment (TME) via regulating the differentiation process of several innate immune cells. Treatments that promote tumor cell death by stimulating or inhibiting autophagy could be beneficial if used as an adjunct treatment, but the precise role of various autophagy-modulating drugs in CRC patients is needed to be explored. In this article, we present an overview of the autophagy process and its role in the pathogenesis and therapeutic resistance of CRC. Also, we focused on the current understanding of the role of the EMT and TME, including its relation to gut microbiota and immune cells, in autophagic manipulation of CRC. We believe that there is a potential link between autophagy, TME, EMT, and drug resistance, suggesting that further studies are needed to explore this aspect.
Collapse
Affiliation(s)
- Shaista Manzoor
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Azzam A. Maghazachi
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Qutayba Hamid
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
- *Correspondence: Qutayba Hamid,
| |
Collapse
|
28
|
Hollmén M, Maksimow M, Rannikko JH, Karvonen MK, Vainio M, Jalkanen S, Jalkanen M, Mandelin J. Nonclinical Characterization of Bexmarilimab, a Clever-1-Targeting Antibody for Supporting Immune Defense Against Cancers. Mol Cancer Ther 2022; 21:1207-1218. [PMID: 35500016 PMCID: PMC9377746 DOI: 10.1158/1535-7163.mct-21-0840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/18/2022] [Accepted: 04/27/2022] [Indexed: 01/07/2023]
Abstract
Common lymphatic endothelial and vascular endothelial receptor-1 (Clever-1) is a multifunctional type-1 transmembrane protein that plays an important role in immunosuppression against tumors. Clever-1 is highly expressed in a subset of human tumor-associated macrophages and associated with poor survival. In mice, Clever-1 supports tumor growth and metastasis formation, and its deficiency or blockage induces T-cell-dependent killing of cancer cells. Therefore, targeting Clever-1 could lead to T-cell activation and restoration of immune response also in patients with cancer. This is studied in an on-going clinical trial [Macrophage Antibody To INhibit immune Suppression (MATINS); NCT03733990] in patients with advanced solid tumors where bexmarilimab, a humanized IgG4 antibody against human Clever-1, shows promising safety and efficacy. Here, we report the humanization and nonclinical characterization of physicochemical properties, biological potency, and safety profile of bexmarilimab. Bexmarilimab showed high affinity to Clever-1 on KG-1 cells and bound to Clever-1 on the surface of classical and intermediate monocytes derived from healthy human blood. Bexmarilimab inhibited the internalization of its natural ligand acetylated low-density lipoprotein into KG-1 cells and increased TNFα secretion from macrophages but did not impair phagocytic clearance. Bexmarilimab did not induce significant cytokine release in human whole-blood cultures, did not contain nonsafe immunogenic glycans, or show any significant binding to human Fcγ receptors or complement pathway component C1q. In vivo, bexmarilimab showed dose-dependent duration of monocyte Clever-1 receptor occupancy in cynomolgus monkeys but did not induce a cytokine storm up to a dose of 100 mg/kg. In conclusion, these data support the clinical development of bexmarilimab for the restoration of immune response in cancers.
Collapse
Affiliation(s)
- Maija Hollmén
- MediCity Research Laboratory, Faculty of Medicine, University of Turku, Turku, Finland.,InFLAMES Flagship, University of Turku, Turku, Finland.,Corresponding Author: Maija Hollmén, MediCity Research Laboratory, Faculty of Medicine, University of Turku, FI-20014, Turku, Finland. Phone: 3585-0514-2893; E-mail:
| | - Mikael Maksimow
- MediCity Research Laboratory, Faculty of Medicine, University of Turku, Turku, Finland.,Faron Pharmaceuticals, Turku, Finland
| | - Jenna H. Rannikko
- MediCity Research Laboratory, Faculty of Medicine, University of Turku, Turku, Finland.,InFLAMES Flagship, University of Turku, Turku, Finland
| | | | | | - Sirpa Jalkanen
- MediCity Research Laboratory, Faculty of Medicine, University of Turku, Turku, Finland.,InFLAMES Flagship, University of Turku, Turku, Finland
| | | | | |
Collapse
|
29
|
Abstract
The lymphatic system, composed of initial and collecting lymphatic vessels as well as lymph nodes that are present in almost every tissue of the human body, acts as an essential transport system for fluids, biomolecules and cells between peripheral tissues and the central circulation. Consequently, it is required for normal body physiology but is also involved in the pathogenesis of various diseases, most notably cancer. The important role of tumor-associated lymphatic vessels and lymphangiogenesis in the formation of lymph node metastasis has been elucidated during the last two decades, whereas the underlying mechanisms and the relation between lymphatic and peripheral organ dissemination of cancer cells are incompletely understood. Lymphatic vessels are also important for tumor-host communication, relaying molecular information from a primary or metastatic tumor to regional lymph nodes and the circulatory system. Beyond antigen transport, lymphatic endothelial cells, particularly those residing in lymph node sinuses, have recently been recognized as direct regulators of tumor immunity and immunotherapy responsiveness, presenting tumor antigens and expressing several immune-modulatory signals including PD-L1. In this review, we summarize recent discoveries in this rapidly evolving field and highlight strategies and challenges of therapeutic targeting of lymphatic vessels or specific lymphatic functions in cancer patients.
Collapse
Affiliation(s)
- Lothar C Dieterich
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Carlotta Tacconi
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Department of Biosciences, University of Milan, Milan, Italy
| | - Luca Ducoli
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| |
Collapse
|
30
|
Deng YM, Zhao C, Wu L, Qu Z, Wang XY. Cannabinoid Receptor-1 suppresses M2 macrophage polarization in colorectal cancer by downregulating EGFR. Cell Death Dis 2022; 8:273. [PMID: 35641479 PMCID: PMC9156763 DOI: 10.1038/s41420-022-01064-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/24/2022] [Accepted: 05/18/2022] [Indexed: 01/01/2023]
Abstract
Cannabinoid receptors, CB1 and CB2, have been implicated as emerging targets for cancer therapy. Herein, we investigated the potential regulation mechanism of CB1 and its implications in colorectal cancer. CB1 and EGFR expression were examined in colorectal cancer cell lines. The effects of CB1 agonist ACEA and its antagonist AM251 on the proliferation, migration and invasion of colorectal cancer cells and the expression of M1 and M2 macrophage markers were examined. EGFR overexpression was performed with plasmids containing EGFR gene. Tumor xenografts were constructed to explore the effects of CB1 activation on tumorigenesis. We showed that CB1 was downregulated while EGFR was upregulated in colorectal cancer cells. The activation of CB1 suppressed the proliferation, migration and invasion of colorectal cancer cells and the differentiation of M2 macrophages, while CB1 inhibition had opposite effects. Moreover, the alterations in tumorigenesis and M2 macrophage activation induced by CB1 activation were counteracted by EGFR overexpression. Besides, CB1 silencing promoted tumor cell proliferation and M2 polarization which was counteracted by EGFR knockdown. In vivo, CB1 activation also repressed tumorigenesis and M2 macrophage activation. The present study demonstrated that CB1 activation suppressed M2 macrophage through EGFR downregulation in colorectal cancers. These findings first unveiled the potential avenue of CB1 as a targeted therapy for colorectal cancer.
