1
|
Broege A, Rossetti S, Sen A, Menon AS, MacNeil I, Molden J, Laing L. Functional Assessments of Gynecologic Cancer Models Highlight Differences Between Single-Node Inhibitors of the PI3K/AKT/mTOR Pathway and a Pan-PI3K/mTOR Inhibitor, Gedatolisib. Cancers (Basel) 2024; 16:3520. [PMID: 39456616 PMCID: PMC11505998 DOI: 10.3390/cancers16203520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: The PI3K/AKT/mTOR (PAM) pathway is frequently activated in gynecological cancers. Many PAM inhibitors selectively target single PAM pathway nodes, which can lead to reduced efficacy and increased drug resistance. To address these limitations, multiple PAM pathway nodes may need to be inhibited. Gedatolisib, a well-tolerated panPI3K/mTOR inhibitor targeting all Class I PI3K isoforms, mTORC1 and mTORC2, could represent an effective treatment option for patients with gynecologic cancers. Methods: Gedatolisib and other PAM inhibitors (e.g., alpelisib, capivasertib, and everolimus) were tested in endometrial, ovarian, and cervical cancer cell lines by using cell viability, cell proliferation, and flow cytometry assays. Xenograft studies evaluated gedatolisib in combination with a CDK4/6 inhibitor (palbociclib) or an anti-estrogen (fulvestrant). A pseudo-temporal transcriptomic trajectory of endometrial cancer clinical progression was computationally modeled employing data from 554 patients to correlate non-clinical studies with a potential patient group. Results: Gedatolisib induced a substantial decrease in PAM pathway activity in association with the inhibition of cell cycle progression and the decreased cell viability in vitro. Compared to single-node PAM inhibitors, gedatolisib exhibited greater growth-inhibitory effects in almost all cell lines, regardless of the PAM pathway mutations. Gedatolisib combined with either fulvestrant or palbociclib inhibited tumor growth in endometrial and ovarian cancer xenograft models. Conclusions: Gedatolisib in combination with other therapies has shown an acceptable safety profile and promising preliminary efficacy in clinical studies with various solid tumor types. The non-clinical data presented here support the development of gedatolisib combined with CDK4/6 inhibitors and/or hormonal therapy for gynecologic cancer treatment.
Collapse
Affiliation(s)
- Aaron Broege
- Celcuity, Inc., 16305 36th Ave N, Suite 100, Minneapolis, MN 55446, USA; (A.B.); (A.S.); (I.M.); (J.M.)
| | - Stefano Rossetti
- Celcuity, Inc., 16305 36th Ave N, Suite 100, Minneapolis, MN 55446, USA; (A.B.); (A.S.); (I.M.); (J.M.)
| | - Adrish Sen
- Celcuity, Inc., 16305 36th Ave N, Suite 100, Minneapolis, MN 55446, USA; (A.B.); (A.S.); (I.M.); (J.M.)
| | - Arul S. Menon
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA;
- College of Computing, Data Science, and Society, University of California, Berkeley, CA 94720, USA
| | - Ian MacNeil
- Celcuity, Inc., 16305 36th Ave N, Suite 100, Minneapolis, MN 55446, USA; (A.B.); (A.S.); (I.M.); (J.M.)
| | - Jhomary Molden
- Celcuity, Inc., 16305 36th Ave N, Suite 100, Minneapolis, MN 55446, USA; (A.B.); (A.S.); (I.M.); (J.M.)
| | - Lance Laing
- Celcuity, Inc., 16305 36th Ave N, Suite 100, Minneapolis, MN 55446, USA; (A.B.); (A.S.); (I.M.); (J.M.)
| |
Collapse
|
2
|
Matoba Y, Devins KM, Milane L, Manning WB, Mazina V, Yeku OO, Rueda BR. High-Grade Endometrial Cancer: Molecular Subtypes, Current Challenges, and Treatment Options. Reprod Sci 2024; 31:2541-2559. [PMID: 38658487 DOI: 10.1007/s43032-024-01544-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
Although many recent advancements have been made in women's health, perhaps one of the most neglected areas of research is the diagnosis and treatment of high-grade endometrial cancer (EnCa). The molecular classification of EnCa in concert with histology was a major step forward. The integration of profiling for mismatch repair deficiency and Human Epidermal Growth Factor 2 (HER2) overexpression, can further inform treatment options, especially for drug resistant recurrent disease. Recent early phase trials suggest that regardless of subtype, combination therapy with agents that have distinct mechanisms of action is a fruitful approach to the treatment of high-grade EnCa. Unfortunately, although the importance of diagnosis and treatment of high-grade EnCa is well recognized, it is understudied compared to other gynecologic and breast cancers. There remains a tremendous need to couple molecular profiling and biomarker development with promising treatment options to inform new treatment strategies with higher efficacy and safety for all who suffer from high-grade recurrent EnCa.
Collapse
Affiliation(s)
- Yusuke Matoba
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, 60 Blossom St, 02114, Boston, MA, USA
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, 02115, Boston, MA, USA
| | - Kyle M Devins
- Department of Pathology, Massachusetts General Hospital, 021151, Boston, MA, USA
| | - Lara Milane
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, 02115, Boston, MA, USA
| | - William B Manning
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, 60 Blossom St, 02114, Boston, MA, USA
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, 02115, Boston, MA, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, 02114, Boston, MA, USA
| | - Varvara Mazina
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, 60 Blossom St, 02114, Boston, MA, USA
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, 02115, Boston, MA, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, 02114, Boston, MA, USA
| | - Oladapo O Yeku
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, 60 Blossom St, 02114, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, 55 Fruit St, 02114, Boston, MA, USA
| | - Bo R Rueda
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, 60 Blossom St, 02114, Boston, MA, USA.
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, 02115, Boston, MA, USA.
| |
Collapse
|
3
|
Salmon A, Lebeau A, Streel S, Dheur A, Schoenen S, Goffin F, Gonne E, Kridelka F, Kakkos A, Gennigens C. Locally advanced and metastatic endometrial cancer: Current and emerging therapies. Cancer Treat Rev 2024; 129:102790. [PMID: 38972136 DOI: 10.1016/j.ctrv.2024.102790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/09/2024]
Abstract
Until recently, patients diagnosed with locally advanced and metastatic endometrial cancer faced significant challenges in their treatment due to limited options and poor prognostic outcomes. The sequencing of tumors has been a major advancement in its management. It has led to The Cancer Genome Atlas classification currently used in clinical practice and the initiation of several clinical trials for innovative treatments targeting principally signaling pathways, immune checkpoints, DNA integrity, growth factors, hormonal signaling, and metabolism. Numerous clinical trials are investigating a combinatorial approach of these targeted therapies to counter tumoral resistance, cellular compensatory mechanisms, and tumor polyclonality. This review provides a comprehensive overview of historical, current, and promising therapies in advanced and metastatic endometrial cancer. It particularly highlights clinical research on targeted and hormonal therapies, but also immunotherapy, reflecting the evolving landscape of treatment modalities for this disease.
Collapse
Affiliation(s)
- Alixe Salmon
- Department of Medical Oncology, CHU Liège, Liège, Belgium
| | - Alizée Lebeau
- Department of Medical Oncology, CHU Liège, Liège, Belgium; Department of Gynecology and Obstetrics, CHU Liège, Liège, Belgium
| | - Sylvie Streel
- Department of Medical Oncology, CHU Liège, Liège, Belgium
| | - Adriane Dheur
- Department of Gynecology and Obstetrics, CHU Liège, Liège, Belgium
| | - Sophie Schoenen
- Department of Gynecology and Obstetrics, CHU Liège, Liège, Belgium
| | - Frédéric Goffin
- Department of Gynecology and Obstetrics, CHU Liège, Liège, Belgium
| | - Elodie Gonne
- Department of Medical Oncology, CHU Liège, Liège, Belgium
| | | | | | | |
Collapse
|
4
|
Yu C, Yuan X, Yao Q, Xu Y, Zhou X, Hu X, Yang H, Wang H, Zhu X, Ren Y. Clinical application of FIGO 2023 staging system of endometrial cancer in a Chinese cohort. BMC Cancer 2024; 24:862. [PMID: 39026198 PMCID: PMC11264810 DOI: 10.1186/s12885-024-12633-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024] Open
Abstract
OBJECTIVE The International Federation of Gynecology and Obstetrics (FIGO) 2023 staging system for endometrial cancer (EC) was released with incorporating histology, lympho-vascular space invasion, and molecular classification together. Our objective is to further explore the clinical utility and prognostic significance of the 2023 FIGO staging system in China. METHODS A retrospective analysis was conducted for patients who received standard surgeries and underwent genetic testing using multigene next-generation sequencing (NGS) panels between December 2018 and December 2023 at Fudan University Shanghai Cancer Center, Shanghai, China. The genomic and clinical data of all patients were analyzed, and stages were determined by both the 2009 and 2023 FIGO staging systems. Kaplan-Meier estimators and Cox proportional hazards models were used for survival analysis. RESULTS A total of 547 patients were enrolled in the study. After the restaged by the FIGO 2023 staging system, stage shifts occurred in 147/547 (26.9%) patients. In patients with early stages in FIGO 2009 (stage I-II), 63 cases were rearranged to IAmPOLEmut and 53 cases to IICmp53abn due to the molecular classification of POLEmut and p53abn. Altogether 345 cases were in stage I, 107 cases in stage II, 69 cases in stage III, and 26 cases in stage IV according to the FIGO 2023 staging criteria. For stage I diseases, the 3-year PFS rate was 92.7% and 95.3% in 2009 and 2023 FIGO staging systems, respectively. The 3-year PFS of stage II in 2023 FIGO was lower than that of FIGO 2009 (3-year PFS: 85.0% versus 90.9%), especially in substage IIC and IICmp53abn. Three cases (12%) of stage IIIA in FIGO 2009 were shifted to stage IA3 FIGO 2023, with 3-year PFS rates of 90.9% versus 100%, respectively. In NGS analysis, the most prevalent gene alterations were observed in PTEN and PIK3CA. CONCLUSION The FIGO 2023 staging system was proved to be a good predictor of survival for EC patients with enhanced precision compared to FIGO 2009. Predominant stage shifts were observed in early-stage diseases. Distinct gene alterations of different subtypes may help to explore more accurate target therapies.
