1
|
Chen YC, Fang YT, Wu CC, Chao TY, Wang YH, Tseng CC, Leung SY, Lee CP, Wang TY, Hsu PY, Chang JC, Lin MC, Hsiao CC. Increased autophagy activity regulated by LC3B gene promoter DNA methylation is associated with progression to active pulmonary tuberculosis disease. Respir Res 2025; 26:86. [PMID: 40045290 PMCID: PMC11884087 DOI: 10.1186/s12931-025-03149-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/10/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND This study aims to explore the role of autophagy-associated genes (ATG) and their epigenetic markers in the progression of mycobacterium tuberculosis (M. tb) infection, and to test the effects of de-methylation agents on macrophage functions against TB. METHODS ATG expressions and their gene promoter DNA methylation levels of blood immune cells were measured in 60 patients with active pulmonary TB disease, 31 subjects with latent TB infection (LTBI), and 15 non-infected healthy subjects (NIHS). An in vitro monocytic THP-1 cell culture model under M. tb-specific antigen stimuli was applied. RESULTS LC3B protein expression of blood M1/M2a monocyte, ATG5 protein expression of M2a, and mean DNA methylation levels of the LC3B gene promoter region of peripheral blood mononuclear cells were all increased in active TB patients versus either LTBI or NIHS group. The LC3B methylation levels were negatively correlated with its protein expressions. The discrimination of active TB disease from LTBI or NIHS was optimally captured by prediction scores, which combined LC3B (+) percentage of blood M1/M2a monocyte, LC3B gene promoter DNA methylation level, male gender, and body mass index. LC3B and ATG5 expressions of both blood M2a and neutrophil were decreased after 6-month anti-TB therapy, but hypermethylated LC3B gene promoter persisted. In vitro 5-Aza-2'-deoxycytidine treatment improved bactericidal, apoptosis and phagocytosis functions through augmenting autophagy flux via mechanisms other than demethylation of the LC3B gene promoter in THP-1 cells. CONCLUSIONS Increased LC3B expression and LC3B gene promoter hypermethylation may serve as biomarkers for progression of M. tb infection, while use of de-methylation agent may be a potential approach to host-directed immunotherapy in active TB disease.
Collapse
Affiliation(s)
- Yung-Che Chen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan.
- Graduate Institute of Clinical Medical Sciences, Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan.
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan.
| | - Ying-Tang Fang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Chao-Chien Wu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Tung-Ying Chao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Yi-Hsi Wang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Chia-Cheng Tseng
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Sum-Yee Leung
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Chiu-Ping Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Ting-Ya Wang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Po-Yuan Hsu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Jen-Chieh Chang
- Genomics and Proteomics Core Lab, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
| | - Meng-Chih Lin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan.
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan.
| | - Chang-Chun Hsiao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan.
- Graduate Institute of Clinical Medical Sciences, Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan.
| |
Collapse
|
2
|
Bao Y, Ma Y, Huang W, Bai Y, Gao S, Xiu L, Xie Y, Wan X, Shan S, Chen C, Qu L. Regulation of autophagy and cellular signaling through non-histone protein methylation. Int J Biol Macromol 2025; 291:139057. [PMID: 39710032 DOI: 10.1016/j.ijbiomac.2024.139057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/06/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Autophagy is a highly conserved catabolic pathway that is precisely regulated and plays a significant role in maintaining cellular metabolic balance and intracellular homeostasis. Abnormal autophagy is directly linked to the development of various diseases, particularly immune disorders, neurodegenerative conditions, and tumors. The precise regulation of proteins is crucial for proper cellular function, and post-translational modifications (PTMs) are key epigenetic mechanisms in the regulation of numerous biological processes. Multiple proteins undergo PTMs that influence autophagy regulation. Methylation modifications on non-histone lysine and arginine residues have been identified as common PTMs critical to various life processes. This paper focused on the regulatory effects of non-histone methylation modifications on autophagy, summarizing related research on signaling pathways involved in autophagy-related non-histone methylation, and discussing current challenges and clinical significance. Our review concludes that non-histone methylation plays a pivotal role in the regulation of autophagy and its associated signaling pathways. Targeting non-histone methylation offers a promising strategy for therapeutic interventions in diseases related to autophagy dysfunction, such as cancer and neurodegenerative disorders. These findings provide a theoretical basis for the development of non-histone-methylation-targeted drugs for clinical use.
Collapse
Affiliation(s)
- Yongfen Bao
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning 437000, China; School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, China
| | - Yaoyao Ma
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning 437000, China; School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, China
| | - Wentao Huang
- Department of Physiology, Hunan Normal University School of Medicine, Changsha 410013, China
| | - Yujie Bai
- Department of Scientific Research and Education, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330000, China
| | - Siying Gao
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Luyao Xiu
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuyang Xie
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xinrong Wan
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Shigang Shan
- School of Public Health and Nursing, Hubei University of Science and Technology, Hubei 437000, China
| | - Chao Chen
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lihua Qu
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning 437000, China; School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, China.
| |
Collapse
|
3
|
Shao BZ, Zhang WG, Liu ZY, Linghu EQ. Autophagy and its role in gastrointestinal diseases. World J Gastroenterol 2024; 30:4014-4020. [PMID: 39351250 PMCID: PMC11439115 DOI: 10.3748/wjg.v30.i36.4014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/25/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024] Open
Abstract
Gastrointestinal disorders encompass a spectrum of conditions affecting various organs within the digestive system, such as the esophagus, stomach, colon, rectum, pancreas, liver, small intestine, and bile ducts. The role of autophagy in the etiology and progression of gastrointestinal diseases has garnered significant attention. This paper seeks to evaluate the impact and mechanisms of autophagy in gastrointestinal disorders by synthesizing recent research findings. Specifically, we delve into inflammation-related gastrointestinal conditions, including ul-cerative colitis, Crohn's disease, and pancreatitis, as well as gastrointestinal cancers such as esophageal, gastric, and colorectal cancers. Additionally, we provide commentary on a recent publication by Chang et al in the World Journal of Gastroenterology. Our objective is to offer fresh perspectives on the mechanisms and therapeutic approaches for these gastrointestinal ailments. This review aims to offer new perspectives on the mechanisms and therapeutic strategies for gastrointestinal disorders by critically analyzing relevant publications. As discussed, the role of autophagy in gastrointestinal diseases is complex and, at times, contentious. To harness the full therapeutic potential of autophagy in treating these conditions, more in-depth research is imperative.
Collapse
Affiliation(s)
- Bo-Zong Shao
- Department of Gastroenterology, First Medical Center of Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Wen-Gang Zhang
- Department of Gastroenterology, First Medical Center of Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Zhen-Yu Liu
- Department of Gastroenterology, First Medical Center of Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - En-Qiang Linghu
- Department of Gastroenterology, First Medical Center of Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| |
Collapse
|
4
|
Saqirile, Deng Y, Li K, Yan W, Li K, Wang C. Gene Expression Regulation and the Signal Transduction of Programmed Cell Death. Curr Issues Mol Biol 2024; 46:10264-10298. [PMID: 39329964 DOI: 10.3390/cimb46090612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
Cell death is of great significance in maintaining tissue homeostasis and bodily functions. With considerable research coming to the fore, it has been found that programmed cell death presents in multiple modalities in the body, which is not only limited to apoptosis, but also can be divided into autophagy, pyroptosis, ferroptosis, mitotic catastrophe, entosis, netosis, and other ways. Different forms of programmed cell death have disparate or analogous characteristics with each other, and their occurrence is accompanied by multiple signal transduction and the role of a myriad of regulatory factors. In recent years, scholars across the world have carried out considerable in-depth research on programmed cell death, and new forms of cell death are being discovered continually. Concomitantly, the mechanisms of intricate signaling pathways and regulators have been discovered. More critically, cancer cells tend to choose distinct ways to evade cell death, and different tumors adapt to different manners of death. Therefore, targeting the cell death network has been regarded as an effective tumor treatment strategy for a long time. The objective of our paper is to review the signaling pathways and gene regulation in several typical types of programmed cell death and their correlation with cancer.
Collapse
Affiliation(s)
- Saqirile
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| | - Yuxin Deng
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| | - Kexin Li
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| | - Wenxin Yan
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| | - Ke Li
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| | - Changshan Wang
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| |
Collapse
|
5
|
Raja N, Ganesan A, Chandrasekar Lakshmi K, Aniyan Y. Assessing DNA methylation of ATG 5 and MAP1LC3Av1 gene in oral squamous cell carcinoma and oral leukoplakia- a cross sectional study. J Oral Biol Craniofac Res 2024; 14:534-539. [PMID: 39070885 PMCID: PMC11277762 DOI: 10.1016/j.jobcr.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
Background The progression and pathogenesis of oral cancer is greatly impacted by epigenetic modifications, such as DNA methylation. Autophagy, is an adaptive mechanism used to maintain the survival and integrity of cells. Oral squamous cell carcinoma is linked to a number of autophagy indicators, although it is yet unknown if DNA methylation of autophagy-related genes promotes the development of oral leukoplakia (OL), oral squamous cell carcinoma (OSCC). Aim Our study was aimed to assess, compare and evaluate the DNA methylation of ATG5 and MAP1LC3Av1 genes in oral leukoplakia, oral squamous cell carcinoma. Materials and methods This cross-sectional study was designed with sample size of 48 tissues which was clinically and histopathologically diagnosed as OL, OSCC and normal tissue. The samples were divided into three groups (Group A, Group B, and Group C; (n = 16 each). Following histopathological confirmation, the tissue was stored in the RNA reagent, then subjected to DNA extraction, methylation-sensitive polymerase chain reaction (MS-PCR). DNA methylation of the ATG5 and MAP1LC3Av1 genes were assessed. Results Shapiro-Wilk and Kolmogorov-Smirnov tests showed that the values were normally distributed. Both the ATG5 and MAP1LC3Av1 genes were methylated in OSCC, OL tissues compared to normal tissues. A statistically significant results was seen among the three study groups. Conclusion A significant difference was noted in the hypermethylation status of the promoter regions of the ATG5 and MAP1LC3Av1 genes. This provides some insight into their crucial role in the development of tumors. Future research with larger sample is needed to assess its potential clinical implications in oral carcinoma.
Collapse
Affiliation(s)
- Nishanthi Raja
- Department of Oral Medicine and Radiology, SRM Dental College, Bharathi salai, Chennai, Tamil Nadu, India
| | - Anuradha Ganesan
- Department of Oral Medicine and Radiology, SRM Dental College, Bharathi salai, Chennai, Tamil Nadu, India
| | | | - Yesoda Aniyan
- Department of Oral Medicine and Radiology, SRM Dental College, Bharathi salai, Chennai, Tamil Nadu, India
| |
Collapse
|
6
|
Shao G, Liu Y, Lu L, Wang L, Ji G, Xu H. Therapeutic potential of traditional Chinese medicine in the prevention and treatment of digestive inflammatory cancer transformation: Portulaca oleracea L. as a promising drug. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:117999. [PMID: 38447616 DOI: 10.1016/j.jep.2024.117999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine (TCM) has been used for centuries to treat various types of inflammation and tumors of the digestive system. Portulaca oleracea L. (POL), has been used in TCM for thousands of years. The chemical composition of POL is variable and includes flavonoids, alkaloids, terpenoids and organic acids and other classes of natural compounds. Many of these compounds exhibit powerful anti-inflammatory and anti-cancer-transforming effects in the digestive system. AIM OF STUDY In this review, we focus on the potential therapeutic role of POL in NASH, gastritis and colitis and their associated cancers, with a focus on the pharmacological properties and potential mechanisms of action of the main natural active compounds in POL. METHODS The information and data on Portulaca oleracea L. and its main active ingredients were collated from various resources like ethnobotanical textbooks and literature databases such as CNKI, VIP (Chinese literature), PubMed, Science Direct, Elsevier and Google Scholar (English literatures), Wiley, Springer, Tailor and Francis, Scopus, Inflibnet. RESULTS Kaempferol, luteolin, myricetin, quercetin, genistein, EPA, DHA, and melatonin were found to improve NASH and NASH-HCC, while kaempferol, apigenin, luteolin, and quercetin played a therapeutic role in gastritis and gastric cancer. Apigenin, luteolin, myricetin, quercetin, genistein, lupeol, vitamin C and melatonin were found to have therapeutic effects in the treatment of colitis and its associated cancers. The discovery of the beneficial effects of these natural active compounds in POL supports the idea that POL could be a promising novel candidate for the treatment and prevention of inflammation-related cancers of the digestive system. CONCLUSION The discovery of the beneficial effects of these natural active compounds in POL supports the idea that POL could be a promising novel candidate for the treatment and prevention of inflammation-related cancers of the digestive system. However, clinical data describing the mode of action of the naturally active compounds of POL are still lacking. In addition, pharmacokinetic data for POL compounds, such as changes in drug dose and absorption rates, cannot be extrapolated from animal models and need to be measured in patients in clinical trials. On the one hand, a systematic meta-analysis of the existing publications on TCM containing POL still needs to be carried out. On the other hand, studies on the hepatic and renal toxicity of POL are also needed. Additionally, well-designed preclinical and clinical studies to validate the therapeutic effects of TCM need to be performed, thus hopefully providing a basis for the validation of the clinical benefits of POL.