Collapse
Affiliation(s)
- You-Ming Deng
- Department of Essential Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, P. R. China
| | - Cheng Zhao
- Department of Endocrinology, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518037, Guangdong Province, P. R. China
| | - Lei Wu
- Research Institute of General Surgery, Jinling Hospital, Nanjing University, Nanjing, 210093, Jiangsu Province, P. R. China
| | - Zhan Qu
- Department of Essential Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, P. R. China.
| | - Xin-Yu Wang
- Department of Essential Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, P. R. China
| |
Collapse
|
31
|
Russo M, Nastasi C. Targeting the Tumor Microenvironment: A Close Up of Tumor-Associated Macrophages and Neutrophils. Front Oncol 2022; 12:871513. [PMID: 35664746 PMCID: PMC9160747 DOI: 10.3389/fonc.2022.871513] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/11/2022] [Indexed: 12/15/2022] Open
Abstract
The importance of the tumor microenvironment (TME) in dynamically regulating cancer progression and influencing the therapeutic outcome is widely accepted and appreciated. Several therapeutic strategies to modify or modulate the TME, like angiogenesis or immune checkpoint inhibitors, showed clinical efficacy and received approval from regulatory authorities. Within recent decades, new promising strategies targeting myeloid cells have been implemented in preclinical cancer models. The predominance of specific cell phenotypes in the TME has been attributed to pro- or anti-tumoral. Hence, their modulation can, in turn, alter the responses to standard-of-care treatments, making them more or less effective. Here, we summarize and discuss the current knowledge and the correlated challenges about the tumor-associated macrophages and neutrophils targeting strategies, current treatments, and future developments.
Collapse
Affiliation(s)
- Massimo Russo
- Laboratory of Cancer Metastasis Therapeutics, Department of Oncology, Mario Negri Pharmacological Research Institute (IRCCS), Milan, Italy
| | - Claudia Nastasi
- Laboratory of Cancer Pharmacology, Department of Oncology, Mario Negri Pharmacological Research Institute (IRCCS), Milan, Italy
| |
Collapse
|
32
|
Wang Z, Song J, Azami NLB, Sun M. Identification of a Novel Immune Landscape Signature for Predicting Prognosis and Response of Colon Cancer to Immunotherapy. Front Immunol 2022; 13:802665. [PMID: 35572595 PMCID: PMC9095944 DOI: 10.3389/fimmu.2022.802665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/31/2022] [Indexed: 12/02/2022] Open
Abstract
PURPOSE To construct an immune-related gene prognostic index (IRGPI) for colon cancer and elucidate the molecular and immune characteristics as well as the benefit of immune checkpoint inhibitor (ICI) therapy in IRGPI-defined groups of colon cancer. EXPERIMENTAL DESIGN Transcriptional and clinical data of colon cancer samples were obtained from The Cancer Genome Atlas (TCGA) (n = 521). Immune-related genes were obtained from ImmPort and InnateDB databases. 21 immune-related hub genes were identified byweighted gene co-expression network analysis (WGCNA). the Cox regression method was used to construct IRGPI and validated with Gene Expression Omnibus (GEO) dataset (n = 584). Finally, the molecular and immune profiles in the groups defined by IRGPI and the benefit of ICI treatment were analyzed. RESULTS 8 genes were identified to construct IRGPI. IRGPI-low group had a better overall survival (OS) than IRGPI-high group. And this was well validated in the GEO cohort. Overall results showed that those with low IRGPI scores were enriched in antitumor metabolism, and collated with high infiltration of resting memory CD4 T cells and less aggressive phenotypes, benefiting more from ICI treatment. Conversely, high IRGPI scores were associated with cell adhesion molecules (CAMs) and chemokine signaling pathways, high infiltration of macrophage M1, suppressed immunity, more aggressive colon cancer phenotypes, as well as reduced therapeutic benefit from ICI treatment. CONCLUSIONS IRGPI is a promising biomarker to differentiate the prognostic and molecular profile of colon cancer, as well as the therapeutic benefits of ICI treatment.
Collapse
Affiliation(s)
- Zheng Wang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingru Song
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Nisma Lena Bahaji Azami
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingyu Sun
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
33
|
Ugai T, Väyrynen JP, Haruki K, Akimoto N, Lau MC, Zhong R, Kishikawa J, Väyrynen SA, Zhao M, Fujiyoshi K, Dias Costa A, Borowsky J, Arima K, Guerriero JL, Fuchs CS, Zhang X, Song M, Wang M, Giannakis M, Meyerhardt JA, Nowak JA, Ogino S. Smoking and Incidence of Colorectal Cancer Subclassified by Tumor-Associated Macrophage Infiltrates. J Natl Cancer Inst 2022; 114:68-77. [PMID: 34264325 PMCID: PMC8755510 DOI: 10.1093/jnci/djab142] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/03/2021] [Accepted: 07/12/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Biological evidence indicates that smoking can influence macrophage functions and polarization, thereby promoting tumor evolution. We hypothesized that the association of smoking with colorectal cancer incidence might differ by macrophage infiltrates. METHODS Using the Nurses' Health Study and the Health Professionals Follow-up Study, we examined the association of smoking with incidence of colorectal cancer subclassified by macrophage counts. Multiplexed immunofluorescence (for CD68, CD86, IRF5, MAF, and MRC1 [CD206]) combined with digital image analysis and machine learning was used to identify overall, M1-polarized, and M2-polarized macrophages in tumor. We used inverse-probability-weighted multivariable Cox proportional hazards regression models to control for potential confounders and selection bias because of tissue data availability. All statistical tests were 2-sided. RESULTS During follow-up of 131 144 participants (3 648 370 person-years), we documented 3092 incident colorectal cancer cases, including 871 cases with available macrophage data. The association of pack-years smoked with colorectal cancer incidence differed by stromal macrophage densities (Pheterogeneity = .003). Compared with never smoking, multivariable-adjusted hazard ratios (95% confidence interval) for tumors with low macrophage densities were 1.32 (0.97 to 1.79) for 1-19 pack-years, 1.31 (0.92 to 1.85) for 20-39 pack-years, and 1.74 (1.26 to 2.41) for 40 or more pack-years (Ptrend = .004). In contrast, pack-years smoked was not statistically significantly associated with the incidence of tumors having intermediate or high macrophage densities (Ptrend > .009, with an α level of .005). No statistically significant differential association was found for colorectal cancer subclassified by M1-like or M2-like macrophages. CONCLUSIONS The association of smoking with colorectal cancer incidence is stronger for tumors with lower stromal macrophage counts. Our findings suggest an interplay of smoking and macrophages in colorectal carcinogenesis.
