1
|
Wang J, Wang H, Zou F, Gu J, Deng S, Cao Y, Cai K. The Role of Inorganic Nanomaterials in Overcoming Challenges in Colorectal Cancer Diagnosis and Therapy. Pharmaceutics 2025; 17:409. [PMID: 40284405 PMCID: PMC12030334 DOI: 10.3390/pharmaceutics17040409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/12/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
Colorectal cancer poses a significant threat to human health due to its high aggressiveness and poor prognosis. Key factors impacting patient outcomes include post-surgical recurrence, chemotherapeutic drug resistance, and insensitivity to immunotherapy. Consequently, early diagnosis and the development of effective targeted therapies are essential for improving prevention and treatment strategies. Inorganic nanomaterials have gained prominence in the diagnosis and treatment of colorectal cancer owing to their unique size, advantageous properties, and high modifiability. Various types of inorganic nanomaterials-such as metal-based, metal oxide, quantum dots, magnetic nanoparticles, carbon-based, and rare-earth nanomaterials-have demonstrated significant potential in enhancing multimodal imaging, drug delivery, and synergistic therapies. These advancements underscore their critical role in improving therapeutic outcomes. This review highlights the properties and development of inorganic nanomaterials, summarizes their recent applications and progress in colorectal cancer diagnosis and treatment, and discusses the challenges in translating these materials into clinical use. It aims to provide valuable insights for future research and the clinical application of inorganic nanomaterials in colorectal cancer management.
Collapse
Affiliation(s)
- Jun Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (J.W.); (H.W.); (F.Z.)
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Hanwenchen Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (J.W.); (H.W.); (F.Z.)
| | - Falong Zou
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (J.W.); (H.W.); (F.Z.)
| | - Junnan Gu
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Shenghe Deng
- Center for Liver Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Yinghao Cao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Kailin Cai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (J.W.); (H.W.); (F.Z.)
| |
Collapse
|
2
|
Tornaci S, Erginer M, Bulut U, Sener B, Persilioglu E, Kalaycilar İB, Celik EG, Yardibi H, Siyah P, Karakurt O, Cirpan A, Gokalsin B, Senisik AM, Barlas FB. Innovative Fluorescent Polymers in Niosomal Carriers: A Novel Approach to Enhancing Cancer Therapy and Imaging. Macromol Biosci 2024; 24:e2400343. [PMID: 39221746 DOI: 10.1002/mabi.202400343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Cancer is anticipated to become the pioneer reason of disease-related deaths worldwide in the next two decades, underscoring the urgent need for personalized and adaptive treatment strategies. These strategies are crucial due to the high variability in drug efficacy and the tendency of cancer cells to develop resistance. This study investigates the potential of theranostic nanotechnology using three innovative fluorescent polymers (FP-1, FP-2, and FP-3) encapsulated in niosomal carriers, combining therapy (chemotherapy and radiotherapy) with fluorescence imaging. These cargoes are assessed for their cytotoxic effects across three cancer cell lines (A549, MCF-7, and HOb), with further analysis to determine their capacity to augment the effects of radiotherapy using a Linear Accelerator (LINAC) at specific doses. Fluorescence microscopy is utilized to verify their uptake and localization in cancerous versus healthy cell lines. The results confirmed that these niosomal cargoes not only improved the antiproliferative effects of radiotherapy but also demonstrate the practical application of fluorescent polymers in in vitro imaging. This dual function underscores the importance of dose optimization to maximize therapeutic benefits while minimizing adverse effects, thereby enhancing the overall efficacy of cancer treatments.
Collapse
Affiliation(s)
- Selay Tornaci
- Department of Bioengineering, Faculty of Enginering, Marmara University, Istanbul, 34722, Turkey
| | - Merve Erginer
- Institute of Nanotechnology and Biotechnology, Istanbul Univeristy-Cerrahpasa, Istanbul, 34500, Turkey
- Health Biotechnology Joint Research and Applications Center of Excellence, Istanbul, 34220, Turkey
| | - Umut Bulut
- Faculty of Pharmacy, Department of Analytical Chemistry, Acıbadem Mehmet Ali Aydınlar University, Istanbul, 34752, Turkey
| | - Beste Sener
- Department of Biology, Faculty of Science, Marmara University, Istanbul, 34722, Turkey
| | - Elifsu Persilioglu
- Department of Biochemistry, School of Medicine, Bahcesehir University, Istanbul, 34734, Turkey
| | - İsmail Bergutay Kalaycilar
- Department of Biochemistry, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul, 34500, Turkey
| | - Emine Guler Celik
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Izmir, 35100, Turkey
| | - Hasret Yardibi
- Department of Biochemistry, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul, 34500, Turkey
| | - Pinar Siyah
- Department of Biochemistry, Faculty of Pharmacy, Bahçeşehir University, Istanbul, 34353, Turkey
| | - Oguzhan Karakurt
- Department of Chemistry, Middle East Technical University (METU), Ankara, 06800, Turkey
| | - Ali Cirpan
- Department of Chemistry, Middle East Technical University (METU), Ankara, 06800, Turkey
| | - Baris Gokalsin
- Department of Biology, Faculty of Science, Marmara University, Istanbul, 34722, Turkey
| | - Ahmet Murat Senisik
- Vocational School of Health Services, Altınbas University, Istanbul, 34217, Turkey
| | - Firat Baris Barlas
- Institute of Nanotechnology and Biotechnology, Istanbul Univeristy-Cerrahpasa, Istanbul, 34500, Turkey
- Health Biotechnology Joint Research and Applications Center of Excellence, Istanbul, 34220, Turkey
| |
Collapse
|
3
|
Mazaheri Tehrani M, Erfani M, Amiri M, Goudarzi M. Technetium-99m radiolabeling of graphene quantum dots (GQDs) as a new probe for glioblastoma tumor imaging. Int J Radiat Biol 2024:1-8. [PMID: 39325664 DOI: 10.1080/09553002.2024.2404460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/01/2024] [Indexed: 09/28/2024]
Abstract
PURPOSE Cancer diagnosis involves a multi-step process. Accurate identification of the tumor, staging and development of cancer cells is crucial for selecting optimal treatments to minimize disease recurrence. Quantum dots (QDs) represent an exciting class of fluorescent nanoprobes in molecular detection and targeted tumor imaging. MATERIALS AND METHODS In this study, graphene quantum dots (GQDs) were synthesized by pyrolysis of citric acid (CA) as a carbon precursor under high temperatures. The morphology of the obtained GQDs was first characterized using physical (TEM and DLS) and spectroscopic (fluorescence, FTIR and UV-Vis) methods. In the following,99mTc-labeled GQDs were prepared in the presence of SnCl2.2H2O as a reducing agent between 95 and 100 °C. The biodistribution and tumor targeting efficiency of radiolabeled GQDs as a novel agent for C6 glioma tumor scintigraphy in an animal model were evaluated. Furthermore, organ uptake, human serum albumin binding and tumor accumulation were measured. RESULTS The TEM image of the prepared GQDs showed a relatively uniform size distribution in the range of diameter 6-9 nm and spherical shape. Radiolabeled GQDs showed a radiochemical yield of >97% (n = 3). Through incubation in human serum, almost 15% of 99mTc-labeled GQDs degraded after 6 h. The amount of uptake in xenograft models of glioma C6 rats was 1.10 ± 0.36% of injection dose per gram after 1 h. The kidneys, intestinal and glioma tumor sites were observed via scintigraphy imaging. CONCLUSION Our data suggest that 99mTc-labeled GQDs, as a new radiotracer, efficiently accumulate in the tumor site and could be included as a radiotracer for detecting glioma tumors.
Collapse
Affiliation(s)
- Maryam Mazaheri Tehrani
- Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Mostafa Erfani
- Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Mojtaba Amiri
- Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Mostafa Goudarzi
- Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| |
Collapse
|
4
|
Hussain A, Wang M, Yu D, Zhang J, Naseer QA, Ullah A, Milon Essola J, Zhang X. Medical and molecular biophysical techniques as substantial tools in the era of mRNA-based vaccine technology. Biomater Sci 2024; 12:4117-4135. [PMID: 39016519 DOI: 10.1039/d4bm00561a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The COVID-19 pandemic prompted the advancement of vaccine technology using mRNA delivery into the host cells. Consequently, mRNA-based vaccines have emerged as a practical approach against SARS-CoV-2 owing to their inherent properties, such as cost-effectiveness, rapid manufacturing, and preservation. These features are vital, especially in resource-constrained regions. Nevertheless, the design of mRNA-based vaccines is intricately intertwined with the refinement of biophysical technologies, thereby establishing their high potential. The preparation of mRNA-based vaccines involves a sequence of phases combining medical and molecular biophysical technologies. Furthermore, their efficiency depends on the capability to optimize their positive attributes, thus paving the way for their subsequent preclinical and clinical evaluations. Using biophysical techniques, the characterization of nucleic acids extends from their initial formulation to their cellular internalization abilities and encapsulation in biomolecule complexes, such as lipid nanoparticles (LNPs), for designing mRNA-based LNPs. Furthermore, nanoparticles are subjected to a series of careful screening steps to assess their physical and chemical characteristics before achieving an optimum formulation suitable for preclinical and clinical studies. This review provides a comprehensive understanding of the fundamental role of biophysical techniques in the complex development of mRNA-based vaccines and their role in the recent success during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Abid Hussain
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
| | - Maoye Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
| | - Dan Yu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
| | - Jiahui Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
| | - Qais Ahmad Naseer
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Aftab Ullah
- School of Medicine, Huaqiao University, No. 269 Chenghua North Rd., Quanzhou, Fujian 362021, China.
