1
|
Mu C, Wang S, Wang A, Li W. Genomic analysis elucidates characteristics and possible origins of high-risk antimicrobial resistance genes in Enterococcus faecium from a global perspective. One Health 2025; 20:101054. [PMID: 40417283 PMCID: PMC12098168 DOI: 10.1016/j.onehlt.2025.101054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/22/2025] [Accepted: 04/27/2025] [Indexed: 05/27/2025] Open
Abstract
Under the One Health framework, it is crucial to undertake a comprehensive analysis of antimicrobial resistance (AMR) across various countries and regions. High-risk ARGs pose a severe threat to human health, yet systematic research on them is scarce. This study developed a high-risk ARGs database using the existing risk assessment system and explored a genome-based investigation workflow for high-risk ARGs. We investigated Enterococcus faecium, a common clinical pathogen, to understand the epidemiological characteristics of high-risk ARGs, including their primary sources and destinations. Results revealed that high-risk ARGs are widespread in E. faecium, with tet(M) being the most abundant and ermB the most widely distributed. The combination of vancomycin_ARGs (vanA, vanYA, vanYB, vanYM) -tet(M)-ermB is the most prevalent. ST1579 harbors the most high-risk ARGs, and the top five STs carrying high-risk ARGs are all from the hospital-specific CC17 clone lineage (cladeA1). Similarly, tet(M)-, ermB-, and vancomycin_ARGs-positive strains also belong to the nosocomial infection-related lineage cladeA1. Oxazolidinones_ARGs (optrA, cfr(D), cfrA)-positive strains are mainly from the cladeA2 lineage associated with animals. OptrA, a last-resort antibiotics ARG with potential outbreak risk, requires particular attention. Additionally, plasmids, transposons (Tn), Insertion sequence (IS), and integrative conjugative elements (ICE) show varying preferences for encoding high-risk ARGs, with tet(M), ermB, APH (3 ')-IIIa, vanA, vanYA, and vanYB being more readily carried by these MGEs. The USA, China, and Belgium are key origin regions for high-risk ARGs in E. faecium, while Australia, France and Netherlands are significant introduction regions. This study provides essential data for tackling the global AMR crisis.
Collapse
Affiliation(s)
- Chunge Mu
- School of Hydraulic and Civil Engineering, Ludong University, Yantai, Shandong, China
| | - Shimeng Wang
- School of Life Sciences, Ludong University, Yantai, Shandong, China
| | - Ailan Wang
- School of Life Sciences, Ludong University, Yantai, Shandong, China
| | - Weiwei Li
- School of Life Sciences, Ludong University, Yantai, Shandong, China
| |
Collapse
|
2
|
Kwon T, Trujillo JD, Carossino M, Machkovech HM, Cool K, Lyoo EL, Singh G, Kafle S, Elango S, Vediyappan G, Wei W, Minor N, Matias-Ferreyra FS, Morozov I, Gaudreault NN, Balasuriya UBR, Hensley L, Diel DG, Ma W, Friedrich TC, Richt JA. Pathogenicity and transmissibility of bovine-derived HPAI H5N1 B3.13 virus in pigs. Emerg Microbes Infect 2025:2509742. [PMID: 40396285 DOI: 10.1080/22221751.2025.2509742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Since the first emergence of highly pathogenic avian influenza (HPAI) H5N1 viruses in dairy cattle, the virus has continued to spread, reaching at least 17 states and at least 950 dairy herds in the United States. Subsequently, spillovers of the virus from dairy cattle to humans have been reported. Pigs are an important reservoir in influenza ecology because they serve as a mixing vessel in which novel reassortant viruses with pandemic potential can be generated. Here, we show that oro-respiratory infection of pigs resulted in productive replication of a bovine-derived HPAI H5N1 B3.13 virus. Infectious virus was mainly identified in the lower respiratory tract of principal infected pigs, and sero-conversion was observed in most of the principal pigs at later time points, suggesting limited replication of the bovine-derived HPAI H5N1 B3.13 virus in pigs. In one animal, we detected the emergence of a mutation in hemagglutinin (HA) previously associated with increased affinity for "mammalian-type" α2,6-linked sialic acid receptors, but this mutation did not reach majority consensus levels. Sentinel contact pigs remained sero-negative throughout the study, indicating lack of transmission. These results support that pigs are susceptible to a bovine-derived HPAI H5N1 B3.13 virus, but this virus did not replicate as robustly in pigs as mink-derived HPAI H5N1 and swine-adapted influenza viruses.