Collapse
Affiliation(s)
- Tomotaka Ugai
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Juha P Väyrynen
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland
| | - Koichiro Haruki
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Naohiko Akimoto
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Mai Chan Lau
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Rong Zhong
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Junko Kishikawa
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Sara A Väyrynen
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Melissa Zhao
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Kenji Fujiyoshi
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Andressa Dias Costa
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Jennifer Borowsky
- Conjoint Gastroenterology Department, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Kota Arima
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Jennifer L Guerriero
- Breast Tumor Immunology Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Breast Surgery, Department of Surgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Charles S Fuchs
- Yale Cancer Center, New Haven, CT, USA
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
- Smilow Cancer Hospital, New Haven, CT, USA
- Genentech, South San Francisco, CA, USA
| | - Xuehong Zhang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mingyang Song
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Molin Wang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cancer Immunology and Cancer Epidemiology Programs, Dana-Farber Harvard Cancer Center, Boston, MA, USA
- Correspondence to: Shuji Ogino, MD, PhD, MS, Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, 221 Longwood Ave, EBRC Rm 404A, Boston, MA 02115, USA (e-mail: )
| |
Collapse
|
34
|
Alterations of non-coding RNA expression and mitochondrial biogenesis in colorectal cancer tissue: Possible crosstalk with macrophage polarization. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Stage I-IV Colorectal Cancer Prognosis Can Be Predicted by Type and Number of Intratumoral Macrophages and CLEVER-1 + Vessel Density. Cancers (Basel) 2021; 13:cancers13235988. [PMID: 34885098 PMCID: PMC8656733 DOI: 10.3390/cancers13235988] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/20/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Tumor-associated macrophages can either promote or prevent cancer growth depending on factors such as macrophage polarization status, tumor type, and disease stage. Macrophages and vessels interact with each other, and the number of lymphatic vessels also affects cancer survival. CLEVER-1 is a protein expressed both on immunosuppressive M2 macrophages and lymphatic vessels. The aim of this study was to validate our previous results regarding the prognostic role of CLEVER-1+ macrophages, CD68+ macrophages, and CLEVER-1+ lymphatic vessels in stage I–IV colorectal cancer. The results indicate that the prognostic role of tumor-associated macrophages and lymphatic vessels changes during disease progression. The findings resemble our earlier results, but are not completely equal, which may be due to the different types of tumor samples used in the two studies (whole section vs. tissue microarray). Abstract Macrophages, which are key players in the tumor microenvironment and affect the prognosis of many cancers, interact with lymphatic vessels in tumor tissue. However, the prognostic role of tumor-associated macrophages (TAM) and lymphatic vessels in human colorectal cancer (CRC) remains controversial. We investigated the prognostic role of CD68+ and CLEVER-1+ (common lymphatic endothelial and vascular endothelial receptor 1) TAMs in addition to CLEVER-1+ lymphatic vessels in 498 stage I–IV CRC patients. The molecular markers were detected by immunohistochemical (IHC) analysis. The results showed that, in early stage I CRC and in young patients (age below median, ≤67.4 years), a high number of CD68+ and CLEVER-1+ TAMs was associated with longer disease-specific survival (DSS). In early stage I CRC, high intratumoral CLEVER-1+ lymphatic vessel density (LVD) predicted a favorable prognosis, whereas the opposite pattern was observed in stage II CRC. The highest density of CLEVER-1+ lymphatic vessels was found in metastatic disease. The combination of intratumoral CLEVER-1+ lymphatic vesselhigh + CD68+ TAMlow was associated with poor DSS in stage I–IV rectal cancer. The present results indicate that the prognostic significance of intratumoral macrophages and CLEVER-1+ lymphatic vessels differs according to disease stage, reflecting the dynamic changes occurring in the tumor microenvironment during disease progression.
Collapse
|
36
|
Rey I, Putra A, Lindarto D, Yusuf F. Relationship between CD 163 Tumor-Associated Macrophages and Colorectal-Cancer Stem Cell Markers. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.7188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Colorectal-cancer stem cells (CR-CSCs) represent a specific subpopulation of colorectal cancer (CRC) cells, which are characterized by the expression of CD133 and CD166. Tumor-associated macrophages (TAMs), found near CSCs may represent polarized macrophages, which are characterized by CD163 expression. In most tumors, TAMs may promote aggressive tumor development, leading to poor prognoses.
AIM: The aim of this study was to determine whether any association exists between CD163 expression in TAMs and CD133 and CD166 expression in CR-CSCs.
METHODS: This study used a cross-sectional design that was conducted at the General Hospital and affiliates in Medan, from September 2018 to July 2019. CRC tissues were collected from colonoscopy biopsies and surgical resections performed on CRC patients, who fulfilled all necessary inclusion and exclusion criteria and provided informed consent. Subjects were divided into high- and low-CD163-level groups. We analyzed the expression levels of CD163, CD133, and CD166 using immunohistochemical (IHC) assays.
RESULTS: A total of 118 CRC patients were enrolled in this study, of whom 58.5% were male. No significant differences in hemoglobin, leukocyte, or platelet levels were observed between high- and low-level CD163 expression. We didn’t find any significant association of CD163 TAM with CRC histological grade and TNM stagings. Significant associations were found between the CD 163 expression level and the CD133 expression level (p < 0.001) and between the CD 163 expression level and the CD166 expression level (p< 0.001). Increased TAM levels of CD163 was associated with 2.770-fold and 2.616-fold increased risks of elevated CD133 and CD166 levels, respectively.
CONCLUSION: An association was found between the expression levels of CD163 in TAMs and the expression levels of CD133 and CD166 in CR-CSCs.
Collapse
|
37
|
Coletta S, Lonardi S, Sensi F, D’Angelo E, Fassan M, Pucciarelli S, Valzelli A, Biccari A, Vermi W, Della Bella C, Barizza A, D’Elios MM, de Bernard M, Agostini M, Codolo G. Tumor Cells and the Extracellular Matrix Dictate the Pro-Tumoral Profile of Macrophages in CRC. Cancers (Basel) 2021; 13:5199. [PMID: 34680345 PMCID: PMC8533926 DOI: 10.3390/cancers13205199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are major components of the tumor microenvironment. In colorectal cancer (CRC), a strong infiltration of TAMs is accompanied by a decrease in effector T cells and an increase in the metastatic potential of CRC. We investigated the functional profile of TAMs infiltrating CRC tissue by immunohistochemistry, flow cytometry, ELISA, and qRT-PCR and their involvement in impairing the activation of effector T cells. In CRC biopsies, we evidenced a high percentage of macrophages with low expression of the antigen-presenting complex MHC-II and high expression of CD206. Monocytes co-cultured with tumor cells or a decellularized tumor matrix differentiated toward a pro-tumoral macrophage phenotype characterized by decreased expression of MHC-II and CD86 and increased expression of CD206 and an abundant release of pro-tumoral cytokines and chemokines. We demonstrated that the hampered expression of MHC-II in macrophages is due to the downregulation of the MHC-II transactivator CIITA and that this effect relies on increased expression of miRNAs targeting CIITA. As a result, macrophages become unable to present antigens to CD4 T lymphocytes. Our data suggest that the tumor microenvironment contributes to defining a pro-tumoral profile of macrophages infiltrating CRC tissue with impaired capacity to activate T cell effector functions.