Collapse
Affiliation(s)
- Gaoxuan Shao
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, China
| | - Ying Liu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, China
| | - Lu Lu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, China
| | - Lei Wang
- Department of Hepatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, China.
| | - Hanchen Xu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, China.
| |
Collapse
|
7
|
Chakraborty S, Nandi P, Mishra J, Niharika, Roy A, Manna S, Baral T, Mishra P, Mishra PK, Patra SK. Molecular mechanisms in regulation of autophagy and apoptosis in view of epigenetic regulation of genes and involvement of liquid-liquid phase separation. Cancer Lett 2024; 587:216779. [PMID: 38458592 DOI: 10.1016/j.canlet.2024.216779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
Cellular physiology is critically regulated by multiple signaling nexuses, among which cell death mechanisms play crucial roles in controlling the homeostatic landscape at the tissue level within an organism. Apoptosis, also known as programmed cell death, can be induced by external and internal stimuli directing the cells to commit suicide in unfavourable conditions. In contrast, stress conditions like nutrient deprivation, infection and hypoxia trigger autophagy, which is lysosome-mediated processing of damaged cellular organelle for recycling of the degraded products, including amino acids. Apparently, apoptosis and autophagy both are catabolic and tumor-suppressive pathways; apoptosis is essential during development and cancer cell death, while autophagy promotes cell survival under stress. Moreover, autophagy plays dual role during cancer development and progression by facilitating the survival of cancer cells under stressed conditions and inducing death in extreme adversity. Despite having two different molecular mechanisms, both apoptosis and autophagy are interconnected by several crosslinking intermediates. Epigenetic modifications, such as DNA methylation, post-translational modification of histone tails, and miRNA play a pivotal role in regulating genes involved in both autophagy and apoptosis. Both autophagic and apoptotic genes can undergo various epigenetic modifications and promote or inhibit these processes under normal and cancerous conditions. Epigenetic modifiers are uniquely important in controlling the signaling pathways regulating autophagy and apoptosis. Therefore, these epigenetic modifiers of both autophagic and apoptotic genes can act as novel therapeutic targets against cancers. Additionally, liquid-liquid phase separation (LLPS) also modulates the aggregation of misfolded proteins and provokes autophagy in the cytosolic environment. This review deals with the molecular mechanisms of both autophagy and apoptosis including crosstalk between them; emphasizing epigenetic regulation, involvement of LLPS therein, and possible therapeutic approaches against cancers.
Collapse
Affiliation(s)
- Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Prahallad Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bypass Road, Bhauri, Bhopal, 462 030, MP, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India.
| |
Collapse
|
8
|
Damiescu R, Efferth T, Dawood M. Dysregulation of different modes of programmed cell death by epigenetic modifications and their role in cancer. Cancer Lett 2024; 584:216623. [PMID: 38246223 DOI: 10.1016/j.canlet.2024.216623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/19/2023] [Accepted: 01/07/2024] [Indexed: 01/23/2024]
Abstract
Modifications of epigenetic factors affect our lives and can give important information regarding one's state of health. In cancer, epigenetic modifications play a crucial role, as they influence various programmed cell death types. The purpose of this review is to investigate how epigenetic modifications, such as DNA methylation, histone modifications, and non-coding RNAs, influence various cell death processes in suppressing or promoting cancer development. Autophagy and apoptosis are the most investigated programmed cell death modes, as based on the tumor stage these cell death types can either promote or prevent cancer evolution. Therefore, our discussion focuses on how epigenetic modifications affect autophagy and apoptosis, as well as their diagnostic and therapeutical potential in combination with available chemotherapeutics. Additionally, we summarize the available data regarding the role of epigenetic modifications on other programmed cell death modes, such as ferroptosis, necroptosis, and parthanatos in cancer and discuss current advancements.
Collapse
Affiliation(s)
- R Damiescu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz, Germany
| | - T Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz, Germany
| | - M Dawood
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz, Germany.
| |
Collapse
|
9
|
Santarelli R, Evangelista L, Pompili C, Lo Presti S, Rossi A, Arena A, Gaeta A, Gonnella R, Gilardini Montani MS, Cirone M. EBV infection of primary colonic epithelial cells causes inflammation, DDR and autophagy dysregulation, effects that may predispose to IBD and carcinogenesis. Virus Res 2023; 338:199236. [PMID: 37797746 PMCID: PMC10582763 DOI: 10.1016/j.virusres.2023.199236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
EBV is a gammaherpesvirus strongly associated to human cancer. The virus has been shown to play a role also in inflammatory diseases, including IBD, in the context of which colon cancer more frequently arise. In this study, we show for the first time that EBV infects primary colonic epithelial cells (HCoEpC), promotes pro-inflammatory cytokine secretion and activates molecular pathways bridging inflammation and cancer, such as ERK1/2. These effects, occurring in the course of the lytic phase of the viral life cycle, led to DDR and autophagy dysregulation. Such cellular responses, playing a key role in the maintenance of proteostasis and genome integrity, are essential to prevent carcinogenesis. Interestingly, we found that the use of the demethylating agent 5-AZA could counteract most of the effects induced by EBV infection in HCoEpC, suggesting that DNA hyper-methylation may strongly contribute to viral-driven inflammation and colon cancer predisposition.
Collapse
Affiliation(s)
- Roberta Santarelli
- Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Lorenzo Evangelista
- Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Chiara Pompili
- Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Salvatore Lo Presti
- Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Alberto Rossi
- Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Andrea Arena
- Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Aurelia Gaeta
- Department of Molecular Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Roberta Gonnella
- Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | | | - Mara Cirone
- Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy.
| |
Collapse
|
10
|
Lim NR, Chung WC. Helicobacter pylori-associated Chronic Atrophic Gastritis and Progression of Gastric Carcinogenesis. THE KOREAN JOURNAL OF GASTROENTEROLOGY = TAEHAN SOHWAGI HAKHOE CHI 2023; 82:171-179. [PMID: 37876256 DOI: 10.4166/kjg.2023.097] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 10/26/2023]
Abstract
Chronic inflammation due to a Helicobacter pylori (H. pylori) infection is a representative cause of gastric cancer that can promote gastric carcinogenesis by abnormally activating immune cells and increasing the inflammatory cytokines levels. H. pylori infections directly cause DNA double-strand breaks in gastric epithelial cells and genetic damage by increasing the enzymatic activity of cytidine deaminase. Eventually, gastric cancer is induced through dysplasia. Hypermethylation of tumor suppressor genes is an important cause of gastric cancer because of a H. pylori infection. In addition, the changes in gastric microbiota and the mucosal inflammatory changes associated with a co-infection with the Epstein-Barr virus are associated with gastric cancer development. DNA damage induced by H. pylori and the subsequent responses of gastric stem cells have implications for gastric carcinogenesis. Although the pathogenesis of H. pylori has been established, many uncertainties remain, requiring more study.
Collapse
Affiliation(s)
- Na Rae Lim
- Department of Internal Medicine, St. Vincent Hospital, The Catholic University of Korea, Suwon, Korea
| | - Woo Chul Chung
- Department of Internal Medicine, St. Vincent Hospital, The Catholic University of Korea, Suwon, Korea
| |
Collapse
|
11
|
Nabavi-Rad A, Yadegar A, Sadeghi A, Aghdaei HA, Zali MR, Klionsky DJ, Yamaoka Y. The interaction between autophagy, Helicobacter pylori, and gut microbiota in gastric carcinogenesis. Trends Microbiol 2023; 31:1024-1043. [PMID: 37120362 PMCID: PMC10523907 DOI: 10.1016/j.tim.2023.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 05/01/2023]
Abstract
Chronic infection with Helicobacter pylori is the primary risk factor for the development of gastric cancer. Hindering our ability to comprehend the precise role of autophagy during H. pylori infection is the complexity of context-dependent autophagy signaling pathways. Recent and ongoing progress in understanding H. pylori virulence allows new frontiers of research for the crosstalk between autophagy and H. pylori. Novel approaches toward discovering autophagy signaling networks have further revealed their critical influence on the structure of gut microbiota and the metabolome. Here we intend to present a holistic view of the perplexing role of autophagy in H. pylori pathogenesis and carcinogenesis. We also discuss the intermediate role of autophagy in H. pylori-mediated modification of gut inflammatory responses and microbiota structure.
Collapse
Affiliation(s)
- Ali Nabavi-Rad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Daniel J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Oita, Japan; Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX, USA; Research Center for Global and Local Infectious Diseases, Oita University, Oita, Japan.
| |
Collapse
|
12
|
Sheng Y, Hua H, Yong Y, Zhou L. Identification of Hub Genes and Typing of Tuberculosis Infections Based on Autophagy-Related Genes. Pol J Microbiol 2023; 72:223-238. [PMID: 37725899 PMCID: PMC10561080 DOI: 10.33073/pjm-2023-022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/19/2023] [Indexed: 09/21/2023] Open
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis is one of the leading causes of morbidity and death in humans worldwide. Some autophagy genes associated with TB and some miRNAs regulating TB have been found, but the identification of autophagy-related genes in M. tuberculosis remains to be explored. Forty-seven autophagy-related genes differentially expressed in TB were identified in this study by analysis of TB-related datasets in the Gene Expression Omnibus (GEO) and autophagy-related genes in the Human Autophagy Database. The potential crucial genes affecting TB were found through the protein-protein interaction (PPI) network, and the possible pathways affected by these genes were verified. Analysis of the PPI network of miRNAs associated with M. tuberculosis infection and their target genes revealed that hsa-let-7, hsa-mir-155, hsa-mir-206, hsa-mir-26a, hsa-mir-30a, and hsa-mir-32 may regulate the expression of multiple autophagy-related genes (MAPK8, UVRAG, UKL2, and GABARAPL1) alone or in combination. Subsequently, Cytoscape was utilized to screen the differentially expressed genes related to autophagy. The hub genes (GABARAPL1 and ULK2) affecting TB were identified. Combined with Gene Set Enrichment Analysis (GSEA), the signaling pathways affected by the hub genes were verified. Finally, we divided TB patients into two subgroups based on autophagy-related genes, and the immune microenvironment of patients in different subgroups was significantly different. Our study found two autophagy-related hub genes that could affect TB and divide TB samples into two subgroups. This finding is of great significance for TB treatment and provides new ideas for exploring the pathogenesis of M. tuberculosis.