| | - Julien Milon Essola
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Centre for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
5
|
Nair R, Paul P, Maji I, Gupta U, Mahajan S, Aalhate M, Guru SK, Singh PK. Exploring the current landscape of chitosan-based hybrid nanoplatforms as cancer theragnostic. Carbohydr Polym 2024; 326:121644. [PMID: 38142105 DOI: 10.1016/j.carbpol.2023.121644] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 11/24/2023] [Indexed: 12/25/2023]
Abstract
In the last decade, investigators have put significant efforts to develop several diagnostic and therapeutic strategies against cancer. Many novel nanoplatforms, including lipidic, metallic, and inorganic nanocarriers, have shown massive potential at preclinical and clinical stages for cancer diagnosis and treatment. Each of these nano-systems is distinct with its own benefits and limitations. The need to overcome the limitations of single-component nano-systems, improve their morphological and biological features, and achieve multiple functionalities has resulted in the emergence of hybrid nanoparticles (HNPs). These HNPs integrate multicomponent nano-systems with diagnostic and therapeutic functions into a single nano-system serving as promising nanotools for cancer theragnostic applications. Chitosan (CS) being a mucoadhesive, biodegradable, and biocompatible biopolymer, has emerged as an essential element for the development of HNPs offering several advantages over conventional nanoparticles including pH-dependent drug delivery, sustained drug release, and enhanced nanoparticle stability. In addition, the free protonable amino groups in the CS backbone offer flexibility to its structure, making it easy for the modification and functionalization of CS, resulting in better drug targetability and cell uptake. This review discusses in detail the existing different oncology-directed CS-based HNPs including their morphological characteristics, in-vitro/in-vivo outcomes, toxicity concerns, hurdles in clinical translation, and future prospects.
Collapse
Affiliation(s)
- Rahul Nair
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Priti Paul
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Indrani Maji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Santosh Kumar Guru
- Department of Biological Science, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.
| |
Collapse
|
6
|
Khan S, Falahati M, Cho WC, Vahdani Y, Siddique R, Sharifi M, Jaragh-Alhadad LA, Haghighat S, Zhang X, Ten Hagen TLM, Bai Q. Core-shell inorganic NP@MOF nanostructures for targeted drug delivery and multimodal imaging-guided combination tumor treatment. Adv Colloid Interface Sci 2023; 321:103007. [PMID: 37812992 DOI: 10.1016/j.cis.2023.103007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 08/16/2023] [Accepted: 09/23/2023] [Indexed: 10/11/2023]
Abstract
It is well known that metal-organic framework (MOF) nanostructures have unique characteristics such as high porosity, large surface areas and adjustable functionalities, so they are ideal candidates for developing drug delivery systems (DDSs) as well as theranostic platforms in cancer treatment. Despite the large number of MOF nanostructures that have been discovered, conventional MOF-derived nanosystems only have a single biofunctional MOF source with poor colloidal stability. Accordingly, developing core-shell MOF nanostructures with good colloidal stability is a useful method for generating efficient drug delivery, multimodal imaging and synergistic therapeutic systems. The preparation of core-shell MOF nanostructures has been done with a variety of materials, but inorganic nanoparticles (NPs) are highly effective for drug delivery and imaging-guided tumor treatment. Herein, we aimed to overview the synthesis of core-shell inorganic NP@MOF nanostructures followed by the application of core-shell MOFs derived from magnetic, quantum dots (QDs), gold (Au), and gadolinium (Gd) NPs in drug delivery and imaging-guided tumor treatment. Afterward, we surveyed different factors affecting prolonged drug delivery and cancer therapy, cellular uptake, biocompatibility, biodegradability, and enhanced permeation and retention (EPR) effect of core-shell MOFs. Last but not least, we discussed the challenges and the prospects of the field. We envision this article may hold great promise in providing valuable insights regarding the application of hybrid nanostructures as promising and potential candidates for multimodal imaging-guided combination cancer therapy.
Collapse
Affiliation(s)
- Suliman Khan
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mojtaba Falahati
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands; Nanomedicine Innovation Center Erasmus (NICE), Erasmus MC, Rotterdam, the Netherlands.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China
| | - Yasaman Vahdani
- Department of Biochemistry and Molecular Medicine, University of Montreal, Canada
| | - Rabeea Siddique
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | - Setareh Haghighat
- Department of Microbiology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou, China
| | - Timo L M Ten Hagen
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands; Nanomedicine Innovation Center Erasmus (NICE), Erasmus MC, Rotterdam, the Netherlands.
| | - Qian Bai
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
7
|
Islam MS, Gopalan V, Lam AK, Shiddiky MJA. Current advances in detecting genetic and epigenetic biomarkers of colorectal cancer. Biosens Bioelectron 2023; 239:115611. [PMID: 37619478 DOI: 10.1016/j.bios.2023.115611] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Colorectal carcinoma (CRC) is the third most common cancer in terms of diagnosis and the second in terms of mortality. Recent studies have shown that various proteins, extracellular vesicles (i.e., exosomes), specific genetic variants, gene transcripts, cell-free DNA (cfDNA), circulating tumor DNA (ctDNA), microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and altered epigenetic patterns, can be used to detect, and assess the prognosis of CRC. Over the last decade, a plethora of conventional methodologies (e.g., polymerase chain reaction [PCR], direct sequencing, enzyme-linked immunosorbent assay [ELISA], microarray, in situ hybridization) as well as advanced analytical methodologies (e.g., microfluidics, electrochemical biosensors, surface-enhanced Raman spectroscopy [SERS]) have been developed for analyzing genetic and epigenetic biomarkers using both optical and non-optical tools. Despite these methodologies, no gold standard detection method has yet been implemented that can analyze CRC with high specificity and sensitivity in an inexpensive, simple, and time-efficient manner. Moreover, until now, no study has critically reviewed the advantages and limitations of these methodologies. Here, an overview of the most used genetic and epigenetic biomarkers for CRC and their detection methods are discussed. Furthermore, a summary of the major biological, technical, and clinical challenges and advantages/limitations of existing techniques is also presented.
Collapse
Affiliation(s)
- Md Sajedul Islam
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast Campus, Southport, QLD, 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast Campus, Southport, QLD, 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia.
| | - Alfred K Lam
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast Campus, Southport, QLD, 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia; Pathology Queensland, Gold Coast University Hospital, Southport, QLD, 4215, Australia
| | - Muhammad J A Shiddiky
- Rural Health Research Institute, Charles Sturt University, Orange, NSW, 2800, Australia.
| |
Collapse
|
8
|
Liao C, Wu Z, Lin C, Chen X, Zou Y, Zhao W, Li X, Huang G, Xu B, Briganti GE, Qi Y, Wang X, Zeng T, Wuethrich A, Zou H. Nurturing the marriages of urinary liquid biopsies and nano-diagnostics for precision urinalysis of prostate cancer. SMART MEDICINE 2023; 2:e20220020. [PMID: 39188554 PMCID: PMC11236013 DOI: 10.1002/smmd.20220020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/04/2022] [Indexed: 08/28/2024]
Abstract
Prostate cancer remains the second-most common cancer diagnosed in men, despite the increasingly widespread use of serum prostate-specific antigen (PSA) screening. The controversial clinical implications and cost benefits of PSA screening have been highlighted due to its poor specificity, resulting in a high rate of overdiagnosis and underdiagnosis. Thus, the development of novel biomarkers for prostate cancer detection remains an intriguing challenge. Urine is emerging as a source for prostate cancer biomarker discovery. Currently, new urine biomarkers already outperform serum PSA in clinical diagnosis. Meanwhile, the advances in nanotechnology have provided a suite of diagnostic tools to study prostate cancer in more detail, sparking a new era of biomarker discoveries. In this review, we envision that future prostate cancer diagnosis will probably integrate multiplex nano-diagnostic approaches to detect novel urinary biomarkers. However, challenges remain in differentiating indolent from aggressive cancers to better inform treatment decisions, and clinical translation still needs to be overcome.
Collapse
Affiliation(s)
- Caizhi Liao
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
| | - Zhihao Wu
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
| | - Chan Lin
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
| | - Xiaofeng Chen
- School of Environmental and Geographical SciencesShanghai Normal UniversityShanghaiChina
- School of ChemistryNorthwestern UniversityChicagoIllinoisUSA
| | - Yaqun Zou
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
| | - Wan Zhao
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
| | - Xin Li
- Department of UrologySir Run Run Shaw HospitalZhejiang UniversityHangzhouChina
| | | | - Baisheng Xu
- Department of UrologyThe First People's Hospital of XiushuiJiujiangChina
| | | | - Yan Qi
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
| | - Xianshu Wang
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
| | - Tao Zeng
- Department of Urologythe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Alain Wuethrich
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of QueenslandBrisbaneQueenslandAustralia
| | - Hongzhi Zou
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
- The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
9
|
Quantum dots: The cutting-edge nanotheranostics in brain cancer management. J Control Release 2022; 350:698-715. [PMID: 36057397 DOI: 10.1016/j.jconrel.2022.08.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 12/14/2022]
Abstract
Quantum dots (QDs) are semiconductor nanocrystals possessing unique optoelectrical properties in that they can emit light energy of specific tunable wavelengths when excited by photons. They are gaining attention nowadays owing to their all-around ability to allow high-quality bio-imaging along with targeted drug delivery. The most lethal central nervous system (CNS) disorders are brain cancers or malignant brain tumors. CNS is guarded by the blood-brain barrier which poses a selective blockade toward drug delivery into the brain. QDs have displayed strong potential to deliver therapeutic agents into the brain successfully. Their bio-imaging capability due to photoluminescence and specific targeting ability through the attachment of ligand biomolecules make them preferable clinical tools for coming times. Biocompatible QDs are emerging as nanotheranostic tools to identify/diagnose and selectively kill cancer cells. The current review focuses on QDs and associated nanoformulations as potential futuristic clinical aids in the continuous battle against brain cancer.