Collapse
Affiliation(s)
- Sara Coletta
- Department of Biology, University of Padova, 35131 Padova, Italy; (S.C.); (A.B.); (M.d.B.)
| | - Silvia Lonardi
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (S.L.); (A.V.); (W.V.)
| | - Francesca Sensi
- Department of Molecular Sciences and Nanosystems, Cà Foscari University of Venice, 30172 Venice, Italy;
- Pediatric Research Institute, 35127 Padova, Italy
| | - Edoardo D’Angelo
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, 35124 Padova, Italy; (E.D.); (S.P.); (A.B.)
- LIFELAB Program, Consorzio per la Ricerca Sanitaria-CORIS, Veneto Region, 35128 Padova, Italy
| | - Matteo Fassan
- Department of Medicine, Surgical Pathology Unit, University of Padova, 35124 Padova, Italy;
- Veneto Institute of Oncology, IOV-IRCCS, 35100 Padova, Italy
| | - Salvatore Pucciarelli
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, 35124 Padova, Italy; (E.D.); (S.P.); (A.B.)
| | - Arianna Valzelli
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (S.L.); (A.V.); (W.V.)
| | - Andrea Biccari
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, 35124 Padova, Italy; (E.D.); (S.P.); (A.B.)
- LIFELAB Program, Consorzio per la Ricerca Sanitaria-CORIS, Veneto Region, 35128 Padova, Italy
| | - William Vermi
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (S.L.); (A.V.); (W.V.)
| | - Chiara Della Bella
- Department of Experimental and Clinical Medicine, University of Firenze, 50121 Firenze, Italy; (C.D.B.); (M.M.D.)
| | - Annica Barizza
- Department of Biology, University of Padova, 35131 Padova, Italy; (S.C.); (A.B.); (M.d.B.)
| | - Mario Milco D’Elios
- Department of Experimental and Clinical Medicine, University of Firenze, 50121 Firenze, Italy; (C.D.B.); (M.M.D.)
| | - Marina de Bernard
- Department of Biology, University of Padova, 35131 Padova, Italy; (S.C.); (A.B.); (M.d.B.)
| | - Marco Agostini
- Pediatric Research Institute, 35127 Padova, Italy
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, 35124 Padova, Italy; (E.D.); (S.P.); (A.B.)
- LIFELAB Program, Consorzio per la Ricerca Sanitaria-CORIS, Veneto Region, 35128 Padova, Italy
| | - Gaia Codolo
- Department of Biology, University of Padova, 35131 Padova, Italy; (S.C.); (A.B.); (M.d.B.)
| |
Collapse
|
38
|
Jones JO, Moody WM, Shields JD. Microenvironmental modulation of the developing tumour: an immune-stromal dialogue. Mol Oncol 2021; 15:2600-2633. [PMID: 32741067 PMCID: PMC8486574 DOI: 10.1002/1878-0261.12773] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/03/2020] [Accepted: 07/27/2020] [Indexed: 12/17/2022] Open
Abstract
Successful establishment of a tumour relies on a cascade of interactions between cancer cells and stromal cells within an evolving microenvironment. Both immune and nonimmune cellular components are key factors in this process, and the individual players may change their role from tumour elimination to tumour promotion as the microenvironment develops. While the tumour-stroma crosstalk present in an established tumour is well-studied, aspects in the early tumour or premalignant microenvironment have received less attention. This is in part due to the challenges in studying this process in the clinic or in mouse models. Here, we review the key anti- and pro-tumour factors in the early microenvironment and discuss how understanding this process may be exploited in the clinic.
Collapse
Affiliation(s)
- James O. Jones
- MRC Cancer UnitHutchison/MRC Research CentreUniversity of CambridgeCambridgeUK
- Department of OncologyCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - William M. Moody
- MRC Cancer UnitHutchison/MRC Research CentreUniversity of CambridgeCambridgeUK
| | | |
Collapse
|
39
|
Hu J, Ma Y, Ma J, Yang Y, Ning Y, Zhu J, Wang P, Chen G, Liu Y. M2 Macrophage-Based Prognostic Nomogram for Gastric Cancer After Surgical Resection. Front Oncol 2021; 11:690037. [PMID: 34458140 PMCID: PMC8397443 DOI: 10.3389/fonc.2021.690037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022] Open
Abstract
A good prediction model is useful to accurately predict patient prognosis. Tumor-node-metastasis (TNM) staging often cannot accurately predict prognosis when used alone. Some researchers have shown that the infiltration of M2 macrophages in many tumors indicates poor prognosis. This approach has the potential to predict prognosis more accurately when used in combination with TNM staging, but there is less research in gastric cancer. A multivariate analysis demonstrated that CD163 expression, TNM staging, age, and gender were independent risk factors for overall survival. Thus, these parameters were assessed to develop the nomogram in the training data set, which was tested in the validation and whole data sets. The model showed a high degree of discrimination, calibration, and good clinical benefit in the training, validation, and whole data sets. In conclusion, we combined CD163 expression in macrophages, TNM staging, age, and gender to develop a nomogram to predict 3- and 5-year overall survivals after curative resection for gastric cancer. This model has the potential to provide further diagnostic and prognostic value for patients with gastric cancer.