Collapse
Affiliation(s)
- Taeyong Kwon
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Jessie D Trujillo
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Mariano Carossino
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Heather M Machkovech
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Konner Cool
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Eu Lim Lyoo
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Gagandeep Singh
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Sujan Kafle
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Shanmugasundaram Elango
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Govindsamy Vediyappan
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Wanting Wei
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nicholas Minor
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Franco S Matias-Ferreyra
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Igor Morozov
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Natasha N Gaudreault
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Udeni B R Balasuriya
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Lisa Hensley
- Zoonotic and Emerging Disease Research Unit, National Bio and Agro-Defense Facility, Agricultural Research Service, United States Department of Agriculture, Manhattan, Kansas, USA
| | - Diego G Diel
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Wenjun Ma
- Department of Veterinary Pathobiology, College of Veterinary Medicine, and Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Thomas C Friedrich
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Juergen A Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
3
|
Edman-Wallér J, Andersson J, Nelson M, Hallberg L, Berglund L, Dahlgren HM, Lindsjö O, Müller V, Stalfors J. A hospital-wide outbreak of ESBL-producing Klebsiella oxytoca associated with contaminated sinks and associated plumbing: outbreak report, risk factor analysis and plasmid mapping. J Hosp Infect 2025:S0195-6701(25)00140-9. [PMID: 40393526 DOI: 10.1016/j.jhin.2025.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/30/2025] [Accepted: 05/01/2025] [Indexed: 05/22/2025]
Abstract
OBJECTIVES To describe a sink-related outbreak of Klebsiella oxytoca and determine risk factors for acquiring the outbreak strain. METHODS Case-control analysis, environmental sampling from sinks, short-read whole genome sequencing and long-read whole genome sequencing of selected isolates. RESULTS Whole genome sequencing revealed genetic clustering of 47 patient cases over 26 months. The outbreak strain (Klebsiella oxytoca, sequence type 2, with or without blaCTX-M containing plasmid) was also identified in sinks or adjacent plumbing in four rooms in two wards. After adjustment for age, sex, and length of stay, four significant risk factors for infection or colonization of the outbreak strain were found: age (OR per additional year: 1.03 (95% CI: 1.00-1.07); length of stay (OR per additional day: 1.04 (95% CI: 1.02-1.08); urinary catheter (OR: 7.65 (95% CI: 2.10-27.8; OR per additional day: 1.06 (95% CI: 1.01-1.12); and diarrhoea (OR: 3.10 (1.03-9.35). Long-read plasmid sequencing revealed strong indications of plasmid transmission from the outbreak strain to other sequence types of Klebsiella oxytoca. Multifaceted interventions were employed, including exchange of sinks strainers, traps, and piping, behavioural interventions, and reinforced cleaning and disinfection. Outbreak control has so far not been achieved despite interventions. CONCLUSIONS Klebsiella oxytoca established in sink plumbing biofilm was associated with a prolonged outbreak difficult to control. Age, length of stay, urinary catheter and diarrhoea were risk factors for acquiring the outbreak strain. Both clonal and horizontal transmission occurred.
