1
|
Saadh MJ, Ahmed HH, Kareem RA, Bishoyi AK, Roopashree R, Shit D, Arya R, Joshi KK, Sameer HN, Yaseen A, Athab ZH, Adil M. The hidden messengers: Tumor microenvironment-derived exosomal ceRNAs in gastric cancer progression. Pathol Res Pract 2025; 269:155905. [PMID: 40073646 DOI: 10.1016/j.prp.2025.155905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
The tumor microenvironment (TME) plays a crucial role in the development and progression of gastric cancer (GC). The TME comprises a network of cancer cells, immune cells, fibroblasts, endothelial cells, and extracellular matrix components, which provide a supportive niche for cancer cells. This study investigates the role of TME-derived exosomal competitive endogenous RNAs (ceRNAs), particularly long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), as major regulating agents in GC development. Exosomal ceRNAs control gene expression across several TME components, amplifying cancer hallmarks like cell proliferation, invasion, metastases, and chemoresistance. They promote dynamic interplay between cancer cells and adjacent stromal cells, enabling tumor development through immune suppression, angiogenesis, and epithelial-mesenchymal transition (EMT). Exosomal ceRNAs can modify the TME, creating a pro-tumorigenic milieu and preparing cancer cells to avoid immunological responses, defy death, and adapt to therapeutic pressures. This review highlights the understudied interactions between the TME and exosomal ceRNAs in gastric cancer and emphasizes their potential utility as diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | | | | | - Ashok Kumar Bishoyi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, Gujarat 360003, India
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Debasish Shit
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab 140401, India
| | - Renu Arya
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab 140307, India
| | - Kamal Kant Joshi
- Department of Allied Science, Graphic Era Hill University, Dehradun, Uttarakhand 248002, India; Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | | |
Collapse
|
2
|
Wen Y, Zhou W, Zhao Z, Ma D, Mao J, Cai Y, Liu F, Zhou J, Lv K, Gu W, Jiang L. Annexin A's Life in Pan-Cancer: Especially in Glioma Immune Cells. Neuromolecular Med 2025; 27:17. [PMID: 40011350 DOI: 10.1007/s12017-024-08827-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/23/2024] [Indexed: 02/28/2025]
Abstract
The Annexin A (ANXA) family plays a critical role in cancer, with particular emphasis on their prognostic significance in pan-cancer analyses and gliomas. By integrating multi-omics data from The Cancer Genome Atlas (TCGA) and single-cell sequencing analysis, we conducted a comprehensive evaluation of ANXA2 and ANXA4 to investigate their expression patterns and functional impacts across various cancers, with a focus on glioblastoma (GBM). Our analysis encompassed several key components, including literature review, identification of differentially expressed genes (DEGs) in cancer, survival analysis, co-expression studies, competing endogenous RNA networks, cellular functional analysis, tumor microenvironment response to chemotherapy, and tumor stemness. Special attention was given to glioblastoma and low-grade glioma. Notably, our findings highlighted discrepancies among the analytical tools used, underscoring the necessity of employing multiple methods for accurate identification of DEGs. Additionally, we determined that ANXA2 and ANXA4 are predominantly expressed by M2 macrophages in GBM, based on our characterization of human glioma macrophages. These results suggest a strong correlation between ANXA2 and ANXA4 expression levels and the presence of macrophages and CD4 + resting memory T cells in gliomas, offering valuable insights into the complex interplay between the ANXA family and cancer progression.
Collapse
Affiliation(s)
- Yujing Wen
- Anhui Province Key Laboratory of Non-Coding RNA Basic and Clinical Transformation (Wannan Medical College), Yijishan Hospital of Wannan Medical College, Wuhu, 241000, China
- Central Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu, 241000, China
| | - Wenhao Zhou
- Anhui Province Key Laboratory of Non-Coding RNA Basic and Clinical Transformation (Wannan Medical College), Yijishan Hospital of Wannan Medical College, Wuhu, 241000, China
| | - Zhenzhen Zhao
- Anhui Province Key Laboratory of Non-Coding RNA Basic and Clinical Transformation (Wannan Medical College), Yijishan Hospital of Wannan Medical College, Wuhu, 241000, China
| | - Didi Ma
- Anhui Province Key Laboratory of Non-Coding RNA Basic and Clinical Transformation (Wannan Medical College), Yijishan Hospital of Wannan Medical College, Wuhu, 241000, China
| | - Jian Mao
- Yangtze River Delta Information Intelligence Innovation Research Institute, Wuhu, 241000, Anhui, China
| | - Yingjie Cai
- Anhui Province Key Laboratory of Non-Coding RNA Basic and Clinical Transformation (Wannan Medical College), Yijishan Hospital of Wannan Medical College, Wuhu, 241000, China
| | - Fugui Liu
- Anhui Province Key Laboratory of Non-Coding RNA Basic and Clinical Transformation (Wannan Medical College), Yijishan Hospital of Wannan Medical College, Wuhu, 241000, China
| | - Juan Zhou
- Anhui Province Key Laboratory of Non-Coding RNA Basic and Clinical Transformation (Wannan Medical College), Yijishan Hospital of Wannan Medical College, Wuhu, 241000, China
| | - Kun Lv
- Anhui Province Key Laboratory of Non-Coding RNA Basic and Clinical Transformation (Wannan Medical College), Yijishan Hospital of Wannan Medical College, Wuhu, 241000, China.
- Central Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu, 241000, China.
| | - Wenchao Gu
- Department of Diagnostic and Interventional Radiology, University of Tsukuba, Faculty of Medicine, lbaraki, Tsukuba, Japan.
| | - Lan Jiang
- Anhui Province Key Laboratory of Non-Coding RNA Basic and Clinical Transformation (Wannan Medical College), Yijishan Hospital of Wannan Medical College, Wuhu, 241000, China.
- Central Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu, 241000, China.
| |
Collapse
|
3
|
Tripathi S, Sharma Y, Kumar D. Biological Cargo: Exosomes and their Role in Cancer Progression and Metastasis. Curr Top Med Chem 2025; 25:263-285. [PMID: 38984577 DOI: 10.2174/0115680266304636240626055711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 07/11/2024]
Abstract
Cancer cells are among the many types of cells that release exosomes, which are nanovesicles. Because of their many potential applications, exosomes have recently garnered much attention from cancer researchers. The bioactive substances that exosomes release as cargo have been the subject of several investigations. The substances in question may operate as biomarkers for diagnosis or affect apoptosis, the immune system, the development and spread of cancer, and other processes. Others have begun to look at exosomes in experimental therapeutic trials because they believe they may be useful in the treatment of cancer. This review started with a short description of exosome biogenesis and key features. Next, the potential of tumor-derived exosomes and oncosomes to influence the immune system throughout the development of cancer, as well as alter tumor microenvironments (TMEs) and pre-metastatic niche creation, was investigated. Finally, there was talk of exosomes' possible use in cancer treatment. Furthermore, there is emerging consensus about the potential application of exosomes to be biological reprogrammers of cancer cells, either as carriers of naturally occurring chemicals, including anticancer medications, or as carriers of anticancer vaccines for immunotherapy as well as boron neutron capture therapy (BNCT). We briefly review the key ideas and logic behind this intriguing therapy recommendation.
Collapse
Affiliation(s)
- Siddhant Tripathi
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Yashika Sharma
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Dileep Kumar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| |
Collapse
|
4
|
Garg S, Garg G, Patel P, Kumar M, Thakur S, Sharma N, Das Kurmi B. A complete sojourn on exosomes: Potential diagnostic and therapeutic agents. Pathol Res Pract 2024; 264:155674. [PMID: 39481226 DOI: 10.1016/j.prp.2024.155674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
Exosomes are vesicles produced by the human body for carrying certain information from one cell to another. The carriers are nanosized vesicles carrying a wide variety of cargo like RNA, DNA, and proteins. Exosomes are also being used in the early diagnosis of various diseases and disorders. Current research focuses on exosomes tailoring for achieving therapeutic potential in various diseases and disorders. Besides this, their biocompatibility, stability, adjustable efficacy, and targeting properties make them attractive vehicles for formulation developers. Various preclinical studies suggested that the exosome culture cells are also modified with certain genes to achieve the desirable properties of resultant exosomes. The human body also produces some other vesicles like Ectosomes and Exomeres produced along with exosomes. Additionally, vesicles like Migrasomes are produced by migrating cells and apoptotic bodies, and Oncosomes are produced by cancer cells which can also be useful for the diagnosis of various diseases and disorders. For the separation of desired exosomes from other vesicles some latest techniques that can be useful viz differential centrifugation, density gradient centrifugation, and immunoaffinity purification have been discussed. Briefly, this review summarized various techniques of isolation of purified exosomes along with an overview of the application of exosomes in various neurodegenerative disorders and cancer along with various latest aspects of exosomes in disease progression and management which might be beneficial for the researchers.
Collapse
Affiliation(s)
- Sonakshi Garg
- Department of Pharmaceutical Quality Assurance, ISF College Pharmacy, GT Road, Moga, Punjab 142001, India
| | - Gurisha Garg
- Department of Pharmaceutical Quality Assurance, ISF College Pharmacy, GT Road, Moga, Punjab 142001, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College Pharmacy, GT Road, Moga, Punjab 142001, India.
| | - Manish Kumar
- Department of Pharmaceutics, ISF College Pharmacy, GT Road, Moga, Punjab 142001, India
| | - Shubham Thakur
- Department of Pharmaceutics, ISF College Pharmacy, GT Road, Moga, Punjab 142001, India
| | - Nitin Sharma
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College Pharmacy, GT Road, Moga, Punjab 142001, India.
| |
Collapse
|
5
|
Wang C, Shi ZZ. Exosomes in esophageal cancer: function and therapeutic prospects. Med Oncol 2024; 42:18. [PMID: 39601925 DOI: 10.1007/s12032-024-02543-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/15/2024] [Indexed: 11/29/2024]
Abstract
Esophageal cancer (EC) is one of the most common malignant tumors worldwide. Exosomes are a type of extracellular vesicles produced by eukaryotic cells and present in all body fluids. Recent studies have revealed that exosomes can be used as a tool for cell signaling and have great potential in cancer diagnosis and treatment strategies. This article reviews the research progress of exosomes in EC in recent years, mainly including the mechanism of action, diagnostic markers, therapeutic targets, and drug carriers. The challenges faced are discussed to provide guidelines for further research in future.