Collapse
|
10
|
Zhou J, Chen L, Chen L, Zeng X, Zhang Y, Yuan Y. Emerging role of nanoparticles in the diagnostic imaging of gastrointestinal cancer. Semin Cancer Biol 2022; 86:580-594. [DOI: 10.1016/j.semcancer.2022.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/11/2022]
|
11
|
Brar B, Ranjan K, Palria A, Kumar R, Ghosh M, Sihag S, Minakshi P. Nanotechnology in Colorectal Cancer for Precision Diagnosis and Therapy. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.699266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the third most frequently occurring tumor in the human population. CRCs are usually adenocarcinomatous and originate as a polyp on the inner wall of the colon or rectum which may become malignant in the due course of time. Although the therapeutic options of CRC are limited, the early diagnosis of CRC may play an important role in preventive and therapeutic interventions to decrease the mortality rate. The CRC-affected tissues exhibit several molecular markers that may be exploited as the novel strategy to develop newer approaches for the treatment of the disease. Nanotechnology consists of a wide array of innovative and astonishing nanomaterials with both diagnostics and therapeutic potential. Several nanomaterials and nano formulations such as Carbon nanotubes, Dendrimer, Liposomes, Silica Nanoparticles, Gold nanoparticles, Metal-organic frameworks, Core-shell polymeric nano-formulations, Nano-emulsion System, etc can be used to targeted anticancer drug delivery and diagnostic purposes in CRC. The light-sensitive photosensitizer drugs loaded gold and silica nanoparticles can be used to diagnose as well as the killing of CRC cells by the targeted delivery of anticancer drugs to cancer cells. This review is focused on the recent advancement of nanotechnology in the diagnosis and treatment of CRC.
Collapse
|
12
|
Pedziwiatr-Werbicka E, Horodecka K, Shcharbin D, Bryszewska M. Nanoparticles in Combating Cancer: Opportunities and Limitations. A Brief Review. Curr Med Chem 2021; 28:346-359. [PMID: 32000637 DOI: 10.2174/0929867327666200130101605] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/12/2019] [Accepted: 12/05/2019] [Indexed: 11/22/2022]
Abstract
Nanomedicine is a good alternative to traditional methods of cancer treatment but does not solve all the limitations of oncology. Nanoparticles used in anticancer therapy can work as carriers of drugs, nucleic acids, imaging agents or they can sensitize cells to radiation. The present review focuses on the application of nanoparticles to treating cancer, as well as on its problems and limitations. Using nanoparticles as drug carriers, significant improvement in the efficiency of transport of compounds and their targeting directly to the tumour has been achieved; it also reduces the side effects of chemotherapeutic drugs on the body. However, nanoparticles do not significantly improve the effectiveness of the chemotherapeutic agent itself. Most nanodrugs can reduce the toxicity of chemotherapy, but do not significantly affect the effectiveness of treatment. Nanodrugs should be developed that can be effective as an anti-metastatic treatment, e.g. by enhancing the ability of nanoparticles to transport chemotherapeutic loads to sentinel lymph nodes using the immune system and developing chemotherapy in specific metastatic areas. Gene therapy, however, is the most modern method of treating cancer, the cause of cancer being tackled by altering genetic material. Other applications of nanoparticles for radiotherapy and diagnostics are discussed.
Collapse
Affiliation(s)
- Elzbieta Pedziwiatr-Werbicka
- University of Lodz, Faculty of Biology and Experimental Protection, Department of General Biophysics, Lodz, Poland
| | - Katarzyna Horodecka
- University of Lodz, Faculty of Biology and Experimental Protection, Department of General Biophysics, Lodz, Poland
| | - Dzmitry Shcharbin
- Institute of Biophysics and Cell Engineering of NASB, Minsk, Belarus
| | - Maria Bryszewska
- University of Lodz, Faculty of Biology and Experimental Protection, Department of General Biophysics, Lodz, Poland
| |
Collapse
|
13
|
Kargozar S, Hoseini SJ, Milan PB, Hooshmand S, Kim HW, Mozafari M. Quantum Dots: A Review from Concept to Clinic. Biotechnol J 2020; 15:e2000117. [PMID: 32845071 DOI: 10.1002/biot.202000117] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/10/2020] [Indexed: 01/30/2023]
Abstract
Quantum dots (QDs) are semiconductor materials that have gained great interest due to their unique characteristics like optical properties. They are extensively being used in different areas, including solar cells, light-emitting diodes, laser technology, as well as biological and biomedical applications. In this review, comprehensive information about different aspects of QDs is provided, including their types and classifications, synthesis approaches, in vitro and in vivo toxicity, biological applications, and potentials in clinical applications. With a focus on the biological aspects, the respective in vitro and in vivo studies are collected and presented. Various surface modifications on QDs are discussed as directly influencing their properties like toxicity and optical abilities. Given the promising results, these materials are clinically used for targeted molecular therapy and imaging. However, there are a large number of questions that should be addressed before the wide application of QDs in a clinical setting. Regarding the existing barriers to QDs, suggestions are given and discussed to present an appropriate route for the clinical use of these materials.
Collapse
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Javad Hoseini
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
- Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Hooshmand
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, Republic of Korea
| | - Masoud Mozafari
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Jariyal H, Gupta C, Bhat VS, Wagh JR, Srivastava A. Advancements in Cancer Stem Cell Isolation and Characterization. Stem Cell Rev Rep 2020; 15:755-773. [PMID: 31863337 DOI: 10.1007/s12015-019-09912-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Occurrence of stem cells (CSCs) in cancer is well established in last two decades. These rare cells share several properties including presence of common surface markers, stem cell markers, chemo- and radio- resistance and are highly metastatic in nature; thus, considered as valuable prognostic and therapeutic targets in cancer. However, the studies related to CSCs pave number of issues due to rare cell population and difficulties in their isolation ascribed to common stem cell marker. Various techniques including flow cytometry, laser micro-dissection, fluorescent nanodiamonds and microfluidics are used for the isolation of these rare cells. In this review, we have included the advance strategies adopted for the isolation of CSCs using above mentioned techniques. Furthermore, CSCs are primarily found in the core of the solid tumors and their microenvironment plays an important role in maintenance, self-renewal, division and tumor development. Therefore, in vivo tracking and model development become obligatory for functional studies of CSCs. Fluorescence and bioluminescence tagging has been widely used for transplantation assay and lineage tracking experiments to improve our understanding towards CSCs behaviour in their niche. Techniques such as Magnetic resonance imaging (MRI) and Positron emission tomography (PET) have proved useful for tracking of endogenous CSCs which could be helpful in their identification in clinical settings.
Collapse
Affiliation(s)
- Heena Jariyal
- Department of Biotechnology, National institute of Pharmaceutical Education and Research -Ahmedabad (NIPER-A), Gandhinagar, Gujarat, India
| | - Chanchal Gupta
- Department of Biotechnology, National institute of Pharmaceutical Education and Research -Ahmedabad (NIPER-A), Gandhinagar, Gujarat, India
| | - Vedika Sandeep Bhat
- Department of Biotechnology, National institute of Pharmaceutical Education and Research -Ahmedabad (NIPER-A), Gandhinagar, Gujarat, India
| | - Jayant Ramakant Wagh
- Department of Biotechnology, National institute of Pharmaceutical Education and Research -Ahmedabad (NIPER-A), Gandhinagar, Gujarat, India
| | - Akshay Srivastava
- Department of Medical Device, National institute of Pharmaceutical Education and Research -Ahmedabad (NIPER-A), Gandhinagar, Gujarat, India.
| |
Collapse
|
15
|
Zhao M, van Straten D, Broekman ML, Préat V, Schiffelers RM. Nanocarrier-based drug combination therapy for glioblastoma. Theranostics 2020; 10:1355-1372. [PMID: 31938069 PMCID: PMC6956816 DOI: 10.7150/thno.38147] [Citation(s) in RCA: 214] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/04/2019] [Indexed: 12/19/2022] Open
Abstract
The current achievements in treating glioblastoma (GBM) patients are not sufficient because many challenges exist, such as tumor heterogeneity, the blood brain barrier, glioma stem cells, drug efflux pumps and DNA damage repair mechanisms. Drug combination therapies have shown increasing benefits against those challenges. With the help of nanocarriers, enhancement of the efficacy and safety could be gained using synergistic combinations of different therapeutic agents. In this review, we will discuss the major issues for GBM treatment, the rationales of drug combinations with or without nanocarriers and the principle of enhanced permeability and retention effect involved in nanomedicine-based tumor targeting and promising nanodiagnostics or -therapeutics. We will also summarize the recent progress and discuss the clinical perspectives of nanocarrier-based combination therapies. The goal of this article was to provide better understanding and key considerations to develop new nanomedicine combinations and nanotheranostics options to fight against GBM.
Collapse
Affiliation(s)
- Mengnan Zhao
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73, B1 73.12, 1200 Brussels, Belgium
| | - Demian van Straten
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, Netherlands
| | - Marike L.D. Broekman
- Department of Neurosurgery, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Véronique Préat
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73, B1 73.12, 1200 Brussels, Belgium
| | - Raymond M. Schiffelers
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, Netherlands
| |
Collapse
|
16
|
Gonda A, Zhao N, Shah JV, Calvelli HR, Kantamneni H, Francis NL, Ganapathy V. Engineering Tumor-Targeting Nanoparticles as Vehicles for Precision Nanomedicine. MED ONE 2019; 4:e190021. [PMID: 31592196 PMCID: PMC6779336 DOI: 10.20900/mo.20190021] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
As a nascent and emerging field that holds great potential for precision oncology, nanotechnology has been envisioned to improve drug delivery and imaging capabilities through precise and efficient tumor targeting, safely sparing healthy normal tissue. In the clinic, nanoparticle formulations such as the first-generation Abraxane® in breast cancer, Doxil® for sarcoma, and Onivyde® for metastatic pancreatic cancer, have shown advancement in drug delivery while improving safety profiles. However, effective accumulation of nanoparticles at the tumor site is sub-optimal due to biological barriers that must be overcome. Nanoparticle delivery and retention can be altered through systematic design considerations in order to enhance passive accumulation or active targeting to the tumor site. In tumor niches where passive targeting is possible, modifications in the size and charge of nanoparticles play a role in their tissue accumulation. For niches in which active targeting is required, precision oncology research has identified targetable biomarkers, with which nanoparticle design can be altered through bioconjugation using antibodies, peptides, or small molecule agonists and antagonists. This review is structured to provide a better understanding of nanoparticle engineering design principles with emphasis on overcoming tumor-specific biological barriers.