Collapse
Affiliation(s)
- Jianwen Hu
- Department of General Surgery, Peking University First Hospital, Beijing, China
| | - Yongchen Ma
- Endoscopy Center, Peking University First Hospital, Beijing, China
| | - Ju Ma
- Department of General Surgery, Peking University First Hospital, Beijing, China
| | - Yanpeng Yang
- Department of General Surgery, Peking University First Hospital, Beijing, China
| | - Yingze Ning
- Department of General Surgery, Peking University First Hospital, Beijing, China
| | - Jing Zhu
- Department of General Surgery, Peking University First Hospital, Beijing, China
| | - Pengyuan Wang
- Department of General Surgery, Peking University First Hospital, Beijing, China
| | - Guowei Chen
- Department of General Surgery, Peking University First Hospital, Beijing, China
| | - Yucun Liu
- Department of General Surgery, Peking University First Hospital, Beijing, China
| |
Collapse
|
40
|
Virtakoivu R, Rannikko JH, Viitala M, Vaura F, Takeda A, Lönnberg T, Koivunen J, Jaakkola P, Pasanen A, Shetty S, de Jonge MJA, Robbrecht D, Ma YT, Skyttä T, Minchom A, Jalkanen S, Karvonen MK, Mandelin J, Bono P, Hollmén M. Systemic Blockade of Clever-1 Elicits Lymphocyte Activation Alongside Checkpoint Molecule Downregulation in Patients with Solid Tumors: Results from a Phase I/II Clinical Trial. Clin Cancer Res 2021; 27:4205-4220. [PMID: 34078651 PMCID: PMC9401456 DOI: 10.1158/1078-0432.ccr-20-4862] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/18/2021] [Accepted: 05/24/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE Macrophages are critical in driving an immunosuppressive tumor microenvironment that counteracts the efficacy of T-cell-targeting therapies. Thus, agents able to reprogram macrophages toward a proinflammatory state hold promise as novel immunotherapies for solid cancers. Inhibition of the macrophage scavenger receptor Clever-1 has shown benefit in inducing CD8+ T-cell-mediated antitumor responses in mouse models of cancer, which supports the clinical development of Clever-1-targeting antibodies for cancer treatment. PATIENTS AND METHODS In this study, we analyzed the mode of action of a humanized IgG4 anti-Clever-1 antibody, FP-1305 (bexmarilimab), both in vitro and in patients with heavily pretreated metastatic cancer (n = 30) participating in part 1 (dose-finding) of a phase I/II open-label trial (NCT03733990). We studied the Clever-1 interactome in primary human macrophages in antibody pull-down assays and utilized mass cytometry, RNA sequencing, and cytokine profiling to evaluate FP-1305-induced systemic immune activation in patients with cancer. RESULTS Our pull-down assays and functional studies indicated that FP-1305 impaired multiprotein vacuolar ATPase-mediated endosomal acidification and improved the ability of macrophages to activate CD8+ T-cells. In patients with cancer, FP-1305 administration led to suppression of nuclear lipid signaling pathways and a proinflammatory phenotypic switch in blood monocytes. These effects were accompanied by a significant increase and activation of peripheral T-cells with indications of antitumor responses in some patients. CONCLUSIONS Our results reveal a nonredundant role played by the receptor Clever-1 in suppressing adaptive immune cells in humans. We provide evidence that targeting macrophage scavenging activity can promote an immune switch, potentially leading to intratumoral proinflammatory responses in patients with metastatic cancer.
Collapse
Affiliation(s)
| | - Jenna H Rannikko
- MediCity Research Laboratory, University of Turku, Turku, Finland
- Turku Doctoral Program of Molecular Medicine, University of Turku, Turku, Finland
| | - Miro Viitala
- MediCity Research Laboratory, University of Turku, Turku, Finland
- Turku Doctoral Program of Molecular Medicine, University of Turku, Turku, Finland
| | - Felix Vaura
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Akira Takeda
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | | | | | - Panu Jaakkola
- Department of Oncology and FICAN West Cancer Centre, University of Turku and Turku University Hospital, Finland
| | - Annika Pasanen
- Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Shishir Shetty
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | | | | | - Yuk Ting Ma
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | | | - Anna Minchom
- Drug Development Unit, Royal Marsden NHS Foundation Trust/Institute of Cancer Research, Sutton, United Kingdom
| | - Sirpa Jalkanen
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | | | | | - Petri Bono
- Terveystalo Finland, Helsinki, Finland
- University of Helsinki, Helsinki, Finland
| | - Maija Hollmén
- MediCity Research Laboratory, University of Turku, Turku, Finland.
| |
Collapse
|
41
|
Sudo G, Aoki H, Yamamoto E, Takasawa A, Niinuma T, Yoshido A, Kitajima H, Yorozu A, Kubo T, Harada T, Ishiguro K, Kai M, Katanuma A, Yamano HO, Osanai M, Nakase H, Suzuki H. Activated macrophages promote invasion by early colorectal cancer via an interleukin 1β-serum amyloid A1 axis. Cancer Sci 2021; 112:4151-4165. [PMID: 34293235 PMCID: PMC8486202 DOI: 10.1111/cas.15080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/06/2021] [Accepted: 07/14/2021] [Indexed: 01/15/2023] Open
Abstract
Submucosal invasion and lymph node metastasis are important issues affecting treatment options for early colorectal cancer (CRC). In this study, we aimed to unravel the molecular mechanism underlying the invasiveness of early CRCs. We performed RNA‐sequencing (RNA‐seq) with poorly differentiated components (PORs) and their normal counterparts isolated from T1 CRC tissues and detected significant upregulation of serum amyloid A1 (SAA1) in PORs. Immunohistochemical analysis revealed that SAA1 was specifically expressed in PORs at the invasive front of T1b CRCs. Upregulation of SAA1 in CRC cells promoted cell migration and invasion. Coculture experiments using CRC cell lines and THP‐1 cells suggested that interleukin 1β (IL‐1β) produced by macrophages induces SAA1 expression in CRC cells. Induction of SAA1 and promotion of CRC cell migration and invasion by macrophages were inhibited by blocking IL‐1β. These findings were supported by immunohistochemical analysis of primary T1 CRCs showing accumulation of M1‐like/M2‐like macrophages at SAA1‐positive invasive front regions. Moreover, SAA1 produced by CRC cells stimulated upregulation of matrix metalloproteinase‐9 in macrophages. Our data suggest that tumor‐associated macrophages at the invasive front of early CRCs promote cancer cell migration and invasion through induction of SAA1 and that SAA1 may be a predictive biomarker and a useful therapeutic target.
Collapse
Affiliation(s)
- Gota Sudo
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hironori Aoki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Center for Gastroenterology, Teine-Keijinkai Hospital, Sapporo, Japan
| | - Eiichiro Yamamoto
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akira Takasawa
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takeshi Niinuma
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ayano Yoshido
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Kitajima
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akira Yorozu
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshiyuki Kubo
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Taku Harada
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Center for Gastroenterology, Teine-Keijinkai Hospital, Sapporo, Japan
| | - Kazuya Ishiguro
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masahiro Kai
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akio Katanuma
- Center for Gastroenterology, Teine-Keijinkai Hospital, Sapporo, Japan
| | - Hiro-O Yamano
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Makoto Osanai
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
42
|
Inagaki K, Kunisho S, Takigawa H, Yuge R, Oka S, Tanaka S, Shimamoto F, Chayama K, Kitadai Y. Role of tumor-associated macrophages at the invasive front in human colorectal cancer progression. Cancer Sci 2021; 112:2692-2704. [PMID: 33964093 PMCID: PMC8253270 DOI: 10.1111/cas.14940] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022] Open
Abstract
Macrophages are an essential component of antitumor activity; however, the role of tumor‐associated macrophages (TAMs) in colorectal cancer (CRC) remains controversial. Here, we elucidated the role of TAMs in CRC progression, especially at the early stage. We assessed the TAM number, phenotype, and distribution in 53 patients with colorectal neoplasia, including intramucosal neoplasia, submucosal invasive colorectal cancer (SM‐CRC), and advanced cancer, using double immunofluorescence for CD68 and CD163. Next, we focused on the invasive front in SM‐CRC and association between TAMs and clinicopathological features including lymph node metastasis, which were evaluated in 87 SM‐CRC clinical specimens. The number of M2 macrophages increased with tumor progression and dynamic changes were observed with respect to the number and phenotype of TAMs at the invasive front, especially at the stage of submucosal invasion. A high M2 macrophage count at the invasive front was correlated with lymphovascular invasion, low histological differentiation, and lymph node metastasis; a low M1 macrophage count at the invasive front was correlated with lymph node metastasis. Furthermore, receiver operating characteristic curve analysis revealed that the M2/M1 ratio was a better predictor of the risk of lymph node metastasis than the pan‐, M1, or M2 macrophage counts at the invasive front. These results suggested that TAMs at the invasive front might play a role in CRC progression, especially at the early stages. Therefore, evaluating the TAM phenotype, number, and distribution may be a potential predictor of metastasis, including lymph node metastasis, and TAMs may be a potential CRC therapeutic target.