Collapse
Affiliation(s)
- Chong Wang
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhi-Zhou Shi
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
6
|
Zhu N, Yu Y, An D, Zeng Y, Kang K, Yi Q, Wu Y. Harnessing Spatiotemporal-Specific Tumorous Exosome Dynamics: Ultra-Sensitive Lanthanide Luminescence Detection Strategy Enabled by Exosomal Membrane Engineering for Melanoma Immunotherapy Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49164-49175. [PMID: 39252418 DOI: 10.1021/acsami.4c10804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Focused on the newly secreted tumorous exosomes during melanoma immunotherapy, this work has pioneered an ultra-sensitive spatiotemporal-specific exosome detection strategy, leveraging advanced exosomal membrane engineering techniques. The proposed strategy harnesses the power of amplified lanthanide luminescence signals on these exosomes, enabling precise and real-time monitoring of the efficacy of melanoma immunotherapy. The methodology comprises two pivotal steps. Initially, Ac4ManNAz-associated metabolic labeling is employed to evolve azide groups onto the membranes of newly secreted exosomes with remarkable selectivity. These azide groups serve as versatile clickable artificial tags, enabling the precise identification of melanoma exosomes emerging during immunotherapy. Subsequently, lanthanide-nanoparticle-functionalized polymer chains are controllably grafted onto the exosome surfaces through click chemistry and in situ Fenton-RAFT polymerization, serving as robust signal amplifiers. When integrated with time-resolved fluorescence detection, this strategy yields detection signals with an exceptionally high signal-to-noise ratio, enabling ultra-sensitive detection of PD-L1 antigen expression levels on the spatiotemporal-specific exosomes. The detection strategy boasts a wide linear concentration range spanning from 1.7 × 104 to 1.7 × 109 particles/mL, with a remarkable theoretical detection limit of 1.28 × 103 particles/mL. The remarkable enhancements in detection sensitivity and accuracy facilitate the evaluation of the efficacy of immunotherapeutic interventions in the mouse B16 melanoma model, notably revealing a substantial disparity in PD-L1 levels between immunotherapy-treated and untreated groups (P < 0.01) and further emphasizing the cumulative therapeutic effect that intensifies with repeated treatments (P < 0.001).
Collapse
Affiliation(s)
- Nanhang Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Yue Yu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Di An
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Yating Zeng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Ke Kang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Qiangying Yi
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| | - Yao Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
7
|
Shao M, Gao Y, Xu X, Chan DW, Du J. Exosomes: Key Factors in Ovarian Cancer Peritoneal Metastasis and Drug Resistance. Biomolecules 2024; 14:1099. [PMID: 39334866 PMCID: PMC11430201 DOI: 10.3390/biom14091099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Ovarian cancer remains a leading cause of death among gynecological cancers, largely due to its propensity for peritoneal metastasis and the development of drug resistance. This review concentrates on the molecular underpinnings of these two critical challenges. We delve into the role of exosomes, the nano-sized vesicles integral to cellular communication, in orchestrating the complex interactions within the tumor microenvironment that facilitate metastatic spread and thwart therapeutic efforts. Specifically, we explore how exosomes drive peritoneal metastasis by promoting epithelial-mesenchymal transition in peritoneal mesothelial cells, altering the extracellular matrix, and supporting angiogenesis, which collectively enable the dissemination of cancer cells across the peritoneal cavity. Furthermore, we dissect the mechanisms by which exosomes contribute to the emergence of drug resistance, including the sequestration and expulsion of chemotherapeutic agents, the horizontal transfer of drug resistance genes, and the modulation of critical DNA repair and apoptotic pathways. By shedding light on these exosome-mediated processes, we underscore the potential of exosomal pathways as novel therapeutic targets, offering hope for more effective interventions against ovarian cancer's relentless progression.
Collapse
Affiliation(s)
- Ming Shao
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
- Department of Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen 518172, China
| | - Yunran Gao
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Xiling Xu
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - David Wai Chan
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Juan Du
- Department of Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen 518172, China
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
8
|
Hegde M, Girisa S, Aswani BS, Alqahtani MS, Abbas M, Sethi G, Kunnumakkara AB. Harnessing potential role of gangliosides in immunomodulation and cancer therapeutics. Life Sci 2024; 351:122786. [PMID: 38848944 DOI: 10.1016/j.lfs.2024.122786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/01/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Gangliosides represent glycolipids containing sialic acid residues, present on the cell membrane with glycan residues exposed to the extracellular matrix (ECM), while the ceramides are anchored within the membrane. These molecules play a critical role in pathophysiological processes such as host-pathogen interactions, cell-cell recognition, signal transduction, cell adhesion, motility, and immunomodulation. Accumulated evidence suggests the overexpression of gangliosides on tumor tissues in comparison to healthy human tissues. These tumor-associated gangliosides have been implicated in various facets of tumor biology, including cell motility, differentiation, signaling, immunosuppression, angiogenesis, and metastasis. Consequently, these entities emerge as attractive targets for immunotherapeutic interventions. Notably, the administration of antibodies targeting gangliosides has demonstrated cytotoxic effects on cancer cells that exhibit an overexpression of these glycolipids. Passive immunotherapy approaches utilizing murine or murine/human chimeric anti-ganglioside antibodies have been explored as potential treatments for diverse cancer types. Additionally, vaccination strategies employing tumor-associated gangliosides in conjunction with adjuvants have entered the realm of promising techniques currently undergoing clinical trials. The present comprehensive review encapsulates the multifaceted roles of gangliosides in tumor initiation, progression, immunosuppression, and metastasis. Further, an overview is provided of the correlation between the expression status of gangliosides in normal and tumor cells and its impact on cancer patient survival. Furthermore, the discussion extends to ongoing and completed clinical trials employing diverse strategies to target gangliosides, elucidating their effectiveness in treating cancers. This emerging discipline is expected to supply substantial impetus for the establishment of novel therapeutic strategies.
Collapse
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Babu Santha Aswani
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India.
| |
Collapse
|
9
|
Lee KWA, Chan LKW, Hung LC, Phoebe LKW, Park Y, Yi KH. Clinical Applications of Exosomes: A Critical Review. Int J Mol Sci 2024; 25:7794. [PMID: 39063033 PMCID: PMC11277529 DOI: 10.3390/ijms25147794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Exosomes, small membrane-bound vesicles secreted by cells, have gained significant attention for their therapeutic potential. Measuring 30-100 nm in diameter and derived from various cell types, exosomes play a crucial role in intercellular communication by transferring proteins, lipids, and RNA between cells. This review analyzes existing literature on the clinical applications of exosomes. We conducted a comprehensive search of peer-reviewed articles and clinical trial data to evaluate the benefits, limitations, and challenges of exosome-based therapies. Key areas of focus included regenerative medicine, cancer therapy, gene therapy, and diagnostic biomarkers. This review highlights the vast clinical applications of exosomes. In regenerative medicine, exosomes facilitate tissue repair and regeneration. In cancer therapy, exosomes can deliver therapeutic agents directly to tumor cells. In gene therapy, exosomes serve as vectors for gene delivery. As diagnostic biomarkers, they are useful in diagnosing various diseases. Challenges such as the isolation, purification, and characterization of exosomes were identified. Current clinical trials demonstrate the potential of exosome-based therapies, though they also reveal significant hurdles. Regulatory issues, including the need for standardization and validation of exosome products, are critical for advancing these therapies. While significant progress has been made in understanding exosome biology, further research is essential to fully unlock their clinical potential. Addressing challenges in isolation, purification, and regulatory standardization is crucial for their successful application in clinical practice. This review provides a concise overview of the clinical applications of exosomes, emphasizing both their therapeutic promise and the obstacles that need to be overcome.
Collapse
Affiliation(s)
- Kar Wai Alvin Lee
- EverKeen Medical Centre, Hong Kong; (K.W.A.L.); (L.K.W.C.); (L.C.H.)
| | | | - Lee Cheuk Hung
- EverKeen Medical Centre, Hong Kong; (K.W.A.L.); (L.K.W.C.); (L.C.H.)
| | | | | | - Kyu-Ho Yi
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Human Identification Research Institute, BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Maylin Clinic (Apgujeong), Seoul B1F 450, Republic of Korea
| |
Collapse
|
10
|
Padinharayil H, George A. Small extracellular vesicles: Multi-functional aspects in non-small cell lung carcinoma. Crit Rev Oncol Hematol 2024; 198:104341. [PMID: 38575042 DOI: 10.1016/j.critrevonc.2024.104341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 03/13/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024] Open
Abstract
Extracellular vesicles (EVs) impact normal and pathological cellular signaling through bidirectional trafficking. Exosomes, a subset of EVs possess biomolecules including proteins, lipids, DNA fragments and various RNA species reflecting a speculum of their parent cells. The involvement of exosomes in bidirectional communication and their biological constituents substantiate its role in regulating both physiology and pathology, including multiple cancers. Non-small cell lung cancer (NSCLC) is the most common lung cancers (85%) with high incidence, mortality and reduced overall survival. Lack of efficient early diagnostic and therapeutic tools hurdles the management of NSCLC. Interestingly, the exosomes from body fluids similarity with parent cells or tissue offers a potential future multicomponent tool for the early diagnosis of NSCLC. The structural twinning of exosomes with a cell/tissue and the competitive tumor derived exosomes in tumor microenvironment (TME) promotes the unpinning horizons of exosomes as a drug delivery, vaccine, and therapeutic agent. Exosomes in clinical point of view assist to trace: acquired resistance caused by various therapeutic agents, early diagnosis, progression, and surveillance. In an integrated approach, EV biomarkers offer potential cutting-edge techniques for the detection and diagnosis of cancer, though the purification, characterization, and biomarker identification processes for the translational research regarding EVs need further optimization.
Collapse
Affiliation(s)
- Hafiza Padinharayil
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur-05, Kerala, India
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur-05, Kerala, India.
| |
Collapse
|
11
|
Ni J, Xi X, Xiao S, Xiao X. Tumor Cell-Derived Exosomal miR-191-5p Activates M2-Subtype Macrophages Through SOCS3 to Facilitate Breast Cancer. Mol Biotechnol 2024; 66:1314-1325. [PMID: 38270757 DOI: 10.1007/s12033-023-01034-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/12/2023] [Indexed: 01/26/2024]
Abstract
Differential activation of macrophages is associated with poor progression of breast cancer (BC). Many reports have elucidated the important involvement of exosomes produced by cancer cells in remodeling the macrophage activation phenotype to promote tumor expansion and invasion. However, the underlying mechanisms by which exosomes secreted by BC cells facilitate macrophage M2 polarization remain enigmatic and worth exploring. In this study, quantitative real-time PCR (RT-qPCR) was used to investigate miR-191-5p expression in BC tumor tissues and cells. Cell counting kit 8 (CCK-8), transwell, and flow cytometry were applied to assess the functional role of miR-191-5p in BC. Isolated nano-vesicles were identified using transmission electron microscopy and western blotting. We also observed that miR-191-5p was significantly elevated in BC clinical samples and that inhibition of miR-191-5p hindered the growth and metastasis of BC cells. Importantly, BC cells successfully accelerated macrophage M2-like polarization by directly transferring exosomes to macrophages, resulting in increased miR-191-5p levels in macrophages. Mechanistically, exosomal miR-191-5p directly inhibited the suppressors of cytokine signaling 3 (SOCS3) expression in macrophages and aggravated macrophage M2 polarization. Similarly, si-SOCS3 transfected macrophages boosted BC cell migration and invasion in a positive feedback manner. Overall, our results manifested a pro-growth and pro-metastatic role between the two cells by elucidating the crucial role of exosomal miR-191-5p in stimulating M2 macrophage polarization and mediating communication between BC cells and macrophages. These findings opened up new horizons for the development of BC therapeutic strategies.