Collapse
Affiliation(s)
- Yunfeng Sheng
- Department of Tuberculosis, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haibo Hua
- Department of Tuberculosis, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Yong
- Department of Tuberculosis, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lihong Zhou
- Department of Tuberculosis, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
13
|
Nakazawa N, Yokobori T, Sohda M, Hosoi N, Watanabe T, Shimoda Y, Ide M, Sano A, Sakai M, Erkhem-Ochir B, Ogawa H, Shirabe K, Saeki H. Significance of Lipopolysaccharides in Gastric Cancer and Their Potential as a Biomarker for Nivolumab Sensitivity. Int J Mol Sci 2023; 24:11790. [PMID: 37511547 PMCID: PMC10380503 DOI: 10.3390/ijms241411790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Lipopolysaccharides are a type of polysaccharide mainly present in the bacterial outer membrane of Gram-negative bacteria. Recent studies have revealed that lipopolysaccharides contribute to the immune response of the host by functioning as a cancer antigen. We retrospectively recruited 198 patients with gastric cancer who underwent surgery. The presence of lipopolysaccharides was determined using immunohistochemical staining, with the intensity score indicating positivity. The relationship between lipopolysaccharides and CD8, PD-L1, TGFBI (a representative downstream gene of TGF-β signaling), wnt3a, and E-cadherin (epithelial-mesenchymal transition marker) was also investigated. Thereafter, we identified 20 patients with advanced gastric cancer receiving nivolumab and investigated the relationship between lipopolysaccharides and nivolumab sensitivity. After staining for lipopolysaccharides in the nucleus of cancer cells, 150 negative (75.8%) and 48 positive cases (24.2%) were found. The lipopolysaccharide-positive group showed increased cancer stromal TGFBI expression (p < 0.0001) and PD-L1 expression in cancer cells (p = 0.0029). Lipopolysaccharide positivity was significantly correlated with increased wnt3a signaling (p = 0.0028) and decreased E-cadherin expression (p = 0.0055); however, no significant correlation was found between lipopolysaccharide expression and overall survival rate (p = 0.71). In contrast, high TGFBI expression in the presence of LPS was associated with a worse prognosis than that in the absence of LPS (p = 0.049). Among cases receiving nivolumab, the lipopolysaccharide-negative and -positive groups had disease control rates of 66.7% and 11.8%, respectively (p = 0.088). Lipopolysaccharide positivity was associated with wnt3a, TGF-β signaling, and epithelial-mesenchymal transition and was considered to tend to promote therapeutic resistance to nivolumab.
Collapse
Affiliation(s)
- Nobuhiro Nakazawa
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi 371-8510, Japan
| | - Takehiko Yokobori
- Division of Integrated Oncology Research, Gunma University, Initiative for Advanced Research (GIAR), Maebashi 371-8511, Japan
| | - Makoto Sohda
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi 371-8510, Japan
| | - Nobuhiro Hosoi
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi 371-8510, Japan
| | - Takayoshi Watanabe
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi 371-8510, Japan
| | - Yuki Shimoda
- Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi 371-8511, Japan
| | - Munenori Ide
- Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi 371-8511, Japan
| | - Akihiko Sano
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi 371-8510, Japan
| | - Makoto Sakai
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi 371-8510, Japan
| | - Bilguun Erkhem-Ochir
- Division of Integrated Oncology Research, Gunma University, Initiative for Advanced Research (GIAR), Maebashi 371-8511, Japan
| | - Hiroomi Ogawa
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi 371-8510, Japan
| | - Ken Shirabe
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi 371-8510, Japan
| | - Hiroshi Saeki
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi 371-8510, Japan
| |
Collapse
|
14
|
Si B, Wang X, Liu Y, Wang J, Zhou Y, Nie Y, Xu A. Multi-locus deletion mutation induced by silver nanoparticles: Role of lysosomal-autophagy dysfunction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114947. [PMID: 37105094 DOI: 10.1016/j.ecoenv.2023.114947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/08/2023]
Abstract
Due to the rapid production growth and a wide range of applications, safety concerns are being raised about the genotoxic properties of silver nanoparticles (AgNPs). In this research, we found AgNPs induced a size-dependent genotoxicity via lysosomal-autophagy dysfunction in human-hamster hybrid (AL) cells. Compared with 25 nm and 75 nm particles, 5 nm AgNPs could accentuate the genotoxic responses, including DNA double-strand breaks (DSBs) and multi-locus deletion mutation, which could be significantly enhanced by autophagy inhibitors 3-methyl adenine (3-MA), Bafilomycin A1 (BFA), and cathepsin inhibitors, respectively. The autophagy dysfunction was closely related to the accumulation of 5 nm AgNPs in the lysosomes and the interruption of lysosome-autophagosome fusion. With lysosomal protective agent 3-O-Methylsphingomyelin (3-O-M) and endocytosis inhibitor wortmannin, the reactivation of lysosomal function and the recovery of autophagy significantly attenuated AgNP-induced genotoxicity. Our data provide clear evidence to illustrate the role of subcellular targets in the genotoxicity of AgNPs in mammalian cells, which laid the basis for better understanding the health risk of AgNPs and their related products.
Collapse
Affiliation(s)
- Bo Si
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Xue Wang
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Yun Liu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Juan Wang
- Department of Public Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Yemian Zhou
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Yaguang Nie
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, PR China.
| | - An Xu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; University of Science and Technology of China, Hefei, Anhui 230026, PR China; Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, PR China.
| |
Collapse
|
15
|
Xi Y, Zhang XL, Luo QX, Gan HN, Liu YS, Shao SH, Mao XH. Helicobacter pylori regulates stomach diseases by activating cell pathways and DNA methylation of host cells. Front Cell Dev Biol 2023; 11:1187638. [PMID: 37215092 PMCID: PMC10192871 DOI: 10.3389/fcell.2023.1187638] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
One of the most prevalent malignant tumors of the digestive tract is gastric cancer (GC). Age, high salt intake, Helicobacter pylori (H. pylori) infection, and a diet deficient in fruits and vegetables are risk factors for the illness. A significant risk factor for gastric cancer is infection with H. pylori. Infecting gastric epithelial cells with virulence agents secreted by H. pylori can cause methylation of tumor genes or carcinogenic signaling pathways to be activated. Regulate downstream genes' aberrant expression, albeit the precise mechanism by which this happens is unclear. Oncogene, oncosuppressor, and other gene modifications, as well as a number of different gene change types, are all directly associated to the carcinogenesis of gastric cancer. In this review, we describe comprehensive H. pylori and its virulence factors, as well as the activation of the NF-κB, MAPK, JAK/STAT signaling pathways, and DNA methylation following infection with host cells via virulence factors, resulting in abnormal gene expression. As a result, host-related proteins are regulated, and gastric cancer progression is influenced. This review provides insight into the H. pylori infection, summarizes a series of relevant papers, discusses the complex signaling pathways underlying molecular mechanisms, and proposes new approach to immunotherapy of this important disease.
Collapse
Affiliation(s)
- Yue Xi
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xiao-Li Zhang
- Department of Clinical Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Wuxi, China
| | - Qing-Xin Luo
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Hai-Ning Gan
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yu-Shi Liu
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shi-He Shao
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xu-Hua Mao
- Department of Clinical Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Wuxi, China
| |
Collapse
|
16
|
Shu F, Xiao H, Li QN, Ren XS, Liu ZG, Hu BW, Wang HS, Wang H, Jiang GM. Epigenetic and post-translational modifications in autophagy: biological functions and therapeutic targets. Signal Transduct Target Ther 2023; 8:32. [PMID: 36646695 PMCID: PMC9842768 DOI: 10.1038/s41392-022-01300-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/19/2022] [Accepted: 12/18/2022] [Indexed: 01/17/2023] Open
Abstract
Autophagy is a conserved lysosomal degradation pathway where cellular components are dynamically degraded and re-processed to maintain physical homeostasis. However, the physiological effect of autophagy appears to be multifaced. On the one hand, autophagy functions as a cytoprotective mechanism, protecting against multiple diseases, especially tumor, cardiovascular disorders, and neurodegenerative and infectious disease. Conversely, autophagy may also play a detrimental role via pro-survival effects on cancer cells or cell-killing effects on normal body cells. During disorder onset and progression, the expression levels of autophagy-related regulators and proteins encoded by autophagy-related genes (ATGs) are abnormally regulated, giving rise to imbalanced autophagy flux. However, the detailed mechanisms and molecular events of this process are quite complex. Epigenetic, including DNA methylation, histone modifications and miRNAs, and post-translational modifications, including ubiquitination, phosphorylation and acetylation, precisely manipulate gene expression and protein function, and are strongly correlated with the occurrence and development of multiple diseases. There is substantial evidence that autophagy-relevant regulators and machineries are subjected to epigenetic and post-translational modulation, resulting in alterations in autophagy levels, which subsequently induces disease or affects the therapeutic effectiveness to agents. In this review, we focus on the regulatory mechanisms mediated by epigenetic and post-translational modifications in disease-related autophagy to unveil potential therapeutic targets. In addition, the effect of autophagy on the therapeutic effectiveness of epigenetic drugs or drugs targeting post-translational modification have also been discussed, providing insights into the combination with autophagy activators or inhibitors in the treatment of clinical diseases.
Collapse
Affiliation(s)
- Feng Shu
- grid.452859.70000 0004 6006 3273Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong China
| | - Han Xiao
- grid.452859.70000 0004 6006 3273Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong China
| | - Qiu-Nuo Li
- grid.452859.70000 0004 6006 3273Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong China
| | - Xiao-Shuai Ren
- grid.452859.70000 0004 6006 3273Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong China
| | - Zhi-Gang Liu
- grid.284723.80000 0000 8877 7471Cancer Center, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong China
| | - Bo-Wen Hu
- grid.452859.70000 0004 6006 3273Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong China
| | - Hong-Sheng Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Hao Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| | - Guan-Min Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China.
| |
Collapse
|
17
|
Muhammad JS, Manzoor S, Cui ZG, Khoder G. DNA Methylation-Mediated Overexpression of CXCL1 in Helicobacter pylori-Induced Gastric Cancer: In Silico- and In Vitro-Based Identification of a Potential Biomarker for Carcinogenesis. Int J Mol Sci 2023; 24:795. [PMID: 36614235 PMCID: PMC9820856 DOI: 10.3390/ijms24010795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 01/05/2023] Open
Abstract
Given the high global prevalence and mortality associated with gastric cancer, and its known causal link with Helicobacter pylori infection, it is important to have a biomarker to identify malignant transformation at early stages. Previously, we, and others, have reported that H. pylori-induced epigenetic changes could mediate carcinogenic transformation of the gastric cells. Also, CXCL1 secreted by gastric cancer cells was reported as a key diagnostic and prognostic biomarker for the pathogenic progression of gastric cancer. In this study, for the first time, we aimed to investigate the role of H. pylori-induced DNA methylation-based epigenetic regulation of CXCL1. In silico analysis of publicly available datasets and in vitro experiments were performed. Our results showed that CXCL1 is highly expressed in both gastric cancer tissues and gastric cancer cells infected with H. pylori. Further, we showed and confirmed that H. pylori-mediated overexpression of CXCL1 is due to hypomethylation of its promoter region. Since epigenetic events such as DNA methylation happen early in the sequence; H. pylori-induced CXCL1 hypomethylation could likely be detected at an early stage of gastric cancer development. Epigenetic modifications, such as CXCL1 hypomethylation, are reversible and could potentially be a therapeutic target using demethylation drugs.
Collapse
Affiliation(s)
- Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Shaista Manzoor
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Zheng-Guo Cui
- Department of Environmental Health, University of Fukui School of Medical Sciences, Fukui 910-1193, Japan
| | - Ghalia Khoder
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
18
|
SARS-CoV-2-induced hypomethylation of the ferritin heavy chain (FTH1) gene underlies serum hyperferritinemia in severe COVID-19 patients. Biochem Biophys Res Commun 2022; 631:138-145. [PMID: 36183555 PMCID: PMC9509293 DOI: 10.1016/j.bbrc.2022.09.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/02/2022] [Accepted: 09/21/2022] [Indexed: 11/23/2022]
Abstract
High serum ferritin (hyperferritinemia), a reliable hallmark of severe COVID-19 often associates with a moderate decrease in serum iron (hypoferremia) and a moderate increase in serum hepcidin. This suggests that hyperferritinemia in severe COVID-19 is reflective of inflammation rather than iron overload. To test this possibility, the expression status of ferritin heavy chain (FTH1), transferrin receptor 1 (TFRC), hepcidin (HAMP), and ferroportin (SLC40A1) genes and promoter methylation status of FTH1 and TFRC genes were examined in blood samples obtained from COVID-19 patients showing no, mild or severe symptoms and in healthy-donor monocytes stimulated with SARS-CoV-2-derived peptides. Severe COVID-19 samples showed a significant increase in FTH1 expression and hypomethylation relative to mild or asymptomatic COVID-19 samples. S-peptide treated monocytes also showed a significant increase in FTH1 expression and hypomethylation relative to that in controls; treatment with ECD or NP did not change FTH1 expression nor its methylation status. In silico and in vitro analysis showed a significant increase in the expression of the TET3 demethylase in S peptide-treated monocytes. Findings presented here suggest that S peptide-driven hypomethylation of the FTH1 gene promoter underlies hyperferritinemia in severe COVID-19 disease.