Collapse
Affiliation(s)
- Changmin Yu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xinhui Yuan
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qianlan Yao
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Institute of Pathology, Fudan University, Shanghai, 200032, China
| | - Yuyin Xu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Institute of Pathology, Fudan University, Shanghai, 200032, China
| | - Xiaoyan Zhou
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Institute of Pathology, Fudan University, Shanghai, 200032, China
| | - Xin Hu
- Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Huijuan Yang
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Huaying Wang
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaoli Zhu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Institute of Pathology, Fudan University, Shanghai, 200032, China.
| | - Yulan Ren
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
5
|
Hamwi MN, Elsayed E, Dabash H, Abuawad A, Aweer NA, Al Zeir F, Pedersen S, Al-Mansoori L, Burgon PG. MLIP and Its Potential Influence on Key Oncogenic Pathways. Cells 2024; 13:1109. [PMID: 38994962 PMCID: PMC11240681 DOI: 10.3390/cells13131109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/27/2024] [Accepted: 06/19/2024] [Indexed: 07/13/2024] Open
Abstract
Muscle-enriched A-type lamin-interacting protein (MLIP) is an emerging protein involved in cellular homeostasis and stress adaptation. Eukaryotic cells regulate various cellular processes, including metabolism, DNA repair, and cell cycle progression, to maintain cellular homeostasis. Disruptions in this homeostasis can lead to diseases such as cancer, characterized by uncontrolled cell growth and division. This review aims to explore for the first time the unique role MLIP may play in cancer development and progression, given its interactions with the PI3K/Akt/mTOR pathway, p53, MAPK9, and FOXO transcription factors, all critical regulators of cellular homeostasis and tumor suppression. We discuss the current understanding of MLIP's involvement in pro-survival pathways and its potential implications in cancer cells' metabolic remodeling and dysregulated homeostasis. Additionally, we examine the potential of MLIP as a novel therapeutic target for cancer treatment. This review aims to shed light on MLIP's potential impact on cancer biology and contribute to developing innovative therapeutic strategies.
Collapse
Affiliation(s)
- Mahmoud N. Hamwi
- College of Medicine, Qatar University, Doha P.O. Box 0974, Qatar; (M.N.H.); (E.E.); (N.A.A.); (F.A.Z.); (S.P.)
| | - Engy Elsayed
- College of Medicine, Qatar University, Doha P.O. Box 0974, Qatar; (M.N.H.); (E.E.); (N.A.A.); (F.A.Z.); (S.P.)
| | - Hanan Dabash
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar; (H.D.); (A.A.)
| | - Amani Abuawad
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar; (H.D.); (A.A.)
| | - Noor A. Aweer
- College of Medicine, Qatar University, Doha P.O. Box 0974, Qatar; (M.N.H.); (E.E.); (N.A.A.); (F.A.Z.); (S.P.)
| | - Faissal Al Zeir
- College of Medicine, Qatar University, Doha P.O. Box 0974, Qatar; (M.N.H.); (E.E.); (N.A.A.); (F.A.Z.); (S.P.)
| | - Shona Pedersen
- College of Medicine, Qatar University, Doha P.O. Box 0974, Qatar; (M.N.H.); (E.E.); (N.A.A.); (F.A.Z.); (S.P.)
| | - Layla Al-Mansoori
- Biomedical Research Centre, Qatar University, Doha P.O. Box 2713, Qatar
| | - Patrick G. Burgon
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar; (H.D.); (A.A.)
| |
Collapse
|
6
|
Yang FF, Zhao TT, Milaneh S, Zhang C, Xiang DJ, Wang WL. Small molecule targeted therapies for endometrial cancer: progress, challenges, and opportunities. RSC Med Chem 2024; 15:1828-1848. [PMID: 38911148 PMCID: PMC11187550 DOI: 10.1039/d4md00089g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/10/2024] [Indexed: 06/25/2024] Open
Abstract
Endometrial cancer (EC) is a common malignancy among women worldwide, and its recurrence makes it a common cause of cancer-related death. Surgery and external radiation, chemotherapy, or a combination of strategies are the cornerstone of therapy for EC patients. However, adjuvant treatment strategies face certain drawbacks, such as resistance to chemotherapeutic drugs; therefore, it is imperative to explore innovative therapeutic strategies to improve the prognosis of EC. With the development of pathology and pathophysiology, several biological targets associated with EC have been identified, including PI3K/Akt/mTOR, PARP, GSK-3β, STAT-3, and VEGF. In this review, we summarize the progress of small molecule targeted therapies in terms of both basic research and clinical trials and provide cases of small molecules combined with fluorescence properties in the clinical applications of integrated diagnosis and treatment. We hope that this review will facilitate the further understanding of the regulatory mechanism governing the dysregulation of oncogenic signaling in EC and provide insights into the possible future directions of targeted therapeutic regimens for EC treatment by developing new agents with fluorescence properties for the clinical applications of integrated diagnosis and treatment.
Collapse
Affiliation(s)
- Fei-Fei Yang
- Yixing People's Hospital Yixing Jiangsu 214200 China
| | - Tian-Tian Zhao
- School of Life Sciences and Health Engineering, Jiangnan University Wuxi 214122 China
| | - Slieman Milaneh
- School of Life Sciences and Health Engineering, Jiangnan University Wuxi 214122 China
- Department of Pharmaceutical and Chemical Industries, Higher Institute of Applied Science and Technology Damascus Syria
| | - Chun Zhang
- School of Life Sciences and Health Engineering, Jiangnan University Wuxi 214122 China
| | - Da-Jun Xiang
- Xishan People's Hospital of Wuxi City Wuxi Jiangsu 214105 China
| | - Wen-Long Wang
- Yixing People's Hospital Yixing Jiangsu 214200 China
- School of Life Sciences and Health Engineering, Jiangnan University Wuxi 214122 China
| |
Collapse
|
7
|
Shen X, Xia Y, Lu H, Zheng P, Wang J, Chen Y, Xu C, Qiu C, Zhang Y, Xiao Z, Zou P, Cui R, Ni D. Synergistic targeting of TrxR1 and ATM/AKT pathway in human colon cancer cells. Biomed Pharmacother 2024; 174:116507. [PMID: 38565059 DOI: 10.1016/j.biopha.2024.116507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024] Open
Abstract
Thioredoxin reductase 1 (TrxR1) has emerged as a promising target for cancer therapy. In our previous research, we discovered several new TrxR1 inhibitors and found that they all have excellent anti-tumor activity. At the same time, we found these TrxR1 inhibitors all lead to an increase in AKT phosphorylation in cancer cells, but the detailed role of AKT phosphorylation in TrxR1 inhibitor-mediated cell death remains unclear. In this study, we identified the combination of AKT and TrxR1 inhibitor displayed a strong synergistic effect in colon cancer cells. Furthermore, we demonstrated that the synergistic effect of auranofin (TrxR1 inhibitor) and MK-2206 (AKT inhibitor) was caused by ROS accumulation. Importantly, we found that ATM inhibitor KU-55933 can block the increase of AKT phosphorylation caused by auranofin, and exhibited a synergistic effect with auranofin. Taken together, our study demonstrated that the activation of ATM/AKT pathway is a compensatory mechanism to cope with ROS accumulation induced by TrxR1 inhibitor, and synergistic targeting of TrxR1 and ATM/AKT pathway is a promising strategy for treating colon cancer.
Collapse
Affiliation(s)
- Xin Shen
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou 325035, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Yiqun Xia
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou 325035, China.
| | - Hui Lu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Peisen Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Junqi Wang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou 325035, China.
| | - Yinghua Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Chenxin Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Chenyu Qiu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Yafei Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Zhongxiang Xiao
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou 325035, China.
| | - Peng Zou
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou 325035, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Ri Cui
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Daoyong Ni
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
8
|
Duan XP, Qin BD, Jiao XD, Liu K, Wang Z, Zang YS. New clinical trial design in precision medicine: discovery, development and direction. Signal Transduct Target Ther 2024; 9:57. [PMID: 38438349 PMCID: PMC10912713 DOI: 10.1038/s41392-024-01760-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 03/06/2024] Open
Abstract
In the era of precision medicine, it has been increasingly recognized that individuals with a certain disease are complex and different from each other. Due to the underestimation of the significant heterogeneity across participants in traditional "one-size-fits-all" trials, patient-centered trials that could provide optimal therapy customization to individuals with specific biomarkers were developed including the basket, umbrella, and platform trial designs under the master protocol framework. In recent years, the successive FDA approval of indications based on biomarker-guided master protocol designs has demonstrated that these new clinical trials are ushering in tremendous opportunities. Despite the rapid increase in the number of basket, umbrella, and platform trials, the current clinical and research understanding of these new trial designs, as compared with traditional trial designs, remains limited. The majority of the research focuses on methodologies, and there is a lack of in-depth insight concerning the underlying biological logic of these new clinical trial designs. Therefore, we provide this comprehensive review of the discovery and development of basket, umbrella, and platform trials and their underlying logic from the perspective of precision medicine. Meanwhile, we discuss future directions on the potential development of these new clinical design in view of the "Precision Pro", "Dynamic Precision", and "Intelligent Precision". This review would assist trial-related researchers to enhance the innovation and feasibility of clinical trial designs by expounding the underlying logic, which be essential to accelerate the progression of precision medicine.