Collapse
Affiliation(s)
- Jun Ni
- Department of Breast Surgery, People's Hospital of Ganzhou City, Ganzhou, 314000, Jiangxi, China
| | - Xun Xi
- Department of Breast Surgery, People's Hospital of Ganzhou City, Ganzhou, 314000, Jiangxi, China
| | - Sujian Xiao
- Department of Breast Surgery, People's Hospital of Ganzhou City, Ganzhou, 314000, Jiangxi, China
| | - Xigang Xiao
- Department of General Surgery, People's Hospital of Ganzhou City, No.16, Meiguan Road, Ganzhou, 314000, Jiangxi, China.
| |
Collapse
|
12
|
Guo X, Bian X, Li Y, Zhu X, Zhou X. The intricate dance of tumor evolution: Exploring immune escape, tumor migration, drug resistance, and treatment strategies. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167098. [PMID: 38412927 DOI: 10.1016/j.bbadis.2024.167098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/14/2024] [Accepted: 02/19/2024] [Indexed: 02/29/2024]
Abstract
Recent research has unveiled fascinating insights into the intricate mechanisms governing tumor evolution. These studies have illuminated how tumors adapt and proliferate by exploiting various factors, including immune evasion, resistance to therapeutic drugs, genetic mutations, and their ability to adapt to different environments. Furthermore, investigations into tumor heterogeneity and chromosomal aberrations have revealed the profound complexity that underlies the evolution of cancer. Emerging findings have also underscored the role of viral influences in the development and progression of cancer, introducing an additional layer of complexity to the field of oncology. Tumor evolution is a dynamic and complex process influenced by various factors, including immune evasion, drug resistance, tumor heterogeneity, and viral influences. Understanding these elements is indispensable for developing more effective treatments and advancing cancer therapies. A holistic approach to studying and addressing tumor evolution is crucial in the ongoing battle against cancer. The main goal of this comprehensive review is to explore the intricate relationship between tumor evolution and critical aspects of cancer biology. By delving into this complex interplay, we aim to provide a profound understanding of how tumors evolve, adapt, and respond to treatment strategies. This review underscores the pivotal importance of comprehending tumor evolution in shaping effective approaches to cancer treatment.
Collapse
Affiliation(s)
- Xiaojun Guo
- Department of Immunology, School of Medicine, Nantong University, Nantong, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Xiaonan Bian
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Yitong Li
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Xiao Zhu
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China.
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, Nantong, China.
| |
Collapse
|
13
|
Yu X, Du Z, Zhu P, Liao B. Diagnostic, prognostic, and therapeutic potential of exosomal microRNAs in renal cancer. Pharmacol Rep 2024; 76:273-286. [PMID: 38388810 DOI: 10.1007/s43440-024-00568-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Abstract
Renal cell carcinoma (RCC) arises from the tubular epithelial cells of the nephron. It has the highest mortality rate among urological cancers. There are no effective therapeutic approaches and no non-invasive biomarkers for diagnosis and follow-up. Thus, suitable novel biomarkers and therapeutic targets are essential for improving RCC diagnosis/prognosis and treatment. Circulating exosomes such as exosomal microRNAs (Exo-miRs) provide non-invasive prognostic/diagnostic biomarkers and valuable therapeutic targets, as they can be easily isolated and quantified and show high sensitivity and specificity. Exosomes secreted by an RCC can exhibit alterations in the miRs' profile that may reflect the cellular origin and (patho)physiological state, as a ''signature'' or ''fingerprint'' of the donor cell. It has been shown that the transportation of renal-specific miRs in exosomes can be rapidly detected and measured, holding great potential as biomarkers in RCC. The present review highlights the studies reporting tumor microenvironment-derived Exo-miRs with therapeutic potential as well as circulating Exo-miRs as potential diagnostic/prognostic biomarkers in patients with RCC.
Collapse
Affiliation(s)
- Xiaodong Yu
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Zhongbo Du
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Pingyu Zhu
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Bo Liao
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China.
| |
Collapse
|
14
|
Salehi M, Kamali MJ, Arab D, Safaeian N, Ashuori Z, Maddahi M, Latifi N, Jahromi AM. Exosomal microRNAs in regulation of tumor cells resistance to apoptosis. Biochem Biophys Rep 2024; 37:101644. [PMID: 38298209 PMCID: PMC10827597 DOI: 10.1016/j.bbrep.2024.101644] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 02/02/2024] Open
Abstract
Exosomes are a type of extracellular vesicle that contains bioactive molecules that can be secreted by most cells. Nevertheless, the content of these cells differs depending on the cell from which they originate. The exosome plays a crucial role in modulating intercellular communication by conveying molecular messages to neighboring or distant cells. Cancer-derived exosomes can transfer several types of molecules into the tumor microenvironment, including high levels of microRNA (miRNA). These miRNAs significantly affect cell proliferation, angiogenesis, apoptosis resistance, metastasis, and immune evasion. Increasing evidence indicates that exosomal miRNAs (exomiRs) are crucial to regulating cancer resistance to apoptosis. In cancer cells, exomiRs orchestrate communication channels between them and their surrounding microenvironment, modulating gene expression and controlling apoptosis signaling pathways. This review presents an outline of present-day knowledge of the mechanisms that affect target cells and drive cancer resistance to apoptosis. Also, our study looks at the regulatory role of exomiRs in mediating intercellular communication between tumor cells and surrounding microenvironmental cells, specifically stromal and immune cells, to evade therapy-induced apoptosis.
Collapse
Affiliation(s)
- Mohammad Salehi
- Department of Medical Genetics, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
- Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammad Javad Kamali
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Daniyal Arab
- Department of Human Genetics, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Naghme Safaeian
- Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zahra Ashuori
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Moein Maddahi
- Faculty of Dentistry, Yeditepe University, Istanbul, Turkey
| | - Narges Latifi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Iran
| | - Amir Moein Jahromi
- School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Taeb S, Rostamzadeh D, Mafi S, Mofatteh M, Zarrabi A, Hushmandi K, Safari A, Khodamoradi E, Najafi M. Update on Mesenchymal Stem Cells: A Crucial Player in Cancer Immunotherapy. Curr Mol Med 2024; 24:98-113. [PMID: 36573062 DOI: 10.2174/1566524023666221226143814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 12/28/2022]
Abstract
The idea of cancer immunotherapy has spread, and it has made tremendous progress with the advancement of new technology. Immunotherapy, which serves to assist the natural defenses of the body in eradicating cancerous cells, is a remarkable achievement that has revolutionized both cancer research and cancer treatments. Currently, the use of stem cells in immunotherapy is widespread and shares a special characteristic, including cancer cell migration, bioactive component release, and immunosuppressive activity. In the context of cancer, mesenchymal stem cells (MSCs) are rapidly being identified as vital stromal regulators of tumor progression. MSCs therapy has been implicated in treating a wide range of diseases, including bone damage, autoimmune diseases, and particularly hematopoietic abnormalities, providing stem cell-based therapy with an extra dimension. Moreover, the implication of MSCs does not have ethical concerns, and the complications known in pluripotent and totipotent stem cells are less common in MSCs. MSCs have a lot of distinctive characteristics that, when coupled, make them excellent for cellular-based immunotherapy and as vehicles for gene and drug delivery in a variety of inflammations and malignancies. MSCs can migrate to the inflammatory site and exert immunomodulatory responses via cell-to-cell contacts with lymphocytes by generating soluble substances. In the current review, we discuss the most recent research on the immunological characteristics of MSCs, their use as immunomodulatory carriers, techniques for approving MSCs to adjust their immunological contour, and their usages as vehicles for delivering therapeutic as well as drugs and genes engineered to destroy tumor cells.
Collapse
Affiliation(s)
- Shahram Taeb
- Department of Radiology, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Davoud Rostamzadeh
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj, Iran
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Sahar Mafi
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj, Iran
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mohammad Mofatteh
- Sir William Dunn School of Pathology, Medical Sciences Division, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
- Lincoln College, University of Oxford, Turl Street, Oxford OX1 3DR, United Kingdom
| | - Ali Zarrabi
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul, Turkey
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Arash Safari
- Department of Radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ehsan Khodamoradi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
16
|
Nie C, Shaw I, Chen C. Application of microfluidic technology based on surface-enhanced Raman scattering in cancer biomarker detection: A review. J Pharm Anal 2023; 13:1429-1451. [PMID: 38223444 PMCID: PMC10785256 DOI: 10.1016/j.jpha.2023.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 01/16/2024] Open
Abstract
With the continuous discovery and research of predictive cancer-related biomarkers, liquid biopsy shows great potential in cancer diagnosis. Surface-enhanced Raman scattering (SERS) and microfluidic technology have received much attention among the various cancer biomarker detection methods. The former has ultrahigh detection sensitivity and can provide a unique fingerprint. In contrast, the latter has the characteristics of miniaturization and integration, which can realize accurate control of the detection samples and high-throughput detection through design. Both have the potential for point-of-care testing (POCT), and their combination (lab-on-a-chip SERS (LoC-SERS)) shows good compatibility. In this paper, the basic situation of circulating proteins, circulating tumor cells, exosomes, circulating tumor DNA (ctDNA), and microRNA (miRNA) in the diagnosis of various cancers is reviewed, and the detection research of these biomarkers by the LoC-SERS platform in recent years is described in detail. At the same time, the challenges and future development of the platform are discussed at the end of the review. Summarizing the current technology is expected to provide a reference for scholars engaged in related work and interested in this field.
Collapse
Affiliation(s)
- Changhong Nie
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Ibrahim Shaw
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| |
Collapse
|
17
|
Gu J, Chen J, Xiang S, Zhou X, Li J. Intricate confrontation: Research progress and application potential of TRIM family proteins in tumor immune escape. J Adv Res 2023; 54:147-179. [PMID: 36736694 DOI: 10.1016/j.jare.2023.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Tripartite motif (TRIM) family proteins have more than 80 members and are widely found in various eukaryotic cells. Most TRIM family proteins participate in the ubiquitin-proteasome degradation system as E3-ubiquitin ligases; therefore, they play pivotal regulatory roles in the occurrence and development of tumors, including tumor immune escape. Due to the diversity of functional domains of TRIM family proteins, they can extensively participate in multiple signaling pathways of tumor immune escape through different substrates. In current research and clinical contexts, immune escape has become an urgent problem. The extensive participation of TRIM family proteins in curing tumors or preventing postoperative recurrence and metastasis makes them promising targets. AIM OF REVIEW The aim of the review is to make up for the gap in the current research on TRIM family proteins and tumor immune escape and propose future development directions according to the current progress and problems. KEY SCIENTIFIC CONCEPTS OF REVIEW This up-to-date review summarizes the characteristics and biological functions of TRIM family proteins, discusses the mechanisms of TRIM family proteins involved in tumor immune escape, and highlights the specific mechanism from the level of structure-function-molecule-pathway-phenotype, including mechanisms at the level of protein domains and functions, at the level of molecules and signaling pathways, and at the level of cells and microenvironments. We also discuss the application potential of TRIM family proteins in tumor immunotherapy, such as possible treatment strategies for combination targeting TRIM family protein drugs and checkpoint inhibitors for improving cancer treatment.