Collapse
Affiliation(s)
- Jon Edman-Wallér
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden; Department of Infection Prevention and Control, Södra Älvsborg Hospital, Borås, Sweden.
| | - Jenny Andersson
- Department of Infection Prevention and Control, Södra Älvsborg Hospital, Borås, Sweden
| | - Maria Nelson
- Department of Infection Prevention and Control, Södra Älvsborg Hospital, Borås, Sweden
| | - Linda Hallberg
- Department of Infection Prevention and Control, Södra Älvsborg Hospital, Borås, Sweden
| | - Lisa Berglund
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Göteborg, Sweden
| | | | - Oskar Lindsjö
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
| | - Vilhelm Müller
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
| | - Joacim Stalfors
- Hospital Management, Södra Älvsborg Hospital, Borås, Sweden; Department of Otorhinolaryngology, Head and Neck Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Petroll R, West JA, Ogden M, McGinley O, Craig RJ, Coelho SM, Borg M. The expanded Bostrychia moritziana genome unveils evolution in the most diverse and complex order of red algae. Curr Biol 2025:S0960-9822(25)00508-1. [PMID: 40345196 DOI: 10.1016/j.cub.2025.04.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/13/2025] [Accepted: 04/17/2025] [Indexed: 05/11/2025]
Abstract
Red algae are an ancient eukaryotic lineage that were among the first to evolve multicellularity. Although they share a common origin with modern-day plants and display complex multicellular development, comprehensive genome data from the most highly evolved red algal groups remain scarce. Here, we present a chromosome-level genome assembly of Bostrychia moritziana, a complex red seaweed in the Rhodomelaceae family of the Ceramiales-the largest and most diverse order of red algae. Contrary to the view that red algal genomes are typically small, we report significant genome size expansion in Bostrychia and other Ceramiales, which represents one of at least three independent expansion events in red algal evolution. Our analyses suggest that these expansions do not involve polyploidy or ancient whole-genome duplications, but in Bostrychia rather stem from the proliferation of a single lineage of giant Plavaka DNA transposons. Consistent with its enlarged genome, Bostrychia has an increased gene content shaped by de novo gene emergence and amplified gene families in common with other Ceramiales, providing insight into the genetic adaptations underpinning this successful and species-rich order. Finally, our sex-specific assemblies resolve the UV sex chromosomes in Bostrychia, which feature expanded gene-rich sex-linked regions. Notably, each sex chromosome harbors a three amino acid loop extension homeodomain (TALE-HD) transcription factor orthologous to ancient regulators of haploid-diploid transitions in other multicellular lineages. Together, our findings offer a unique perspective of the genomic adaptations driving red algal diversity and demonstrate how this red seaweed lineage can provide insight into the evolutionary origins and universal principles underpinning complex multicellularity.
Collapse
Affiliation(s)
- Romy Petroll
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - John A West
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael Ogden
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C 1871, Denmark
| | - Owen McGinley
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Rory J Craig
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Susana M Coelho
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Michael Borg
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Tübingen 72076, Germany.
| |
Collapse
|
5
|
Xiong M, Cheng R, He B, Wu CS, Zhu CD, Luo A, Zhou QS. Chromosome-level genome assembly of Parotis chlorochroalis (Lepidoptera: Crambidae: Spilomelinae). Sci Data 2025; 12:743. [PMID: 40328770 PMCID: PMC12056075 DOI: 10.1038/s41597-025-05053-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 04/23/2025] [Indexed: 05/08/2025] Open
Abstract
Parotis Hübner, 1831 is a genus within the family Crambidae, which is recognized as one of the most diverse families of Lepidoptera. Species within the genus Parotis can be readily distinguished from other closely related genera by their distinctive green or yellow-green body coloration. However, the genus Parotis has received relatively limited research attention, and the scarcity of genome-wide molecular resources has impeded a more comprehensive understanding of its evolution, adaptation, and phylogenetic relationships. This study reports the first genome assembly for Parotis chlorochroalis (Hampson, 1912), generated through PacBio Hi-Fi and Hi-C sequencing technologies. The assembled genome has a size of 456.23 Mb, comprising 31 chromosomes. Approximately 181.82 Mb, which constitutes 39.85% of the genome, has been identified as repetitive sequences. The genome assembly includes 16,299 protein-coding genes, of which 94.82% have been functionally annotated. This chromosome-level genome assembly not only advance understanding of P. chlorochroalis but also has the potential to facilitate genomic studies of other lepidopteran species.