Collapse
|
19
|
Shao BZ, Chai NL, Yao Y, Li JP, Law HKW, Linghu EQ. Autophagy in gastrointestinal cancers. Front Oncol 2022; 12:975758. [PMID: 36091106 PMCID: PMC9459114 DOI: 10.3389/fonc.2022.975758] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/11/2022] [Indexed: 12/14/2022] Open
Abstract
Gastrointestinal cancers are a group of cancers occurred in gastrointestinal tissues with high morbidity and mortality rate. Although numerous studies were conducted on the investigation of gastrointestinal cancers, the real mechanisms haven't been discovered, and no effective methods of prevention and treatment of gastrointestinal cancers have been developed. Autophagy, a vital catabolic process in organisms, have been proven to participate in various mechanisms and signaling pathways, thus producing a regulatory effect on various diseases. The role of autophagy in gastrointestinal cancers remains unclear due to its high complexity. In this review, firstly, the biological features of autophagy will be introduced. Secondly, the role of autophagy in three popular gastrointestinal cancers, namely esophageal cancer, gastric cancer, and colorectal cancer will be described and discussed by reviewing the related literature. We aimed to bring novel insights in exploring the real mechanisms for gastrointestinal cancers and developing effective and efficient therapeutic methods to treat gastrointestinal cancers.
Collapse
Affiliation(s)
- Bo-Zong Shao
- Department of Gastroenterology, General Hospital of the Chinese People’s Liberation Army, Beijing, China
- Department of Health Technology and Informatics, Faculty of Health and Social Science, The Hong Kong Polytechnic University, Hunghom, Hong Kong SAR, China
| | - Ning-Li Chai
- Department of Gastroenterology, General Hospital of the Chinese People’s Liberation Army, Beijing, China
| | - Yi Yao
- Department of Gastroenterology, General Hospital of the Chinese People’s Liberation Army, Beijing, China
| | - Jin-Ping Li
- Department of Gastroenterology, General Hospital of the Chinese People’s Liberation Army, Beijing, China
| | - Helen Ka Wai Law
- Department of Health Technology and Informatics, Faculty of Health and Social Science, The Hong Kong Polytechnic University, Hunghom, Hong Kong SAR, China
| | - En-Qiang Linghu
- Department of Gastroenterology, General Hospital of the Chinese People’s Liberation Army, Beijing, China
| |
Collapse
|
20
|
Ghavami S, Zamani M, Ahmadi M, Erfani M, Dastghaib S, Darbandi M, Darbandi S, Vakili O, Siri M, Grabarek BO, Boroń D, Zarghooni M, Wiechec E, Mokarram P. Epigenetic regulation of autophagy in gastrointestinal cancers. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166512. [PMID: 35931405 DOI: 10.1016/j.bbadis.2022.166512] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/11/2022] [Accepted: 07/28/2022] [Indexed: 11/09/2022]
Abstract
The development of novel therapeutic approaches is necessary to manage gastrointestinal cancers (GICs). Considering the effective molecular mechanisms involved in tumor growth, the therapeutic response is pivotal in this process. Autophagy is a highly conserved catabolic process that acts as a double-edged sword in tumorigenesis and tumor inhibition in a context-dependent manner. Depending on the stage of malignancy and cellular origin of the tumor, autophagy might result in cancer cell survival or death during the GICs' progression. Moreover, autophagy can prevent the progression of GIC in the early stages but leads to chemoresistance in advanced stages. Therefore, targeting specific arms of autophagy could be a promising strategy in the prevention of chemoresistance and treatment of GIC. It has been revealed that autophagy is a cytoplasmic event that is subject to transcriptional and epigenetic regulation inside the nucleus. The effect of epigenetic regulation (including DNA methylation, histone modification, and expression of non-coding RNAs (ncRNAs) in cellular fate is still not completely understood. Recent findings have indicated that epigenetic alterations can modify several genes and modulators, eventually leading to inhibition or promotion of autophagy in different cancer stages, and mediating chemoresistance or chemosensitivity. The current review focuses on the links between autophagy and epigenetics in GICs and discusses: 1) How autophagy and epigenetics are linked in GICs, by considering different epigenetic mechanisms; 2) how epigenetics may be involved in the alteration of cancer-related phenotypes, including cell proliferation, invasion, and migration; and 3) how epidrugs modulate autophagy in GICs to overcome chemoresistance.
Collapse
Affiliation(s)
- Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Research Institute of Hematology and Oncology, Cancer Care Manitoba, Winnipeg, MB R3E 0V9, Canada; Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland.
| | - Mozhdeh Zamani
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Mehran Erfani
- Department of Biochemistry, School of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Darbandi
- Fetal Health Research Center, Hope Generation Foundation, Tehran, Iran; Gene Therapy and Regenerative Medicine Research Center, Hope Generation Foundation, Tehran, Iran
| | - Sara Darbandi
- Fetal Health Research Center, Hope Generation Foundation, Tehran, Iran; Gene Therapy and Regenerative Medicine Research Center, Hope Generation Foundation, Tehran, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Morvarid Siri
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Beniamin Oskar Grabarek
- Department of Histology, Cytophysiology, and Embryology in Zabrze, Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland; Department of Gynecology and Obstetrics in Zabrze, Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland
| | - Dariusz Boroń
- Department of Histology, Cytophysiology, and Embryology in Zabrze, Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland; Department of Gynecology and Obstetrics in Zabrze, Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland
| | - Maryam Zarghooni
- Department of Laboratory Medicine and Pathobiology, University of Toronto Alumni, Toronto, Canada
| | - Emilia Wiechec
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden
| | - Pooneh Mokarram
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
21
|
Manzoor S, Muhammad JS, Maghazachi AA, Hamid Q. Autophagy: A Versatile Player in the Progression of Colorectal Cancer and Drug Resistance. Front Oncol 2022; 12:924290. [PMID: 35912261 PMCID: PMC9329589 DOI: 10.3389/fonc.2022.924290] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer (CRC) is among the topmost malignancies for both genders. Despite the high incidence rate and advances in diagnostic tools, treatment in many cases is still ineffective. Most cancerous lesions in CRC begin as benign, followed by the development of invasive forms and metastases. The development of CRC has been linked to defects in autophagy, which plays both a pro-and anti-tumor role and is mainly context-dependent. Autophagy suppression could enhance apoptosis via p53 activation, or autophagy also promotes tumor progression by maintaining tumor growth and increasing resistance to chemotherapy. Autophagy promotes the invasion and metastasis of CRC cells via increased epithelial-mesenchymal transition (EMT). Moreover, dysbiosis of gut microbiota upregulated autophagy and metastasis markers. Autophagy responses may also modulate the tumor microenvironment (TME) via regulating the differentiation process of several innate immune cells. Treatments that promote tumor cell death by stimulating or inhibiting autophagy could be beneficial if used as an adjunct treatment, but the precise role of various autophagy-modulating drugs in CRC patients is needed to be explored. In this article, we present an overview of the autophagy process and its role in the pathogenesis and therapeutic resistance of CRC. Also, we focused on the current understanding of the role of the EMT and TME, including its relation to gut microbiota and immune cells, in autophagic manipulation of CRC. We believe that there is a potential link between autophagy, TME, EMT, and drug resistance, suggesting that further studies are needed to explore this aspect.
Collapse
Affiliation(s)
- Shaista Manzoor
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Azzam A. Maghazachi
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Qutayba Hamid
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
- *Correspondence: Qutayba Hamid,
| |
Collapse
|
22
|
Behrouj H, Vakili O, Sadeghdoust A, Aligolighasemabadi N, Khalili P, Zamani M, Mokarram P. Epigenetic regulation of autophagy in coronavirus disease 2019 (COVID-19). Biochem Biophys Rep 2022; 30:101264. [PMID: 35469237 PMCID: PMC9021360 DOI: 10.1016/j.bbrep.2022.101264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/22/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has become the most serious global public health issue in the past two years, requiring effective therapeutic strategies. This viral infection is a contagious disease caused by new coronaviruses (nCoVs), also called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Autophagy, as a highly conserved catabolic recycling process, plays a significant role in the growth and replication of coronaviruses (CoVs). Therefore, there is great interest in understanding the mechanisms that underlie autophagy modulation. The modulation of autophagy is a very complex and multifactorial process, which includes different epigenetic alterations, such as histone modifications and DNA methylation. These mechanisms are also known to be involved in SARS-CoV-2 replication. Thus, molecular understanding of the epigenetic pathways linked with autophagy and COVID-19, could provide novel therapeutic targets for COVID-19 eradication. In this context, the current review highlights the role of epigenetic regulation of autophagy in controlling COVID-19, focusing on the potential therapeutic implications.
Collapse
Affiliation(s)
- Hamid Behrouj
- Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Adel Sadeghdoust
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Aligolighasemabadi
- Department of Internal Medicine, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Parnian Khalili
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mozhdeh Zamani
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooneh Mokarram
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Iran
| |
Collapse
|
23
|
Muhammad JS, Khan NA, Maciver SK, Alharbi AM, Alfahemi H, Siddiqui R. Epigenetic-Mediated Antimicrobial Resistance: Host versus Pathogen Epigenetic Alterations. Antibiotics (Basel) 2022; 11:809. [PMID: 35740215 PMCID: PMC9220109 DOI: 10.3390/antibiotics11060809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 02/04/2023] Open
Abstract
Since the discovery of antibiotics, humans have been benefiting from them by decreasing the morbidity and mortality associated with bacterial infections. However, in the past few decades, misuse of antibiotics has led to the emergence of bacterial infections resistant to multiple drugs, a significant health concern. Bacteria exposed to inappropriate levels of antibiotics lead to several genetic changes, enabling them to survive in the host and become more resistant. Despite the understanding and targeting of genetic-based biochemical changes in the bacteria, the increasing levels of antibiotic resistance are not under control. Many reports hint at the role of epigenetic modifications in the bacterial genome and host epigenetic reprogramming due to interaction with resistant pathogens. Epigenetic changes, such as the DNA-methylation-based regulation of bacterial mutation rates or bacteria-induced histone modification in human epithelial cells, facilitate its long-term survival. In this review article, epigenetic changes leading to the development of antibiotic resistance in clinically relevant bacteria are discussed. Additionally, recent lines of evidence focusing on human host epigenetic changes due to the human-pathogen interactions are presented. As genetic mechanisms cannot explain the transient nature of antimicrobial resistance, we believe that epigenetics may provide new frontiers in antimicrobial discovery.
Collapse
Affiliation(s)
- Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Naveed Ahmed Khan
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Sutherland K. Maciver
- Centre for Discovery Brain Sciences, Edinburgh Medical School-Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, Scotland, UK;
| | - Ahmad M. Alharbi
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia;
| | - Hasan Alfahemi
- Department of Medical Microbiology, Faculty of Medicine, Al-Baha University, P.O. Box 1988, Al-Baha 65799, Saudi Arabia;
| | - Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah 26666, United Arab Emirates
| |
Collapse
|
24
|
Yang Y, Shu X, Xie C. An Overview of Autophagy in Helicobacter pylori Infection and Related Gastric Cancer. Front Cell Infect Microbiol 2022; 12:847716. [PMID: 35463631 PMCID: PMC9033262 DOI: 10.3389/fcimb.2022.847716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/16/2022] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori (H. pylori) infection is considered a class I carcinogen in the pathogenesis of gastric cancer. In recent years, the interaction relationship between H. pylori infection and autophagy has attracted increasing attention. Most investigators believe that the pathogenesis of gastric cancer is closely related to the formation of an autophagosome-mediated downstream signaling pathway by H. pylori infection-induced cells. Autophagy is involved in H. pylori infection and affects the occurrence and development of gastric cancer. In this paper, the possible mechanism by which H. pylori infection affects autophagy and the progression of related gastric cancer signaling pathways are reviewed.