Collapse
Affiliation(s)
- Junjie Gu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jingyi Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shuaixi Xiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xikun Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
18
|
Huang Y, Zhou F, Jia F, Yang N. Divalent Aptamer-Functionalized Nanochannels for Facile Detection of Cancer Cell-Derived Exosomes. SENSORS (BASEL, SWITZERLAND) 2023; 23:9139. [PMID: 38005527 PMCID: PMC10674588 DOI: 10.3390/s23229139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023]
Abstract
Exosomes are considered potential biomarkers for early screening and accurate non-invasive diagnosis of cancer, so development of innovatively facile approaches for the detection of cancer cell-derived exosomes has become increasingly important. Herein, we propose a facile electrochemical biosensor based on divalent aptamer-functionalized nanochannels for highly efficient detection of cancer cell-derived exosomes. The aptamer against transmembrane receptor protein CD63 and the aptamer targeting membrane protein EpCAM are simultaneously immobilized on the nanochannels to construct the divalent aptamer-functionalized nanochannels. Thus, the target exosomes can be recognized and selectively captured by the functionalized nanochannels in a divalent collaborative manner. The combined exosomes overlay the ion channel effectively and hinder the ionic flow through the nanochannels, resulting in an evidently varied ionic transport behavior corresponding to the abundance of exosomes. The divalent aptamer-functionalized nanochannels can substantially promote the binding stability and enhance the detection specificity, while the sensitivity of detection is improved greatly by virtue of the amplified response of array channels synergized with the electrochemical technique. Therefore, the developed biosensor provides a highly specific, sensitive, and accurate approach for the detection of cancer cell-derived exosomes, which may hold great potential for application in early clinical cancer diagnosis.
Collapse
Affiliation(s)
- Yue Huang
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Fangfang Zhou
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Fengjie Jia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Nana Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
19
|
Altıntaş Ö, Saylan Y. Exploring the Versatility of Exosomes: A Review on Isolation, Characterization, Detection Methods, and Diverse Applications. Anal Chem 2023; 95:16029-16048. [PMID: 37874907 DOI: 10.1021/acs.analchem.3c02224] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Extracellular vesicles (EVs) are crucial mediators of intercellular communication and can be classified based on their physical properties, biomolecular structure, and origin. Among EVs, exosomes have garnered significant attention due to their potential as therapeutic and diagnostic tools. Exosomes are released via fusion of multivesicular bodies on plasma membranes and can be isolated from various biofluids using methods such as differential ultracentrifugation, immune affinity capture, ultrafiltration, and size exclusion chromatography. Herein, an overview of different techniques for exosome characterization and isolation, as well as the diverse applications of exosome detection, including their potential use in drug delivery and disease diagnosis, is provided. Additionally, we discuss the emerging field of exosome detection by sensors, which offers an up-and-coming avenue for point-of-care diagnostic tools development. Overall, this review aims to provide a exhaustive and up-to-date summary of the current state of exosome research.
Collapse
Affiliation(s)
- Özge Altıntaş
- Hacettepe University, Department of Chemistry, 06800 Ankara, Turkey
| | - Yeşeren Saylan
- Hacettepe University, Department of Chemistry, 06800 Ankara, Turkey
| |
Collapse
|
20
|
Wei F, Fang R, Lyu K, Liao J, Long Y, Yang J, Wen W, Sun W. Exosomal PD-L1 derived from head and neck squamous cell carcinoma promotes immune evasion by activating the positive feedback loop of activated regulatory T cell-M2 macrophage. Oral Oncol 2023; 145:106532. [PMID: 37499326 DOI: 10.1016/j.oraloncology.2023.106532] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/04/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023]
Abstract
The positive feedback loop of activated regulatory T cells (aTregs) and M2 macrophages (M2) play a vital role in promoting the tumor immunosuppressive microenvironment of head and neck squamous cell carcinoma (HNSCC). However, the key factors regulating the positive feedback loop remain unclear. Herein, we investigated the effect of PD-L1 carried on exosomes derived from tumor cells (TEXs) on the aTreg-M2 positive feedback loop, as well as their role in mediating immunosuppression. In our study, TEXs with or without PD-L1 (TEX-PD-L1 or TEX-PD-L1KO) were treated with CD4+CD25- T cells and M0 macrophages, and the effect on the differentiation of aTregs, M2 and the aTreg-M2 positive feedback loop was assessed. TEXs carried more PD-L1 than tumor cells and not only promoted the differentiation of aTregs and M2, but also, most importantly, enhanced the positive feedback loop of aTreg-M2, which inhibited the proliferation of CD4+CD25- T cells and in turn led to tumor immune escape. Moreover, in vivo study showed that TEX-PD-L1KO could inhibit tumor growth and significantly improve the antitumor efficacy in both the peripheral and tumor microenvironments. Collectively this study revealed the role and mechanism of TEX-PD-L1 in negative immune regulation, and targeting TEX-PD-L1 may be a new idea and strategy for immunotherapy of HNSCC.
Collapse
Affiliation(s)
- Fanqin Wei
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, PR China; Institute of Otorhinolaryngology Head and Neck Surgery, Sun Yat-sen University, Guangzhou 510080, Guangdong, PR China; Guangzhou Key Laboratory of Otorhinolarygology, Guangzhou 510080, Guangdong, PR China
| | - Ruihua Fang
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, PR China; Institute of Otorhinolaryngology Head and Neck Surgery, Sun Yat-sen University, Guangzhou 510080, Guangdong, PR China; Guangzhou Key Laboratory of Otorhinolarygology, Guangzhou 510080, Guangdong, PR China
| | - Kexing Lyu
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, PR China; Institute of Otorhinolaryngology Head and Neck Surgery, Sun Yat-sen University, Guangzhou 510080, Guangdong, PR China; Guangzhou Key Laboratory of Otorhinolarygology, Guangzhou 510080, Guangdong, PR China
| | - Jing Liao
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 510080, Guangdong, PR China
| | - Yudong Long
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, PR China; Institute of Otorhinolaryngology Head and Neck Surgery, Sun Yat-sen University, Guangzhou 510080, Guangdong, PR China; Guangzhou Key Laboratory of Otorhinolarygology, Guangzhou 510080, Guangdong, PR China
| | - Jinchao Yang
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, PR China; Institute of Otorhinolaryngology Head and Neck Surgery, Sun Yat-sen University, Guangzhou 510080, Guangdong, PR China; Guangzhou Key Laboratory of Otorhinolarygology, Guangzhou 510080, Guangdong, PR China
| | - Weiping Wen
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, PR China; Institute of Otorhinolaryngology Head and Neck Surgery, Sun Yat-sen University, Guangzhou 510080, Guangdong, PR China; Guangzhou Key Laboratory of Otorhinolarygology, Guangzhou 510080, Guangdong, PR China; Department of Otorhinolaryngology Head and Neck Surgery, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, PR China.
| | - Wei Sun
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, PR China; Institute of Otorhinolaryngology Head and Neck Surgery, Sun Yat-sen University, Guangzhou 510080, Guangdong, PR China; Guangzhou Key Laboratory of Otorhinolarygology, Guangzhou 510080, Guangdong, PR China.
| |
Collapse
|
21
|
Wang W, Zheng Z, Lei J. CTC, ctDNA, and Exosome in Thyroid Cancers: A Review. Int J Mol Sci 2023; 24:13767. [PMID: 37762070 PMCID: PMC10530859 DOI: 10.3390/ijms241813767] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Thyroid cancer has become more common in recent years all around the world. Many issues still need to be urgently addressed in the diagnosis, treatment, and prognosis of thyroid cancer. Liquid biopsy (mainly circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), and circulating exosomes) may provide a novel and ideal approach to solve these issues, allows us to assess the features of diseases more comprehensively, and has a function in a variety of malignancies. Recently, liquid biopsy has been shown to be critical in thyroid cancer diagnosis, treatment, and prognosis in numerous previous studies. In this review, by testing CTCs, ctDNA, and exosomes, we focus on the possible clinical role of liquid biopsy in thyroid cancer, including diagnostic and prognostic biomarkers and response to therapy. We briefly review how liquid biopsy components have progressed in thyroid cancer by consulting the existing public information. We also discuss the clinical potential of liquid biopsy in thyroid cancer and provide a reference for liquid biopsy research. Liquid biopsy has the potential to be a useful tool in the early detection, monitoring, or prediction of response to therapies and prognosis in thyroid cancer, with promising clinical applications.
Collapse
Affiliation(s)
- Wenwen Wang
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiyao Zheng
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jianyong Lei
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
22
|
Araki Y, Asano N, Yamamoto N, Hayashi K, Takeuchi A, Miwa S, Igarashi K, Higuchi T, Abe K, Taniguchi Y, Yonezawa H, Morinaga S, Asano Y, Yoshida T, Hanayama R, Matsuzaki J, Ochiya T, Kawai A, Tsuchiya H. A validation study for the utility of serum microRNA as a diagnostic and prognostic marker in patients with osteosarcoma. Oncol Lett 2023; 25:222. [PMID: 37153065 PMCID: PMC10157352 DOI: 10.3892/ol.2023.13808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 03/03/2023] [Indexed: 05/09/2023] Open
Abstract
In our previous study, osteosarcoma advanced locally, and metastasis was promoted through the secretion of large number of small extracellular vesicles, followed by suppressing osteoclastogenesis via the upregulation of microRNA (miR)-146a-5p. An additional 12 miRNAs in small extracellular vesicles were also detected ≥6× as frequently in high-grade malignancy with the capacity to metastasize as in those with a low metastatic potential. However, the utility of these 13 miRNAs for determining the prognosis or diagnosis of osteosarcoma has not been validated in the clinical setting. In the present study, the utility of these miRNAs as prognostic and diagnostic markers was therefore assessed. In total, 30 patients with osteosarcoma were retrospectively reviewed, and the survival rate was compared according to the serum miRNA levels in 27 patients treated with chemotherapy and surgery. In addition, to confirm diagnostic competency for osteosarcoma, the serum miRNA levels were compared with those in patients with other bone tumors (n=112) and healthy controls (n=275). The patients with osteosarcoma with high serum levels of several miRNAs (miR-146a-5p, miR-1260a, miR-487b-3p, miR-1260b and miR-4758-3p) exhibited an improved survival rate compared with those with low levels. In particular, patients with high serum levels of miR-1260a exhibited a significantly improved overall survival rate, metastasis-free survival rate and disease-free survival rate compared with those with low levels. Thus, serum miR-1260a may potentially be a prognostic marker for patients with osteosarcoma. Moreover, patients with osteosarcoma had higher serum miR-1261 levels than those with benign or intermediate-grade bone tumors and thus may be a potential therapeutic target, in addition to being useful for differentiating whether or not a bone tumor is high-grade. A larger investigation is required to clarify the actual utility of these miRNAs in the clinical setting.
Collapse
Affiliation(s)
- Yoshihiro Araki
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Naofumi Asano
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Norio Yamamoto
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
- Correspondence to: Professor Norio Yamamoto, Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8641, Japan, E-mail:
| | - Katsuhiro Hayashi
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Akihiko Takeuchi
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Shinji Miwa
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Kentaro Igarashi
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Takashi Higuchi
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Kensaku Abe
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Yuta Taniguchi
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Hirotaka Yonezawa
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Sei Morinaga
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Yohei Asano
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Takeshi Yoshida
- WPI Nano Life Science Institute (NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Rikinari Hanayama
- WPI Nano Life Science Institute (NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Juntaro Matsuzaki
- Division of Pharmacotherapeutics, Keio University Faculty of Pharmacy, Tokyo 105-8512, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Akira Kawai
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
- Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| |
Collapse
|
23
|
Hosseini SA, Haddadi MH, Fathizadeh H, Nemati F, Aznaveh HM, Taraj F, Aghabozorgizadeh A, Gandomkar G, Bazazzadeh E. Long non-coding RNAs and gastric cancer: An update of potential biomarkers and therapeutic applications. Biomed Pharmacother 2023; 163:114407. [PMID: 37100014 DOI: 10.1016/j.biopha.2023.114407] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 04/28/2023] Open
Abstract
The frequent metastasis of gastric cancer (GC) complicates the cure and therefore the development of effective diagnostic and therapeutic approaches is urgently necessary. In recent years, lncRNA has emerged as a drug target in the treatment of GC, particularly in the areas of cancer immunity, cancer metabolism, and cancer metastasis. This has led to the demonstration of the importance of these RNAs as prognostic, diagnostic and therapeutic agents. In this review, we provide an overview of the biological activities of lncRNAs in GC development and update the latest pathological activities, prognostic and diagnostic strategies, and therapeutic options for GC-related lncRNAs.