Collapse
Affiliation(s)
- Katsuaki Inagaki
- Department of Gastroenterology and Metabolism, Hiroshima University Hospital, Minami-ku, Hiroshima, Japan
| | - Shoma Kunisho
- Department of Health Sciences, Faculty of Human Culture and Science, Prefectural University of Hiroshima, Minami-ku, Hiroshima, Japan
| | - Hidehiko Takigawa
- Department of Endoscopy, Hiroshima University Hospital, Minami-ku, Hiroshima, Japan
| | - Ryo Yuge
- Department of Endoscopy, Hiroshima University Hospital, Minami-ku, Hiroshima, Japan
| | - Shiro Oka
- Department of Gastroenterology and Metabolism, Hiroshima University Hospital, Minami-ku, Hiroshima, Japan
| | - Shinji Tanaka
- Department of Endoscopy, Hiroshima University Hospital, Minami-ku, Hiroshima, Japan
| | - Fumio Shimamoto
- Faculty of Health Sciences, Hiroshima Shudo University, Asaminami-ku, Hiroshima, Japan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Hiroshima University Hospital, Minami-ku, Hiroshima, Japan
| | - Yasuhiko Kitadai
- Department of Health Sciences, Faculty of Human Culture and Science, Prefectural University of Hiroshima, Minami-ku, Hiroshima, Japan
| |
Collapse
|
43
|
Gu Y, Niu X, Yin L, Wang Y, Yang Y, Yang X, Zhang Q, Ji H. Enhancing Fatty Acid Catabolism of Macrophages Within Aberrant Breast Cancer Tumor Microenvironment Can Re-establish Antitumor Function. Front Cell Dev Biol 2021; 9:665869. [PMID: 33937269 PMCID: PMC8081981 DOI: 10.3389/fcell.2021.665869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/25/2021] [Indexed: 12/21/2022] Open
Abstract
Triple-negative breast cancer (TNBC) remains an intractable challenge owing to its aggressive nature and lack of any known therapeutic targets. Macrophages play a crucial role in cancer promotion and poor prognosis within the tumor microenvironment (TME). The phagocytosis checkpoint in macrophages has broader implications for current cancer immunotherapeutic strategies. Here, we demonstrate the modulation in the antitumor activity of macrophages within the aberrant metabolic microenvironment of TNBC by metabolic intervention. The co-culture of macrophages with TNBC cell lines led to a decrease in both their phagocytic function and expression of interleukin (IL)-1β and inducible nitric oxide synthase (iNOS). The transcription of glycolysis and fatty acid (FA) catabolism-related factors was inhibited within the dysregulated tumor metabolic microenvironment. Enhancement of FA catabolism by treatment with the peroxisome proliferator-activated receptor-alpha (PPAR-α) agonist, fenofibrate (FF), could re-establish macrophages to gain their antineoplastic activity by activating the signal transducer and activator of transcription 1 (STAT1) signaling pathway and increasing ATP production by FA oxidation. The combination of fenofibrate and anti-CD47 therapy significantly inhibited tumor growth in a 4T1 tumor-bearing mouse model. In conclusion, the enhancement of FA catabolism of macrophages could re-establish them to resume antitumor activity in the TME. Anti-CD47 therapy combined with fenofibrate may serve as a novel and potential immunotherapeutic approach for the treatment of TNBC.
Collapse
Affiliation(s)
- Yucui Gu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Xingjian Niu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Lei Yin
- Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yiran Wang
- Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yue Yang
- Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Xudong Yang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Qingyuan Zhang
- Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Hongfei Ji
- Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China
| |
Collapse
|
44
|
Póvoa V, Rebelo de Almeida C, Maia-Gil M, Sobral D, Domingues M, Martinez-Lopez M, de Almeida Fuzeta M, Silva C, Grosso AR, Fior R. Innate immune evasion revealed in a colorectal zebrafish xenograft model. Nat Commun 2021; 12:1156. [PMID: 33608544 PMCID: PMC7895829 DOI: 10.1038/s41467-021-21421-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 01/26/2021] [Indexed: 01/31/2023] Open
Abstract
Cancer immunoediting is a dynamic process of crosstalk between tumor cells and the immune system. Herein, we explore the fast zebrafish xenograft model to investigate the innate immune contribution to this process. Using multiple breast and colorectal cancer cell lines and zAvatars, we find that some are cleared (regressors) while others engraft (progressors) in zebrafish xenografts. We focus on two human colorectal cancer cells derived from the same patient that show contrasting engraftment/clearance profiles. Using polyclonal xenografts to mimic intra-tumor heterogeneity, we demonstrate that SW620_progressors can block clearance of SW480_regressors. SW480_regressors recruit macrophages and neutrophils more efficiently than SW620_progressors; SW620_progressors however, modulate macrophages towards a pro-tumoral phenotype. Genetic and chemical suppression of myeloid cells indicates that macrophages and neutrophils play a crucial role in clearance. Single-cell-transcriptome analysis shows a fast subclonal selection, with clearance of regressor subclones associated with IFN/Notch signaling and escaper-expanded subclones with enrichment of IL10 pathway. Overall, our work opens the possibility of using zebrafish xenografts as living biomarkers of the tumor microenvironment.