Collapse
Affiliation(s)
| | - Xu Shu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chuan Xie
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
25
|
Motoo I, Nanjo S, Ando T, Yamashita S, Ushijima T, Yasuda I. Methylation silencing of ULK2 via epithelial-mesenchymal transition causes transformation to poorly differentiated gastric cancers. Gastric Cancer 2022; 25:325-335. [PMID: 34554345 DOI: 10.1007/s10120-021-01250-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Diffuse-type gastric cancers (DGC) typically have a poor prognosis related to their invasion and metastasis, in which the epithelial-mesenchymal transition (EMT) is the initiation step. ULK2 plays a role in the autophagy initiation, which might provide a survival advantage in cancer cells. Although knock-down of ULK2 reportedly induces autophagy and EMT in a lung cancer cell line, the mechanism of EMT via the down-regulation of ULK2, as well as its clinical significance, remains yet unclear. The present study, therefore, aims at clarifying this mechanism and its clinical significance in gastric cancers. METHODS We examined ULK2 mRNA expression in gastric cancer tissues and normal gastric tissues of healthy people. The effects of knock-downed ULK2 were examined in two gastric cancer cells, which were investigated in terms of their gene expression changes by the mRNA microarray. RESULTS ULK2 was strongly expressed in intestinal-type cancers but was scarcely expressed in DGC by immunohistochemical staining. Furthermore, we found that ULK2 was methylated in DGC and was unmethylated in corresponding adjacent normal tissues. Then, we validated whether knock-down of ULK2 could induce autophagy, cell migration, and EMT in NUGC3 and MKN45 cells. Using mRNA microarray analysis, we confirmed that knock-down of ULK2 changed expressions of oncogenic genes associated with cell migration and EMT. Autophagy inhibitor suppressed cell migration and EMT induced by knock-down of ULK2 in NUGC3 and MKN45. CONCLUSION Methylation silencing of ULK2 could induce cell migration and EMT by means of autophagy induction, causing transformation to poorly differentiated cancers.
Collapse
Affiliation(s)
- Iori Motoo
- Department of Gastroenterology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Sohachi Nanjo
- Department of Gastroenterology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| | - Takayuki Ando
- Department of Gastroenterology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Satoshi Yamashita
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Toshikazu Ushijima
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Ichiro Yasuda
- Department of Gastroenterology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| |
Collapse
|
26
|
Wang Y, Du J, Wu X, Abdelrehem A, Ren Y, Liu C, Zhou X, Wang S. Crosstalk between autophagy and microbiota in cancer progression. Mol Cancer 2021; 20:163. [PMID: 34895252 PMCID: PMC8665582 DOI: 10.1186/s12943-021-01461-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/16/2021] [Indexed: 12/18/2022] Open
Abstract
Autophagy is a highly conserved catabolic process seen in eukaryotes and is essentially a lysosome-dependent protein degradation pathway. The dysregulation of autophagy is often associated with the pathogenesis of numerous types of cancers, and can not only promote the survival of cancer but also trigger the tumor cell death. During cancer development, the microbial community might predispose cells to tumorigenesis by promoting mucosal inflammation, causing systemic disorders, and may also regulate the immune response to cancer. The complex relationship between autophagy and microorganisms can protect the body by activating the immune system. In addition, autophagy and microorganisms can crosstalk with each other in multifaceted ways to influence various physiological and pathological responses involved in cancer progression. Various molecular mechanisms, correlating the microbiota disorders and autophagy activation, control the outcomes of protumor or antitumor responses, which depend on the cancer type, tumor microenvironment and disease stage. In this review, we mainly emphasize the leading role of autophagy during the interaction between pathogenic microorganisms and human cancers and investigate the various molecular mechanisms by which autophagy modulates such complicated biological processes. Moreover, we also highlight the possibility of curing cancers with multiple molecular agents targeting the microbiota/autophagy axis. Finally, we summarize the emerging clinical trials investigating the therapeutic potential of targeting either autophagy or microbiota as anticancer strategies, although the crosstalk between them has not been explored thoroughly.
Collapse
Affiliation(s)
- Yu Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, Tianjin, 300060 China
- National Clinical Research Center of Cancer, Tianjin, 300060 China
| | - Jiang Du
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, Tianjin, 300060 China
- National Clinical Research Center of Cancer, Tianjin, 300060 China
| | - Xuemei Wu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Gastroenterology and Hepatology Institute, Tianjin Medical University, Tianjin, 300052 China
- Key Laboratory of Immune Microenvironment and Disease, Tianjin Medical University, Ministry of Education, Tianjin, 300070 China
| | - Ahmed Abdelrehem
- Department of Craniomaxillofacial and Plastic Surgery, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Yu Ren
- Tianjin Research Center of Basic Medical Science, Tianjin Medical University, Tianjin, 300070 China
| | - Chao Liu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, Tianjin, 300060 China
- National Clinical Research Center of Cancer, Tianjin, 300060 China
| | - Xuan Zhou
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, Tianjin, 300060 China
- National Clinical Research Center of Cancer, Tianjin, 300060 China
| | - Sinan Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Gastroenterology and Hepatology Institute, Tianjin Medical University, Tianjin, 300052 China
- Key Laboratory of Immune Microenvironment and Disease, Tianjin Medical University, Ministry of Education, Tianjin, 300070 China
| |
Collapse
|
27
|
Choi JM, Kim SG. Effect of Helicobacter pylori Eradication on Epigenetic Changes in Gastric Cancer-related Genes. THE KOREAN JOURNAL OF HELICOBACTER AND UPPER GASTROINTESTINAL RESEARCH 2021. [DOI: 10.7704/kjhugr.2021.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is known that gastric carcinogenesis results from the progressive changes from chronic gastritis to gastric atrophy, intestinal metaplasia, dysplasia, and invasive carcinoma. Several genetic and epigenetic alterations are involved in this process, and Helicobacter pylori (H. pylori) infection is believed to induce the initiation and progression of these steps. From an epigenetic point of view, H. pylori induces hypermethylation of genes involved in the development of gastric cancer and regulates the expression of various microRNAs (miRNAs). These H. pylori-related epigenetic changes are accumulated not only at the site of neoplasm but also in the adjacent non-cancerous gastric mucosa. Thereby, a state vulnerable to gastric cancer known as an epigenetic field defect is formed. H. pylori eradication can have an effective chemopreventive effect in gastric carcinogenesis. However, the molecular biological changes that occur in the stomach environment during H. pylori eradication have not yet been established. Several studies have reported that H. pylori eradication can restore infection-related changes, especially epigenetic alterations in gastric cancer-related genes, but some studies have shown otherwise. Simply put, it appears that the recovery of methylated gastric cancer-related genes and miRNAs during H. pylori eradication may vary among genes and may also differ depending on the histological subtype of the gastric mucosa. In this review, we will discuss the potential mechanism of gastric cancer prevention by H. pylori eradication, mainly from an epigenetic perspective.
Collapse
|
28
|
Li Y, Yang G, Yang C, Tang P, Chen J, Zhang J, Liu J, Ouyang L. Targeting Autophagy-Related Epigenetic Regulators for Cancer Drug Discovery. J Med Chem 2021; 64:11798-11815. [PMID: 34378389 DOI: 10.1021/acs.jmedchem.1c00579] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Existing evidence has demonstrated that epigenetic modifications (including DNA methylation, histone modifications, and microRNAs), which are associated with the occurrence and development of tumors, can directly or indirectly regulate autophagy. In particular, nuclear events induced by several epigenetic regulators can regulate the autophagic process and expression levels of tumor-associated genes, thereby promoting tumor progression. Tumor-associated microRNAs, including oncogenic and tumor-suppressive microRNAs, are of great significance to autophagy during tumor progression. Targeting autophagy with emerging epigenetic drugs is expected to be a promising therapeutic strategy for human tumors. From this perspective, we aim to summarize the role of epigenetic modification in the autophagic process and the underlying molecular mechanisms of tumorigenesis. Furthermore, the regulatory efficacy of epigenetic drugs on the autophagic process in tumors is also summarized. This perspective may provide a theoretical basis for the combined treatment of epigenetic drugs/autophagy mediators in tumors.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Gaoxia Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Chengcan Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Pan Tang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Juncheng Chen
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Jifa Zhang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Jie Liu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
29
|
Yang J, Rao S, Cao R, Xiao S, Cui X, Ye L. miR-30a-5p suppresses lung squamous cell carcinoma via ATG5 - mediated autophagy. Aging (Albany NY) 2021; 13:17462-17472. [PMID: 34253689 PMCID: PMC8312466 DOI: 10.18632/aging.203235] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/08/2021] [Indexed: 04/08/2023]
Abstract
UNLABELLED Propose: Autophagy plays a complicated role in cancer progression. This study aims at assessing the function of ATG5-induced autophagy in progression of lung squamous cell carcinoma and its upstream mechanism. METHOD TCGA database of lung squamous cell carcinoma was analyzed to explore the differentially expressed miRNAs and mRNAs and relative prognosis. RT-PCR and Western blot were performed to evaluate autophagy relative gene expression level in human lung squamous cell carcinoma cell Lines. Autophagy flux was observed using transmission electron microscopy and immunofluorescence. Meanwhile, binding relationship of potential target miRNA and mRNAs were also confirmed using Dual-luciferase reporter gene assay. Lung metastatic model was established to evaluated the effect of targeting protein and miRNA. RESULT High level expression of ATG5 was detected in LUSC patients. Relative experiments confirmed that ATG5 silencing could decrease the autophagy flux in LUSC. In addition, our research revealed that there is a binding sites between hsa-mir-30a-5p and 3'-UTR of ATG5. Mimic miR-30a-5p suppresses ATG5-mediated autophagy in lung squamous cell carcinoma cells. The in vivo experiments confirmed that miR-30a-5p could attenuate lung squamous cell carcinoma progression through the autophagy pathway. CONCLUSION Accordingly, the in vivo and in vitro study in our research have demonstrated that miR-30a-5p inhibits lung squamous cell carcinoma progression via ATG5-mediated autophagy.
Collapse
Affiliation(s)
- Jichen Yang
- Department of Thoracic Surgery, Lung Cancer Research Center, Yunnan Institute of Oncology, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming Yunnan 650118, PR China
| | - Sunyin Rao
- Department of Thoracic Surgery, Lung Cancer Research Center, Yunnan Institute of Oncology, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming Yunnan 650118, PR China
| | - Run Cao
- Department of Thoracic Surgery, Lung Cancer Research Center, Yunnan Institute of Oncology, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming Yunnan 650118, PR China
| | - Shouyong Xiao
- Department of Thoracic Surgery, Lung Cancer Research Center, Yunnan Institute of Oncology, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming Yunnan 650118, PR China
| | - Xin Cui
- Department of Thoracic Surgery, Lung Cancer Research Center, Yunnan Institute of Oncology, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming Yunnan 650118, PR China
| | - Lianhua Ye
- Department of Thoracic Surgery, Lung Cancer Research Center, Yunnan Institute of Oncology, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming Yunnan 650118, PR China
| |
Collapse
|
30
|
Mandhair HK, Novak U, Radpour R. Epigenetic regulation of autophagy: A key modification in cancer cells and cancer stem cells. World J Stem Cells 2021; 13:542-567. [PMID: 34249227 PMCID: PMC8246247 DOI: 10.4252/wjsc.v13.i6.542] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/02/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Aberrant epigenetic alterations play a decisive role in cancer initiation and propagation via the regulation of key tumor suppressor genes and oncogenes or by modulation of essential signaling pathways. Autophagy is a highly regulated mechanism required for the recycling and degradation of surplus and damaged cytoplasmic constituents in a lysosome dependent manner. In cancer, autophagy has a divergent role. For instance, autophagy elicits tumor promoting functions by facilitating metabolic adaption and plasticity in cancer stem cells (CSCs) and cancer cells. Moreover, autophagy exerts pro-survival mechanisms to these cancerous cells by influencing survival, dormancy, immunosurveillance, invasion, metastasis, and resistance to anti-cancer therapies. In addition, recent studies have demonstrated that various tumor suppressor genes and oncogenes involved in autophagy, are tightly regulated via different epigenetic modifications, such as DNA methylation, histone modifications and non-coding RNAs. The impact of epigenetic regulation of autophagy in cancer cells and CSCs is not well-understood. Therefore, uncovering the complex mechanism of epigenetic regulation of autophagy provides an opportunity to improve and discover novel cancer therapeutics. Subsequently, this would aid in improving clinical outcome for cancer patients. In this review, we provide a comprehensive overview of the existing knowledge available on epigenetic regulation of autophagy and its importance in the maintenance and homeostasis of CSCs and cancer cells.