Collapse
Affiliation(s)
- Amber Gonda
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Nanxia Zhao
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854, USA
| | - Jay V. Shah
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Hannah R. Calvelli
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA
| | - Harini Kantamneni
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Nicola L. Francis
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Vidya Ganapathy
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| |
Collapse
|
17
|
Oluwafemi OS, May BMM, Parani S, Tsolekile N. Facile, large scale synthesis of water soluble AgInSe 2/ZnSe quantum dots and its cell viability assessment on different cell lines. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 106:110181. [PMID: 31753367 DOI: 10.1016/j.msec.2019.110181] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 08/09/2019] [Accepted: 09/09/2019] [Indexed: 11/25/2022]
Abstract
I-III-VI chalcopyrite ternary quantum dots have emerged as a good alternative over the conventional II-VI and IV-VI chalcogenide binary QDs that usually consist of heavy metals such as Cd and Pb which has limited their bioapplications. Among the chalcopyrite QDs, AgInSe2 QDs has been the least developed due to the imbalanced cation reactivity, unwanted impurities, broad size distribution and resultant large particle sizes. In addition, the cell viability of these QDs still needs to be investigated on different cell lines both normal and cancerous ones. Herein, large-scale synthesis of water-soluble thioglycolic acid (TGA) capped and gelatin-stabilized AgInSe2 (AISe) core and AgInSe2/ZnSe (AISe/ZnSe) core/shell QDs in the absence of an inert atmosphere and their cell viability against different cell lines are reported. The optical and structural characteristics of the as-synthesized QDs were investigated by UV-visible (vis) absorption, photoluminescence (PL) and Fourier-transmission infrared (FTIR) spectroscopies, dynamic light scattering (DLS), X-ray diffraction (XRD), and high-resolution transmission electron microscope (HRTEM) techniques. Growth of ZnSe shell on the core AISe resulted in the blue shifting of the emission maximum position with the increased PL intensity. The QDs are small and spherical in shape with an average particle diameter of 2.8 nm and 3.2 nm for AISe and AISe/ZnSe QDs respectively. The in vitro cell viability assay revealed that the as-synthesized AISe/ZnSe QDs are not toxic towards cancerous (HeLa -cervical cancer and A549-lung cancer) and normal (BHK21 -Kidney) cell lines.
Collapse
Affiliation(s)
- Oluwatobi S Oluwafemi
- Department of Chemical Sciences (formerly Applied Chemistry), University of Johannesburg, P.O. box 17011, Doornfontein, 2028 Johannesburg, South Africa; Center for Nanomaterials Science Research, University of Johannesburg, Doornfontein, South Africa.
| | - Bambesiwe M M May
- Department of Chemical Sciences (formerly Applied Chemistry), University of Johannesburg, P.O. box 17011, Doornfontein, 2028 Johannesburg, South Africa; Center for Nanomaterials Science Research, University of Johannesburg, Doornfontein, South Africa
| | - Sundararajan Parani
- Department of Chemical Sciences (formerly Applied Chemistry), University of Johannesburg, P.O. box 17011, Doornfontein, 2028 Johannesburg, South Africa; Center for Nanomaterials Science Research, University of Johannesburg, Doornfontein, South Africa
| | - Ncediwe Tsolekile
- Department of Chemical Sciences (formerly Applied Chemistry), University of Johannesburg, P.O. box 17011, Doornfontein, 2028 Johannesburg, South Africa; Center for Nanomaterials Science Research, University of Johannesburg, Doornfontein, South Africa
| |
Collapse
|
18
|
Abdellatif AA, Aldalaen SM, Faisal W, Tawfeek HM. Somatostatin receptors as a new active targeting sites for nanoparticles. Saudi Pharm J 2018; 26:1051-1059. [PMID: 30416362 PMCID: PMC6218373 DOI: 10.1016/j.jsps.2018.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
The delivery of nanoparticles through receptor-mediated cell interactions has nowadays a major attention in the area of drug targeting applications. This specific kind of targeting is mediated by localized receptors impeded into the target site with subsequent drugs internalization. Hence, this type of interaction would diminish side effects and enhance drug delivery efficacy to the target site. Somatostatin receptors (SSTRs) are one type of G protein-coupled receptors, which could be active targeted for various purposes. There are five SSTRs types (SSTR1-5) which are localized at various organs in the body and spread into different tissues. SSTRs could be considered as a promising target to various nanoparticles which is facilitated when nanoparticles are modified through specific ligand or coating to allow better binding. This review discusses the exploration of SSTRs for active targeting of nanoparticles with certain emphasize on their interaction at the cellular level.
Collapse
Affiliation(s)
- Ahmed A.H. Abdellatif
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy, Qassim University, Buraydah, 51452 Al-Qassim, Kingdom of Saudi Arabia
| | - Sa'ed M. Aldalaen
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Mutah University, Mutah, Al-Karak 61710, Jordan
| | - Waleed Faisal
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
- School of Pharmacy, University of College Cork, Cork, Ireland
| | - Hesham M. Tawfeek
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Mutah University, Mutah, Al-Karak 61710, Jordan
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
19
|
Yu Y, Yang Y, Ding J, Meng S, Li C, Yin X. Design of a Biocompatible and Ratiometric Fluorescent probe for the Capture, Detection, Release, and Reculture of Rare Number CTCs. Anal Chem 2018; 90:13290-13298. [DOI: 10.1021/acs.analchem.8b02625] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yanyan Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu P.R.China
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu P.R.China
| | - Yuan Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu P.R.China
| | - Jinhua Ding
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu P.R.China
| | - Si Meng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu P.R.China
| | - Chenglin Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu P.R.China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu P.R.China
| |
Collapse
|
20
|
Abdellatif AAH, Tawfeek HM. Development and evaluation of fluorescent gold nanoparticles. Drug Dev Ind Pharm 2018; 44:1679-1684. [PMID: 29939766 DOI: 10.1080/03639045.2018.1483400] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE It is difficult to identify the gold nanoparticles (AuNPs) intracellularly due to their non-fluorescent nature. Although gold can quench the fluorescence of any fluorophore, hence it is also difficult to combine gold with a fluorophore such as a semiconductor quantum dots (QDs). The aim of this study was to prepare a single fluorescent stable AuNPs combined with QDs (QDs-Au-NPs) which can be easily detected intracellularly. METHODS QDs-Au-NPs were prepared via a simple one-step process through controlling the spacing between them using polyethylene glycol (PEG) as space linker in the form of PEGylated QDs. Furthermore, the applicability of this system was evaluated after coating the particles with somatostatin citrate, SST, to active target somatostatin receptors (SSTRs), and identification of the internalized particles via confocal laser scanning spectroscopy. RESULTS The results showed that the produced Au shell has a thickness of 2.0 ± 0.2 nm and QDs-Au-NPs showed the same fluorescence intensity compared to the unmodified QDs. Additionally, a stable monodisperse QDs-Au-NPs coated with SST were prepared after coating with 11-Mercaptoundecanoic acid. Moreover, cellular uptake study in Human Caucasian breast adenocarcinoma cell lines showed that QDs-Au-SST-NPs could be detected easily using the confocal microscope. In addition, they showed a significant (p ≤ .05) internalization per cell compared to untreated QDs-Au-NPs as detected by flow cytometry. CONCLUSION It could be concluded that the produced QDs-Au-NPs has a strong fluorescence property like QDs which enable them to be easily detected after cells internalization.