Collapse
Affiliation(s)
- Sayedeh Azimeh Hosseini
- Department of Medical Biotechnology, School of Advanced Technology, Shahrekord University of Medical Sciences, Shahrekord, Iran; Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran; USERN office, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Hadis Fathizadeh
- Student Research Committee, Sirjan School of Medical Sciences, Sirjan, Iran; Department of Laboratory sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Foroogh Nemati
- Department of Microbiology, Kashan University of Medical Sciences, Kashan, Iran
| | - Hooman Mahmoudi Aznaveh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | - Farima Taraj
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - AmirArsalan Aghabozorgizadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | - Golmaryam Gandomkar
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Elaheh Bazazzadeh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| |
Collapse
|
24
|
Zhang J, Huang D, Lan X, Deng D, Li J, Zhang D, Li Y, Zhong T, Peng S. Application of small extracellular vesicles in the diagnosis and prognosis of nasopharyngeal carcinoma. Front Cell Dev Biol 2023; 11:1100941. [PMID: 36968209 PMCID: PMC10036369 DOI: 10.3389/fcell.2023.1100941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor originating from the epithelium of the nasopharynx. The disease is insidious, and most patients are diagnosed at the advanced stage, resulting in poor prognosis. Early diagnosis is important to reduce NPC mortality. Small extracellular vesicles (sEVs) are rich in a variety of bioactive molecules, such as proteins, nucleic acids, and lipids, which can participate in the physiological and pathological regulation of the body by affecting the function of target cells. Numerous studies have shown that some RNAs and proteins in sEVs of tumor origin have a key role in the development of NPC and are potential candidates for malignancy detection. Studying the relationship between the cargoes of these sEVs and NPC may help in the diagnosis of the disease. Here in this review, we summarize the application of sEVs as biomarkers in the diagnosis of NPC and their role in NPC metastasis and prognosis. In addition, we discuss possible future applications and limitations of sEVs as biomarkers.
Collapse
Affiliation(s)
- Jiali Zhang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Otolaryngology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Defa Huang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xianbin Lan
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Otolaryngology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Dongming Deng
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Otolaryngology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jijing Li
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Otolaryngology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Dongzhi Zhang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Otolaryngology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yue Li
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Otolaryngology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tianyu Zhong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Precision Medicine Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Tianyu Zhong, ; Shaoping Peng,
| | - Shaoping Peng
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Otolaryngology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Tianyu Zhong, ; Shaoping Peng,
| |
Collapse
|
25
|
Wu D, Tao T, Eshraghian EA, Lin P, Li Z, Zhu X. Extracellular RNA as a kind of communication molecule and emerging cancer biomarker. Front Oncol 2022; 12:960072. [PMID: 36465402 PMCID: PMC9714358 DOI: 10.3389/fonc.2022.960072] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/10/2022] [Indexed: 11/04/2023] Open
Abstract
Extracellular RNA (exRNA) is a special form of RNA in the body. RNA carries information about genes and metabolic regulation in the body, which can reflect the real-time status of cells. This characteristic renders it a biomarker for disease diagnosis, treatment, and prognosis. ExRNA is transported through extracellular vesicles as a signal medium to mediate communication between cells. Tumor cells can release more vesicles than normal cells, thereby promoting tumor development. Depending on its easy detection, the advantages of non-invasive molecular diagnostic technology can be realized. In this systematic review, we present the types, vectors, and biological value of exRNA. We briefly describe new methods of tumor diagnosis and treatment, as well as the difficulties faced in the progress of such research. This review highlights the groundbreaking potential of exRNA as a clinical biomarker.
Collapse
Affiliation(s)
- Danny Wu
- Institute of Marine Medicine, Guangdong Medical University, Zhanjiang, China
| | - Tao Tao
- Department of Gastroenterology, Zibo Central Hospital, Zibo, China
| | - Emily A. Eshraghian
- Department of Medicine, University of California (UC) San Diego Health, San Diego, CA, United States
| | - Peixu Lin
- Institute of Marine Medicine, Guangdong Medical University, Zhanjiang, China
| | - Zesong Li
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China
| | - Xiao Zhu
- Institute of Marine Medicine, Guangdong Medical University, Zhanjiang, China
- Ningbo Institute of Life and Health Industry, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
26
|
Tian Q, Guo Y, Li D, Dong L. Hybrid Gastric Cancer Exosome as Potential Drug Carrier for Targeted Gastric Cancer Therapy. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Gastric cancer is among the leading lethal cancer types in the world. However, its five year survival rate is far from satisfactory. Therefore, the development of targeted cancer gastric cancer therapy is a promising way to cure gastric cancer. Gastric cancer exosome is reported to
have high caner targeting efficacy, but its yield is relatively low. Herein, we proposed a facile way to construct hybrid gastric cancer exosome (HGCE) with high yield as potential drug carrier for targeted gastric cancer therapy. The doxorubicin (Dox) loaded HGCE (Dox/HGCE) was developed
as drug delivery system (DDS) to treat gastric cancer. In vitro and in vivo results demonstrated that Dox/HGCE showed not only high and specific homing ability to the gastric cancer cells (SGC7901) but also good anticancer performance which can be a promising DDS for gastric
cancer therapy.
Collapse
Affiliation(s)
- Qing Tian
- Department of Thoracic Surgery, The First Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, 050031, China
| | - Ying Guo
- Department of Oncology, The First Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, 050031, China
| | - Dan Li
- Department of Thoracic Surgery, Jingxing County Hospital, Shijiazhuang City, Hebei Province, 050030, China
| | - Liang Dong
- Department of Medical, The First Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, 050031, China
| |
Collapse
|
27
|
The updated role of exosomal proteins in the diagnosis, prognosis, and treatment of cancer. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1390-1400. [PMID: 36138197 PMCID: PMC9535014 DOI: 10.1038/s12276-022-00855-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/29/2022] [Accepted: 07/21/2022] [Indexed: 11/08/2022]
Abstract
Exosomes are vesicles encompassed by a lipid bilayer that are released by various living cells. Exosomal proteins are encapsulated within the membrane or embedded on the surface. As an important type of exosome cargo, exosomal proteins can reflect the physiological status of the parent cell and play an essential role in cell-cell communication. Exosomal proteins can regulate tumor development, including tumor-related immune regulation, microenvironment reconstruction, angiogenesis, epithelial-mesenchymal transition, metastasis, etc. The features of exosomal proteins can provide insight into exosome generation, targeting, and biological function and are potential sources of markers for cancer diagnosis, prognosis, and treatment. Here, we summarize the effects of exosomal proteins on cancer biology, the latest progress in the application of exosomal proteins in cancer diagnosis and prognosis, and the potential contribution of exosomal proteins in cancer therapeutics and vaccines.
Collapse
|
28
|
Sun Z, Li P, Wu Z, Li B, Li W, Zhao M, Zhou X, Wang Z, Yu Z, Liu W, Zhu W, Wang H, Wang Y. Circulating CD45+EpCAM+ cells as a diagnostic marker for early-stage primary lung cancer. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:982308. [PMID: 36147748 PMCID: PMC9487715 DOI: 10.3389/fmedt.2022.982308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Lung cancer is a highly prevalent type of cancer, accounting for 11.6% of all cancer incidences. Early detection and treatment can significantly improve the survival rate and quality of life of patients; however, there is no accurate, effective, and easy-to-use test for early lung cancer screening. In this study, flow cytometry was used to detect the presence of CD45+EpCAM+ cells in tumor tissues and peripheral blood mononuclear cells (PBMCs) in patients with lung cancer. Moreover, the proportion of CD45+EpCAM+ cells in PBMCs of patients with lung cancer was found to be significantly higher than that of healthy volunteers. Tumor-related serum markers level was also measured in the peripheral blood of these patients using an electrochemiluminescence assay. The correlation between CD45+EpCAM+ cells, carcinoembryonic antigen (CEA), and lung cancer was investigated using receiver operating characteristic (ROC) curve analysis, which showed the sensitivity and specificity of the CD45+EpCAM+ cell to be 81.58% and 88.89%, respectively. Further analysis yielded an area under the ROC curve (ROC/area under the curve [AUC]) of 0.845 in patients PBMCs with lung cancer, which was slightly higher than that of CEA (0.732). Therefore, the detection of CD45+EpCAM+ cells in PBMCs may be helpful for the early screening and auxiliary diagnosis of lung cancer.
Collapse
Affiliation(s)
- Zhen Sun
- Qingdao Sino-Cell Biomed Co., Ltd., Qingdao, China
| | - Peng Li
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhaojun Wu
- Qingdao Sino-Cell Biomed Co., Ltd., Qingdao, China
| | - Bin Li
- Qingdao Sino-Cell Biomed Co., Ltd., Qingdao, China
| | - Wenjing Li
- Qingdao Sino-Cell Biomed Co., Ltd., Qingdao, China
| | | | - Xiaobin Zhou
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao, China
| | - Zeyao Wang
- Qingdao Sino-Cell Biomed Co., Ltd., Qingdao, China
| | - Zhongjie Yu
- Qingdao Sino-Cell Biomed Co., Ltd., Qingdao, China
| | - Wenna Liu
- Qingdao Sino-Cell Biomed Co., Ltd., Qingdao, China
| | - Wenshu Zhu
- Qingdao Sino-Cell Biomed Co., Ltd., Qingdao, China
| | - Haibo Wang
- Institute of Translational Research for Solid Tumor, Qingdao University, Qingdao, China
- *Correspondence: Haibo Wang
| | - Yongjie Wang
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Yongjie Wang
| |
Collapse
|
29
|
Guo X, Sui R, Piao H. Tumor-derived small extracellular vesicles: potential roles and mechanism in glioma. J Nanobiotechnology 2022; 20:383. [PMID: 35999601 PMCID: PMC9400220 DOI: 10.1186/s12951-022-01584-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/02/2022] [Indexed: 12/05/2022] Open
Abstract
Small extracellular vesicles (SEVs) are extracellular vesicles containing DNA, RNA, and proteins and are involved in intercellular communication and function, playing an essential role in the growth and metastasis of tumors. SEVs are present in various body fluids and can be isolated and extracted from blood, urine, and cerebrospinal fluid. Under both physiological and pathological conditions, SEVs can be released by some cells, such as immune, stem, and tumor cells, in a cytosolic manner. SEVs secreted by tumor cells are called tumor-derived exosomes (TEXs) because of their origin in the corresponding parent cells. Glioma is the most common intracranial tumor, accounting for approximately half of the primary intracranial tumors, and is characterized by insidious onset, high morbidity, and high mortality rate. Complete removal of tumor tissues by surgery is difficult. Chemotherapy can improve the survival quality of patients to a certain extent; however, gliomas are prone to chemoresistance, which seriously affects the prognosis of patients. In recent years, TEXs have played a vital role in the occurrence, development, associated immune response, chemotherapy resistance, radiation therapy resistance, and metastasis of glioma. This article reviews the role of TEXs in glioma progression, drug resistance, and clinical diagnosis.