Collapse
Affiliation(s)
- Harpreet K Mandhair
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3008, Switzerland
| | - Urban Novak
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3008, Switzerland
| | - Ramin Radpour
- Department for BioMedical Research, University of Bern, Bern 3008, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3008, Switzerland
| |
Collapse
|
31
|
Zhang S, Zhang J, An Y, Zeng X, Qin Z, Zhao Y, Xu H, Liu B. Multi-omics approaches identify SF3B3 and SIRT3 as candidate autophagic regulators and druggable targets in invasive breast carcinoma. Acta Pharm Sin B 2021; 11:1227-1245. [PMID: 34094830 PMCID: PMC8148052 DOI: 10.1016/j.apsb.2020.12.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 02/08/2023] Open
Abstract
Autophagy is a critical cellular homeostatic mechanism, and its dysfunction is linked to invasive breast carcinoma (BRCA). Recently, several omics methods have been applied to explore autophagic regulators in BRCA; however, more reliable and robust approaches for identifying crucial regulators and druggable targets remain to be discovered. Thus, we report here the results of multi-omics approaches to identify potential autophagic regulators in BRCA, including gene expression (EXP), DNA methylation (MET) and copy number alterations (CNAs) from The Cancer Genome Atlas (TCGA). Newly identified candidate genes, such as SF3B3, TRAPPC10, SIRT3, MTERFD1, and FBXO5, were confirmed to be involved in the positive or negative regulation of autophagy in BRCA. SF3B3 was identified firstly as a negative autophagic regulator, and siRNA/shRNA-SF3B3 were shown to induce autophagy-associated cell death in in vitro and in vivo breast cancer models. Moreover, a novel small-molecule activator of SIRT3, 1-methylbenzylamino amiodarone, was discovered to induce autophagy in vitro and in vivo. Together, these results provide multi-omics approaches to identify some key candidate autophagic regulators, such as the negative regulator SF3B3 and positive regulator SIRT3 in BRCA, and highlight SF3B3 and SIRT3 as new druggable targets that could be used to fill the gap between autophagy and cancer drug development.
Collapse
Key Words
- ATG, autophagy-related gene
- Anti-proliferation
- Autophagic regulator
- BRCA, invasive breast carcinoma
- CNA, copy number alteration
- Druggable target
- EXP, gene expression
- GO, Gene Ontology
- Invasive breast carcinoma
- LASSO, least absolute shrinkage and selection operator
- MET, DNA methylation
- Migration
- Multi-omics approach
- PFS, progression-free survival
- SF3B3
- SIRT3
- SNF, similarity network fusion
- TCGA, The Cancer Genome Atlas
- TNBC, triple-negative breast cancer
Collapse
|
32
|
Muhammad JS, Saheb Sharif-Askari N, Cui ZG, Hamad M, Halwani R. SARS-CoV-2 Infection-Induced Promoter Hypomethylation as an Epigenetic Modulator of Heat Shock Protein A1L (HSPA1L) Gene. Front Genet 2021; 12:622271. [PMID: 33679887 PMCID: PMC7933663 DOI: 10.3389/fgene.2021.622271] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/19/2021] [Indexed: 01/08/2023] Open
Abstract
Numerous researches have focused on the genetic variations affecting SARS-CoV-2 infection, whereas the epigenetic effects are inadequately described. In this report, for the first time, we have identified potential candidate genes that might be regulated via SARS-CoV-2 induced DNA methylation changes in COVID-19 infection. At first, in silico transcriptomic data of COVID-19 lung autopsies were used to identify the top differentially expressed genes containing CpG Islands in their promoter region. Similar gene regulations were also observed in an in vitro model of SARS-CoV-2 infected lung epithelial cells (NHBE and A549). SARS-CoV-2 infection significantly decreased the levels of DNA methyltransferases (DNMT1, DNMT3A, and DNMT3B) in lung epithelial cells. Out of 14 candidate genes identified, the expression of 12 genes was upregulated suggesting promoter hypomethylation, while only two genes were downregulated suggesting promoter hypermethylation in COVID-19. Among those 12 upregulated genes, only HSPA1L and ULBP2 were found to be upregulated in AZA-treated lung epithelial cells and immune cells, suggesting their epigenetic regulation. To confirm the hypomethylation of these two genes during SARS-CoV-2 infection, their promoter methylation and mRNA expression levels were determined in the genomic DNA/RNA obtained from whole blood samples of asymptomatic, severe COVID-19 patients and equally matched healthy controls. The methylation level of HSPA1L was significantly decreased and the mRNA expression was increased in both asymptomatic and severe COVID-19 blood samples suggesting its epigenetic regulation by SARS-CoV-2 infection. Functionally, HSPA1L is known to facilitate host viral replication and has been proposed as a potential target for antiviral prophylaxis and treatment.
Collapse
Affiliation(s)
- Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Zheng-Guo Cui
- Department of Environmental Health, University of Fukui School of Medical Science, University of Fukui, Fukui, Japan
| | - Mawieh Hamad
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Rabih Halwani
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Prince Abdullah Ben Khaled Celiac Disease Research Chair, Department of Pediatrics, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
33
|
Crowley E, Hussey S. Helicobacter pylori in Childhood. PEDIATRIC GASTROINTESTINAL AND LIVER DISEASE 2021:275-292.e12. [DOI: 10.1016/b978-0-323-67293-1.00027-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
34
|
Muhammad JS, Guimei M, Jayakumar MN, Shafarin J, Janeeh AS, AbuJabal R, Eladl MA, Ranade AV, Ali A, Hamad M. Estrogen-induced hypomethylation and overexpression of YAP1 facilitate breast cancer cell growth and survival. Neoplasia 2021; 23:68-79. [PMID: 33242831 PMCID: PMC7695929 DOI: 10.1016/j.neo.2020.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023]
Abstract
Increased expression of Yes-associated protein-1 (YAP1) was shown to correlate with reduced survival in breast cancer (BC) patients. However, the exact mechanism of YAP1 regulation in BC cells remains ambiguous. Genomic sequence search showed that the promoter region of the YAP1 gene contains CpG Islands, hence the likelihood of epigenetic regulation by DNA methylation. To address this possibility, the effect of estrogen (17β estradiol; E2) on YAP1 gene expression and YAP1 promoter methylation status was evaluated in BC cells. The functional consequences of E2 treatment in control and YAP1-silenced BC cells were also investigated. Our data showed that E2 modulates YAP1 expression by hypomethylation of its promoter region via downregulation of DNA methyltransferase 3B (DNMT3B); an effect that seems to facilitate tumor progression in BC cells. Although the effect of E2 on YAP1 expression was estrogen receptor (ER) dependent, E2 treatment also upregulated YAP1 expression in MDA-MB231 and SKBR3 cells, which are known ER-negative BC cell lines but expresses ERα. Functionally, E2 treatment resulted in increased cell proliferation, decreased apoptosis, cell cycle arrest, and autophagic flux in MCF7 cells. The knockdown of the YAP1 gene reversed these carcinogenic effects of E2 and inhibited E2-induced autophagy. Lastly, we showed that YAP1 is highly expressed and hypomethylated in human BC tissues and that increased YAP1 expression correlates negatively with DNMT3B expression but strongly associated with ER expression. Our data provide the basis for considering screening of YAP1 expression and its promoter methylation status in the diagnosis and prognosis of BC.
Collapse
Affiliation(s)
- Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.
| | - Maha Guimei
- Department of Pathology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt; Department of Pathology, Armed Forces College of Medicine, Cairo, Egypt
| | | | - Jasmin Shafarin
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Aisha Saleh Janeeh
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Rola AbuJabal
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohamed Ahmed Eladl
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Anu Vinod Ranade
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Amjad Ali
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Mawieh Hamad
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates; Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
35
|
Muhammad JS, Bajbouj K, Shafarin J, Hamad M. Estrogen-induced epigenetic silencing of FTH1 and TFRC genes reduces liver cancer cell growth and survival. Epigenetics 2020; 15:1302-1318. [PMID: 32476555 PMCID: PMC7678938 DOI: 10.1080/15592294.2020.1770917] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/19/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023] Open
Abstract
Estrogen (E2) regulates hundreds of genes involved in cell metabolism and disrupts iron homoeostasis in various cell types. Herein, we addressed whether E2-induced epigenetic modifications are involved in modulating the expression of iron-regulatory genes. Epigenetic status of FTH1 and TFRC genes was assessed in E2-treated cancer cells. E2-induced DNA methylation was associated with decreased FTH1 and TFRC expression in Hep-G2 and Huh7 cells, but not in AGS or MCF7 cells. Demethylation with 5-Aza-2-deoxycytidine upregulated the expression of both these genes in Hep-G2 cells. The expression of DNMT3B, PRMT5, and H4R3me2s increased in E2-treated cells. Chromatin immunoprecipitation showed that E2 treatment recruited PRMT5 and H4R3me2s on FTH1 but not on TFRC. Knockdown of PRMT5, DNMT3B, and Estrogen-receptor alpha rescued FTH1 from E2-induced silencing. However, knockdown of DNMT3B alone blocked the inhibitory effects of E2 on TFRC. Analysis of human liver tissues in publicly available datasets showed that FTH1 and TFRC are highly expressed in primary liver tumours, but a lower expression is associated with better survival. Interestingly, we showed that the silencing of FTH1 and/or TFRC inhibited carcinogenesis in Hep-G2 cells. For the first time, our findings uncovered the novel signalling pathway involved in the protective effects of E2 against liver cancer.
Collapse
Affiliation(s)
- Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Iron Biology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Khuloud Bajbouj
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Iron Biology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Jasmin Shafarin
- Iron Biology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Mawieh Hamad
- Iron Biology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
36
|
Xie C, Li N, Wang H, He C, Hu Y, Peng C, Ouyang Y, Wang D, Xie Y, Chen J, Shu X, Zhu Y, Lu N. Inhibition of autophagy aggravates DNA damage response and gastric tumorigenesis via Rad51 ubiquitination in response to H. pylori infection. Gut Microbes 2020; 11:1567-1589. [PMID: 32588736 PMCID: PMC7524160 DOI: 10.1080/19490976.2020.1774311] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection is the strongest known risk factor for the development of gastric cancer. DNA damage response (DDR) and autophagy play key roles in tumorigenic transformation. However, it remains unclear how H. pylori modulate DDR and autophagy in gastric carcinogenesis. Here we report that H. pylori infection promotes DNA damage via suppression of Rad51 expression through inhibition of autophagy and accumulation of p62 in gastric carcinogenesis. We find that H. pylori activated DNA damage pathway in concert with downregulation of repair protein Rad51 in gastric cells, C57BL/6 mice and Mongolian gerbils. In addition, autophagy was increased early and then decreased gradually during the duration of H. pylori infection in vitro in a CagA-dependent manner. Moreover, loss of autophagy led to promotion of DNA damage in H. pylori-infected cells. Furthermore, knockdown of autophagic substrate p62 upregulated Rad51 expression, and p62 promoted Rad51 ubiquitination via the direct interaction of its UBA domain. Finally, H. pylori infection was associated with elevated levels of p62 in gastric intestinal metaplasia and decreased levels of Rad51 in dysplasia compared to their H. pylori- counterparts. Our findings provide a novel mechanism into the linkage of H. pylori infection, autophagy, DNA damage and gastric tumorigenesis.