Collapse
Affiliation(s)
- Ahmed A H Abdellatif
- a Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Al Azhar University , Assuit , Egypt.,b Department of Pharmaceutics, Faculty of Pharmacy , Qassim University , Buraydah , Al- Qassim , Kingdom of Saudi Arabia
| | - Hesham M Tawfeek
- c Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy , Mutah University, Mutah , Karak , Jordan.,d Department of Industrial Pharmacy, Faculty of Pharmacy , Assiut University , Assiut , Egypt
| |
Collapse
|
21
|
Saravanan M, Ramachandran B, Hamed B, Giardiello M. Barriers for the development, translation, and implementation of nanomedicine: an African perspective. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/jin2.43] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Muthupandian Saravanan
- Department of Medical Microbiology and Immunology, School of Medicine, College of Health Science; Mekelle University; Mekelle 1871 Ethiopia
| | | | - Barabadi Hamed
- Department of Pharmaceutical Biotechnology, School of Pharmacy; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | | |
Collapse
|
22
|
Jain A, Fournier PGJ, Mendoza-Lavaniegos V, Sengar P, Guerra-Olvera FM, Iñiguez E, Kretzschmar TG, Hirata GA, Juárez P. Functionalized rare earth-doped nanoparticles for breast cancer nanodiagnostic using fluorescence and CT imaging. J Nanobiotechnology 2018; 16:26. [PMID: 29566719 PMCID: PMC5863469 DOI: 10.1186/s12951-018-0359-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 03/19/2018] [Indexed: 12/31/2022] Open
Abstract
Background Breast cancer is the second leading cause of cancer death among women and represents 14% of death in women around the world. The standard diagnosis method for breast tumor is mammography, which is often related with false-negative results leading to therapeutic delays and contributing indirectly to the development of metastasis. Therefore, the development of new tools that can detect breast cancer is an urgent need to reduce mortality in women. Here, we have developed Gd2O3:Eu3+ nanoparticles functionalized with folic acid (FA), for breast cancer detection. Results Gd2O3:Eu3+ nanoparticles were synthesized by sucrose assisted combustion synthesis and functionalized with FA using EDC-NHS coupling. The FA-conjugated Gd2O3:Eu3+ nanoparticles exhibit strong red emission at 613 nm with a quantum yield of ~ 35%. In vitro cytotoxicity studies demonstrated that the nanoparticles had a negligible cytotoxic effect on normal 293T and T-47D breast cancer cells. Cellular uptake analysis showed significantly higher internalization of FA-conjugated RE nanoparticles into T-47D cells (Folrhi) compared to MDA-MB-231 breast cancer cells (Folrlo). In vivo confocal and CT imaging studies indicated that FA-conjugated Gd2O3:Eu3+ nanoparticles accumulated more efficiently in T-47D tumor xenograft compared to the MDA-MB-231 tumor. Moreover, we found that FA-conjugated Gd2O3:Eu3+ nanoparticles were well tolerated at high doses (300 mg/kg) in CD1 mice after an intravenous injection. Thus, FA-conjugated Gd2O3:Eu3+ nanoparticles have great potential to detect breast cancer. Conclusions Our findings provide significant evidence that could permit the future clinical application of FA-conjugated Gd2O3:Eu3+ nanoparticles alone or in combination with the current detection methods to increase its sensitivity and precision. Electronic supplementary material The online version of this article (10.1186/s12951-018-0359-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Akhil Jain
- Biomedical Innovation Department, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, B.C., Mexico.,Posgrado en Física de Materiales, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, B.C., Mexico.,Universidad Nacional Autónoma de México (UNAM)-Centro de Nanociencias y Nanotecnología (CNyN), Km. 107 Carretera Tijuana-Ensenada, C.P. 22860, Ensenada, B.C., Mexico
| | - Pierrick G J Fournier
- Biomedical Innovation Department, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, B.C., Mexico
| | - Vladimir Mendoza-Lavaniegos
- Departamento de Geología, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Transpeninsular Ensenada-Tijuana #318, Zona Playitas, C.P. 22860, Ensenada, B.C., Mexico.,Centro Mexicano de Innovación en Energía Geotérmica (CeMIGeo), Rinconada del Pedregal 95, Pedregal Playitas, 22860, Ensenada, Baja California, Mexico
| | - Prakhar Sengar
- Biomedical Innovation Department, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, B.C., Mexico.,Posgrado en Física de Materiales, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, B.C., Mexico.,Universidad Nacional Autónoma de México (UNAM)-Centro de Nanociencias y Nanotecnología (CNyN), Km. 107 Carretera Tijuana-Ensenada, C.P. 22860, Ensenada, B.C., Mexico
| | - Fernando M Guerra-Olvera
- Biomedical Innovation Department, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, B.C., Mexico
| | - Enrique Iñiguez
- Departamento de Geología, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Transpeninsular Ensenada-Tijuana #318, Zona Playitas, C.P. 22860, Ensenada, B.C., Mexico.,Centro Mexicano de Innovación en Energía Geotérmica (CeMIGeo), Rinconada del Pedregal 95, Pedregal Playitas, 22860, Ensenada, Baja California, Mexico
| | - Thomas G Kretzschmar
- Departamento de Geología, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Transpeninsular Ensenada-Tijuana #318, Zona Playitas, C.P. 22860, Ensenada, B.C., Mexico.,Centro Mexicano de Innovación en Energía Geotérmica (CeMIGeo), Rinconada del Pedregal 95, Pedregal Playitas, 22860, Ensenada, Baja California, Mexico
| | - Gustavo A Hirata
- Universidad Nacional Autónoma de México (UNAM)-Centro de Nanociencias y Nanotecnología (CNyN), Km. 107 Carretera Tijuana-Ensenada, C.P. 22860, Ensenada, B.C., Mexico
| | - Patricia Juárez
- Biomedical Innovation Department, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, B.C., Mexico.
| |
Collapse
|
23
|
Saulite L, Pleiko K, Popena I, Dapkute D, Rotomskis R, Riekstina U. Nanoparticle delivery to metastatic breast cancer cells by nanoengineered mesenchymal stem cells. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9. [PMID: 29515946 PMCID: PMC5815277 DOI: 10.3762/bjnano.9.32] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We created a 3D cell co-culture model by combining nanoengineered mesenchymal stem cells (MSCs) with the metastatic breast cancer cell line MDA-MD-231 and primary breast cancer cell line MCF7 to explore the transfer of quantum dots (QDs) to cancer cells. First, the optimal conditions for high-content QD loading in MSCs were established. Then, QD uptake in breast cancer cells was assessed after 24 h in a 3D co-culture with nanoengineered MSCs. We found that incubation of MSCs with QDs in a serum-free medium provided the best accumulation results. It was found that 24 h post-labelling QDs were eliminated from MSCs. Our results demonstrate that breast cancer cells efficiently uptake QDs that are released from nanoengineered MSCs in a 3D co-culture. Moreover, the uptake is considerably enhanced in metastatic MDA-MB-231 cells compared with MCF7 primary breast cancer cells. Our findings suggest that nanoengineered MSCs could serve as a vehicle for targeted drug delivery to metastatic cancer.
Collapse
Affiliation(s)
- Liga Saulite
- Faculty of Medicine, University of Latvia, Raina Blvd. 19, LV-1586 Riga, Latvia
| | - Karlis Pleiko
- Faculty of Medicine, University of Latvia, Raina Blvd. 19, LV-1586 Riga, Latvia
| | - Ineta Popena
- Faculty of Medicine, University of Latvia, Raina Blvd. 19, LV-1586 Riga, Latvia
| | - Dominyka Dapkute
- Biomedical Physics Laboratory, National Cancer Institute, P. Baublio Street 3b, LT-08406 Vilnius, Lithuania
- Life Science Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Ricardas Rotomskis
- Biomedical Physics Laboratory, National Cancer Institute, P. Baublio Street 3b, LT-08406 Vilnius, Lithuania
- Laser Research Centre, Vilnius University, Sauletekio al. 9, corp. 3, LT-10222 Vilnius, Lithuania
| | - Una Riekstina
- Faculty of Medicine, University of Latvia, Raina Blvd. 19, LV-1586 Riga, Latvia
| |
Collapse
|
24
|
Duman FD, Erkisa M, Khodadust R, Ari F, Ulukaya E, Acar HY. Folic acid-conjugated cationic Ag 2S quantum dots for optical imaging and selective doxorubicin delivery to HeLa cells. Nanomedicine (Lond) 2017; 12:2319-2333. [PMID: 28875744 DOI: 10.2217/nnm-2017-0180] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AIM We aim to develop folic acid (FA)-conjugated cationic Ag2S near-infrared quantum dots (NIRQDs) for the delivery of doxorubicin (DOX) selectively to folate receptor (FR)-positive cancer cells to achieve enhanced drug efficacy and optical tracking in the NIR region. MATERIALS & METHODS Cationic Ag2S NIRQDs were decorated with FA using a PEG bridge and loaded with DOX. In vitro studies were performed on FR-positive human cervical carcinoma cells and FR-negative A549 cells. RESULTS Significantly higher uptake of DOX by human cervical carcinoma cells cells and a greater therapeutic effect along with a strong intracellular optical signal were obtained with DOX-loaded FA-conjugated Ag2S NIRQDs. CONCLUSION These Ag2S NIRQDs are promising theranostic nanoparticles for receptor-mediated delivery of DOX with enhanced drug efficacy combined with optical imaging.
Collapse
Affiliation(s)
| | - Merve Erkisa
- Department of Biology, Uludag University, Bursa 16059, Turkey
| | | | - Ferda Ari
- Department of Biology, Uludag University, Bursa 16059, Turkey
| | - Engin Ulukaya
- Department of Clinical Biochemistry, School of Medicine, Istinye University, Istanbul 34010, Turkey
| | - Havva Yagci Acar
- Department of Chemistry, Koc University, Istanbul 34450, Turkey.,Koc University Surface Science & Technology Center (KUYTAM), Istanbul 34450, Turkey
| |
Collapse
|
25
|
Keisham B, Cole A, Nguyen P, Mehta A, Berry V. Cancer Cell Hyperactivity and Membrane Dipolarity Monitoring via Raman Mapping of Interfaced Graphene: Toward Non-Invasive Cancer Diagnostics. ACS APPLIED MATERIALS & INTERFACES 2016; 8:32717-32722. [PMID: 27934135 DOI: 10.1021/acsami.6b12307] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Ultrasensitive detection, mapping, and monitoring of the activity of cancer cells is critical for treatment evaluation and patient care. Here, we demonstrate that a cancer cell's glycolysis-induced hyperactivity and enhanced electronegative membrane (from sialic acid) can sensitively modify the second-order overtone of in-plane phonon vibration energies (2D) of interfaced graphene via a hole-doping mechanism. By leveraging ultrathin graphene's high quantum capacitance and responsive phononics, we sensitively differentiated the activity of interfaced Glioblastoma Multiforme (GBM) cells, a malignant brain tumor, from that of human astrocytes at a single-cell resolution. GBM cell's high surface electronegativity (potential ∼310 mV) and hyperacidic-release induces hole-doping in graphene with a 3-fold higher 2D vibration energy shift of approximately 6 ± 0.5 cm-1 than astrocytes. From molecular dipole-induced quantum coupling, we estimate that the sialic acid density on the cell membrane increases from one molecule per ∼17 nm2 to one molecule per ∼7 nm2. Furthermore, graphene phononic response also identified enhanced acidity of cancer cell's growth medium. Graphene's phonon-sensitive platform to determine interfaced cell's activity/chemistry will potentially open avenues for studying activity of other cancer cell types, including metastatic tumors, and characterizing different grades of their malignancy.