Collapse
Affiliation(s)
- Xiao-Peng Duan
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Bao-Dong Qin
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xiao-Dong Jiao
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ke Liu
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zhan Wang
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yuan-Sheng Zang
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
9
|
Dou Y, Katsnelson L, Zhang B, Fenyö D, Liu T. Proteogenomics unveils mechanistic insights to precision oncology. Clin Transl Med 2023; 13:e1477. [PMID: 38009415 PMCID: PMC10679970 DOI: 10.1002/ctm2.1477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/28/2023] Open
Affiliation(s)
- Yongchao Dou
- Lester and Sue Smith Breast CenterBaylor College of MedicineHoustonTexasUSA
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexasUSA
- Dan L Duncan Comprehensive Cancer CenterBaylor College of MedicineHoustonTexasUSA
| | - Lizabeth Katsnelson
- NYU Grossman School of MedicineInstitute for Systems GeneticsNew YorkNew YorkUSA
- Department of Biochemistry and Molecular PharmacologyNYU Grossman School of MedicineNew YorkNew YorkUSA
| | - Bing Zhang
- Lester and Sue Smith Breast CenterBaylor College of MedicineHoustonTexasUSA
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexasUSA
- Dan L Duncan Comprehensive Cancer CenterBaylor College of MedicineHoustonTexasUSA
| | - David Fenyö
- NYU Grossman School of MedicineInstitute for Systems GeneticsNew YorkNew YorkUSA
- Department of Biochemistry and Molecular PharmacologyNYU Grossman School of MedicineNew YorkNew YorkUSA
| | - Tao Liu
- Biological Sciences DivisionPacific Northwest National LaboratoryRichlandWashingtonUSA
| |
Collapse
|
10
|
Jeong YG, Katuwal NB, Kang MS, Ghosh M, Hong SD, Park SM, Kim SG, Kim TH, Moon YW. Combined PI3K Inhibitor and Eribulin Enhances Anti-Tumor Activity in Preclinical Models of Paclitaxel-Resistant, PIK3CA-Mutated Endometrial Cancer. Cancers (Basel) 2023; 15:4887. [PMID: 37835582 PMCID: PMC10571568 DOI: 10.3390/cancers15194887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
Endometrial cancer stands as the predominant gynecological malignancy in developed nations. For advanced or recurrent disease, paclitaxel-based chemotherapy is the standard front-line therapy. However, paclitaxel resistance eternally develops. Based on the high prevalence of phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) mutation, reaching 50%, in endometrial cancer, we preclinically investigated the effectiveness of a combination of a phosphatidylinositol 3-kinase (PI3K) inhibitor with eribulin, a post-paclitaxel therapy for breast cancer, in treating paclitaxel-resistant, PIK3CA-mutated endometrial cancer. We generated paclitaxel-resistant cell lines from PIK3CA-mutated endometrial cancer cell lines by gradually increasing the concentration of paclitaxel in cell cultures. We observed that the PI3K/AKT and epithelial-mesenchymal transition (EMT) pathways in paclitaxel-resistant cells were significantly upregulated compared with those in parental cells. Then, we demonstrated that the combination of alpelisib (a PI3K inhibitor) and eribulin more effectively suppressed the cellular growth of paclitaxel-resistant cells in in vitro and in vivo xenograft models. Mechanistically, we demonstrated that the effect of the combination could be enhanced by inhibiting both the PI3K/AKT and EMT pathways. Therefore, we suggest that paclitaxel resistance is associated with the activation of the PIK3/AKT pathway in PIK3CA-mutated endometrial cancer, and the combination of a PI3K inhibitor and eribulin merits further clinical investigation.
Collapse
Affiliation(s)
- Yeong Gyu Jeong
- Department of Biomedical Science, The Graduate School, CHA University, Seongnam-si 13488, Republic of Korea (M.S.K.)
| | - Nar Bahadur Katuwal
- Department of Biomedical Science, The Graduate School, CHA University, Seongnam-si 13488, Republic of Korea (M.S.K.)
| | - Min Sil Kang
- Department of Biomedical Science, The Graduate School, CHA University, Seongnam-si 13488, Republic of Korea (M.S.K.)
| | - Mithun Ghosh
- Department of Biomedical Science, The Graduate School, CHA University, Seongnam-si 13488, Republic of Korea (M.S.K.)
| | - Sa Deok Hong
- Department of Biomedical Science, The Graduate School, CHA University, Seongnam-si 13488, Republic of Korea (M.S.K.)
| | - Seong Min Park
- Department of Biomedical Science, The Graduate School, CHA University, Seongnam-si 13488, Republic of Korea (M.S.K.)
| | - Seul-Gi Kim
- Hematology and Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea;
| | - Tae Hoen Kim
- Department of Pathology, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea
| | - Yong Wha Moon
- Hematology and Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea;
| |
Collapse
|
11
|
Dou Y, Katsnelson L, Gritsenko MA, Hu Y, Reva B, Hong R, Wang YT, Kolodziejczak I, Lu RJH, Tsai CF, Bu W, Liu W, Guo X, An E, Arend RC, Bavarva J, Chen L, Chu RK, Czekański A, Davoli T, Demicco EG, DeLair D, Devereaux K, Dhanasekaran SM, Dottino P, Dover B, Fillmore TL, Foxall M, Hermann CE, Hiltke T, Hostetter G, Jędryka M, Jewell SD, Johnson I, Kahn AG, Ku AT, Kumar-Sinha C, Kurzawa P, Lazar AJ, Lazcano R, Lei JT, Li Y, Liao Y, Lih TSM, Lin TT, Martignetti JA, Masand RP, Matkowski R, McKerrow W, Mesri M, Monroe ME, Moon J, Moore RJ, Nestor MD, Newton C, Omelchenko T, Omenn GS, Payne SH, Petyuk VA, Robles AI, Rodriguez H, Ruggles KV, Rykunov D, Savage SR, Schepmoes AA, Shi T, Shi Z, Tan J, Taylor M, Thiagarajan M, Wang JM, Weitz KK, Wen B, Williams CM, Wu Y, Wyczalkowski MA, Yi X, Zhang X, Zhao R, Mutch D, Chinnaiyan AM, Smith RD, Nesvizhskii AI, Wang P, Wiznerowicz M, Ding L, Mani DR, Zhang H, Anderson ML, Rodland KD, Zhang B, Liu T, Fenyö D. Proteogenomic insights suggest druggable pathways in endometrial carcinoma. Cancer Cell 2023; 41:1586-1605.e15. [PMID: 37567170 PMCID: PMC10631452 DOI: 10.1016/j.ccell.2023.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 03/25/2023] [Accepted: 07/18/2023] [Indexed: 08/13/2023]
Abstract
We characterized a prospective endometrial carcinoma (EC) cohort containing 138 tumors and 20 enriched normal tissues using 10 different omics platforms. Targeted quantitation of two peptides can predict antigen processing and presentation machinery activity, and may inform patient selection for immunotherapy. Association analysis between MYC activity and metformin treatment in both patients and cell lines suggests a potential role for metformin treatment in non-diabetic patients with elevated MYC activity. PIK3R1 in-frame indels are associated with elevated AKT phosphorylation and increased sensitivity to AKT inhibitors. CTNNB1 hotspot mutations are concentrated near phosphorylation sites mediating pS45-induced degradation of β-catenin, which may render Wnt-FZD antagonists ineffective. Deep learning accurately predicts EC subtypes and mutations from histopathology images, which may be useful for rapid diagnosis. Overall, this study identified molecular and imaging markers that can be further investigated to guide patient stratification for more precise treatment of EC.
Collapse
Affiliation(s)
- Yongchao Dou
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lizabeth Katsnelson
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Marina A Gritsenko
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Yingwei Hu
- Department of Pathology and Oncology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Boris Reva
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Runyu Hong
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Yi-Ting Wang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Iga Kolodziejczak
- International Institute for Molecular Oncology, 20-203 Poznań, Poland; Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Rita Jui-Hsien Lu
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Wen Bu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wenke Liu
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Xiaofang Guo
- Division of Gynecologic Oncology, University of South Florida Morsani College of Medicine and Tampa General Hospital Cancer Institute, Tampa, FL 33606, USA
| | - Eunkyung An
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Rebecca C Arend
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, AL 35249, USA
| | - Jasmin Bavarva
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Lijun Chen
- Department of Pathology and Oncology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Rosalie K Chu
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Andrzej Czekański
- Wroclaw Medical University and Lower Silesian Oncology, Pulmonology and Hematology Center (DCOPIH), Wrocław, Poland
| | - Teresa Davoli
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Elizabeth G Demicco
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Deborah DeLair
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Kelly Devereaux
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Saravana M Dhanasekaran
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter Dottino
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bailee Dover
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, AL 35249, USA
| | - Thomas L Fillmore
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - McKenzie Foxall
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, AL 35249, USA
| | - Catherine E Hermann
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Tara Hiltke
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | | | - Marcin Jędryka
- Wroclaw Medical University and Lower Silesian Oncology, Pulmonology and Hematology Center (DCOPIH), Wrocław, Poland
| | - Scott D Jewell
- Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Isabelle Johnson
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Andrea G Kahn
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35249, USA
| | - Amy T Ku
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chandan Kumar-Sinha
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Paweł Kurzawa
- Heliodor Swiecicki Clinical Hospital in Poznan ul. Przybyszewskiego 49, 60-355 Poznań, Poland; Poznań University of Medical Sciences, 61-701 Poznań, Poland
| | - Alexander J Lazar
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rossana Lazcano
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jonathan T Lei
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yi Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuxing Liao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tung-Shing M Lih
- Department of Pathology and Oncology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Tai-Tu Lin
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - John A Martignetti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ramya P Masand
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rafał Matkowski
- Wroclaw Medical University and Lower Silesian Oncology, Pulmonology and Hematology Center (DCOPIH), Wrocław, Poland
| | - Wilson McKerrow
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Matthew E Monroe
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Jamie Moon
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Michael D Nestor
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Chelsea Newton
- Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | | | - Gilbert S Omenn
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA; School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Samuel H Payne
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Kelly V Ruggles
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Division of Precision Medicine, Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Dmitry Rykunov
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sara R Savage
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Athena A Schepmoes
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Zhiao Shi
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jimin Tan
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Mason Taylor
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Mathangi Thiagarajan
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Joshua M Wang
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Karl K Weitz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Bo Wen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - C M Williams
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Yige Wu
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Matthew A Wyczalkowski
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Xinpei Yi
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xu Zhang
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Rui Zhao
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - David Mutch
- Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Maciej Wiznerowicz
- International Institute for Molecular Oncology, 60-203 Poznań, Poland; Heliodor Swiecicki Clinical Hospital in Poznan ul. Przybyszewskiego 49, 60-355 Poznań, Poland; Poznań University of Medical Sciences, 61-701 Poznań, Poland
| | - Li Ding
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - D R Mani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Hui Zhang
- Department of Pathology and Oncology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Matthew L Anderson
- Division of Gynecologic Oncology, University of South Florida Morsani College of Medicine and Tampa General Hospital Cancer Institute, Tampa, FL 33606, USA.
| | - Karin D Rodland
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR 97221, USA.