Collapse
Affiliation(s)
- Chuan Xie
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Nianshuang Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China,Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Huan Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Cong He
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China,Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yi Hu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Chao Peng
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yaobin Ouyang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Dejie Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yong Xie
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China,Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Jiang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China,Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Xu Shu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yin Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Nonghua Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China,CONTACT NongHua Lu Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province330006, China
| |
Collapse
|
37
|
Bhol CS, Panigrahi DP, Praharaj PP, Mahapatra KK, Patra S, Mishra SR, Behera BP, Bhutia SK. Epigenetic modifications of autophagy in cancer and cancer therapeutics. Semin Cancer Biol 2020; 66:22-33. [DOI: 10.1016/j.semcancer.2019.05.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/09/2019] [Accepted: 05/30/2019] [Indexed: 12/30/2022]
|
38
|
Patra S, Mishra SR, Behera BP, Mahapatra KK, Panigrahi DP, Bhol CS, Praharaj PP, Sethi G, Patra SK, Bhutia SK. Autophagy-modulating phytochemicals in cancer therapeutics: Current evidences and future perspectives. Semin Cancer Biol 2020; 80:205-217. [PMID: 32450139 DOI: 10.1016/j.semcancer.2020.05.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 02/08/2023]
Abstract
Autophagy is an intracellular catabolic self-cannibalism that eliminates dysfunctional cytoplasmic cargos by the fusion of cargo-containing autophagosomes with lysosomes to maintain cyto-homeostasis. Autophagy sustains a dynamic interlink between cytoprotective and cytostatic function during malignant transformation in a context-dependent manner. The antioxidant and immunomodulatory phyto-products govern autophagy and autophagy-associated signaling pathways to combat cellular incompetence during malignant transformation. Moreover, in a close cellular signaling circuit, autophagy regulates aberrant epigenetic modulation and inflammation, which limits tumor metastasis. Thus, manipulating autophagy for induction of cell death and associated regulatory phenomena will embark on a new strategy for tumor suppression with wide therapeutic implications. Despite the prodigious availability of lead pharmacophores in nature, the central autophagy regulating entities, their explicit target, as well as pre-clinical and clinical assessment remains a major question to be answered. In addition to this, the stage-specific regulation of autophagy and mode of action with natural products in regulating the key autophagic molecules, control of tumor-specific pathways in relation to modulation of autophagic network specify therapeutic target in caner. Moreover, the molecular pathway specificity and enhanced efficacy of the pre-existing chemotherapeutic agents in co-treatment with these phytochemicals hold high prevalence for target specific cancer therapeutics. Hence, the multi-specific role of phytochemicals in a cellular and tumor context dependent manner raises immense curiosity for investigating of novel therapeutic avenues. In this perspective, this review discusses about diverse implicit mechanisms deployed by the bioactive compounds in diagnosis and therapeutics approach during cancer progression with special insight into autophagic regulation.
Collapse
Affiliation(s)
- Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Soumya R Mishra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Bishnu P Behera
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Kewal K Mahapatra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Debasna P Panigrahi
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Chandra S Bhol
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Prakash P Praharaj
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Samir K Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Sujit K Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India.
| |
Collapse
|
39
|
Silwal P, Kim YS, Basu J, Jo EK. The roles of microRNAs in regulation of autophagy during bacterial infection. Semin Cell Dev Biol 2020; 101:51-58. [DOI: 10.1016/j.semcdb.2019.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/30/2019] [Accepted: 07/15/2019] [Indexed: 02/07/2023]
|
40
|
Sun X, Yang S, Feng X, Zheng Y, Zhou J, Wang H, Zhang Y, Sun H, He C. The modification of ferroptosis and abnormal lipometabolism through overexpression and knockdown of potential prognostic biomarker perilipin2 in gastric carcinoma. Gastric Cancer 2020; 23:241-259. [PMID: 31520166 DOI: 10.1007/s10120-019-01004-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 09/02/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND To investigate the biological relationship, mechanism between perilipin2 and the occurrence, advancement of gastric carcinoma, and explore the mechanism of lipid metabolism disorder leading to gastric neoplasm, and propose that perilipin2 is presumably considered as a potential molecular biomarker of gastric carcinoma. METHODS RNA-seq was applied to analyze perilipin2 and differentially expressed genes modulated by perilipin2 in neoplastic tissues of both perilipin2 overexpression and knockdown groups in vivo. The mechanism was discovered and confirmed by Rt-qPCR, immunoblotting, immunohistochemistry, staining and microassay, respectively. Cellular function experiments were performed by flow cytometry, CCK8, clonogenic assay, etc. RESULTS: Overexpression and knockdown of perilipin2 augmented the proliferation and apoptosis of gastric carcinoma cell lines SGC7901 and MGC803, respectively. The neoplastic cells with perilipin2-overexpression obtained more conspicuously rapid growth than knockdown group in vivo, and perilipin2 affected the proliferation and apoptosis of gastric carcinoma cells by modulating the related genes:acyl-coa synthetase long-chain family member 3, arachidonate 15-lipoxygenase, microtubule associated protein 1 light chain 3 alpha, pr/set domain 11 and importin 7 that were participated in Ferroptosis pathway. Moreover, RNA-seq indicated perilipin2 was an indispensable gene and protein in the suppression of Ferroptosis caused by abnormal lipometabolism in gastric carcinoma. CONCLUSION Our study expounded the facilitation of perilipin2 in regulating the proliferation and apoptosis of gastric carcinoma cells by modification in Ferroptosis pathway, and we interpreted that the mechanism of gastric neoplasm caused by obesity, we also discovered that pr/set domain 11 and importin 7 are novel transcription factors relevant to gastric carcinoma. Furthermore, perilipin2 probably serves not only as a diagnostic biomarker, but also a new therapeutic target.
Collapse
Affiliation(s)
- Xiaoying Sun
- Department of Laboratory Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
- Norman Bethune Health Science Center of Jilin University, Changchun, 130021, China.
| | - Shaojuan Yang
- Norman Bethune Health Science Center of Jilin University, Changchun, 130021, China
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Xuechao Feng
- College of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Yaowu Zheng
- College of Life Sciences, Northeast Normal University, Changchun, 130024, China
- Institute of Cardiovascular Research, University of California, San Francisco, CA, 94101, USA
| | - Jinsong Zhou
- Department of Laboratory Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
- Norman Bethune Health Science Center of Jilin University, Changchun, 130021, China
| | - Hai Wang
- Department of Laboratory Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
- Norman Bethune Health Science Center of Jilin University, Changchun, 130021, China
| | - Yucheng Zhang
- Norman Bethune Health Science Center of Jilin University, Changchun, 130021, China
- Department of Science Research Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Hongyan Sun
- Norman Bethune Health Science Center of Jilin University, Changchun, 130021, China
- Department of Tissue Bank, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Chengyan He
- Department of Laboratory Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
- Norman Bethune Health Science Center of Jilin University, Changchun, 130021, China.
| |
Collapse
|
41
|
Epigenetic Control of Autophagy in Cancer Cells: A Key Process for Cancer-Related Phenotypes. Cells 2019; 8:cells8121656. [PMID: 31861179 PMCID: PMC6952790 DOI: 10.3390/cells8121656] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/19/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023] Open
Abstract
Although autophagy is a well-known and extensively described cell pathway, numerous studies have been recently interested in studying the importance of its regulation at different molecular levels, including the translational and post-translational levels. Therefore, this review focuses on the links between autophagy and epigenetics in cancer and summarizes the. following: (i) how ATG genes are regulated by epigenetics, including DNA methylation and post-translational histone modifications; (ii) how epidrugs are able to modulate autophagy in cancer and to alter cancer-related phenotypes (proliferation, migration, invasion, tumorigenesis, etc.) and; (iii) how epigenetic enzymes can also regulate autophagy at the protein level. One noteable observation was that researchers most often reported conclusions about the regulation of the autophagy flux, following the use of epidrugs, based only on the analysis of LC3B-II form in treated cells. However, it is now widely accepted that an increase in LC3B-II form could be the consequence of an induction of the autophagy flux, as well as a block in the autophagosome-lysosome fusion. Therefore, in our review, all the published results describing a link between epidrugs and autophagy were systematically reanalyzed to determine whether autophagy flux was indeed increased, or inhibited, following the use of these potentially new interesting treatments targeting the autophagy process. Altogether, these recent data strongly support the idea that the determination of autophagy status could be crucial for future anticancer therapies. Indeed, the use of a combination of epidrugs and autophagy inhibitors could be beneficial for some cancer patients, whereas, in other cases, an increase of autophagy, which is frequently observed following the use of epidrugs, could lead to increased autophagy cell death.
Collapse
|
42
|
Metformin Suppresses Self-Renewal Ability and Tumorigenicity of Osteosarcoma Stem Cells via Reactive Oxygen Species-Mediated Apoptosis and Autophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9290728. [PMID: 31827709 PMCID: PMC6885828 DOI: 10.1155/2019/9290728] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/05/2019] [Accepted: 10/11/2019] [Indexed: 02/07/2023]
Abstract
Osteosarcoma is the most frequently diagnosed primary malignant bone sarcoma in children and adolescents. Recent studies have shown that cancer stem cells (CSCs), a cluster of tumor cells with the ability to self-renew, play an essential role in tumor recurrence and metastasis. Thus, it is necessary to develop therapeutic strategies specifically targeting CSCs. Metformin, the first-line drug for type 2 diabetes, exhibits antineoplastic activities in various kinds of tumors. New evidence has suggested that metformin may target CSCs and prevent their recurrence. However, the underlying specific mechanisms remain unclear. In this study, we found that metformin significantly suppressed the self-renewal ability of osteosarcoma stem cells (OSCs) and induced G0/G1 phase arrest by blocking the activity of cyclin-dependent kinases. Furthermore, metformin induced apoptosis through a mitochondria-dependent pathway, leading to the collapse of the mitochondrial transmembrane potential and the production of reactive oxygen species (ROS). Importantly, metformin acted directly on the mitochondria, which resulted in decreased ATP synthesis. This change allowed access to the downstream AMPK kinase, and the activation of AMPK led to the reversal of the mTOR pathway, triggering autophagy. Particularly, metformin-mediated autophagy disturbed the homeostasis of stemness and pluripotency in the OSCs. Additionally, our mouse xenograft model confirmed the potential therapeutic use of metformin in targeting OSCs. In conclusion, our findings suggest that metformin suppresses the self-renewal ability and tumorigenicity of OSCs via ROS-mediated apoptosis and autophagy.