Collapse
Affiliation(s)
- Bijentimala Keisham
- Department of Chemical Engineering, University of Illinois at Chicago , Chicago, Illinois 60607, United States
| | - Arron Cole
- Department of Neurosurgery, University of Illinois at Chicago , Chicago, Illinois 60612, United States
| | - Phong Nguyen
- Department of Chemical Engineering, University of Illinois at Chicago , Chicago, Illinois 60607, United States
| | - Ankit Mehta
- Department of Neurosurgery, University of Illinois at Chicago , Chicago, Illinois 60612, United States
| | - Vikas Berry
- Department of Chemical Engineering, University of Illinois at Chicago , Chicago, Illinois 60607, United States
| |
Collapse
|
26
|
Synthesis of Hexagonal ZnO-PQ7 Nano Disks Conjugated with Folic Acid to Image MCF – 7 Cancer Cells. J Fluoresc 2016; 27:21-29. [DOI: 10.1007/s10895-016-1932-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 09/07/2016] [Indexed: 12/26/2022]
|
27
|
Feng Y, Panwar N, Tng DJH, Tjin SC, Wang K, Yong KT. The application of mesoporous silica nanoparticle family in cancer theranostics. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.04.019] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
28
|
Viswanath B, Kim S, Lee K. Recent insights into nanotechnology development for detection and treatment of colorectal cancer. Int J Nanomedicine 2016; 11:2491-504. [PMID: 27330292 PMCID: PMC4898029 DOI: 10.2147/ijn.s108715] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The global incidence of colorectal cancer (CRC) is 1.3 million cases. It is the third most frequent cancer in males and females. Most CRCs are adenocarcinomas and often begin as a polyp on the inner wall of the rectum or colon. Some of these polyps become malignant, eventually. Detecting and removing these polyps in time can prevent CRC. Therefore, early diagnosis of CRC is advantageous for preventive and instant action interventions to decrease the mortality rates. Nanotechnology has been enhancing different methods for the detection and treatment of CRCs, and the research has provided hope within the scientific community for the development of new therapeutic strategies. This review presents the recent development of nanotechnology for the detection and treatment of CRC.
Collapse
Affiliation(s)
- Buddolla Viswanath
- Department of Bionanotechnology, Gachon University, Gyeonggi-Do, Republic of Korea
| | - Sanghyo Kim
- Department of Bionanotechnology, Gachon University, Gyeonggi-Do, Republic of Korea
| | - Kiyoung Lee
- Division of Endocrinology and Metabolism, Gachon University Gil Hospital, Incheon, Republic of Korea
| |
Collapse
|
29
|
Wang LW, Qu AP, Liu WL, Chen JM, Yuan JP, Wu H, Li Y, Liu J. Quantum dots-based double imaging combined with organic dye imaging to establish an automatic computerized method for cancer Ki67 measurement. Sci Rep 2016; 6:20564. [PMID: 26839163 PMCID: PMC4738351 DOI: 10.1038/srep20564] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/06/2016] [Indexed: 12/11/2022] Open
Abstract
As a widely used proliferative marker, Ki67 has important impacts on cancer prognosis, especially for breast cancer (BC). However, variations in analytical practice make it difficult for pathologists to manually measure Ki67 index. This study is to establish quantum dots (QDs)-based double imaging of nuclear Ki67 as red signal by QDs-655, cytoplasmic cytokeratin (CK) as yellow signal by QDs-585, and organic dye imaging of cell nucleus as blue signal by 4′,6-diamidino-2-phenylindole (DAPI), and to develop a computer-aided automatic method for Ki67 index measurement. The newly developed automatic computerized Ki67 measurement could efficiently recognize and count Ki67-positive cancer cell nuclei with red signals and cancer cell nuclei with blue signals within cancer cell cytoplasmic with yellow signals. Comparisons of computerized Ki67 index, visual Ki67 index, and marked Ki67 index for 30 patients of 90 images with Ki67 ≤ 10% (low grade), 10% < Ki67 < 50% (moderate grade), and Ki67 ≥ 50% (high grade) showed computerized Ki67 counting is better than visual Ki67 counting, especially for Ki67 low and moderate grades. Based on QDs-based double imaging and organic dye imaging on BC tissues, this study successfully developed an automatic computerized Ki67 counting method to measure Ki67 index.
Collapse
Affiliation(s)
- Lin-Wei Wang
- Department of Surgical Oncology, Beijing Shijitan Hospital Affiliated to the Capital Medical University, Beijing, 100038, China.,Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Ai-Ping Qu
- School of Computer Science and Technology, University of South China, Hengyang, 421001, China
| | - Wen-Lou Liu
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jia-Mei Chen
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jing-Ping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Han Wu
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yan Li
- Department of Surgical Oncology, Beijing Shijitan Hospital Affiliated to the Capital Medical University, Beijing, 100038, China.,Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Juan Liu
- School of Computer, Wuhan University, Wuhan 430072, China
| |
Collapse
|
30
|
Ali MA, Srivastava S, Agrawal VV, Willander M, John R, Malhotra BD. A biofunctionalized quantum dot–nickel oxide nanorod based smart platform for lipid detection. J Mater Chem B 2016; 4:2706-2714. [DOI: 10.1039/c5tb02578h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A label-free and sensitive immunosensor has been fabricated using an antibody conjugated CdS–NiO nanocomposite for detection of lipids in serum samples.
Collapse
Affiliation(s)
- Md. Azahar Ali
- Department of Science and Technology Centre on Biomolecular Electronics
- Biomedical Instrumentation Section
- CSIR-National Physical Laboratory
- New Delhi 110012
- India
| | - Saurabh Srivastava
- Department of Science and Technology Centre on Biomolecular Electronics
- Biomedical Instrumentation Section
- CSIR-National Physical Laboratory
- New Delhi 110012
- India
| | - Ved V. Agrawal
- Department of Science and Technology Centre on Biomolecular Electronics
- Biomedical Instrumentation Section
- CSIR-National Physical Laboratory
- New Delhi 110012
- India
| | - Magnus Willander
- Department of Science & Technology
- Division of Physics & Electronics Linkoping University
- Sweden
| | - Renu John
- Indian Institute of Technology Hyderabad
- Hyderabad
- India
| | - Bansi D. Malhotra
- Department of Biotechnology
- Delhi Technological University
- Shahbad Daulatpur
- Delhi 110042
- India
| |
Collapse
|
31
|
Chen YY, Cheng BR, He ZB, Wang SY, Wang ZM, Sun M, Song HB, Fang Y, Chen FF, Xiong B. Capture and Identification of Heterogeneous Circulating Tumor Cells Using Transparent Nanomaterials and Quantum Dots-Based Multiplexed Imaging. J Cancer 2016; 7:69-79. [PMID: 26722362 PMCID: PMC4679383 DOI: 10.7150/jca.12722] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 09/26/2015] [Indexed: 12/26/2022] Open
Abstract
Background: Capture and identification of circulating tumor cells (CTCs) in the blood system can help guide therapy and predict the prognosis of cancer patients. However, simultaneous capture and identification of CTCs with both epithelial and mesenchymal phenotypes remains a formidable technical challenge for cancer research. This study aimed at developing a system to efficiently capture and identify these CTCs with heterogeneous phenotypes using transparent nanomaterials and quantum dots (QDs)-based multiplexed imaging. Methods: Hydroxyapatite-chitosan (HA-CTS) nanofilm-coated substrates were modified based on our previous work to increase the capture efficiency of cancer cell lines by extending baking and incubating time. QDs-based imaging was applied to detect cytokeratin, epithelial cell adhesion molecule (EpCAM), and vimentin of cancer cells to demonstrate the feasibility of multiplexed imaging. And QDs-based multiplexed imaging of CD45, cytokeratin and vimentin was applied to detect CTCs from different cancer patients that were captured using HA-CTS nanofilm substrates. Results: Comparisons of the capture efficiencies of cancer cells at different baking time of film formation and incubating time of cell capture revealed the optimal baking and incubating time. Optimal time was chosen to develop a modified CTCs capture system that could capture EpCAM-positive cancer cells at an efficiency > 80%, and EpCAM-negative cancer cells at an efficiency > 50%. QDs-based imaging exhibited comparable detection ability but higher photostability compared to organic dyes imaging in staining cells. In addition, QDs-based multiplexed imaging also showed the molecular profiles of cancer cell lines with different phenotypes well. The integrated CTCs capture and identification system successfully captured and imaged CTCs with different sub-phenotypes in blood samples from cancer patients. Conclusion: This study demonstrated a reliable capture and detection system for heterogeneous CTCs that combined enrichment equipment based on HA-CTS nanofilm substrates with QDs-based multiplexed imaging.