Collapse
Affiliation(s)
- Mei Xiong
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Cheng
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bo He
- School of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, 343009, China
| | - Chun-Sheng Wu
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chao-Dong Zhu
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Arong Luo
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Qing-Song Zhou
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
6
|
Wang X, Shafiq K, Ousley DA, Chigumba DN, Davis D, McDonough KM, Mydy LS, Sexton JZ, Kersten RD. Large-scale transcriptome mining enables macrocyclic diversification and improved bioactivity of the stephanotic acid scaffold. Nat Commun 2025; 16:4198. [PMID: 40328797 PMCID: PMC12056006 DOI: 10.1038/s41467-025-59428-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 04/23/2025] [Indexed: 05/08/2025] Open
Abstract
Nearly 10,000 plant species are represented by RNA-seq datasets in the NCBI sequence read archive, which are difficult to search in unassembled format due to database size. Here, we optimize RNA-seq assembly to transform most of this public RNA-seq data to a searchable database for biosynthetic gene discovery. We test our transcriptome mining pipeline towards the diversification of moroidins, which are plant ribosomally-synthesized and posttranslationally-modified peptides (RiPPs) biosynthesized from copper-dependent peptide cyclases. Moroidins are bicyclic compounds with a conserved stephanotic acid scaffold, which becomes cytotoxic to non-small cell lung adenocarcinoma cells with an additional C-terminal macrocycle. We discover moroidin analogs with second ring structures diversified at the crosslink and the non-crosslinked residues including a moroidin analog from water chickweed, which exhibits higher cytotoxicity against lung adenocarcinoma cells than moroidin. Our study expands stephanotic acid-type peptides to grasses, Lowiaceae, mints, pinks, and spurges while demonstrating that large-scale transcriptome mining can broaden the medicinal chemistry toolbox for chemical and biological exploration of eukaryotic RiPP lead structures.
Collapse
Affiliation(s)
- Xiaofeng Wang
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Khadija Shafiq
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Derrick A Ousley
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Desnor N Chigumba
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Dulciana Davis
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Kali M McDonough
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Lisa S Mydy
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan Z Sexton
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Roland D Kersten
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
Sun H, Lu B, Zhang Z, Xiao Y, Zhou Z, Xi L, Li Z, Jiang Z, Zhang J, Wang M, Liu C, Ma Y, Peng J, Wang XJ, Yi C. Mild and ultrafast GLORI enables absolute quantification of m 6A methylome from low-input samples. Nat Methods 2025:10.1038/s41592-025-02680-9. [PMID: 40325216 DOI: 10.1038/s41592-025-02680-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 03/24/2025] [Indexed: 05/07/2025]
Abstract
Methods for absolute quantification of N6-methyladenosine (m6A) have emerged as powerful tools in epitranscriptomics. We previously reported GLORI, a chemical-assisted approach to achieve unbiased and precise m6A measurement. However, its lengthy reaction time and severe RNA degradation have limited its applicability, particularly for low-input samples. Here, we present two updated GLORI approaches that are ultrafast, mild and enable absolute m6A quantification from one to two orders of magnitude less than the RNA starting material: GLORI 2.0 is compatible with RNA from ~10,000 cells and enhances sensitivity for both transcriptome-wide and locus-specific m6A detection; GLORI 3.0 further utilizes a reverse transcription-silent carrier RNA to achieve m6A quantification from as low as 500-1,000 cells. Using limited RNA from mouse dorsal hippocampus, we reveal a high modification level in synapse-related gene sets. We envision that the updated GLORI methods will greatly expand the applicability of absolute quantification of m6A in biology.