Collapse
|
43
|
Muhammad JS, Jayakumar MN, Elemam NM, Venkatachalam T, Raju TK, Hamoudi RA, Maghazachi AA. Gasdermin D Hypermethylation Inhibits Pyroptosis And LPS-Induced IL-1β Release From NK92 Cells. Immunotargets Ther 2019; 8:29-41. [PMID: 31687364 PMCID: PMC6800286 DOI: 10.2147/itt.s219867] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/28/2019] [Indexed: 01/09/2023] Open
Abstract
Introduction Although natural killer (NK) are major cells used to treat cancer patients, recent clinical trials showed that NK92 cells can be also used for the same purpose due to their high anti-tumor activity. Here, we examined whether these cells might be inflammatory due to the release of interleukin-1β (IL-1β), and whether the anti-inflammatory molecules dimethyl fumarate (DMF), or monomethyl fumarate (MMF) impair this activity. Methods NK92 cells were examined for the synthesis and release of IL-1β utilizing RT-PCR and ELISA assay, respectively. The expression of hydroxy-carboxylic acid receptors (HCA)1, HCA2 and HCA3 was detected by immunoblotting, flow cytometry, immunofluorescence and RT-PCR assays. The activation of caspase-1 and Gasdermin D (GSDMD) was evaluated by immunoblot assay. Pyroptosis was demonstrated by immunofluorescence imaging. Expression of DNA methyltransferases (DNMTs) mRNA was determined by whole transcriptome and immunoblot analyses. Results LPS-induced the release of IL-1β from NK92 cells, whereas DMF or MMF inhibited this induction. The effect of these drugs was due to inhibiting the conversion of procaspase-1 into active caspase-1. NK92 cells highly expressed GSDMD, a pyroptotic-mediated molecule. However, LPS induced the distribution of GSDMD into the cell membranes, corroborated with the presence of pyroptotic bodies, an activity that was inhibited by DMF or MMF. These molecule also inhibited the generation of GSDMD through DNMT-mediated hypermethylation of the promoter region of GSDMD gene. These results were supported by increased expression of DNMTs mRNA as determined by whole transcriptome analysis. Discussion Our results are the first to show that NK92 cells utilize GSDMD pathway to release IL-1β. Further, DMF and MMF which were previously shown to enhance NK cell cytotoxicity, also inhibit the inflammatory effects of these cells, making them most suitable for treating cancer patients. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/ZT7DsG-nq0o
Collapse
Affiliation(s)
- Jibran Sualeh Muhammad
- College of Medicine, and the Immuno-Oncology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Manju Nidagodu Jayakumar
- College of Medicine, and the Immuno-Oncology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Noha Mousaad Elemam
- College of Medicine, and the Immuno-Oncology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Thenmozhi Venkatachalam
- College of Medicine, and the Immuno-Oncology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Tom Kalathil Raju
- College of Medicine, and the Immuno-Oncology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Rifat Akram Hamoudi
- College of Medicine, and the Immuno-Oncology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Azzam A Maghazachi
- College of Medicine, and the Immuno-Oncology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
44
|
Zhang F, Chen C, Hu J, Su R, Zhang J, Han Z, Chen H, Li Y. Molecular mechanism of Helicobacter pylori-induced autophagy in gastric cancer. Oncol Lett 2019; 18:6221-6227. [PMID: 31788098 DOI: 10.3892/ol.2019.10976] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 07/26/2019] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori (H. pylori) is a gram-negative pathogen that colonizes gastric epithelial cells. The drug resistance rates of H. pylori have dramatically increased, causing persistent infections. Chronic infection by H. pylori is a critical cause of gastritis, peptic ulcers and even gastric cancer. In host cells, autophagy is stimulated to maintain cellular homeostasis following intracellular pathogen recognition by the innate immune defense system. However, H. pylori-induced autophagy is not consistent during acute and chronic infection. Therefore, a deeper understanding of the association between H. pylori infection and autophagy in gastric epithelial cells could aid the understanding of the mechanisms of persistent infection and the identification of autophagy-associated therapeutic targets for H. pylori infection. The present review describes the role of H. pylori and associated virulence factors in the induction of autophagy by different signaling pathways during acute infection. Additionally, the inhibition of autophagy in gastric epithelial cells during chronic infection was discussed. The present review summarized H. pylori-mediated autophagy and provided insights into its mechanism of action, suggesting the induction of autophagy as a novel therapeutic target for persistent H. pylori infection.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Oncology Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Cong Chen
- Department of Oncology Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Jike Hu
- Department of Oncology Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Ruiliang Su
- Department of Oncology Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Junqiang Zhang
- Department of Oncology Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Zhijian Han
- Department of Oncology Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Hao Chen
- Department of Oncology Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Yumin Li
- Department of Oncology Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| |
Collapse
|
45
|
Abstract
An organ-specific chronic inflammation–remodeling–carcinoma sequence has been proposed, mainly for the alimentary tract. As representative diseases, gastroesophageal reflux disease, chronic gastritis and inflammatory bowel disease (ulcerative colitis and Crohn’s disease of the colitis type) were adopted for this discussion. Tissue remodeling is such an important part of tumorigenesis in this sequence that an organ-specific chronic inflammation–remodeling–carcinoma sequence has been proposed in detail. Chronic inflammation accelerates the cycle of tissue injury and regeneration; in other words, cell necrosis (or apoptosis) and proliferation result in tissue remodeling in long-standing cases of inflammation. Remodeling encompasses epithelial cell metaplasia and stromal fibrosis, and modifies epithelial–stromal cell interactions. Further, the accumulation of genetic, epigenetic and molecular changes—as well as morphologic disorganization—also occurs during tissue remodeling. The expression of mucosal tissue adapted to chronic inflammatory injury is thought to occur at an early stage. Subsequently, dysplasia and carcinoma develop on a background of remodeling due to continuous, active inflammation. Accordingly, organ-specific chronic inflammation should be ameliorated or well controlled with appropriate monitoring if complete healing is unachievable.
Collapse
|
46
|
Cell-intrinsic survival signals. The role of autophagy in metastatic dissemination and tumor cell dormancy. Semin Cancer Biol 2019; 60:28-40. [PMID: 31400500 DOI: 10.1016/j.semcancer.2019.07.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023]
Abstract
Metastasis is the main cause of cancer-related deaths. Disseminated tumor cells (DTCs), which seed metastasis, can remain undetected in a dormant state for decades after treatment of the primary tumor and their persistence is the main cause of late relapse and death in a substantial proportion of cancer patients. Understanding the mechanisms underlying the survival of dormant DTCs is of utmost importance to develop new therapies that effectively kill DTCs while in a quiescent state, therefore preventing metastatic disease and minimizing the chance of future relapses. Besides key interactions with the local microenvironment, dormant DTCs must integrate survival mechanisms to remain viable for long periods of time. Here, the pro-survival role of autophagy in tumor cell dissemination and dormant DTC maintenance are discussed, as well as the implications of the current knowledge for future research efforts.
Collapse
|
47
|
Sokolova O, Naumann M. Crosstalk Between DNA Damage and Inflammation in the Multiple Steps of Gastric Carcinogenesis. Curr Top Microbiol Immunol 2019; 421:107-137. [PMID: 31123887 DOI: 10.1007/978-3-030-15138-6_5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Over the last years, intensive investigations in molecular biology and cell physiology extended tremendously the knowledge about the association of inflammation and cancer. In frame of this paradigm, the human pathogen Helicobacter pylori triggers gastritis and gastric ulcer disease, and contributes to the development of gastric cancer. Mechanisms, by which the bacteria-induced inflammation in gastric mucosa leads to intestinal metaplasia and carcinoma, are represented in this review. An altered cell-signaling response and increased production of free radicals by epithelial and immune cells account for the accumulation of DNA damage in gastric mucosa, if infection stays untreated. Host genetics and environmental factors, especially diet, can accelerate the process, which offers the opportunity of intervention based on a balanced nutrition. It is supposed that inflammation might influence stem- or progenitor cells in gastric tissue predisposing for metaplasia or tumor relapse. Herein, DNA is strongly mutated and labile, which restricts therapy options. Thus, the understanding of the mechanisms that underlie gastric carcinogenesis will be of preeminent importance for the development of strategies for screening and early detection. As most gastric cancer patients face late-stage disease with a poor overall survival, the development of multi-targeted therapeutic intervention strategies is a major challenge for the future.
Collapse
Affiliation(s)
- Olga Sokolova
- Institute of Experimental Internal Medicine, Otto von Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Otto von Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| |
Collapse
|
48
|
Bravo J, Díaz P, Corvalán AH, Quest AFG. A Novel Role for Helicobacter pylori Gamma-Glutamyltranspeptidase in Regulating Autophagy and Bacterial Internalization in Human Gastric Cells. Cancers (Basel) 2019; 11:cancers11060801. [PMID: 31185677 PMCID: PMC6627848 DOI: 10.3390/cancers11060801] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/23/2019] [Accepted: 04/26/2019] [Indexed: 12/12/2022] Open
Abstract
The risk of developing gastric cancer is strongly linked to Helicobacter pylori (H. pylori) infection. Alternatively, autophagy is a conserved response that is important in cellular homeostasis and provides protection against bacterial infections. Although H. pylori is typically considered an extracellular bacterium, several reports indicate that it internalizes, possibly to avoid exposure to antibiotics. Mechanisms by which H. pylori manipulates host cell autophagic processes remain unclear and, importantly, none of the available studies consider a role for the secreted H. pylori virulence factor gamma-glutamyltranspeptidase (HpGGT) in this context. Here, we identify HpGGT as a novel autophagy inhibitor in gastric cells. Our experiments revealed that deletion of HpGGT increased autophagic flux following H. pylori infection of AGS and GES-1 gastric cells. In AGS cells, HpGGT disrupted the late stages of autophagy by preventing degradation in lysosomes without affecting lysosomal acidification. Specifically, HpGGT impaired autophagic flux by disrupting lysosomal membrane integrity, which leads to a decrease in lysosomal cathepsin B activity. Moreover, HpGGT was necessary for efficient internalization of the bacteria into gastric cells. This important role of HpGGT in internalization together with the ability to inhibit autophagy posits HpGGT as a key virulence factor in the development of gastric cancer.
Collapse
Affiliation(s)
- Jimena Bravo
- Laboratory of Cellular Communication, Center for the Study of Exercise, Metabolism and Cancer (CEMC), Program in Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile.
- Advanced Center for Chronic Diseases (ACCDiS), Santiago 8380492, Chile.
| | - Paula Díaz
- Laboratory of Cellular Communication, Center for the Study of Exercise, Metabolism and Cancer (CEMC), Program in Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile.
- Advanced Center for Chronic Diseases (ACCDiS), Santiago 8380492, Chile.
| | - Alejandro H Corvalán
- Advanced Center for Chronic Diseases (ACCDiS), Santiago 8380492, Chile.
- Laboratory of Oncology, Department of Hematology and Oncology, Pontificia Universidad Católica de Chile, Santiago 8330034, Chile.
| | - Andrew F G Quest
- Laboratory of Cellular Communication, Center for the Study of Exercise, Metabolism and Cancer (CEMC), Program in Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile.
- Advanced Center for Chronic Diseases (ACCDiS), Santiago 8380492, Chile.
| |
Collapse
|
49
|
Yang W, Jiang C, Xia W, Ju H, Jin S, Liu S, Zhang L, Ren G, Ma H, Ruan M, Hu J. Blocking autophagy flux promotes interferon-alpha-mediated apoptosis in head and neck squamous cell carcinoma. Cancer Lett 2019; 451:34-47. [PMID: 30862487 DOI: 10.1016/j.canlet.2019.02.052] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/19/2019] [Accepted: 02/28/2019] [Indexed: 12/12/2022]
Abstract
Despite multiple antitumor activities, interferon-alpha (IFNα) therapy alone is less effective in solid tumors. Autophagy has been reported to play a key role in tumor chemoresistance. Therefore, it is meaningful to explore whether autophagy can be activated by IFNα in head and neck squamous cell carcinoma (HNSCC) and serve as a potential target to improve efficacy of IFNα therapy. In this study, we report that IFNα not only exhibits anti-proliferation activity and induces apoptosis, but also activates autophagy in HNSCC cells. Moreover, silencing autophagy-related protein 5 (ATG5) and signal transducer and activator of transcription 1 (STAT1) suppresses autophagy flux. Furthermore, IFNα and autophagy inhibitors (hydroxychloroquine and wortmannin) show clear synergistic effects on inhibiting growth and promoting apoptosis in HNSCC cells and xenograft models. Our findings indicate that IFNα-induced autophagy plays a cytoprotective role and blocking autophagy flux promotes IFNα-mediated apoptosis in HNSCC. These results suggest that the combination of IFNα and autophagy inhibitors represents a novel strategy for HNSCC treatment.
Collapse
Affiliation(s)
- Wenyi Yang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
| | - Chunlan Jiang
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, China; Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Weiya Xia
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Houyu Ju
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
| | - Shufang Jin
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
| | - Shuli Liu
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
| | - Liming Zhang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
| | - Guoxin Ren
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
| | - Hailong Ma
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, China.
| | - Min Ruan
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, China.
| | - Jingzhou Hu
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, 200011, China.
| |
Collapse
|
50
|
Muhammad JS, Eladl MA, Khoder G. Helicobacter pylori-induced DNA Methylation as an Epigenetic Modulator of Gastric Cancer: Recent Outcomes and Future Direction. Pathogens 2019; 8:23. [PMID: 30781778 PMCID: PMC6471032 DOI: 10.3390/pathogens8010023] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/04/2019] [Accepted: 02/11/2019] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer is ranked fifth in cancer list and has the third highest mortality rate. Helicobacter pylori is a class I carcinogen and a predominant etiological factor of gastric cancer. H. pylori infection may induce carcinogenesis via epigenetic alterations in the promoter region of various genes. H. pylori is known to induce hypermethylation-silencing of several tumor suppressor genes in H. pylori-infected cancerous and H. pylori-infected non-cancerous gastric mucosae. This article presents a review of the published literature mainly from the last year 15 years. The topic focuses on H. pylori-induced DNA methylation linked to gastric cancer development. The authors have used MeSH terms "Helicobacter pylori" with "epigenetic," "DNA methylation," in combination with "gastric inflammation", gastritis" and "gastric cancer" to search SCOPUS, PubMed, Ovid, and Web of Science databases. The success of epigenetic drugs such as de-methylating agents in the treatment of certain cancers has led towards new prospects that similar approaches could also be applied against gastric cancer. However, it is very important to understand the role of all the genes that have already been linked to H. pylori-induced DNA methylation in order to in order to evaluate the potential benefits of epigenetic drugs.
Collapse
Affiliation(s)
- Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, UAE.
| | - Mohamed Ahmed Eladl
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, UAE.
| | - Ghalia Khoder
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, UAE.
| |
Collapse
|