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | - David Fenyö
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
12
|
Raith F, O’Donovan DH, Lemos C, Politz O, Haendler B. Addressing the Reciprocal Crosstalk between the AR and the PI3K/AKT/mTOR Signaling Pathways for Prostate Cancer Treatment. Int J Mol Sci 2023; 24:ijms24032289. [PMID: 36768610 PMCID: PMC9917236 DOI: 10.3390/ijms24032289] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
The reduction in androgen synthesis and the blockade of the androgen receptor (AR) function by chemical castration and AR signaling inhibitors represent the main treatment lines for the initial stages of prostate cancer. Unfortunately, resistance mechanisms ultimately develop due to alterations in the AR pathway, such as gene amplification or mutations, and also the emergence of alternative pathways that render the tumor less or, more rarely, completely independent of androgen activation. An essential oncogenic axis activated in prostate cancer is the phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway, as evidenced by the frequent alterations of the negative regulator phosphatase and tensin homolog (PTEN) and by the activating mutations in PI3K subunits. Additionally, crosstalk and reciprocal feedback loops between androgen signaling and the PI3K/AKT/mTOR signaling cascade that activate pro-survival signals and play an essential role in disease recurrence and progression have been evidenced. Inhibitors addressing different players of the PI3K/AKT/mTOR pathway have been evaluated in the clinic. Only a limited benefit has been reported in prostate cancer up to now due to the associated side effects, so novel combination approaches and biomarkers predictive of patient response are urgently needed. Here, we reviewed recent data on the crosstalk between AR signaling and the PI3K/AKT/mTOR pathway, the selective inhibitors identified, and the most advanced clinical studies, with a focus on combination treatments. A deeper understanding of the complex molecular mechanisms involved in disease progression and treatment resistance is essential to further guide therapeutic approaches with improved outcomes.
Collapse
Affiliation(s)
- Fabio Raith
- Research & Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany
| | - Daniel H. O’Donovan
- Research & Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany
| | - Clara Lemos
- Bayer Research and Innovation Center, Bayer US LLC, 238 Main Street, Cambridge, MA 02142, USA
| | - Oliver Politz
- Research & Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany
| | - Bernard Haendler
- Research & Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany
- Correspondence: ; Tel.: +49-30-2215-41198
| |
Collapse
|
13
|
Li Q, Li Z, Luo T, Shi H. Targeting the PI3K/AKT/mTOR and RAF/MEK/ERK pathways for cancer therapy. MOLECULAR BIOMEDICINE 2022; 3:47. [PMID: 36539659 PMCID: PMC9768098 DOI: 10.1186/s43556-022-00110-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/10/2022] [Indexed: 12/24/2022] Open
Abstract
The PI3K/AKT/mTOR and RAF/MEK/ERK pathways are commonly activated by mutations and chromosomal translocation in vital targets. The PI3K/AKT/mTOR signaling pathway is dysregulated in nearly all kinds of neoplasms, with the component in this pathway alternations. RAF/MEK/ERK signaling cascades are used to conduct signaling from the cell surface to the nucleus to mediate gene expression, cell cycle processes and apoptosis. RAS, B-Raf, PI3K, and PTEN are frequent upstream alternative sites. These mutations resulted in activated cell growth and downregulated cell apoptosis. The two pathways interact with each other to participate in tumorigenesis. PTEN alterations suppress RAF/MEK/ERK pathway activity via AKT phosphorylation and RAS inhibition. Several inhibitors targeting major components of these two pathways have been supported by the FDA. Dozens of agents in these two pathways have attracted great attention and have been assessed in clinical trials. The combination of small molecular inhibitors with traditional regimens has also been explored. Furthermore, dual inhibitors provide new insight into antitumor activity. This review will further comprehensively describe the genetic alterations in normal patients and tumor patients and discuss the role of targeted inhibitors in malignant neoplasm therapy. We hope this review will promote a comprehensive understanding of the role of the PI3K/AKT/mTOR and RAF/MEK/ERK signaling pathways in facilitating tumors and will help direct drug selection for tumor therapy.
Collapse
Affiliation(s)
- Qingfang Li
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, Chengdu, China
| | - Zhihui Li
- Department of Oncology, The General Hospital of Western Theater Command, Chengdu, PR China
| | - Ting Luo
- Department of Breast, Cancer Center, West China Hospital, Sichuan University, 610041, Chengdu, P. R. China.
| | - Huashan Shi
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, 610041, Chengdu, P. R. China.
| |
Collapse
|
14
|
Shishido K, Reinders A, Asuthkar S. Epigenetic regulation of radioresistance: insights from preclinical and clinical studies. Expert Opin Investig Drugs 2022; 31:1359-1375. [PMID: 36524403 DOI: 10.1080/13543784.2022.2158810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Oftentimes, radiation therapy (RT) is ineffective due to the development of radioresistance (RR). However, studies have shown that targeting epigenetic modifiers to enhance radiosensitivity represents a promising direction of clinical investigation. AREAS COVERED This review discusses the mechanisms by which epigenetic modifiers alter radiosensitivity through dysregulation of MAPK-ERK and AKT-mTOR signaling. Finally, we discuss the clinical directions for targeting epigenetic modifiers and current radiology techniques used in the clinic. METHODOLOGY We searched PubMed and ScienceDirect databases from April 4th, 2022 to October 18th, 2022. We examined 226 papers related to radioresistance, epigenetics, MAPK, and PI3K/AKT/mTOR signaling. 194 papers were selected for this review. Keywords used for this search include, 'radioresistance,' 'radiosensitivity,' 'radiation,' 'radiotherapy,' 'particle radiation,' 'photon radiation,' 'epigenetic modifiers,' 'MAPK,' 'AKT,' 'mTOR,' 'cancer,' and 'PI3K.' We examined 41 papers related to clinical trials on the aforementioned topics. Outcomes of interest were safety, overall survival (OS), dose-limiting toxicities (DLT), progression-free survival (PFS), and maximum tolerated dose (MTD). EXPERT OPINION Current studies focusing on epigenetic mechanisms of RR strongly support the use of targeting epigenetic modifiers as adjuvants to standard cancer therapies. To further the success of such treatments and their clinical benefit , both preclinical and clinical studies are needed to broaden the scope of known radioresistant mechanisms.
Collapse
Affiliation(s)
- Katherine Shishido
- Department of Cancer Biology and Pharmacology and Department of Pediatrics, University of Illinois College of Medicine Peoria, Peoria, IL, United States of America
| | - Alexis Reinders
- Department of Cancer Biology and Pharmacology and Department of Pediatrics, University of Illinois College of Medicine Peoria, Peoria, IL, United States of America
| | - Swapna Asuthkar
- Department of Cancer Biology and Pharmacology and Department of Pediatrics, University of Illinois College of Medicine Peoria, Peoria, IL, United States of America
| |
Collapse
|
15
|
Targeted Therapies in the Treatment of Uterine Serous Carcinoma. Curr Treat Options Oncol 2022; 23:1804-1817. [PMID: 36447064 DOI: 10.1007/s11864-022-01030-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2022] [Indexed: 12/05/2022]
Abstract
OPINION STATEMENT Despite the dismal prognosis of uterine serous carcinoma (USC), recent advances in molecular classification and targeted treatments have demonstrated improvements in survival outcomes for patients both in the upfront and recurrent treatment settings. After appropriate surgical staging and surgical cytoreduction as indicated, correct pathologic and molecular classification of USC is important to provide the most appropriate systemic adjuvant treatment. HER2-targeted agents are one of the most important advances in the treatment of USC in decades. Thus, for HER2-positive tumors, the addition of trastuzumab to conventional chemotherapy is indicated in those with advanced stage and/or recurrent disease. Treatment with pembrolizumab and lenvatinib suggests a 50% response rate in women with recurrent disease which serves as a promising targeted treatment strategy. Overall, emerging targeted therapeutic options with antibody-drug conjugates (i.e. targeting HER2, folic acid receptor alpha, or Trop-2), combinations of immunotherapies and tyrosine kinase inhibitors, PARP inhibitors, WEE1 inhibitors, and AKT inhibitors shed further promise in advancements of effective disease-modifying treatments for this unmet medical need for patients with USC. Several trials evaluating these targeted agents are ongoing, and those results are eagerly awaited. As such, enrollment of patients in clinical trials is highly recommended as it will provide patients with a higher level of personalized cancer care.
Collapse
|
16
|
Tronconi F, Nero C, Giudice E, Salutari V, Musacchio L, Ricci C, Carbone MV, Ghizzoni V, Perri MT, Camarda F, Gentile M, Berardi R, Scambia G, Lorusso D. Advanced and recurrent endometrial cancer: State of the art and future perspectives. Crit Rev Oncol Hematol 2022; 180:103851. [PMID: 36257537 DOI: 10.1016/j.critrevonc.2022.103851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/02/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
|
17
|
Avila M, Grinsfelder MO, Pham M, Westin SN. Targeting the PI3K Pathway in Gynecologic Malignancies. Curr Oncol Rep 2022; 24:1669-1676. [PMID: 36401704 PMCID: PMC10862662 DOI: 10.1007/s11912-022-01326-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2022] [Indexed: 11/21/2022]
Abstract
PURPOSE OF REVIEW This review explores the PI3K pathway aberrations common in gynecologic malignancies, the relevant therapeutic targets that have been explored to date particularly given their success in endometrial cancers, and predictive biomarkers of response to therapy. RECENT FINDINGS Landmark trials have been noted involving this pathway, particularly in endometrial cancers. One phase II trial of the potent orally bioavailable mTOR inhibitor, everolimus, in combination with letrozole demonstrated an unprecedented clinical benefit rate (CBR) of 40% and high objective response rate (RR) of 32% in hormone agnostic endometrial cancers. This was followed by GOG 3007 that compared everolimus and letrozole to hormonal therapy yielding similar response rates but double progression-free survival rates. The phosphoinositide 3-kinase (PI3K) signaling pathway is implicated in tumorigenesis given its regulation over cell growth, cellular trafficking, and angiogenesis. In gynecologic malignancies, alterations in PI3K signaling are common. Therefore, developing modulators of the PI3K pathway and identifying molecular markers to predict response are of great interest for these cancer types.