Collapse
Affiliation(s)
- Hanxiao Sun
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Bo Lu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Zeyu Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ye Xiao
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Zhe Zhou
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Lin Xi
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Zhichao Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Zhe Jiang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Jiayi Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Meng Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Cong Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Yichen Ma
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Jinying Peng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Xiu-Jie Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China.
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
- Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, China.
| |
Collapse
|
8
|
Mo F, Qian Q, Lu X, Zheng D, Cai W, Yao J, Chen H, Huang Y, Zhang X, Wu S, Shen Y, Bai Y, Wang Y, Jiang W, Fan L. mKmer: an unbiased K-mer embedding of microbiomic single-microbe RNA sequencing data. Brief Bioinform 2025; 26:bbaf227. [PMID: 40407385 PMCID: PMC12100620 DOI: 10.1093/bib/bbaf227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/13/2025] [Accepted: 05/01/2025] [Indexed: 05/26/2025] Open
Abstract
The advanced single-microbe RNA sequencing (smRNA-seq) technique addresses the pressing need to understand the complexity and diversity of microbial communities, as well as the distinct microbial states defined by different gene expression profiles. Current analyses of smRNA-seq data heavily rely on the integrity of reference genomes within the queried microbiota. However, establishing a comprehensive collection of microbial reference genomes or gene sets remains a significant challenge for most real-world microbial ecosystems. Here, we developed an unbiased embedding algorithm utilizing K-mer signatures, named mKmer, which bypasses gene or genome alignment to enable species identification for individual microbes and downstream functional enrichment analysis. By substituting gene features in the canonical cell-by-gene matrix with highly conserved K-mers, we demonstrate that mKmer outperforms gene-based methods in clustering and motif inference tasks using benchmark datasets from crop soil and human gut microbiomes. Our method provides a reference genome-free analytical framework for advancing smRNA-seq studies.
Collapse
Affiliation(s)
- Fangyu Mo
- Hainan Institute, Zhejiang University, Zhenzhou Road, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, Hainan Province, China
- Institute of Crop Science, Zhejiang University, 866 Yuhangtang Road, Xihu District, Hangzhou 310058, Zhejiang Province, China
| | - Qinghong Qian
- Institute of Crop Science, Zhejiang University, 866 Yuhangtang Road, Xihu District, Hangzhou 310058, Zhejiang Province, China
| | - Xiaolin Lu
- Institute of Bioinformatics and James D. Watson Institute of Genome Sciences, Zhejiang University, 866 Yuhangtang Road, Xihu District, Hangzhou 310058, Zhejiang Province, China
| | - Dihuai Zheng
- Institute of Crop Science, Zhejiang University, 866 Yuhangtang Road, Xihu District, Hangzhou 310058, Zhejiang Province, China
| | - Wenjie Cai
- Liangzhu Laboratory (Zhejiang Provincial Laboratory for Systems Medicine and Precision Diagnosis), Zhejiang University, 1369 Wenyi West Road, Yuhang District, Hangzhou 311121, Zhejiang Province, China
| | - Jie Yao
- Institute of Bioinformatics and James D. Watson Institute of Genome Sciences, Zhejiang University, 866 Yuhangtang Road, Xihu District, Hangzhou 310058, Zhejiang Province, China
| | - Hongyu Chen