Collapse
Affiliation(s)
- Vanda Póvoa
- Champalimaud Centre for the Unknown, Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Cátia Rebelo de Almeida
- Champalimaud Centre for the Unknown, Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Mariana Maia-Gil
- Champalimaud Centre for the Unknown, Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Daniel Sobral
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Micaela Domingues
- Champalimaud Centre for the Unknown, Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Mayra Martinez-Lopez
- Champalimaud Centre for the Unknown, Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Miguel de Almeida Fuzeta
- Champalimaud Centre for the Unknown, Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Carlos Silva
- Champalimaud Centre for the Unknown, Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Ana Rita Grosso
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Rita Fior
- Champalimaud Centre for the Unknown, Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal.
| |
Collapse
|
45
|
Väyrynen JP, Haruki K, Lau MC, Väyrynen SA, Zhong R, Dias Costa A, Borowsky J, Zhao M, Fujiyoshi K, Arima K, Twombly TS, Kishikawa J, Gu S, Aminmozaffari S, Shi S, Baba Y, Akimoto N, Ugai T, Da Silva A, Guerriero JL, Song M, Wu K, Chan AT, Nishihara R, Fuchs CS, Meyerhardt JA, Giannakis M, Ogino S, Nowak JA. The Prognostic Role of Macrophage Polarization in the Colorectal Cancer Microenvironment. Cancer Immunol Res 2021; 9:8-19. [PMID: 33023967 PMCID: PMC7785652 DOI: 10.1158/2326-6066.cir-20-0527] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/13/2020] [Accepted: 09/29/2020] [Indexed: 12/24/2022]
Abstract
Macrophages are among the most common cells in the colorectal cancer microenvironment, but their prognostic significance is incompletely understood. Using multiplexed immunofluorescence for CD68, CD86, IRF5, MAF, MRC1 (CD206), and KRT (cytokeratins) combined with digital image analysis and machine learning, we assessed the polarization spectrum of tumor-associated macrophages in 931 colorectal carcinomas. We then applied Cox proportional hazards regression to assess prognostic survival associations of intraepithelial and stromal densities of M1-like and M2-like macrophages while controlling for potential confounders, including stage and microsatellite instability status. We found that high tumor stromal density of M2-like macrophages was associated with worse cancer-specific survival, whereas tumor stromal density of M1-like macrophages was not significantly associated with better cancer-specific survival. High M1:M2 density ratio in tumor stroma was associated with better cancer-specific survival. Overall macrophage densities in tumor intraepithelial or stromal regions were not prognostic. These findings suggested that macrophage polarization state, rather than their overall density, was associated with cancer-specific survival, with M1- and M2-like macrophage phenotypes exhibiting distinct prognostic roles. These results highlight the utility of a multimarker strategy to assess the macrophage polarization at single-cell resolution within the tumor microenvironment.
Collapse
Affiliation(s)
- Juha P Väyrynen
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland
| | - Koichiro Haruki
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Mai Chan Lau
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Sara A Väyrynen
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Rong Zhong
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Andressa Dias Costa
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Jennifer Borowsky
- Conjoint Gastroenterology Department, QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Melissa Zhao
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kenji Fujiyoshi
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kota Arima
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Tyler S Twombly
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Junko Kishikawa
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Simeng Gu
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Saina Aminmozaffari
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Shanshan Shi
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Yoshifumi Baba
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Naohiko Akimoto
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Tomotaka Ugai
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Annacarolina Da Silva
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jennifer L Guerriero
- Breast Tumor Immunology Laboratory, Dana-Farber Cancer Institute, Boston, Massachusetts
- Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts
| | - Mingyang Song
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts
| | - Kana Wu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Reiko Nishihara
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Charles S Fuchs
- Yale Cancer Center, New Haven, Connecticut
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut
- Smilow Cancer Hospital, New Haven, Connecticut
| | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Cancer Immunology and Cancer Epidemiology Programs, Dana-Farber/Harvard Cancer Center, Boston, Massachusetts
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
46
|
Li J, Deng X, Wang L, Liu J, Xu K. Clinical application of carbon nanoparticles in lymphatic mapping during colorectal cancer surgeries: A systematic review and meta-analysis. Dig Liver Dis 2020; 52:1445-1454. [PMID: 32912769 DOI: 10.1016/j.dld.2020.08.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate the overall performance of carbon nanoparticles (CNs) for detecting lymph nodes (LNs) and node metastasis during colorectal cancer surgery. METHODS The English and Chinese literature was searched until 29 April 2020. Studies were included if they were randomized controlled trials (RCTs) for colorectal resection and LN dissection that compared the use of CNs with a blank control in colorectal cancer surgery. Quality assessment and data extraction were performed, and a meta-analysis was conducted using ReviewManager 5.3 and Stata 15.1 software. RESULTS A total of 17 RCTs comprising 1241 patients were included for analysis. Compared with the outcomes of the blank controls, the use of CNs resulted in an average of 5.21 more LNs per patient (weighted mean difference = 5.21, 95% confidence interval [CI] = 4.14-6.29, p < 0.001) and a 68% higher detection rate of micro LNs (relative risk [RR] = 1.68, 95% CI = 1.38-2.04, p < 0.001). In addition, more metastatic LNs were identified in stained nodes (RR = 1.56, 95% CI = 1.40-1.75, p < 0.001), but the total detection rate of metastatic nodes did not differ between the groups. CONCLUSION CN is an effective lymphatic tracer in colorectal cancer surgeries. Further studies with larger sample sizes are needed to validate these findings.
Collapse
Affiliation(s)
- Jiahuan Li
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoling Deng
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liyu Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jingsong Liu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Keshu Xu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
47
|
Larionova I, Tuguzbaeva G, Ponomaryova A, Stakheyeva M, Cherdyntseva N, Pavlov V, Choinzonov E, Kzhyshkowska J. Tumor-Associated Macrophages in Human Breast, Colorectal, Lung, Ovarian and Prostate Cancers. Front Oncol 2020; 10:566511. [PMID: 33194645 PMCID: PMC7642726 DOI: 10.3389/fonc.2020.566511] [Citation(s) in RCA: 259] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are major innate immune cells that constitute up to 50% of the cell mass of human tumors. TAMs are highly heterogeneous cells that originate from resident tissue-specific macrophages and from newly recruited monocytes. TAMs' variability strongly depends on cancer type, stage, and intratumor heterogeneity. Majority of TAMs are programmed by tumor microenvironment to support primary tumor growth and metastatic spread. However, TAMs can also restrict tumor growth and metastasis. In this review, we summarized the knowledge about the role of TAMs in tumor growth, metastasis and in the response to cancer therapy in patients with five aggressive types of cancer: breast, colorectal, lung, ovarian, and prostate cancers that are frequently metastasize into distant organs resulting in high mortality of the patients. Two major TAM parameters are applied for the evaluation of TAM correlation with the cancer progression: total amount of TAMs and specific phenotype of TAMs identified by functional biomarkers. We summarized the data generated in the wide range of international patient cohorts on the correlation of TAMs with clinical and pathological parameters of tumor progression including lymphatic and hematogenous metastasis, recurrence, survival, therapy efficiency. We described currently available biomarkers for TAMs that can be measured in patients' samples (tumor tissue and blood). CD68 is the major biomarker for the quantification of total TAM amounts, while transmembrane receptors (stabilin-1, CD163, CD206, CD204, MARCO) and secreted chitinase-like proteins (YKL-39, YKL-40) are used as biomarkers for the functional TAM polarization. We also considered that specific role of TAMs in tumor progression can depend on the localization in the intratumoral compartments. We have made the conclusion for the role of TAMs in primary tumor growth, metastasis, and therapy sensitivity for breast, colorectal, lung, ovarian, and prostate cancers. In contrast to other cancer types, majority of clinical studies indicate that TAMs in colorectal cancer have protective role for the patient and interfere with primary tumor growth and metastasis. The accumulated data are essential for using TAMs as biomarkers and therapeutic targets to develop cancer-specific immunotherapy and to design efficient combinations of traditional therapy and new immunomodulatory approaches.