Collapse
Affiliation(s)
- Monica Avila
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Dr. CPB 6.3279, Houston, TX, 77030, USA
| | - Michaela Onstad Grinsfelder
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Dr. CPB 6.3279, Houston, TX, 77030, USA
| | - Melissa Pham
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Dr. CPB 6.3279, Houston, TX, 77030, USA
| | - Shannon N Westin
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Dr. CPB 6.3279, Houston, TX, 77030, USA.
| |
Collapse
|
18
|
Garg V, Jayaraj AS, Kumar L. Novel approaches for treatment of endometrial carcinoma. Curr Probl Cancer 2022; 46:100895. [PMID: 35986972 DOI: 10.1016/j.currproblcancer.2022.100895] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/03/2022]
Abstract
Endometrial cancer (EC) is common malignancy in women and its incidence is slowly on the rise. Accurate surgical staging, with aggressive cytoreduction when indicated, remains the most critical step in the treatment. Careful pathological evaluation and/or molecular risk stratification guides for proper systemic adjuvant radiotherapy ± chemotherapy. Recurrent and metastatic EC has dismal prognosis and palliative therapies (chemotherapy, hormonal therapy or radiation) forms the backbone of treatment. There is an unmet need of newer therapies to improve survival in such cases. A number of tyrosine kinase inhibitors are currently under evaluation. Recent data on therapeutic targeting of HER2 positive serous EC is exciting. Data on check point inhibitors particularly based on biomarker select population has raised hope for potentially effective treatment for women with high risk endometrial cancer .
Collapse
Affiliation(s)
- Vikas Garg
- Department of Medical Oncology and Gynaecology, All India Institute of Medical Sciences, New Delhi, India
| | - Aarthi S Jayaraj
- Department of Medical Oncology and Gynaecology, All India Institute of Medical Sciences, New Delhi, India
| | - Lalit Kumar
- Department of Medical Oncology and Gynaecology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
19
|
Mortazavi M, Moosavi F, Martini M, Giovannetti E, Firuzi O. Prospects of targeting PI3K/AKT/mTOR pathway in pancreatic cancer. Crit Rev Oncol Hematol 2022; 176:103749. [PMID: 35728737 DOI: 10.1016/j.critrevonc.2022.103749] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/11/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has one of the worst prognoses among all malignancies. PI3K/AKT/mTOR signaling pathway, a main downstream effector of KRAS is involved in the regulation of key hallmarks of cancer. We here report that whole-genome analyses demonstrate the frequent involvement of aberrant activations of PI3K/AKT/mTOR pathway components in PDAC patients and critically evaluate preclinical and clinical evidence on the application of PI3K/AKT/mTOR pathway targeting agents. Combinations of these agents with chemotherapeutics or other targeted therapies, including the modulators of cyclin-dependent kinases, receptor tyrosine kinases and RAF/MEK/ERK pathway are also examined. Although human genetic studies and preclinical pharmacological investigations have provided strong evidence on the role of PI3K/AKT/mTOR pathway in PDAC, clinical studies in general have not been as promising. Patient stratification seems to be the key missing point and with the advent of biomarker-guided clinical trials, targeting PI3K/AKT/mTOR pathway could provide valuable assets for treatment of pancreatic cancer patients.
Collapse
Affiliation(s)
- Motahareh Mortazavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Miriam Martini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, the Netherlands; Cancer Pharmacology Lab, Fondazine Pisana per la Scienza, Pisa, Italy
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
20
|
Stover EH, Xiong N, Myers AP, Tayob N, Engvold V, Polak M, Broaddus RR, Makker V, Drapkin R, Liu JF, Horowitz NS, Meric-Bernstam F, Aghajanian C, Coleman RL, Mills GB, Cantley LC, Matulonis UA, Westin SN, Konstantinopoulos PA. A phase II study of MK-2206, an AKT inhibitor, in uterine serous carcinoma. Gynecol Oncol Rep 2022; 40:100974. [PMID: 35434236 PMCID: PMC9011027 DOI: 10.1016/j.gore.2022.100974] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 11/24/2022] Open
|
21
|
Fumarate inhibits PTEN to promote tumorigenesis and therapeutic resistance of type2 papillary renal cell carcinoma. Mol Cell 2022; 82:1249-1260.e7. [PMID: 35216667 DOI: 10.1016/j.molcel.2022.01.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/10/2021] [Accepted: 01/28/2022] [Indexed: 12/22/2022]
Abstract
Fumarate is an oncometabolite. However, the mechanism underlying fumarate-exerted tumorigenesis remains unclear. Here, utilizing human type2 papillary renal cell carcinoma (PRCC2) as a model, we show that fumarate accumulates in cells deficient in fumarate hydratase (FH) and inhibits PTEN to activate PI3K/AKT signaling. Mechanistically, fumarate directly reacts with PTEN at cysteine 211 (C211) to form S-(2-succino)-cysteine. Succinated C211 occludes tethering of PTEN with the cellular membrane, thereby diminishing its inhibitory effect on the PI3K/AKT pathway. Functionally, re-expressing wild-type FH or PTEN C211S phenocopies an AKT inhibitor in suppressing tumor growth and sensitizing PRCC2 to sunitinib. Analysis of clinical specimens indicates that PTEN C211 succination levels are positively correlated with AKT activation in PRCC2. Collectively, these findings elucidate a non-metabolic, oncogenic role of fumarate in PRCC2 via direct post-translational modification of PTEN and further reveal potential stratification strategies for patients with FH loss by combinatorial AKTi and sunitinib therapy.
Collapse
|
22
|
Rütten H, Verhoef C, van Weelden WJ, Smits A, Dhanis J, Ottevanger N, Pijnenborg JMA. Recurrent Endometrial Cancer: Local and Systemic Treatment Options. Cancers (Basel) 2021; 13:cancers13246275. [PMID: 34944893 PMCID: PMC8699325 DOI: 10.3390/cancers13246275] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/18/2021] [Accepted: 12/08/2021] [Indexed: 12/25/2022] Open
Abstract
The treatment of recurrent endometrial cancer is a challenge. Because of earlier treatments and the site of locoregional recurrence, in the vaginal vault or pelvis, morbidity can be high. A total of about 4 to 20% of the patients with endometrial cancer develop a locoregional recurrence, mostly among patients with locally advanced disease. The treatment options are dependent on previous treatments and the site of recurrence. Local and locoregional recurrences can be treated curatively with surgery or (chemo)radiotherapy with acceptable toxicity and control rates. Distant recurrences can be treated with palliative systemic therapy, i.e., first-line chemotherapy or hormonal therapy. Based on the tumor characteristics and molecular profile, there can be a role for immunotherapy. The evidence on targeted therapy is limited, with no approved treatment in the current guidelines. In selected cases, there might be an indication for local treatment in oligometastatic disease. Because of the novel techniques in radiotherapy, disease control can often be achieved at limited toxicity. Further studies are warranted to analyze the survival outcome and toxicity of newer treatment strategies. Patient selection is very important in deciding which treatment is of most benefit, and better prediction models based on the patient- and tumor characteristics are necessary.
Collapse
Affiliation(s)
- Heidi Rütten
- Department of Radiation Oncology, Radboudumc, 6525 GA Nijmegen, The Netherlands;
- Correspondence:
| | - Cornelia Verhoef
- Department of Radiation Oncology, Radboudumc, 6525 GA Nijmegen, The Netherlands;
| | - Willem Jan van Weelden
- Department of Obstetrics & Gynaecology, Radboudumc, 6525 GA Nijmegen, The Netherlands; (W.J.v.W.); (A.S.); (J.M.A.P.)
| | - Anke Smits
- Department of Obstetrics & Gynaecology, Radboudumc, 6525 GA Nijmegen, The Netherlands; (W.J.v.W.); (A.S.); (J.M.A.P.)
| | - Joëlle Dhanis
- Faculty of Medical Sciences, Radboud University, Houtlaan 4, 6525 XZ Nijmegen, The Netherlands;
| | - Nelleke Ottevanger
- Department of Medical Oncology, Radboudumc, 6525 GA Nijmegen, The Netherlands;
| | - Johanna M. A. Pijnenborg
- Department of Obstetrics & Gynaecology, Radboudumc, 6525 GA Nijmegen, The Netherlands; (W.J.v.W.); (A.S.); (J.M.A.P.)
| |
Collapse
|
23
|
Long MJC, Ly P, Aye Y. A primer on harnessing non-enzymatic post-translational modifications for drug design. RSC Med Chem 2021; 12:1797-1807. [PMID: 34825181 PMCID: PMC8597429 DOI: 10.1039/d1md00157d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/08/2021] [Indexed: 11/21/2022] Open
Abstract
Of the manifold concepts in drug discovery and design, covalent drugs have re-emerged as one of the most promising over the past 20-or so years. All such drugs harness the ability of a covalent bond to drive an interaction between a target biomolecule, typically a protein, and a small molecule. Formation of a covalent bond necessarily prolongs target engagement, opening avenues to targeting shallower binding sites, protein complexes, and other difficult to drug manifolds, amongst other virtues. This opinion piece discusses frameworks around which to develop covalent drugs. Our argument, based on results from our research program on natural electrophile signaling, is that targeting specific residues innately involved in native signaling programs are ideally poised to be targeted by covalent drugs. We outline ways to identify electrophile-sensing residues, and discuss how studying ramifications of innate signaling by endogenous molecules can provide a means to predict drug mechanism and function and assess on- versus off-target behaviors.