- Institute of Crop Science, Zhejiang University, 866 Yuhangtang Road, Xihu District, Hangzhou 310058, Zhejiang Province, China
| | - Yujie Huang
- Institute of Crop Science, Zhejiang University, 866 Yuhangtang Road, Xihu District, Hangzhou 310058, Zhejiang Province, China
| | - Xiang Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Shangcheng District, Hangzhou 310003, Zhejiang Province, China
| | - Sanling Wu
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, 866 Yuhangtang Road, Xihu District, Hangzhou 310058, Zhejiang Province, China
| | - Yifei Shen
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Shangcheng District, Hangzhou 310003, Zhejiang Province, China
| | - Yinqi Bai
- BGI-Sanya, Zhenzhou Road, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, Hainan Province, China
| | - Yongcheng Wang
- Liangzhu Laboratory, Zhejiang University, 1369 Wenyi West Road, Yuhang District, Hangzhou 311113, Zhejiang Province, China
| | - Weiqin Jiang
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Shangcheng District, Hangzhou 310003, Zhejiang Province, China
| | - Longjiang Fan
- Hainan Institute, Zhejiang University, Zhenzhou Road, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, Hainan Province, China
- Institute of Crop Science, Zhejiang University, 866 Yuhangtang Road, Xihu District, Hangzhou 310058, Zhejiang Province, China
- Institute of Bioinformatics and James D. Watson Institute of Genome Sciences, Zhejiang University, 866 Yuhangtang Road, Xihu District, Hangzhou 310058, Zhejiang Province, China
| |
Collapse
|
9
|
Bartusel M, Kim SX, Rehimi R, Darnell AM, Nikolić M, Heggemann J, Kolovos P, van Ijcken WFJ, Varineau J, Crispatzu G, Mangold E, Brugmann SA, Vander Heiden MG, Laugsch M, Ludwig KU, Rada-Iglesias A, Calo E. A non-syndromic orofacial cleft risk locus links tRNA splicing defects to neural crest cell pathologies. Am J Hum Genet 2025; 112:1097-1116. [PMID: 40250422 PMCID: PMC12120183 DOI: 10.1016/j.ajhg.2025.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/20/2025] Open
Abstract
Orofacial clefts are the most common form of congenital craniofacial malformation worldwide. The etiology of these birth defects is multifactorial, involving genetic and environmental factors. However, in most cases, the underlying causes remain unexplained, precluding a molecular understanding of disease mechanisms. Here, we integrated genome-wide association data, targeted resequencing of case and control cohorts, tissue- and cell-type-specific epigenomic profiling, and genome architecture analyses to molecularly dissect a genomic locus associated with an increased risk of non-syndromic orofacial cleft. We found that common and rare risk variants associated with orofacial cleft intersect with an enhancer (e2p24.2) that is active in human embryonic craniofacial tissue. We mapped e2p24.2 long-range interactions to a topologically associated domain harboring MYCN, DDX1, and CYRIA. We found that MYCN and DDX1, but not CYRIA, are required during craniofacial development in chicken embryos. We investigated the role of DDX1, a key component of the tRNA splicing complex, in cranial neural crest cells (cNCCs). The loss of DDX1 in cNCCs resulted in the accumulation of unspliced tRNA fragments, depletion of mature intron-containing tRNAs, and ribosome stalling at codons decoded by these tRNAs. This was accompanied by defects in both global protein synthesis and cNCC migration. We further showed that the induction of tRNA fragments is sufficient to disrupt craniofacial development. Together, these results uncovered a molecular mechanism in which impaired tRNA splicing affects cNCCs and craniofacial development and positioned MYCN, DDX1, and tRNA processing defects as risk factors in the pathogenesis of orofacial clefts.