Collapse
Affiliation(s)
- Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Gulnara Tuguzbaeva
- Department of Pathophysiology, Bashkir State Medical University, Ufa, Russia
| | - Anastasia Ponomaryova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Marina Stakheyeva
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Nadezhda Cherdyntseva
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Valentin Pavlov
- Department of Urology, Bashkir State Medical University, Ufa, Russia
| | - Evgeniy Choinzonov
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Julia Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg—Hessen, Mannheim, Germany
| |
Collapse
|
48
|
Ruder B, Becker C. At the Forefront of the Mucosal Barrier: The Role of Macrophages in the Intestine. Cells 2020; 9:E2162. [PMID: 32987848 PMCID: PMC7601053 DOI: 10.3390/cells9102162] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022] Open
Abstract
Macrophages are part of the innate immunity and are key players for the maintenance of intestinal homeostasis. They belong to the group of mononuclear phagocytes, which exert bactericidal functions and help to clear apoptotic cells. Moreover, they play essential roles for the maintenance of epithelial integrity and tissue remodeling during wound healing processes and might be implicated in intestinal tumor development. Macrophages are antigen-presenting cells and secrete immune-modulatory factors, like chemokines and cytokines, which are necessary to activate other intestinal immune cells and therefore to shape immune responses in the gut. However, overwhelming activation or increased secretion of pro-inflammatory cytokines might also contribute to the pathogenesis of inflammatory bowel disease. Presently, intestinal macrophages are in the center of intense studies, which might help to develop new therapeutic strategies to counteract the development or treat already existing inflammatory diseases in the gut. In this review, we focus on the origin of intestinal macrophages and, based on current knowledge, discuss their role in the gut during homeostasis and inflammation, as well as during intestinal wound healing and tumor development.
Collapse
Affiliation(s)
| | - Christoph Becker
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Hartmannstr. 14, 91052 Erlangen, Germany;
| |
Collapse
|
49
|
Yang Z, Zhang M, Peng R, Liu J, Wang F, Li Y, Zhao Q, Liu J. The prognostic and clinicopathological value of tumor-associated macrophages in patients with colorectal cancer: a systematic review and meta-analysis. Int J Colorectal Dis 2020; 35:1651-1661. [PMID: 32666290 DOI: 10.1007/s00384-020-03686-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/03/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE There is a growing literature on the significance of tumor-associated macrophages (TAMs) in colorectal cancer (CRC). However, the role of TAMs in predicting the prognosis of CRC remains controversial. The current study aims to determine the prognostic and clinicopathological value of different types and distribution of TAMs in CRC. METHODS A comprehensive literature search of PubMed, Embase, and Cochrane Library databases was conducted from the inception to 1 September 2019. The correlations of TAMs with overall survival (OS), disease-free survival (DFS), cancer-specific survival (CSS), and clinicopathological characteristics were analyzed. RESULTS A total of 5,575 patients from 29 studies were included in this meta-analysis. The pooled hazard ratios (HRs) indicated that high density of pan-macrophages in tumor invasive margin (IM) was associated with better OS (HR = 0.57, 95%CI = 0.38-0.85), DFS (HR = 0.32, 95%CI = 0.19-0.52), and CSS (HR = 0.56, 95%CI = 0.41-0.77). Moreover, the high density of pan-macrophages in tumor center (TC) was correlated with better DFS (HR = 0.66, 95%CI = 0.45-0.96). However, high expression of M2 macrophages in TC was associated with poor DFS (HR = 2.42, 95%CI = 1.45-4.07) and CSS (HR = 1.74, 95%CI = 1.24-2.44). High M2 macrophages density in IM was also associated with short DFS (HR = 2.81, 95%CI = 1.65-4.77). In addition, the results showed that high density of pan-macrophages in IM was associated with no tumor metastasis, while high M2 macrophages density in TC was correlated with poor tumor differentiation. CONCLUSION High Pan-TAMs density in IM has a positive effect on the prognosis of CRC patients, while high density M2 macrophage infiltration in TC is a strong indicator of poor prognosis.
Collapse
Affiliation(s)
- Zhenwei Yang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Mengna Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Ruyi Peng
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Jialong Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Fan Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Yizhang Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Jing Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China. .,Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China.
| |
Collapse
|
50
|
Malekghasemi S, Majidi J, Baghbanzadeh A, Abdolalizadeh J, Baradaran B, Aghebati-Maleki L. Tumor-Associated Macrophages: Protumoral Macrophages in Inflammatory Tumor Microenvironment. Adv Pharm Bull 2020; 10:556-565. [PMID: 33062602 PMCID: PMC7539304 DOI: 10.34172/apb.2020.066] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/01/2020] [Accepted: 02/02/2020] [Indexed: 12/13/2022] Open
Abstract
Tumor microenvironment consists of malignant and non-malignant cells. The interaction of these dynamic and different cells is responsible for tumor progression at different levels. The non-malignant cells in TME contain cells such as tumor-associated macrophages (TAMs), cancer associated fibroblasts, pericytes, adipocytes, T cells, B cells, myeloid-derived suppressor cells (MDSCs), tumor-associated neutrophils (TANs), dendritic cells (DCs) and Vascular endothelial cells. TAMs are abundant in most human and murine cancers and their presence are associated with poor prognosis. The major event in tumor microenvironment is macrophage polarization into tumor-suppressive M1 or tumor-promoting M2 types. Although much evidence suggests that TAMS are primarily M2-like macrophages, the mechanism responsible for polarization into M1 and M2 macrophages remain unclear. TAM contributes cancer cell motility, invasion, metastases and angiogenesis. The relationship between TAM and tumor cells lead to used them as a diagnostic marker, therapeutic target and prognosis of cancer. This review presents the origin, polarization, role of TAMs in inflammation, metastasis, immune evasion and angiogenesis as well as they can be used as therapeutic target in variety of cancer cells. It is obvious that additional substantial and preclinical research is needed to support the effectiveness and applicability of this new and promising strategy for cancer treatment.
Collapse
Affiliation(s)
- Somaiyeh Malekghasemi
- Department of Basic Oncology, Oncology Institute, Hacettepe University, Sihhiye, Ankara, TR-06100, Turkey
| | - Jafar Majidi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Department of Basic Oncology, Oncology Institute, Hacettepe University, Sihhiye, Ankara, TR-06100, Turkey
| | - Jalal Abdolalizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|