Collapse
Affiliation(s)
| | - Phillippe Ly
- Swiss Federal Institute of Technology in Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Yimon Aye
- Swiss Federal Institute of Technology in Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
24
|
Seervai RNH, Cho WC, Chu EY, Marques-Piubelli ML, Ledesma DA, Richards K, Heberton MM, Nelson KC, Nagarajan P, Torres-Cabala CA, Prieto VG, Curry JL. Diverse landscape of dermatologic toxicities from small-molecule inhibitor cancer therapy. J Cutan Pathol 2021; 49:61-81. [PMID: 34622477 DOI: 10.1111/cup.14145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/29/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Advances in molecular biology and genetics have contributed to breakthrough treatments directed at specific pathways associated with the development of cancer. Small-molecule inhibitors (Nibs) aimed at a variety of cellular pathways have been efficacious; however, they are associated with significant dermatologic toxicities. METHODS We conducted a comprehensive review of dermatologic toxicities associated with Nibs categorized into the following five groups: (a) mitogen-activated protein kinase; (b) growth factor/multi-tyrosine kinase; (c) cell division/DNA repair; (d) signaling associated with myeloproliferative neoplasms; and (e) other signaling pathways. Prospective phase I, II, or III clinical trials, retrospective literature reviews, systematic reviews/meta-analyses, and case reviews/reports were included for analysis. RESULTS Dermatologic toxicities reviewed were associated with every class of Nibs and ranged from mild to severe or life-threatening adverse skin reactions. Inflammatory reactions manifesting as maculopapular, papulopustular/acneiform, and eczematous lesions were frequent types of dermatologic toxicities seen with Nibs. Squamous cell carcinoma with keratoacanthoma-like features was associated with a subset of Nibs. Substantial overlap in dermatologic toxicities was found between Nibs. CONCLUSIONS Dermatologic toxicities from Nibs are diverse and may overlap between classes of Nibs. Recognition of the various types of toxicities from Nibs is critical for patient care in the era of "oncodermatology/dermatopathology."
Collapse
Affiliation(s)
- Riyad N H Seervai
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.,Department of Dermatology, Baylor College of Medicine, Houston, Texas, USA
| | - Woo Cheal Cho
- Department of Pathology, Section of Dermatopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Emily Y Chu
- Department of Dermatology, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mario L Marques-Piubelli
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Debora A Ledesma
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kristen Richards
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Meghan M Heberton
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kelly C Nelson
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Priyadharsini Nagarajan
- Department of Pathology, Section of Dermatopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Carlos A Torres-Cabala
- Department of Pathology, Section of Dermatopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Victor G Prieto
- Department of Pathology, Section of Dermatopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jonathan L Curry
- Department of Pathology, Section of Dermatopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
25
|
Manning-Geist BL, Gatius S, Liu Y, Gil M, Da Cruz Paula A, Tuset N, Abu-Rustum NR, Aghajanian C, Weigelt B, Matias-Guiu X. Diagnosis and management of an endometrial cancer patient with Cowden syndrome. Gynecol Oncol 2021; 163:14-21. [PMID: 34446268 DOI: 10.1016/j.ygyno.2021.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Somatic PTEN alterations are common in endometrial carcinoma (EC), but in rare cases PTEN mutations are associated with inherited syndromes. Here, we present a case of Cowden syndrome-associated EC. We discuss clinical, pathologic and molecular features of her tumor and PTEN-mutated EC, inherited syndromes predisposing to EC and PTEN-targeted therapies.
Collapse
Affiliation(s)
- Beryl L Manning-Geist
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sonia Gatius
- Pathology and Medical Oncology Departments, Hospital Universitari Arnau de Vilanova, IRBLLEIDA, CIBERONC, University of Lleida, Lleida, Spain
| | - Ying Liu
- Gynecologic Medical Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mabel Gil
- Radiology Department, Institut de Diagnòstic per la Imatge / Hospital Universitari Arnau de Vilanova, IRBLLEIDA, University of Lleida, Lleida, Spain
| | - Arnaud Da Cruz Paula
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Noemi Tuset
- Pathology and Medical Oncology Departments, Hospital Universitari Arnau de Vilanova, IRBLLEIDA, CIBERONC, University of Lleida, Lleida, Spain
| | - Nadeem R Abu-Rustum
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Carol Aghajanian
- Gynecologic Medical Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Xavier Matias-Guiu
- Pathology and Medical Oncology Departments, Hospital Universitari Arnau de Vilanova, IRBLLEIDA, CIBERONC, University of Lleida, Lleida, Spain; Pathology Department, Hospital Universitaride Bellvitge, IDIBELL, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
26
|
Ferriss JS, Erickson BK, Shih IM, Fader AN. Uterine serous carcinoma: key advances and novel treatment approaches. Int J Gynecol Cancer 2021; 31:1165-1174. [PMID: 34210768 DOI: 10.1136/ijgc-2021-002753] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022] Open
Abstract
The incidence and mortality rates from endometrial cancer continue to increase worldwide, while rates in most other cancers have either plateaued or declined considerably. Uterine serous carcinoma represents a fraction of all endometrial malignancies each year, yet this histology is responsible for nearly 40% of all endometrial cancer-related deaths. These deaths disproportionately affect black women, who have higher rates of advanced disease at diagnosis. Molecular genetic analyses reveal major alterations including TP53 mutation, PIK3CA mutation/amplification, ERBB2 amplification, CCNE1 amplification, FBXW7 mutation/deletion, PPP2R1A mutation, and somatic mutations involving homologous recombination genes. Clinical risk factors for uterine serous carcinoma include advancing age, a history of breast cancer, tamoxifen usage, and the hereditary breast-ovarian cancer syndrome. Surgery remains the cornerstone of treatment. Recent advances in our understanding of uterine serous carcinoma molecular drivers have led to development of targeted therapeutics that promise improved outcomes for patients. Overexpression or amplification of HER2 in uterine serous carcinoma carries a poor prognosis; yet this actionable target has led to the incorporation of several anti-HER2 therapies, including trastuzumab which, when added to conventional chemotherapy, is associated with improved survival for women with advanced and recurrent HER2-positive disease. The combination of pembrolizumab and lenvatinib is also a promising targeted treatment strategy for women with uterine serous carcinoma, with a recent phase II study suggesting a 50% response rate in women with recurrent disease. Several trials examining additional targeted agents are ongoing. Despite years of stalled progress, meaningful, tailored treatment options are emerging for patients with this uncommon and biologically aggressive endometrial cancer subtype.
Collapse
Affiliation(s)
- J Stuart Ferriss
- Kelly Gynecologic Oncology Division, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Britt K Erickson
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ie-Ming Shih
- TeLinde Gynecologic Pathology Program, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Amanda N Fader
- Kelly Gynecologic Oncology Division, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
27
|
Jia N, Che X, Jiang Y, Zhu M, Yang T, Feng W. Synergistic effects of a combined treatment of PI3K/mTOR dual inhibitor LY3023414 and carboplatin on human endometrial carcinoma. Gynecol Oncol 2021; 162:788-796. [PMID: 34183163 DOI: 10.1016/j.ygyno.2021.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Our study aims to investigate whether PI3K/mTOR dual inhibitor LY3023414 has synergistic effects with carboplatin in suppressing endometrial cancer (EC), and explore the mechanisms and toxicity of combined therapy. METHODS The effects of combined therapy of LY3023414 and carboplatin on cell viability, long-term survival and cell apoptosis were studied in vitro, and on subcutaneous xenograft model of HEC-1A cells and patient derived xenograft (PDX) models with different PI3K pathway mutational patterns in vivo. The synergistic mechanisms were explored on ATM/Chk2 and PI3K signaling pathway. The toxicity of combined therapy was also observed. RESULTS Combined treatment of LY3023414 and carboplatin synergistically inhibited proliferation, colony formation, promoted apoptosis of EC cells, and significantly activated ATM/Chk2 signaling pathway. LY3023414 had synergistic anti-tumor effects with carboplatin in HEC-1A subcutaneous xenograft which harbors PIK3CA mutation. The sensitivity to LY3023414 and carboplatin differed in PDX of EC cases with different mutational patterns of PI3K pathway, and combined therapy exhibited distinct synergistic anti-tumor effects in those harboring different PI3K pathway mutations. No increased drug toxicity in nude mice was seen in combined groups. CONCLUSIONS Combined therapy of PI3K/mTOR dual inhibitor LY3023414 and carboplatin had synergistic anti-tumor effects in EC cell line and some of the PDX EC models, without increasing the toxicity of single drug. Enhanced carboplatin-induced DNA damage response (DDR) and cell apoptosis may be the mechanisms of synergistic effects. The anti-tumor effects may correlate with the mutational pattern of PI3K pathway, which provides experimental basis of individual treatments of ECs in the future.