Collapse
Affiliation(s)
- Michaela Bartusel
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| | - Skylar X Kim
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rizwan Rehimi
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Institute for Pharmacology and Toxicology (IPT), University Hospital Bonn, Venusberg-Campus 1, Biomedical Center 1 (Building 13), 53127 Bonn, Germany
| | - Alicia M Darnell
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Miloš Nikolić
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Julia Heggemann
- Institute of Human Genetics, University of Bonn, University Hospital Bonn, Medical Faculty, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Petros Kolovos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Jade Varineau
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Giuliano Crispatzu
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Elisabeth Mangold
- Institute of Human Genetics, University of Bonn, University Hospital Bonn, Medical Faculty, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Samantha A Brugmann
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7007, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Matthew G Vander Heiden
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Dana-Farber Cancer Institute, Boston, MA, USA
| | - Magdalena Laugsch
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Kerstin U Ludwig
- Institute of Human Genetics, University of Bonn, University Hospital Bonn, Medical Faculty, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Alvaro Rada-Iglesias
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/University of Cantabria, Santander, Spain
| | - Eliezer Calo
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
10
|
Ciuchcinski K, Kaczorowska AK, Biernacka D, Dorawa S, Kaczorowski T, Park Y, Piekarski K, Stanowski M, Ishikawa T, Stokke R, Steen IH, Dziewit L. Computational pipeline for sustainable enzyme discovery through (re)use of metagenomic data. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 382:125381. [PMID: 40252419 DOI: 10.1016/j.jenvman.2025.125381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 04/03/2025] [Accepted: 04/13/2025] [Indexed: 04/21/2025]
Abstract
Enzymes derived from extremophilic organisms, also known as extremozymes, offer sustainable and efficient solutions for industrial applications. Valued for their resilience and low environmental impact, extremozymes have found use as catalysts in various processes, ranging from dairy production to pharmaceutical manufacturing. However, discovery of novel extremozymes is often hindered by challenges such as culturing difficulties, underrepresentation of extreme environments in reference databases, and limitations of traditional sequence-based screening methods. In this work, we present a computational pipeline designed to discover novel enzymes from metagenomic data derived from extreme environments. This pipeline represents a versatile and sustainable approach that promotes reuse and recycling of existing datasets and minimises the need for additional environmental sampling. In its core, the algorithm integrates both traditional bioinformatic techniques and recent advances in structural prediction, enabling rapid and accurate identification of enzymes. However, due to its design, the algorithm relies heavily on existing databases, which can limit its effectiveness in situations where reference data is scarce or when encountering novel protein families. As a proof-of-concept, we applied the pipeline to metagenomic data from deep-sea hydrothermal vents, with a focus on β-galactosidases. The pipeline identified 11 potential candidate proteins, out of which 10 showed in vitro activity. One of the selected enzymes, βGal_UW07, showed strong potential for industrial applications. The enzyme exhibited optimal activity at 70 °C and was exceptionally resistant to high pH and the presence of metal ions and reducing agents. Overall, our results indicate that the pipeline is highly accurate and can play a key role in sustainable bioprospecting, leveraging existing metagenomic datasets and minimising in situ interventions in pristine regions.
Collapse
Affiliation(s)
- Karol Ciuchcinski
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| | - Anna-Karina Kaczorowska
- Collection of Plasmids and Microorganisms | KPD, Department of Microbiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| | - Daria Biernacka
- Collection of Plasmids and Microorganisms | KPD, Department of Microbiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland; Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdańsk, Abrahama 58, 80-307, Gdańsk, Poland.
| | - Sebastian Dorawa
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| | - Tadeusz Kaczorowski
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| | - Younginn Park
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| | - Karol Piekarski
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| | - Michal Stanowski
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| | - Takao Ishikawa
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| | - Runar Stokke
- Department of Biological Sciences, Center for Deep Sea Research, University of Bergen, Postboks 7803, N-5020, Bergen, Norway.
| | - Ida Helene Steen
- Department of Biological Sciences, Center for Deep Sea Research, University of Bergen, Postboks 7803, N-5020, Bergen, Norway.
| | - Lukasz Dziewit
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
11
|
Song X, Wang Y, Wang Y, Zhao K, Tong D, Gao R, Lv X, Kong D, Ruan Y, Wang M, Tang X, Li F, Luo Y, Zhu Y, Xu J, Ma B. Rhizosphere-triggered viral lysogeny mediates microbial metabolic reprogramming to enhance arsenic oxidation. Nat Commun 2025; 16:4048. [PMID: 40307209 PMCID: PMC12044158 DOI: 10.1038/s41467-025-58695-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 03/26/2025] [Indexed: 05/02/2025] Open
Abstract
The rhizosphere is a critical hotspot for metabolic activities involving arsenic (As). While recent studies indicate many functions for soil viruses, much remains overlooked regarding their quantitative impact on rhizosphere processes. Here, we analyze time-series metagenomes of rice (Oryza sativa L.)rhizosphere and bulk soil to explore how viruses mediate rhizosphere As biogeochemistry. We observe the rhizosphere favors lysogeny in viruses associated with As-oxidizing microbes, with a positive correlation between As oxidation and the prevalence of these microbial hosts. Moreover, results demonstrate these lysogenic viruses enrich both As oxidation and phosphorus co-metabolism genes and mediated horizontal gene transfers (HGTs) of As oxidases. In silico simulation with genome-scale metabolic models (GEMs) and in vitro validation with experiments estimate that rhizosphere lysogenic viruses contribute up to 25% of microbial As oxidation. These findings enhance our comprehension of the plant-microbiome-virome interplay and highlight the potential of rhizosphere viruses for improving soil health in sustainable agriculture.