Collapse
Affiliation(s)
- Xu Guo
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No. 44 Xiaoheyan Road, Shenyang, 110042, Liaoning, China
| | - Rui Sui
- Department of Neurosurgery, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), No. 44 Xiaoheyan Road, Shenyang, 110042, Liaoning, China
| | - Haozhe Piao
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No. 44 Xiaoheyan Road, Shenyang, 110042, Liaoning, China.
| |
Collapse
|
30
|
Treatment Response Predictors of Neoadjuvant Therapy for Locally Advanced Gastric Cancer: Current Status and Future Perspectives. Biomedicines 2022; 10:biomedicines10071614. [PMID: 35884916 PMCID: PMC9312565 DOI: 10.3390/biomedicines10071614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/26/2022] Open
Abstract
Neoadjuvant chemotherapy (NAC) for locally advanced gastric cancer (LAGC) has been recognized as an effective therapeutic option because it is expected to improve the curative resection rate by reducing the tumor size and preventing recurrence of micrometastases. However, for patients resistant to NAC, not only will operation timing be delayed, but they will also suffer from side effects. Thus, it is crucial to develop a comprehensive strategy and select patients sensitive to NAC. However, the therapeutic effect of NAC is unpredictable due to tumor heterogeneity and a lack of predictive biomarkers for guiding the choice of optimal preoperative treatment in clinical practice. This article summarizes the related research progress on predictive biomarkers of NAC for gastric cancer. Among the many investigated biomarkers, metabolic enzymes for cytotoxic agents, nucleotide excision repair, and microsatellite instability, have shown promising results and should be assessed in prospective clinical trials. Noninvasive liquid biopsy detection, including miRNA and exosome detection, is also a promising strategy.
Collapse
|
31
|
Mirzaei S, Paskeh MDA, Okina E, Gholami MH, Hushmandi K, Hashemi M, Kalu A, Zarrabi A, Nabavi N, Rabiee N, Sharifi E, Karimi-Maleh H, Ashrafizadeh M, Kumar AP, Wang Y. Molecular Landscape of LncRNAs in Prostate Cancer: A focus on pathways and therapeutic targets for intervention. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:214. [PMID: 35773731 PMCID: PMC9248128 DOI: 10.1186/s13046-022-02406-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/27/2022] [Indexed: 02/08/2023]
Abstract
Background One of the most malignant tumors in men is prostate cancer that is still incurable due to its heterogenous and progressive natures. Genetic and epigenetic changes play significant roles in its development. The RNA molecules with more than 200 nucleotides in length are known as lncRNAs and these epigenetic factors do not encode protein. They regulate gene expression at transcriptional, post-transcriptional and epigenetic levels. LncRNAs play vital biological functions in cells and in pathological events, hence their expression undergoes dysregulation. Aim of review The role of epigenetic alterations in prostate cancer development are emphasized here. Therefore, lncRNAs were chosen for this purpose and their expression level and interaction with other signaling networks in prostate cancer progression were examined. Key scientific concepts of review The aberrant expression of lncRNAs in prostate cancer has been well-documented and progression rate of tumor cells are regulated via affecting STAT3, NF-κB, Wnt, PI3K/Akt and PTEN, among other molecular pathways. Furthermore, lncRNAs regulate radio-resistance and chemo-resistance features of prostate tumor cells. Overexpression of tumor-promoting lncRNAs such as HOXD-AS1 and CCAT1 can result in drug resistance. Besides, lncRNAs can induce immune evasion of prostate cancer via upregulating PD-1. Pharmacological compounds such as quercetin and curcumin have been applied for targeting lncRNAs. Furthermore, siRNA tool can reduce expression of lncRNAs thereby suppressing prostate cancer progression. Prognosis and diagnosis of prostate tumor at clinical course can be evaluated by lncRNAs. The expression level of exosomal lncRNAs such as lncRNA-p21 can be investigated in serum of prostate cancer patients as a reliable biomarker.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, 180554, Singapore, Singapore
| | | | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Azuma Kalu
- School of Life, Health & Chemical Sciences, The Open University, Milton Keynes, United Kingdom.,Pathology, Sheffield Teaching Hospital, Sheffield, United Kingdom
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396, Istanbul, Turkey
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Navid Rabiee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Korea.,School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China.,Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.,Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, 2028, South Africa
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey.
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore. .,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, 180554, Singapore, Singapore.
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada.
| |
Collapse
|
32
|
Fan Z, Jiang C, Wang Y, Wang K, Marsh J, Zhang D, Chen X, Nie L. Engineered extracellular vesicles as intelligent nanosystems for next-generation nanomedicine. NANOSCALE HORIZONS 2022; 7:682-714. [PMID: 35662310 DOI: 10.1039/d2nh00070a] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Extracellular vesicles (EVs), as natural carriers of bioactive cargo, have a unique micro/nanostructure, bioactive composition, and characteristic morphology, as well as fascinating physical, chemical and biochemical features, which have shown promising application in the treatment of a wide range of diseases. However, native EVs have limitations such as lack of or inefficient cell targeting, on-demand delivery, and therapeutic feedback. Recently, EVs have been engineered to contain an intelligent core, enabling them to (i) actively target sites of disease, (ii) respond to endogenous and/or exogenous signals, and (iii) provide treatment feedback for optimal function in the host. These advances pave the way for next-generation nanomedicine and offer promise for a revolution in drug delivery. Here, we summarise recent research on intelligent EVs and discuss the use of "intelligent core" based EV systems for the treatment of disease. We provide a critique about the construction and properties of intelligent EVs, and challenges in their commercialization. We compare the therapeutic potential of intelligent EVs to traditional nanomedicine and highlight key advantages for their clinical application. Collectively, this review aims to provide a new insight into the design of next-generation EV-based theranostic platforms for disease treatment.
Collapse
Affiliation(s)
- Zhijin Fan
- School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, P. R. China
| | - Cheng Jiang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Yichao Wang
- Department of Clinical Laboratory Medicine, Tai Zhou Central Hospital (Taizhou University Hospital), Taizhou 318000, P. R. China
| | - Kaiyuan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Jade Marsh
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Da Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China.
| | - Xin Chen
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiao Tong University, Xi'an 710049, P. R. China.
| | - Liming Nie
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, P. R. China
- School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
| |
Collapse
|
33
|
Chen W, Zhang F, Xu H, Hou X, Tang D. Prospective Analysis of Proteins Carried in Extracellular Vesicles with Clinical Outcome in Hepatocellular Carcinoma. Curr Genomics 2022; 23:109-117. [PMID: 36778976 PMCID: PMC9878836 DOI: 10.2174/1389202923666220304125458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/26/2021] [Accepted: 01/30/2022] [Indexed: 11/22/2022] Open
Abstract
Background: Extracellular vehicles (EVs) contain different proteins that relay information between tumor cells, thus promoting tumorigenesis. Therefore, EVs can serve as an ideal marker for tumor pathogenesis and clinical application. Objective: Here, we characterised EV-specific proteins in hepatocellular carcinoma (HCC) samples and established their potential protein-protein interaction (PPI) networks. Materials and Methods: We used multi-dimensional bioinformatics methods to mine a network module to use as a prognostic signature and validated the model's prediction using additional datasets. The relationship between the prognostic model and tumor immune cells or the tumor microenvironment status was also examined. Results: 1134 proteins from 316 HCC samples were mapped to the exoRBase database. HCC-specific EVs specifically expressed a total of 437 proteins. The PPI network revealed 321 proteins and 938 interaction pathways, which were mined to identify a three network module (3NM) with significant prognostic prediction ability. Validation of the 3NM in two more datasets demonstrated that the model outperformed the other signatures in prognostic prediction ability. Functional analysis revealed that the network proteins were involved in various tumor-related pathways. Additionally, these findings demonstrated a favorable association between the 3NM signature and macrophages, dendritic, and mast cells. Besides, the 3NM revealed the tumor microenvironment status, including hypoxia and inflammation. Conclusion: These findings demonstrate that the 3NM signature reliably predicts HCC pathogenesis. Therefore, the model may be used as an effective prognostic biomarker in managing patients with HCC.
Collapse
Affiliation(s)
- Wenbiao Chen
- Central Molecular Laboratory, People's Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen, 518109, China; ,Department of Respiratory Medicine, People's Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen, 518109, China; ,Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, 518020, China;,These authors contributed equally to this work
| | - Feng Zhang
- Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China,These authors contributed equally to this work
| | - Huixuan Xu
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, 518020, China
| | - Xianliang Hou
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, 518020, China
| | - Donge Tang
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, 518020, China;,Address correspondence to this author at the Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, 518020, China; Tel: +86 0755-25533018; Fax: +86 0755-25533018; E-mail:
| |
Collapse
|
34
|
Li X, Li M, Huang M, Lin Q, Fang Q, Liu J, Chen X, Liu L, Zhan X, Shan H, Lu D, Li Q, Li Z, Zhu X. The multi-molecular mechanisms of tumor-targeted drug resistance in precision medicine. Biomed Pharmacother 2022; 150:113064. [PMID: 35658234 DOI: 10.1016/j.biopha.2022.113064] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 11/02/2022] Open
Abstract
Clinically, cancer drug therapy is still dominated by chemotherapy drugs. Although the emergence of targeted drugs has greatly improved the survival rate of patients with advanced cancer, drug resistance has always been a difficult problem in clinical cancer treatment. At the current level of medicine, most drugs cannot escape the fate of drug resistance. With the emergence and development of gene detection, liquid biopsy ctDNA technology, and single-cell sequencing technology, the molecular mechanism of tumor drug resistance has gradually emerged. Drugs can also be updated in response to drug resistance mechanisms and bring higher survival benefits. The use of new drugs often leads to new mechanisms of resistance. In this review, the multi-molecular mechanisms of drug resistance are introduced, and the overcoming of drug resistance is discussed from the perspective of the tumor microenvironment.