Collapse
Affiliation(s)
- Nan Jia
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200091, PR China
| | - Xiaoxia Che
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, PR China
| | - Yahui Jiang
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, PR China
| | - Menghan Zhu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200091, PR China
| | - Tong Yang
- Shanghai Gemple Biotech Co., Ltd., Shanghai 201210, People's Republic of China
| | - Weiwei Feng
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, PR China.
| |
Collapse
|
28
|
Yu L, Wei J, Liu P. Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer. Semin Cancer Biol 2021; 85:69-94. [PMID: 34175443 DOI: 10.1016/j.semcancer.2021.06.019] [Citation(s) in RCA: 301] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 02/08/2023]
Abstract
Cancer is the second leading cause of human death globally. PI3K/Akt/mTOR signaling is one of the most frequently dysregulated signaling pathways observed in cancer patients that plays crucial roles in promoting tumor initiation, progression and therapy responses. This is largely due to that PI3K/Akt/mTOR signaling is indispensable for many cellular biological processes, including cell growth, metastasis, survival, metabolism, and others. As such, small molecule inhibitors targeting major kinase components of the PI3K/Akt/mTOR signaling pathway have drawn extensive attention and been developed and evaluated in preclinical models and clinical trials. Targeting a single kinase component within this signaling usually causes growth arrest rather than apoptosis associated with toxicity-induced adverse effects in patients. Combination therapies including PI3K/Akt/mTOR inhibitors show improved patient response and clinical outcome, albeit developed resistance has been reported. In this review, we focus on revealing the mechanisms leading to the hyperactivation of PI3K/Akt/mTOR signaling in cancer and summarizing efforts for developing PI3K/Akt/mTOR inhibitors as either mono-therapy or combination therapy in different cancer settings. We hope that this review will facilitate further understanding of the regulatory mechanisms governing dysregulation of PI3K/Akt/mTOR oncogenic signaling in cancer and provide insights into possible future directions for targeted therapeutic regimen for cancer treatment, by developing new agents, drug delivery systems, or combination regimen to target the PI3K/Akt/mTOR signaling pathway. This information will also provide effective patient stratification strategy to improve the patient response and clinical outcome for cancer patients with deregulated PI3K/Akt/mTOR signaling.
Collapse
Affiliation(s)
- Le Yu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
29
|
Guo Y, Jin Y, Qu B, Zhang Y, Che J, Dong X. An updated patent review of Akt inhibitors (2016-present). Expert Opin Ther Pat 2021; 31:837-849. [PMID: 33834942 DOI: 10.1080/13543776.2021.1915291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Akt is a widely known serine threonine kinase involved in a series of critical cellular pathways like cell survival and proliferation. With the development of small-molecule Akt inhibitors, new strategies such as covalent, peptide-based, and PROTAC (Proteolysis Targeting Chimera) strategies have also been used the design of Akt inhibitors. On the other hand, due to the specificity of the Akt pathway, the use of Akt modulators in combination therapy and immunotherapy has been disclosed in the past 5 years.Areas covered: This review focuses on the patent literature covering small-molecule inhibitors of Akt kinase and their applications from 2016-present.Expert opinion: Although Akt inhibitors' progress has been somewhat slow over the past five years, new strategies still provide new opportunities for the development of Akt inhibitors. Combination with Akt pathway inhibitors for tumor therapy has also been widely disclosed in patents in the last 5 years. Notably, combination strategies of Akt inhibitors and immunotherapy have started to emerge in recent years. While the clinical indications of Akt modulators should not be limited to anti-cancer, it is still worth trying the treatment of other diseases. Within the next years, current drug development around Akt inhibitors should be fascinating.
Collapse
Affiliation(s)
- Yu Guo
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Yizhen Jin
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Bingxue Qu
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Yu Zhang
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Jinxin Che
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China.,Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, P.R. China.,Cancer Center, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
30
|
Fabi F, Adam P, Parent S, Tardif L, Cadrin M, Asselin E. Pharmacologic inhibition of Akt in combination with chemotherapeutic agents effectively induces apoptosis in ovarian and endometrial cancer cell lines. Mol Oncol 2021; 15:2106-2119. [PMID: 33338300 PMCID: PMC8334290 DOI: 10.1002/1878-0261.12888] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/29/2020] [Accepted: 12/16/2020] [Indexed: 01/03/2023] Open
Abstract
The PI3K/Akt signaling pathway, the most frequently altered signaling system in human cancer, is a crucial inducer of dysregulated proliferation and neoplastic processes; however, few therapeutic strategies using PI3K/Akt inhibitors singly have been shown to be effective. The purpose of this paper was to underline the potential benefit of pharmacological modulation of the PI3K/Akt pathway when combined with specific chemotherapeutic regimens. We have studied the ability of NVP‐BEZ235 (PI3K/mTOR inhibitor) and AZD5363 (Akt inhibitor) in the sensitization of cancer cells to cisplatin and doxorubicin. Our results show that NVP‐BEZ235 sensitizes cells preferentially to cisplatin while AZD5363 sensitizes cells to doxorubicin. At equal concentrations (5 μm), both inhibitors reduce ribosomal protein S6 phosphorylation, but AZD5363 is more effective in reducing GSK3β phosphorylation as well as S6 phosphorylation. Additionally, AZD5363 is capable of inducing FOXO1 and p53 nuclear localization and reduces BAD phosphorylation, which is generally increased by cisplatin and doxorubicin. Finally, the combination of AZD5363 and doxorubicin induces apoptosis in cells and robustly reduces cell ability to clonally replicate, which underlines a potential cooperative effect of the studied compounds.
Collapse
Affiliation(s)
- François Fabi
- Department of Medical Biology, Université du Québec à Trois-Rivières, Canada
| | - Pascal Adam
- Department of Medical Biology, Université du Québec à Trois-Rivières, Canada
| | - Sophie Parent
- Department of Medical Biology, Université du Québec à Trois-Rivières, Canada
| | - Laurence Tardif
- Department of Medical Biology, Université du Québec à Trois-Rivières, Canada
| | - Monique Cadrin
- Department of Medical Biology, Université du Québec à Trois-Rivières, Canada
| | - Eric Asselin
- Department of Medical Biology, Université du Québec à Trois-Rivières, Canada
| |
Collapse
|
31
|
Xiao Y, Jin L, Deng C, Guan Y, Kalogera E, Ray U, Thirusangu P, Staub J, Sarkar Bhattacharya S, Xu H, Fang X, Shridhar V. Inhibition of PFKFB3 induces cell death and synergistically enhances chemosensitivity in endometrial cancer. Oncogene 2021; 40:1409-1424. [PMID: 33420377 PMCID: PMC7906909 DOI: 10.1038/s41388-020-01621-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 12/05/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023]
Abstract
The advanced or recurrent endometrial cancer (EC) has a poor prognosis because of chemoresistance. 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a glycolytic enzyme, is overexpressed in a variety of human cancers and plays important roles in promoting tumor cell growth. Here, we showed that high expression of PFKFB3 in EC cell lines is associated with chemoresistance. Pharmacological inhibition of PFKFB3 with PFK158 and or genetic downregulation of PFKFB3 dramatically suppressed cell proliferation and enhanced the sensitivity of EC cells to carboplatin (CBPt) and cisplatin (Cis). Moreover, PFKFB3 inhibition resulted in reduced glucose uptake, ATP production, and lactate release. Notably, we found that PFK158 with CBPt or Cis exerted strong synergistic antitumor activity in chemoresistant EC cell lines, HEC-1B and ARK-2 cells. We also found that the combination of PFK158 and CBPt/Cis induced apoptosis- and autophagy-mediated cell death through inhibition of the Akt/mTOR signaling pathway. Mechanistically, we found that PFK158 downregulated the CBPt/Cis-induced upregulation of RAD51 expression and enhanced CBPt/Cis-induced DNA damage as demonstrated by an increase in γ-H2AX levels in HEC-1B and ARK-2 cells, potentially revealing a means to enhance PFK158-induced chemosensitivity. More importantly, PFK158 treatment, either as monotherapy or in combination with CBPt, led to a marked reduction in tumor growth in two chemoresistant EC mouse xenograft models. These data suggest that PFKFB3 inhibition alone or in combination with standard chemotherapy may be used as a novel therapeutic strategy for improved therapeutic efficacy and outcomes of advanced and recurrent EC patients.
Collapse
Affiliation(s)
- Yinan Xiao
- grid.66875.3a0000 0004 0459 167XDepartment of Experimental Pathology, Mayo Clinic, Rochester, MN USA ,grid.452708.c0000 0004 1803 0208Department of Obstetrics and Gynecology, the Second Xiangya Hospital, Central South University, Changsha, Hunan P.R. China
| | - Ling Jin
- grid.66875.3a0000 0004 0459 167XDepartment of Experimental Pathology, Mayo Clinic, Rochester, MN USA
| | - Chaolin Deng
- grid.66875.3a0000 0004 0459 167XDepartment of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN USA
| | - Ye Guan
- grid.214458.e0000000086837370Department of Chemistry, University of Michigan, Ann Arbor, MI USA
| | - Eleftheria Kalogera
- grid.66875.3a0000 0004 0459 167XDivision of Gynecologic Oncology, Mayo Clinic, Rochester, MN USA
| | - Upasana Ray
- grid.66875.3a0000 0004 0459 167XDepartment of Experimental Pathology, Mayo Clinic, Rochester, MN USA
| | - Prabhu Thirusangu
- grid.66875.3a0000 0004 0459 167XDepartment of Experimental Pathology, Mayo Clinic, Rochester, MN USA
| | - Julie Staub
- grid.66875.3a0000 0004 0459 167XDepartment of Experimental Pathology, Mayo Clinic, Rochester, MN USA
| | | | - Haotian Xu
- grid.254444.70000 0001 1456 7807Department of Computer Science, Wayne State University, Detroit, MI USA
| | - Xiaoling Fang
- grid.452708.c0000 0004 1803 0208Department of Obstetrics and Gynecology, the Second Xiangya Hospital, Central South University, Changsha, Hunan P.R. China
| | - Viji Shridhar
- grid.66875.3a0000 0004 0459 167XDepartment of Experimental Pathology, Mayo Clinic, Rochester, MN USA
| |
Collapse
|
32
|
Megino-Luque C, Moiola CP, Molins-Escuder C, López-Gil C, Gil-Moreno A, Matias-Guiu X, Colas E, Eritja N. Small-Molecule Inhibitors (SMIs) as an Effective Therapeutic Strategy for Endometrial Cancer. Cancers (Basel) 2020; 12:E2751. [PMID: 32987790 PMCID: PMC7598629 DOI: 10.3390/cancers12102751] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/18/2022] Open
Abstract
Endometrial cancer (EC) is the sixth most common cancer in women. A continued number of low-risk EC patients at diagnosis, as well as patients diagnosed with advanced-stage disease, will experience an aggressive disease. Unfortunately, those patients will present recurrence or overt dissemination. Systemic cytotoxic chemotherapy treatment on advanced, recurrent, or metastatic EC patients has shown poor results, with median survival rates of less than one year, and median progression-free survival rates of four months. Therefore, the search for innovative and alternative drugs or the development of combinatorial therapies involving new targeted drugs and standard regimens is imperative. Over the last few decades, some small-molecule inhibitors have been introduced in the clinics for cancer treatment, but only a few have been approved by the Food and Drug Administration (FDA) for EC treatment. In the present review, we present the current state and future prospects of small-molecule inhibitors on EC treatment, both alone and in combination.