Collapse
Affiliation(s)
- Yuan-Yuan Chen
- 1. Department of Oncology, Zhongnan Hospital of Wuhan University; Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center; Wuhan, Hubei, 430071, P. R. China
| | - Bo-Ran Cheng
- 1. Department of Oncology, Zhongnan Hospital of Wuhan University; Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center; Wuhan, Hubei, 430071, P. R. China
| | - Zhao-Bo He
- 2. Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei, China
| | - Shu-Yi Wang
- 1. Department of Oncology, Zhongnan Hospital of Wuhan University; Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center; Wuhan, Hubei, 430071, P. R. China
| | - Zhen-Meng Wang
- 1. Department of Oncology, Zhongnan Hospital of Wuhan University; Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center; Wuhan, Hubei, 430071, P. R. China
| | - Min Sun
- 1. Department of Oncology, Zhongnan Hospital of Wuhan University; Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center; Wuhan, Hubei, 430071, P. R. China
| | - Hai-Bin Song
- 1. Department of Oncology, Zhongnan Hospital of Wuhan University; Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center; Wuhan, Hubei, 430071, P. R. China
| | - Yuan Fang
- 1. Department of Oncology, Zhongnan Hospital of Wuhan University; Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center; Wuhan, Hubei, 430071, P. R. China
| | - Fang-Fang Chen
- 1. Department of Oncology, Zhongnan Hospital of Wuhan University; Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center; Wuhan, Hubei, 430071, P. R. China
| | - Bin Xiong
- 1. Department of Oncology, Zhongnan Hospital of Wuhan University; Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center; Wuhan, Hubei, 430071, P. R. China
| |
Collapse
|
32
|
Lee SH, Lee JB, Bae MS, Balikov DA, Hwang A, Boire TC, Kwon IK, Sung HJ, Yang JW. Current progress in nanotechnology applications for diagnosis and treatment of kidney diseases. Adv Healthc Mater 2015; 4:2037-45. [PMID: 26121684 PMCID: PMC4874338 DOI: 10.1002/adhm.201500177] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/27/2015] [Indexed: 12/26/2022]
Abstract
Significant progress has been made in nanomedicine, primarily in the form of nanoparticles, for theranostic applications to various diseases. A variety of materials, both organic and inorganic, have been used to develop nanoparticles with promise to achieve improved efficacy in medical applications as well as reduced systemic side effects compared to current standard of care medical practices. In particular, this article highlights the recent development and application of nanoparticles for diagnosing and treating nephropathologies.
Collapse
Affiliation(s)
- Sue Hyun Lee
- Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Jung Bok Lee
- Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Min Soo Bae
- Department of Bioengineering, College of Engineering, University of Washington, Seattle, WA 98195, USA
| | - Daniel A. Balikov
- Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Amy Hwang
- Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Timothy C. Boire
- Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Il Keun Kwon
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul 130–701, Republic of Korea
| | - Hak-Joon Sung
- Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Jae Won Yang
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37235, USA
- Department of Internal Medicine, Yonsei University of Wonju College of Medicine, Wonju, Gangwon 220–701, Republic of Korea
| |
Collapse
|
33
|
Rousserie G, Grinevich R, Brazhnik K, Even-Desrumeaux K, Reveil B, Tabary T, Chames P, Baty D, Cohen JH, Nabiev I, Sukhanova A. Detection of carcinoembryonic antigen using single-domain or full-size antibodies stained with quantum dot conjugates. Anal Biochem 2015; 478:26-32. [DOI: 10.1016/j.ab.2015.02.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 02/23/2015] [Accepted: 02/28/2015] [Indexed: 12/18/2022]
|
34
|
Soenen SJ, Parak WJ, Rejman J, Manshian B. (Intra)cellular stability of inorganic nanoparticles: effects on cytotoxicity, particle functionality, and biomedical applications. Chem Rev 2015; 115:2109-35. [PMID: 25757742 DOI: 10.1021/cr400714j] [Citation(s) in RCA: 316] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Stefaan J Soenen
- Biomedical MRI Unit/MoSAIC, Department of Medicine, KULeuven , B3000 Leuven, Belgium
| | | | | | | |
Collapse
|
35
|
Kandra P, Kalangi HPJ. Current understanding of synergistic interplay of chitosan nanoparticles and anticancer drugs: merits and challenges. Appl Microbiol Biotechnol 2015; 99:2055-64. [PMID: 25698508 DOI: 10.1007/s00253-015-6384-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/01/2015] [Accepted: 01/03/2015] [Indexed: 12/23/2022]
Abstract
Recent advances have been made in cancer chemotherapy through the development of conjugates for anticancer drugs. Many drugs have problems of poor stability, water insolubility, low selectivity, high toxicity, and side effects. Most of the chitosan nanoparticles showed to be good drug carriers because of their biocompatibility, biodegradability, and it can be readily modified. The anticancer drug with chitosan nanoparticles displays efficient anticancer effects with a decrease in the adverse effects of the original drug due to the predominant distribution into the tumor site and a gradual release of free drug from the conjugate which enhances drug solubility, stability, and efficiency. In this review, we discuss wider applications of numerous modified chitosan nanoparticles against different tumors and also focusing on the administration of anticancer drugs through various routes. We propose the interaction between nanosized drug carrier and tumor tissue to understand the synergistic interplay. Finally, we elaborate merits of drug delivery system at the tumor site, with emphasizing future challenges in cancer chemotherapy.
Collapse
Affiliation(s)
- Prameela Kandra
- Department of Biotechnology, GITAM Institute of Technology, GITAM University, Visakhapatnam, Andhra Pradesh, 530045, India,
| | | |
Collapse
|
36
|
Sivasubramanian M, Hsia Y, Lo LW. Nanoparticle-facilitated functional and molecular imaging for the early detection of cancer. Front Mol Biosci 2014; 1:15. [PMID: 25988156 PMCID: PMC4428449 DOI: 10.3389/fmolb.2014.00015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/19/2014] [Indexed: 01/08/2023] Open
Abstract
Cancer detection in its early stages is imperative for effective cancer treatment and patient survival. In recent years, biomedical imaging techniques, such as magnetic resonance imaging, computed tomography and ultrasound have been greatly developed and have served pivotal roles in clinical cancer management. Molecular imaging (MI) is a non-invasive imaging technique that monitors biological processes at the cellular and sub-cellular levels. To achieve these goals, MI uses targeted imaging agents that can bind targets of interest with high specificity and report on associated abnormalities, a task that cannot be performed by conventional imaging techniques. In this respect, MI holds great promise as a potential therapeutic tool for the early diagnosis of cancer. Nevertheless, the clinical applications of targeted imaging agents are limited due to their inability to overcome biological barriers inside the body. The use of nanoparticles has made it possible to overcome these limitations. Hence, nanoparticles have been the subject of a great deal of recent studies. Therefore, developing nanoparticle-based imaging agents that can target tumors via active or passive targeting mechanisms is desirable. This review focuses on the applications of various functionalized nanoparticle-based imaging agents used in MI for the early detection of cancer.
Collapse
Affiliation(s)
- Maharajan Sivasubramanian
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes Zhunan, Taiwan
| | - Yu Hsia
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes Zhunan, Taiwan ; Institute of Biotechnology, National Tsing Hua University Hsinchu, Taiwan
| | - Leu-Wei Lo
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes Zhunan, Taiwan
| |
Collapse
|
37
|
Shu Y, Pi F, Sharma A, Rajabi M, Haque F, Shu D, Leggas M, Evers BM, Guo P. Stable RNA nanoparticles as potential new generation drugs for cancer therapy. Adv Drug Deliv Rev 2014; 66:74-89. [PMID: 24270010 DOI: 10.1016/j.addr.2013.11.006] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 10/11/2013] [Accepted: 11/13/2013] [Indexed: 12/13/2022]
Abstract
Human genome sequencing revealed that only ~1.5% of the DNA sequence coded for proteins. More and more evidence has uncovered that a substantial part of the 98.5% so-called "junk" DNAs actually code for noncoding RNAs. Two milestones, chemical drugs and protein drugs, have already appeared in the history of drug development, and it is expected that the third milestone in drug development will be RNA drugs or drugs that target RNA. This review focuses on the development of RNA therapeutics for potential cancer treatment by applying RNA nanotechnology. A therapeutic RNA nanoparticle is unique in that its scaffold, ligand, and therapeutic component can all be composed of RNA. The special physicochemical properties lend to the delivery of siRNA, miRNA, ribozymes, or riboswitches; imaging using fluogenenic RNA; and targeting using RNA aptamers. With recent advances in solving the chemical, enzymatic, and thermodynamic stability issues, RNA nanoparticles have been found to be advantageous for in vivo applications due to their uniform nano-scale size, precise stoichiometry, polyvalent nature, low immunogenicity, low toxicity, and target specificity. In vivo animal studies have revealed that RNA nanoparticles can specifically target tumors with favorable pharmacokinetic and pharmacodynamic parameters without unwanted accumulation in normal organs. This review summarizes the key studies that have led to the detailed understanding of RNA nanoparticle formation as well as chemical and thermodynamic stability issue. The methods for RNA nanoparticle construction, and the current challenges in the clinical application of RNA nanotechnology, such as endosome trapping and production costs, are also discussed.
Collapse
Affiliation(s)
- Yi Shu
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Fengmei Pi
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Ashwani Sharma
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Mehdi Rajabi
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Farzin Haque
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Dan Shu
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Markos Leggas
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - B Mark Evers
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Peixuan Guo
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
38
|
Mishra D, Hubenak JR, Mathur AB. Nanoparticle systems as tools to improve drug delivery and therapeutic efficacy. J Biomed Mater Res A 2013; 101:3646-60. [PMID: 23878102 DOI: 10.1002/jbm.a.34642] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/04/2013] [Accepted: 02/05/2013] [Indexed: 02/03/2023]
Abstract
Nanoparticle-based drug delivery systems are appealing because, among other properties, they are easily manufactured and have the capacity to encapsulate a wide variety of drugs, many of which are not directly miscible with water. This review classifies nanoparticles into three broad categories based upon material composition: bio-inspired systems, synthetic systems, and inorganic systems. Each has distinct properties suitable for drug delivery applications, including their structure, composition, and pharmacokinetics (including clearance and uptake mechanisms), making each uniquely suitable for certain types of drugs. Furthermore, nanoparticles can be customized, making them ideal for a variety of applications. Advantages and disadvantages of the different systems are discussed. Strategies for improving nanoparticle efficacy include adding targeting agents on the nanoparticle surface, altering the degradation profile to control drug release, or PEGylating the surface to increase circulation times and reduce immediate clearance by the kidneys. The future of nanoparticle systems seems to be focused on further improving overall patient outcome by increasing delivery accuracy to the target area.