Collapse
Affiliation(s)
- Xinming Li
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China; Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Mingdong Li
- Department of Gastroenterology, Zibo Central Hospital, Zibo, China
| | - Meiying Huang
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Qianyi Lin
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Qiuping Fang
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Jianjiang Liu
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Xiaohui Chen
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Lin Liu
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Xuliang Zhan
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Huisi Shan
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Deshuai Lu
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Qinlan Li
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Zesong Li
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors,Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China.
| | - Xiao Zhu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China; Cancer Research Center, Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
35
|
Qiao L, Yang H, Shao XX, Yin Q, Fu XJ, Wei Q. Research Progress on Nanoplatforms and Nanotherapeutic Strategies in Treating Glioma. Mol Pharm 2022; 19:1927-1951. [DOI: 10.1021/acs.molpharmaceut.1c00856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Li Qiao
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Marine Traditional Chinese Medicine Research Center, Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao 266114, China
| | - Huishu Yang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xin-xin Shao
- Marine Traditional Chinese Medicine Research Center, Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao 266114, China
| | - Qiuyan Yin
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xian-Jun Fu
- Marine Traditional Chinese Medicine Research Center, Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao 266114, China
- Shandong Engineering and Technology Research Center of Traditional Chinese Medicine, Jinan 250355, China
| | - Qingcong Wei
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
36
|
Tumor-Derived Exosome FGD5-AS1 Promotes Angiogenesis, Vascular Permeability, and Metastasis in Thyroid Cancer by Targeting the miR-6838-5p/VAV2 Axis. JOURNAL OF ONCOLOGY 2022; 2022:4702855. [PMID: 35528244 PMCID: PMC9076303 DOI: 10.1155/2022/4702855] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/05/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023]
Abstract
Exosomes are small vesicles with a diameter of 30~150 nm secreted by cells, which are rich in mRNA, microRNA, and long noncoding RNA (lncRNA). The biological functions of most exosomal lncRNAs are not well understood. Studies have shown that tumor exosome FGD5-AS1 plays an important role in the proliferation, migration, and invasion of tumor cells. In this study, SW1736 and KAT18 TC cells with high expression of FGD5-AS1 were screened. Exosomes with high expression of FGD5-AS1 were collected. The collected exosomes were then added to HUVEC cells. After incubation for 24 h, the effects on the proliferation and migration of HUVEC cells and vascular permeability were detected. The results showed that TC cells SW1736 and KAT18 could secrete a large number of exosomes, which could be taken up by HUVEC cells. Overexpression of FGD5-AS1 enhanced proliferation, migration, angiogenesis, and permeability of HUVEC. This effect is achieved through activation of the miR-6838-5p/VAV2 axis. These results suggest that FGD5-AS1 in tumor-derived exoskeleton promotes angiogenesis, vascular permeability, and metastasis by regulating the endothelial miR-6838-5p/VAV2 axis and ultimately promotes the occurrence and development of TC.
Collapse
|
37
|
Zhang Q, Ding J, Wang Y, He L, Xue F. Tumor microenvironment manipulates chemoresistance in ovarian cancer (Review). Oncol Rep 2022; 47:102. [PMID: 35362546 DOI: 10.3892/or.2022.8313] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/22/2022] [Indexed: 11/05/2022] Open
Abstract
Ovarian cancer (OC) is the leading cause of mortality among the various types of gynecological cancer, and >75% of the cases are diagnosed at a late stage. Although platinum‑based chemotherapy is able to help the majority of patients to achieve remission, the disease frequently recurs and acquires chemoresistance, resulting in high mortality rates. The complexity of OC therapy is not solely governed by the intrinsic characteristics of the OC cells (OCCs) themselves, but is also largely dependent on the dynamic communication between OCCs and various components of their surrounding microenvironment. The present review attempts to describe the mutual interplay between OCCs and their surrounding microenvironment. Tumor‑associated macrophages (TAMs) and cancer‑associated fibroblasts (CAFs) are the most abundant stromal cell types in OC. Soluble factors derived from CAFs steadily nourish both the OCCs and TAMs, facilitating their proliferation and immune evasion. ATP binding cassette transporters facilitate the extrusion of cytotoxic molecules, eventually promoting cell survival and multidrug resistance. Extracellular vesicles fulfill their role as genetic exchange vectors, transferring cargo from the donor cells to the recipient cells and propagating oncogenic signaling. A greater understanding of the vital roles of the tumor microenvironment will allow researchers to be open to the prospect of developing therapeutic approaches for combating OC chemoresistance.
Collapse
Affiliation(s)
- Qiaoling Zhang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jiashan Ding
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Linsheng He
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
38
|
Liu X, Zhao S, Sui H, Liu H, Yao M, Su Y, Qu P. MicroRNAs/LncRNAs Modulate MDSCs in Tumor Microenvironment. Front Oncol 2022; 12:772351. [PMID: 35359390 PMCID: PMC8963964 DOI: 10.3389/fonc.2022.772351] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/14/2022] [Indexed: 12/31/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of immature cells derived from bone marrow that play critical immunosuppressive functions in the tumor microenvironment (TME), promoting cancer progression. According to base length, Non-coding RNAs (ncRNAs) are mainly divided into: microRNAs (miRNAs), lncRNAs, snRNAs and CircRNAs. Both miRNA and lncRNA are transcribed by RNA polymerase II, and they play an important role in gene expression under both physiological and pathological conditions. The increasing data have shown that MiRNAs/LncRNAs regulate MDSCs within TME, becoming one of potential breakthrough points at the investigation and treatment of cancer. Therefore, we summarize how miRNAs/lncRNAs mediate the differentiation, expansion and immunosuppressive function of tumor MDSCs in TME. We will then focus on the regulatory mechanisms of exosomal MicroRNAs/LncRNAs on tumor MDSCs. Finally, we will discuss how the interaction of miRNAs/lncRNAs modulates tumor MDSCs.
Collapse
Affiliation(s)
- Xiaocui Liu
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China
| | - Shang Zhao
- Department of Pathophysiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China
| | - Hongshu Sui
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China
| | - Hui Liu
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China
| | - Minhua Yao
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China
| | - Yanping Su
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China
- *Correspondence: Yanping Su, ; Peng Qu,
| | - Peng Qu
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China
- National Institutes of Health (NIH), Bethesda, MD, United States
- *Correspondence: Yanping Su, ; Peng Qu,
| |
Collapse
|
39
|
Rahbar Saadat Y, Barar J. Exosomes as versatile nanoscaled biocompartments in cancer therapy and/or resistance. BIOIMPACTS : BI 2022; 12:87-88. [PMID: 35411296 PMCID: PMC8905586 DOI: 10.34172/bi.2022.24253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Cancer remains to be a major hurdle to global health. Exosomes as a versatile bio-derived platform, hold a bright prospect in nano-scaled delivery/targeting strategies. Shreds of evidence indicate that exosomes have a critical role in drug resistance in cancer cells through various mechanisms including shuttling of miRNAs, drug efflux transporters, and anti-apoptotic signaling. Exosomes' cargo, particularly miRNAs, may exert both resistance and in a few cases sensitivity to the anticancer agents in targeted cells. Therefore, the source and components of the exosomes should be carefully considered before any application. Our aim in this editorial is to further highlight the role of exosomes in the development of resistance to therapy in cancer cells. As a new chapter for drug delivery, the challenges should be elucidated before exosomes emerge as novel nanoplatforms for cancer therapy.
Collapse
Affiliation(s)
- Yalda Rahbar Saadat
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
40
|
Abstract
Exosomes are a new horizon in modern therapy, presenting exciting new opportunities for advanced drug delivery and targeted release. Exosomes are small extracellular vesicles with a size range of 30-100 nm, secreted by all cell types in the human body and carrying a unique collection of DNA fragments, RNA species, lipids, protein biomarkers, transcription factors and metabolites. miRNAs are one of the most common RNA species in exosomes, and they play a role in a variety of biological processes including exocytosis, hematopoiesis and angiogenesis, as well as cellular communication via exosomes. Exosomes can act as cargo to transport this information from donor cells to near and long-distance target cells, participating in the reprogramming of recipient cells.
Collapse
Affiliation(s)
- Nihat Dilsiz
- Molecular Biology & Genetics, Faculty of Engineering & Natural Sciences, Istanbul Medeniyet University, Istanbul, 34700, Turkey
| |
Collapse
|
41
|
Kawashima M, Higuchi H, Kotani A. Significance of trogocytosis and exosome-mediated transport in establishing and maintaining the tumor microenvironment in lymphoid malignancies. J Clin Exp Hematop 2021; 61:192-201. [PMID: 34193756 PMCID: PMC8808107 DOI: 10.3960/jslrt.21005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/05/2021] [Accepted: 04/04/2021] [Indexed: 11/25/2022] Open
Abstract
It is widely accepted that the tumor microenvironment plays an important role in the progression of lymphoid malignancies. Interaction between the tumor and its surrounding immune cells is considered a potential therapeutic target. For example, anti-programmed cell death 1 (PD-1) antibody stimulates the surrounding exhausted immune cells to release PD-1/PD-L1, thereby leading to the regression of PD-L1-positive tumors. Recently, biological phenomena, such as trogocytosis and exosome-mediated transport were demonstrated to be involved in establishing and maintaining the tumor microenvironment. We found that trogocytosis-mediated PD-L1/L2 transfer from tumor cells to monocytes/macrophages is involved in immune dysfunction in classic Hodgkin lymphoma. Exosomes derived from Epstein-Barr virus (EBV)-associated lymphoma cells induce lymphoma tumorigenesis by transferring the EBV-coding microRNAs from the infected cells to macrophages. In this review, we summarized these biological phenomena based on our findings.
Collapse
|
42
|
Chang W, Xiao D, Fang X, Wang J. Phospholipids in small extracellular vesicles: emerging regulators of neurodegenerative diseases and cancer. Cytotherapy 2021; 24:93-100. [PMID: 34742629 DOI: 10.1016/j.jcyt.2021.09.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/26/2021] [Accepted: 09/22/2021] [Indexed: 12/16/2022]
Abstract
Small extracellular vesicles (sEVs) are generated by almost all cell types. They have a bilayer membrane structure that is similar to cell membranes. Thus, the phospholipids contained in sEVs are the main components of cell membranes and function as structural support elements. However, as in-depth research on sEV membrane components is conducted, some phospholipids have been found to participate in cellular biological processes and function as targets for cell-cell communication. Currently, sEVs are being developed as part of drug delivery systems and diagnostic factors for various diseases, especially neurodegenerative diseases and cancer. An understanding of the physiological and pathological roles of sEV phospholipids in cellular processes is essential for their future medical application. In this review, the authors discuss phospholipid components in sEVs of different origins and summarize the roles of phospholipids in sEV biogenesis. The authors further collect the current knowledge on the functional roles of sEV phospholipids in cell-cell communication and bioactivities as signals regulating neurodegenerative diseases and cancer and the possibility of using sEV phospholipids as biomarkers or in drug delivery systems for cancer diagnosis and treatment. Knowledge of sEV phospholipids is important to help us identify directions for future studies.
Collapse
Affiliation(s)
- Wenguang Chang
- Institute for Translational Medicine, The Affiliated Hospital, College of Medicine, Qingdao University, Qingdao, China.
| | - Dandan Xiao
- Institute for Translational Medicine, The Affiliated Hospital, College of Medicine, Qingdao University, Qingdao, China; School of Basic Medical Sciences, College of Medicine, Qingdao University, Qingdao, China
| | - Xinyu Fang
- Institute for Translational Medicine, The Affiliated Hospital, College of Medicine, Qingdao University, Qingdao, China; School of Basic Medical Sciences, College of Medicine, Qingdao University, Qingdao, China
| | - Jianxun Wang
- School of Basic Medical Sciences, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
43
|
Tan J, Wen Y, Li M. Emerging biosensing platforms for quantitative detection of exosomes as diagnostic biomarkers. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
44
|
Abstract
Mesenchymal stem cells (MSCs), a kind of multipotent stem cells with self-renewal ability and multi-differentiation ability, have become the “practical stem cells” for the treatment of diseases. MSCs have immunomodulatory properties and can be used to treat autoimmune diseases, such as systemic lupus erythematosus (SLE) and Crohn’s disease. MSCs also can be used in cancer and aging. At present, many clinical experiments are using MSCs. MSCs can reduce the occurrence of inflammation and apoptosis of tissue cells, and promote the proliferation of endogenous tissue and organ cells, so as to achieve the effect of repairing tissue and organs. MSCs presumably also play an important role in Corona Virus Disease 2019 (COVID-19) infection.