Collapse
Affiliation(s)
- Cristina Megino-Luque
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198 Lleida, Spain; (C.M.-L.); (C.M.-E.); (X.M.-G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029 Madrid, Spain; (A.G.-M.); (E.C.)
| | - Cristian Pablo Moiola
- Gynecology Department-Biomedical Research Group in Gynecology, Vall d’Hebron Research Institute (VHIR), Universitat Autonoma de Barcelona, Pg. Vall d’Hebron119-129, 08035 Barcelona, Spain;
| | - Clara Molins-Escuder
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198 Lleida, Spain; (C.M.-L.); (C.M.-E.); (X.M.-G.)
| | - Carlos López-Gil
- Gynecology Department-Biomedical Research Group in Gynecology, Vall d’Hebron Research Institute (VHIR), Universitat Autonoma de Barcelona, Pg. Vall d’Hebron119-129, 08035 Barcelona, Spain;
| | - Antonio Gil-Moreno
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029 Madrid, Spain; (A.G.-M.); (E.C.)
- Gynecology Department-Biomedical Research Group in Gynecology, Vall d’Hebron Research Institute (VHIR), Universitat Autonoma de Barcelona, Pg. Vall d’Hebron119-129, 08035 Barcelona, Spain;
| | - Xavier Matias-Guiu
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198 Lleida, Spain; (C.M.-L.); (C.M.-E.); (X.M.-G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029 Madrid, Spain; (A.G.-M.); (E.C.)
- Laboratory of Precision Medicine, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Department of Pathology-Hospital, Universitari de Bellvitge, Gran via de l’Hospitalet 199, 08908 Barcelona, Spain
| | - Eva Colas
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029 Madrid, Spain; (A.G.-M.); (E.C.)
- Gynecology Department-Biomedical Research Group in Gynecology, Vall d’Hebron Research Institute (VHIR), Universitat Autonoma de Barcelona, Pg. Vall d’Hebron119-129, 08035 Barcelona, Spain;
| | - Núria Eritja
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029 Madrid, Spain; (A.G.-M.); (E.C.)
- Oncologic Pathology Group, Department of Medicine, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198 Lleida, Spain
| |
Collapse
|
33
|
Endometrial Cancer as a Metabolic Disease with Dysregulated PI3K Signaling: Shedding Light on Novel Therapeutic Strategies. Int J Mol Sci 2020; 21:ijms21176073. [PMID: 32842547 PMCID: PMC7504460 DOI: 10.3390/ijms21176073] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 12/15/2022] Open
Abstract
Endometrial cancer (EC) is one of the most common malignancies of the female reproductive organs. The most characteristic feature of EC is the frequent association with metabolic disorders. However, the components of these disorders that are involved in carcinogenesis remain unclear. Accumulating epidemiological studies have clearly revealed that hyperinsulinemia, which accompanies these disorders, plays central roles in the development of EC via the insulin-phosphoinositide 3 kinase (PI3K) signaling pathway as a metabolic driver. Recent comprehensive genomic analyses showed that over 90% of ECs have genomic alterations in this pathway, resulting in enhanced insulin signaling and production of optimal tumor microenvironments (TMEs). Targeting PI3K signaling is therefore an attractive treatment strategy. Several clinical trials for recurrent or advanced ECs have been attempted using PI3K-serine/threonine kinase (AKT) inhibitors. However, these agents exhibited far lower efficacy than expected, possibly due to activation of alternative pathways that compensate for the PIK3-AKT pathway and allow tumor growth, or due to adaptive mechanisms including the insulin feedback pathway that limits the efficacy of agents. Overcoming these responses with careful management of insulin levels is key to successful treatment. Further interest in specific TMEs via the insulin PI3K-pathway in obese women will provide insight into not only novel therapeutic strategies but also preventive strategies against EC.
Collapse
|
34
|
Huang TT, Lampert EJ, Coots C, Lee JM. Targeting the PI3K pathway and DNA damage response as a therapeutic strategy in ovarian cancer. Cancer Treat Rev 2020; 86:102021. [PMID: 32311593 DOI: 10.1016/j.ctrv.2020.102021] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/24/2022]
Abstract
Ovarian cancer is the most lethal gynecological malignancy worldwide although exponential progress has been made in its treatment over the last decade. New agents and novel combination treatments are on the horizon. Among many new drugs, a series of PI3K/AKT/mTOR pathway (referred to as the PI3K pathway) inhibitors are under development or already in clinical testing. The PI3K pathway is frequently upregulated in ovarian cancer and activated PI3K signaling contributes to increased cell survival and chemoresistance. However, no significant clinical success has been achieved with the PI3K pathway inhibitor(s) to date, reflecting the complex biology and also highlighting the need for combination treatment strategies. DNA damage repair pathways have been active therapeutic targets in ovarian cancer. Emerging data suggest the PI3K pathway is also involved in DNA replication and genome stability, making DNA damage response (DDR) inhibitors as an attractive combination treatment for PI3K pathway blockades. This review describes an expanded role for the PI3K pathway in the context of DDR and cell cycle regulation. We also present the novel treatment strategies combining PI3K pathway inhibitors with DDR blockades to improve the efficacy of these inhibitors for ovarian cancer.
Collapse
Affiliation(s)
- Tzu-Ting Huang
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | - Erika J Lampert
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Cynthia Coots
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jung-Min Lee
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
35
|
Pathogenesis and Clinical Management of Uterine Serous Carcinoma. Cancers (Basel) 2020; 12:cancers12030686. [PMID: 32183290 PMCID: PMC7140057 DOI: 10.3390/cancers12030686] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023] Open
Abstract
Uterine serous carcinoma (USC) is an aggressive variant of endometrial cancer that has not been well characterized. It accounts for less than 10% of all endometrial cancers and 80% of endometrial cancer–related deaths. Currently, staging surgery together with chemotherapy or radiotherapy, especially vaginal cuff brachytherapy, is the main treatment strategy for USC. Whole-exome sequencing combined with preclinical and clinical studies are verifying a series of effective and clinically accessible inhibitors targeting frequently altered genes, such as HER2 and PI3K3CA, in varying USC patient populations. Some progress has also been made in the immunotherapy field. The PD-1/PD-L1 pathway has been found to be activated in many USC patients, and clinical trials of PD-1 inhibitors in USC are underway. This review updates the progress of research regarding the molecular pathogenesis and putative clinical management of USC.
Collapse
|
36
|
Rubinstein MM, Hyman DM, Caird I, Won H, Soldan K, Seier K, Iasonos A, Tew WP, O'Cearbhaill RE, Grisham RN, Hensley ML, Troso-Sandoval T, Sabbatini P, Guillen J, Selcuklu SD, Zimel C, Torrisi J, Aghajanian C, Makker V. Phase 2 study of LY3023414 in patients with advanced endometrial cancer harboring activating mutations in the PI3K pathway. Cancer 2019; 126:1274-1282. [PMID: 31880826 DOI: 10.1002/cncr.32677] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND PI3K pathway activation is common in endometrial cancer. We evaluated the safety and efficacy of the dual PI3K/mTOR inhibitor, LY3023414, in patients with advanced endometrial cancer harboring activating mutations in the PI3K pathway. METHODS We conducted a single-arm phase 2 study of monotherapy LY3023414. Eligible patients had advanced endometrial cancer of any grade, prior management with 1-4 cytotoxic lines, and PI3K pathway activation prospectively defined as a loss-of-function PTEN alteration or activating alteration in PIK3CA, AKT1, PIK3R1, PIK3R2, or MTOR. The primary objective was best overall response rate (ORR) per RECIST 1.1. RESULTS Twenty-eight patients were treated; histologies included endometroid (39%), carcinosarcoma (25%), serous (21%), and mixed (14%). Patients were heavily pretreated, with a median of 2 prior cytotoxic lines (range, 1-3). The most common alterations involved PIK3CA (68%), PTEN (43%), and PIK3R1 (32%). In the 25 efficacy-evaluable patients, the ORR was 16% (90% CI, 7%-100%), and the clinical benefit rate was 28% (90% CI, 16%-100%). Four patients had a confirmed partial response, and 2 responses lasted for >9 months. The median progression-free survival and overall survival were 2.5 months (95% CI, 1.2-3.0) and 9.2 months (95% CI, 5.0-15.9), respectively. The most common all-grade treatment-related adverse events were anemia (71%), hyperglycemia (71%), hypoalbuminemia (68%), and hypophosphatemia (61%). No correlation between molecular alterations and response was observed. CONCLUSION In patients with heavily pretreated advanced endometrial cancer prospectively selected for tumors with activating PI3K pathway mutations, LY3023414 demonstrated modest single-agent activity and a manageable safety profile.
Collapse
Affiliation(s)
- Maria M Rubinstein
- Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David M Hyman
- Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Medical College, New York, New York
| | - Imogen Caird
- Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Helen Won
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Krysten Soldan
- Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kenneth Seier
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alexia Iasonos
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - William P Tew
- Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Medical College, New York, New York
| | - Roisin E O'Cearbhaill
- Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Medical College, New York, New York
| | - Rachel N Grisham
- Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Medical College, New York, New York
| | - Martee L Hensley
- Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Medical College, New York, New York
| | - Tiffany Troso-Sandoval
- Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Medical College, New York, New York
| | - Paul Sabbatini
- Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Medical College, New York, New York
| | - Joyce Guillen
- Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - S Duygu Selcuklu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Catherine Zimel
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jean Torrisi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Carol Aghajanian
- Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Medical College, New York, New York
| | - Vicky Makker
- Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Medical College, New York, New York
| |
Collapse
|