Collapse
Affiliation(s)
- Deepa Mishra
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 602, Houston, Texas, 77030
| | | | | |
Collapse
|
39
|
Ramos-Vara JA, Miller MA. When tissue antigens and antibodies get along: revisiting the technical aspects of immunohistochemistry--the red, brown, and blue technique. Vet Pathol 2013; 51:42-87. [PMID: 24129895 DOI: 10.1177/0300985813505879] [Citation(s) in RCA: 261] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Once focused mainly on the characterization of neoplasms, immunohistochemistry (IHC) today is used in the investigation of a broad range of disease processes with applications in diagnosis, prognostication, therapeutic decisions to tailor treatment to an individual patient, and investigations into the pathogenesis of disease. This review addresses the technical aspects of immunohistochemistry (and, to a lesser extent, immunocytochemistry) with attention to the antigen-antibody reaction, optimal fixation techniques, tissue processing considerations, antigen retrieval methods, detection systems, selection and use of an autostainer, standardization and validation of IHC tests, preparation of proper tissue and reagent controls, tissue microarrays and other high-throughput systems, quality assurance/quality control measures, interpretation of the IHC reaction, and reporting of results. It is now more important than ever, with these sophisticated applications, to standardize the entire IHC process from tissue collection through interpretation and reporting to minimize variability among laboratories and to facilitate quantification and interlaboratory comparison of IHC results.
Collapse
Affiliation(s)
- J A Ramos-Vara
- Animal Disease Diagnostic Laboratory and Department of Comparative Pathobiology, Purdue University, 406 South University, West Lafayette, IN 47907, USA.
| | | |
Collapse
|
40
|
Pericleous P, Gazouli M, Lyberopoulou A, Rizos S, Nikiteas N, Efstathopoulos EP. Detection of colorectal circulating cancer cells with the use of a quantum dot labelled magnetic immunoassay method. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s13126-013-0025-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
41
|
Zhang YP, Sun P, Zhang XR, Yang WL, Si CS. Synthesis of CdTe quantum dot-conjugated CC49 and their application for in vitro imaging of gastric adenocarcinoma cells. NANOSCALE RESEARCH LETTERS 2013; 8:294. [PMID: 23800369 PMCID: PMC3695781 DOI: 10.1186/1556-276x-8-294] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 06/16/2013] [Indexed: 06/02/2023]
Abstract
The purpose of this experiment was to investigate the visible imaging of gastric adenocarcinoma cells in vitro by targeting tumor-associated glycoprotein 72 (TAG-72) with near-infrared quantum dots (QDs). QDs with an emission wavelength of about 550 to 780 nm were conjugated to CC49 monoclonal antibodies against TAG-72, resulting in a probe named as CC49-QDs. A gastric adenocarcinoma cell line (MGC80-3) expressing high levels of TAG-72 was cultured for fluorescence imaging, and a gastric epithelial cell line (GES-1) was used for the negative control group. Transmission electron microscopy indicated that the average diameter of CC49-QDs was 0.2 nm higher compared with that of the primary QDs. Also, fluorescence spectrum analysis indicated that the CC49-QDs did not have different optical properties compared to the primary QDs. Immunohistochemical examination and in vitro fluorescence imaging of the tumors showed that the CC49-QDs probe could bind TAG-72 expressed on MGC80-3 cells.
Collapse
Affiliation(s)
- Yun-Peng Zhang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Peng Sun
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xu-Rui Zhang
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Wu-Li Yang
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Cheng-Shuai Si
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
42
|
Ilinskaya AN, Dobrovolskaia MA. Nanoparticles and the blood coagulation system. Part II: safety concerns. Nanomedicine (Lond) 2013; 8:969-81. [PMID: 23730696 PMCID: PMC3939602 DOI: 10.2217/nnm.13.49] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nanoparticle interactions with the blood coagulation system can be beneficial or adverse depending on the intended use of a nanomaterial. Nanoparticles can be engineered to be procoagulant or to carry coagulation-initiating factors to treat certain disorders. Likewise, they can be designed to be anticoagulant or to carry anticoagulant drugs to intervene in other pathological conditions in which coagulation is a concern. An overview of the coagulation system was given and a discussion of a desirable interface between this system and engineered nanomaterials was assessed in part I, which was published in the May 2013 issue of Nanomedicine. Unwanted pro- and anti-coagulant properties of nanoparticles represent significant concerns in the field of nanomedicine, and often hamper the development and transition into the clinic of many promising engineered nanocarriers. This part will focus on the undesirable effects of engineered nanomaterials on the blood coagulation system. We will discuss the relationship between the physicochemical properties of nanoparticles (e.g., size, charge and hydrophobicity) that determine their negative effects on the blood coagulation system in order to understand how manipulation of these properties can help to overcome unwanted side effects.
Collapse
Affiliation(s)
- Anna N Ilinskaya
- Nanotechnology Characterization Laboratory, Advanced Technology Program, SAIC-Frederick Inc., NCI-Frederick, 1050 Boyles Street, Building 469, Frederick, MD 21702, USA
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Advanced Technology Program, SAIC-Frederick Inc., NCI-Frederick, 1050 Boyles Street, Building 469, Frederick, MD 21702, USA
| |
Collapse
|
43
|
Ozcelikkale A, Ghosh S, Han B. Multifaceted Transport Characteristics of Nanomedicine: Needs for Characterization in Dynamic Environment. Mol Pharm 2013; 10:2111-26. [PMID: 23517188 DOI: 10.1021/mp3005947] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Altug Ozcelikkale
- School
of Mechanical Engineering and ‡Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana,
United States
| | - Soham Ghosh
- School
of Mechanical Engineering and ‡Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana,
United States
| | - Bumsoo Han
- School
of Mechanical Engineering and ‡Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana,
United States
| |
Collapse
|
44
|
Localization of CdSe/ZnS quantum dots in the lysosomal acidic compartment of cultured neurons and its impact on viability: Potential role of ion release. Toxicol In Vitro 2013; 27:752-9. [DOI: 10.1016/j.tiv.2012.12.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 12/10/2012] [Accepted: 12/13/2012] [Indexed: 12/31/2022]
|
45
|
Chen Z, Ren X, Tang F. Optical detection of acetylcholine esterase based on CdTe quantum dots. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11434-012-5590-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
46
|
Chen L, Qu G, Zhang C, Zhang S, He J, Sang N, Liu S. Quantum dots (QDs) restrain human cervical carcinoma HeLa cell proliferation through inhibition of the ROCK-c-Myc signaling. Integr Biol (Camb) 2013; 5:590-6. [DOI: 10.1039/c2ib20269g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
47
|
Liu J, Law WC, Liu J, Hu R, Liu L, Zhu J, Chen H, Wang J, Hu Y, Ye L, Yong KT. Toxicity assessment of phospholipid micelle-encapsulated cadmium-based quantum dots using Kunming mice. RSC Adv 2013. [DOI: 10.1039/c2ra21990e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
48
|
Miki K, Inoue T, Ohe K. Metathesis Polymerization-Based Synthesis of Functionalized Polymers Aiming at Medicinal Application. J SYN ORG CHEM JPN 2013. [DOI: 10.5059/yukigoseikyokaishi.71.601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
49
|
Abstract
The requirements for early diagnostics as well as effective treatment of insidious diseases such as cancer constantly increase the pressure on development of efficient and reliable methods for targeted drug/gene delivery as well as imaging of the treatment success/failure. One of the most recent approaches covering both the drug delivery as well as the imaging aspects is benefitting from the unique properties of nanomaterials. Therefore a new field called nanomedicine is attracting continuously growing attention. Nanoparticles, including fluorescent semiconductor nanocrystals (quantum dots) and magnetic nanoparticles, have proven their excellent properties for in vivo imaging techniques in a number of modalities such as magnetic resonance and fluorescence imaging, respectively. In this article, we review the main properties and applications of nanoparticles in various in vitro imaging techniques, including microscopy and/or laser breakdown spectroscopy and in vivo methods such as magnetic resonance imaging and/or fluorescence-based imaging. Moreover the advantages of the drug delivery performed by nanocarriers such as iron oxides, gold, biodegradable polymers, dendrimers, lipid based carriers such as liposomes or micelles are also highlighted.
Collapse
|
50
|
Gazouli M, Lyberopoulou A, Pericleous P, Rizos S, Aravantinos G, Nikiteas N, Anagnou NP, Efstathopoulos EP. Development of a quantum-dot-labelled magnetic immunoassay method for circulating colorectal cancer cell detection. World J Gastroenterol 2012; 18:4419-4426. [PMID: 22969208 PMCID: PMC3436060 DOI: 10.3748/wjg.v18.i32.4419] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/14/2012] [Accepted: 08/18/2012] [Indexed: 02/06/2023] Open
Abstract
AIM To detect of colorectal cancer (CRC) circulating tumour cells (CTCs) surface antigens, we present an assay incorporating cadmium selenide quantum dots (QDs) in these paper. METHODS The principle of the assay is the immunomagnetic separation of CTCs from body fluids in conjunction with QDs, using specific antibody biomarkers: epithelial cell adhesion molecule antibody, and monoclonal cytokeratin 19 antibody. The detection signal was acquired from the fluorescence signal of QDs. For the evaluation of the performance, the method under study was used to isolate the human colon adenocarcinoma cell line (DLD-1) and CTCs from CRC patients' peripheral blood. RESULTS The minimum detection limit of the assay was defined to 10 DLD-1 CRC cells/mL as fluorescence was measured with a spectrofluorometer. Fluorescence-activated cell sorting analysis and Real Time RT-PCR, they both have also been used to evaluate the performance of the described method. In conclusion, we developed a simple, sensitive, efficient and of lower cost (than the existing ones) method for the detection of CRC CTCs in human samples. We have accomplished these results by using magnetic bead isolation and subsequent QD fluorescence detection. CONCLUSION The method described here can be easily adjusted for any other protein target of either the CTC or the host.
Collapse
|