Collapse
|
45
|
Sanchez JI, Jiao J, Kwan SY, Veillon L, Warmoes MO, Tan L, Odewole M, Rich NE, Wei P, Lorenzi PL, Singal AG, Beretta L. Lipidomic Profiles of Plasma Exosomes Identify Candidate Biomarkers for Early Detection of Hepatocellular Carcinoma in Patients with Cirrhosis. Cancer Prev Res (Phila) 2021; 14:955-962. [PMID: 34253566 DOI: 10.1158/1940-6207.capr-20-0612] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/28/2021] [Accepted: 07/07/2021] [Indexed: 12/20/2022]
Abstract
Novel biomarkers for HCC surveillance in cirrhotic patients are urgently needed. Exosomes and their lipid content in particular represent potentially valuable noninvasive diagnostic biomarkers. We isolated exosomes from plasma of 72 cirrhotic patients, including 31 with HCC. Exosomes and unfractionated plasma were processed for untargeted lipidomics using ultra-high-resolution mass spectrometry. A total of 2,864 lipid species, belonging to 52 classes, were identified. Both exosome fractionation and HCC diagnosis had significant impact on the lipid profiles. Ten lipid classes were enriched in HCC exosomes compared with non-HCC exosomes. Dilysocardiolipins were detected in 35% of the HCC exosomes but in none of the non-HCC exosomes (P < 0.001). Cardiolipins and sphingosines had the highest differential effects (fold change of 133.08, q = 0.001 and 38.57, q < 0.001, respectively). In logistic regression analysis, high abundances of exosomal sphingosines, dilysocardiolipins, lysophosphatidylserines, and (O-acyl)-1-hydroxy fatty acids were strongly associated with HCC [OR (95% confidence interval (CI)), 271.1 (14.0-5,251.9), P < 0.001; 46.5 (2.3-939.9), P = 0.012; 14.9 (4.3-51.2), P < 0.001; 10.3 (3.2-33.1), P < 0.001]. Four lipid classes were depleted in HCC exosomes compared with non-HCC exosomes. In logistic regression analysis, lack of detection of sulfatides and acylGlcSitosterol esters was strongly associated with HCC [OR (95% CI): 215.5 (11.5-4,035.9), P < 0.001; 26.7 (1.4-528.4), P = 0.031]. These HCC-associated changes in lipid composition of exosomes reflected alterations in glycerophospholipid metabolism, retrograde endocannabinoid signaling, and ferroptosis. In conclusion, this study identified candidate biomarkers for early detection of HCC as well as altered pathways in exosomes that may contribute to tumor development and progression. PREVENTION RELEVANCE: This study identifies lipids in circulating exosomes, that could serve as biomarkers for the early detection of hepatocellular carcinoma as well as altered pathways in exosomes that may contribute to tumor development and progression.
Collapse
Affiliation(s)
- Jessica I Sanchez
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jingjing Jiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Suet-Ying Kwan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lucas Veillon
- Department of Bioinformatics and Computational Biology, Proteomics and Metabolomics Core Facility, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Marc O Warmoes
- Department of Bioinformatics and Computational Biology, Proteomics and Metabolomics Core Facility, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lin Tan
- Department of Bioinformatics and Computational Biology, Proteomics and Metabolomics Core Facility, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mobolaji Odewole
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas
| | - Nicole E Rich
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas
| | - Peng Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology, Proteomics and Metabolomics Core Facility, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amit G Singal
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas
| | - Laura Beretta
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
46
|
Liao JY, Zhang S. Safety and Efficacy of Personalized Cancer Vaccines in Combination With Immune Checkpoint Inhibitors in Cancer Treatment. Front Oncol 2021; 11:663264. [PMID: 34123821 PMCID: PMC8193725 DOI: 10.3389/fonc.2021.663264] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/04/2021] [Indexed: 02/05/2023] Open
Abstract
Cancer immunotherapy can induce sustained responses in patients with cancers in a broad range of tissues, however, these treatments require the optimized combined therapeutic strategies. Despite immune checkpoint inhibitors (ICIs) have lasting clinical benefit, researchers are trying to combine them with other treatment modalities, and among them the combination with personalized cancer vaccines is attractive. Neoantigens, arising from mutations in cancer cells, can elicit strong immune response without central tolerance and out-target effects, which is a truly personalized method. Growing studies show that the combination can elevate the antitumor efficacy with acceptable safety and minimal additional toxicity compared with single agent vaccine or ICI. Herein, we have searched these preclinical and clinical trials and summarized safety and efficacy of personalized cancer vaccines combined with ICIs in several malignancies. Meanwhile, we discuss the rationale of the combination and future challenges.
Collapse
Affiliation(s)
- Juan-Yan Liao
- Department of Biotherapy, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Research Center of Biotherapy, Chengdu, China
| | - Shuang Zhang
- Department of Biotherapy, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Research Center of Biotherapy, Chengdu, China
| |
Collapse
|
47
|
Carli ALE, Afshar-Sterle S, Rai A, Fang H, O'Keefe R, Tse J, Ferguson FM, Gray NS, Ernst M, Greening DW, Buchert M. Cancer stem cell marker DCLK1 reprograms small extracellular vesicles toward migratory phenotype in gastric cancer cells. Proteomics 2021; 21:e2000098. [PMID: 33991177 DOI: 10.1002/pmic.202000098] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 04/15/2021] [Accepted: 05/12/2021] [Indexed: 12/15/2022]
Abstract
Doublecortin-like kinase 1 (DCLK1) is a putative cancer stem cell marker, a promising diagnostic and prognostic maker for malignant tumors and a proposed driver gene for gastric cancer (GC). DCLK1 overexpression in a majority of solid cancers correlates with lymph node metastases, advanced disease and overall poor-prognosis. In cancer cells, DCLK1 expression has been shown to promote epithelial-to-mesenchymal transition (EMT), driving disruption of cell-cell adhesion, cell migration and invasion. Here, we report that DCLK1 influences small extracellular vesicle (sEV/exosome) biogenesis in a kinase-dependent manner. sEVs isolated from DCLK1 overexpressing human GC cell line MKN1 (MKN1OE -sEVs), promote the migration of parental (non-transfected) MKN1 cells (MKN1PAR ). Quantitative proteome analysis of MKN1OE -sEVs revealed enrichment in migratory and adhesion regulators (STRAP, CORO1B, BCAM, COL3A, CCN1) in comparison to MKN1PAR -sEVs. Moreover, using DCLK1-IN-1, a specific small molecule inhibitor of DCLK1, we reversed the increase in sEV size and concentration in contrast to other EV subtypes, as well as kinase-dependent cargo selection of proteins involved in EV biogenesis (KTN1, CHMP1A, MYO1G) and migration and adhesion processes (STRAP, CCN1). Our findings highlight a specific role of DCLK1-kinase dependent cargo selection for sEVs and shed new light on its role as a regulator of signaling in gastric tumorigenesis.
Collapse
Affiliation(s)
- Annalisa L E Carli
- Cancer Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
| | - Shoukat Afshar-Sterle
- Cancer Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
| | - Alin Rai
- Baker Heart and Diabetes Institute, Molecular Proteomics, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Haoyun Fang
- Baker Heart and Diabetes Institute, Molecular Proteomics, Melbourne, Victoria, Australia
| | - Ryan O'Keefe
- Cancer Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
| | - Janson Tse
- Cancer Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
| | - Fleur M Ferguson
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Matthias Ernst
- Cancer Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
| | - David W Greening
- Baker Heart and Diabetes Institute, Molecular Proteomics, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Michael Buchert
- Cancer Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
48
|
Luo H, Yi B. The role of Exosomes in the Pathogenesis of Nasopharyngeal Carcinoma and the involved Clinical Application. Int J Biol Sci 2021; 17:2147-2156. [PMID: 34239345 PMCID: PMC8241729 DOI: 10.7150/ijbs.59688] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are nanoscale membrane vesicles, which carry biologically active substances of their cell of origin and play an important role in signal transduction and intercellular communication. At present, exosomes have been identified as a promising non-invasive liquid biopsy biomarker in the tissues and circulating blood of nasopharyngeal carcinoma (NPC) and found to participate in regulating pathophysiological process of the tumor. We here review recent insights gained into the molecular mechanisms of exosome-induced cell growth, angiogenesis, metastasis, immunosuppression, radiation resistance and chemotherapy resistance in the development and progression of NPC, as well as the clinical application of exosomes as diagnostic biomarkers and therapeutic agents. We also discuss the limitations and challenges in exosome application. We hope this review may provide some references for the use of exosomes in clinical intervention.
Collapse
Affiliation(s)
- Huidan Luo
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China
| | - Bin Yi
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China
| |
Collapse
|
49
|
Quantification of Circulating Cell Free Mitochondrial DNA in Extracellular Vesicles with PicoGreen™ in Liquid Biopsies: Fast Assessment of Disease/Trauma Severity. Cells 2021; 10:cells10040819. [PMID: 33917426 PMCID: PMC8067453 DOI: 10.3390/cells10040819] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/25/2022] Open
Abstract
The analysis of circulating cell free DNA (ccf-DNA) is an emerging diagnostic tool for the detection and monitoring of tissue injury, disease progression, and potential treatment effects. Currently, most of ccf-DNA in tissue and liquid biopsies is analysed with real-time quantitative PCR (qPCR) that is primer- and template-specific, labour intensive and cost-inefficient. In this report we directly compare the amounts of ccf-DNA in serum of healthy volunteers, and subjects presenting with various stages of lung adenocarcinoma, and survivors of traumatic brain injury using qPCR and quantitative PicoGreen™ fluorescence assay. A significant increase of ccf-DNA in lung adenocarcinoma and traumatic brain injury patients, in comparison to the group of healthy human subjects, was found using both analytical methods. However, the direct correlation between PicoGreen™ fluorescence and qPCR was found only when mitochondrial DNA (mtDNA)-specific primers were used. Further analysis of the location of ccf-DNA indicated that the majority of DNA is located within lumen of extracellular vesicles (EVs) and is easily detected with mtDNA-specific primers. We have concluded that due to the presence of active DNases in the blood, the analysis of DNA within EVs has the potential of providing rapid diagnostic outcomes. Moreover, we speculate that accurate and rapid quantification of ccf-DNA with PicoGreen™ fluorescent probe used as a point of care approach could facilitate immediate assessment and treatment of critically ill patients.
Collapse
|
50
|
Yokoi A, Ochiya T. Exosomes and extracellular vesicles: Rethinking the essential values in cancer biology. Semin Cancer Biol 2021; 74:79-91. [PMID: 33798721 DOI: 10.1016/j.semcancer.2021.03.032] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/17/2021] [Accepted: 03/28/2021] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs) such as exosomes are released by all living cells and contain diverse bioactive molecules, including nucleic acids, proteins, lipids, and metabolites. Accumulating evidence of EV-related functions has revealed that these tiny vesicles can mediate specific cell-to-cell communication. Within the tumor microenvironment, diverse cells are actively interacting with their surroundings via EVs facilitating tumor malignancy by regulating malignant cascades including angiogenesis, immune modulation, and metastasis. This review summarizes the recent studies of fundamental understandings of EVs from the aspect of EV heterogeneity and highlights the role of EVs in the various steps from oncogenic to metastatic processes. The recognition of EV subtypes is necessary to identify which pathways can be affected by EVs and which subtypes can be targeted in therapeutic approaches or liquid biopsies.
Collapse
Affiliation(s)
- Akira Yokoi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan; Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Tokyo Medical University, Tokyo, Japan.
| |
Collapse
|