Collapse
Affiliation(s)
- Xinwei Song
- State Key Laboratory of Soil Pollution Control and Safety, Zhejiang University, Hangzhou, 310058, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China
- Zhejiang Provincial Key Laboratory of Agricultural, Resources and Environment, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Yiling Wang
- State Key Laboratory of Soil Pollution Control and Safety, Zhejiang University, Hangzhou, 310058, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China
- Zhejiang Provincial Key Laboratory of Agricultural, Resources and Environment, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Youjing Wang
- Zhejiang Provincial Key Laboratory of Agricultural, Resources and Environment, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Hangzhou, 310058, China
| | - Kankan Zhao
- State Key Laboratory of Soil Pollution Control and Safety, Zhejiang University, Hangzhou, 310058, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China
- Zhejiang Provincial Key Laboratory of Agricultural, Resources and Environment, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Di Tong
- Zhejiang Provincial Key Laboratory of Agricultural, Resources and Environment, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Hangzhou, 310058, China
| | - Ruichuan Gao
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Xiaofei Lv
- Department of Environmental Engineering, China Jiliang University, Hangzhou, 310018, China
| | - Dedong Kong
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yunjie Ruan
- Institute of Agricultural Bio-Environmental Engineering, College of Bio-Systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- The Rural Development Academy, Zhejiang University, Hangzhou, 310058, China
| | - Mengcen Wang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Xianjin Tang
- State Key Laboratory of Soil Pollution Control and Safety, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural, Resources and Environment, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Fangbai Li
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 210000, Nanjing, China
| | - Yongguan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| | - Jianming Xu
- State Key Laboratory of Soil Pollution Control and Safety, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural, Resources and Environment, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Bin Ma
- State Key Laboratory of Soil Pollution Control and Safety, Zhejiang University, Hangzhou, 310058, China.
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China.
- Zhejiang Provincial Key Laboratory of Agricultural, Resources and Environment, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
12
|
Lima RAT, Garay AV, Frederico TD, de Oliveira GM, Quirino BF, Barbosa JARG, Freitas SMD, Krüger RH. Biochemical and structural characterization of a family-9 glycoside hydrolase bioprospected from the termite Syntermes wheeleri gut bacteria metagenome. Enzyme Microb Technol 2025; 189:110654. [PMID: 40262434 DOI: 10.1016/j.enzmictec.2025.110654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 03/24/2025] [Accepted: 04/12/2025] [Indexed: 04/24/2025]
Abstract
Glycosyl hydrolases (GH) are enzymes involved in the degradation of plant biomass. They are important for biorefineries that aim at the sustainable utilization of lignocellulosic residues to generate value-added products. The termite Syntermes wheeleri gut microbiota showed an abundance of bacteria from the phylum Firmicutes, a phylum with enzymes capable of breaking down cellulose and degrading lignin, facilitating the use of plant materials as a food source for termites. Using bioinformatics techniques, cellobiohydrolases were searched for in the gut metagenome of the termite Syntermes wheeleri, endemic to the Cerrado. After selecting sequences of the target enzymes, termite gut microbiome metatranscriptome data were used as the criteria to choose the GH9 enzyme sequence Exo8574. Here we present the biochemical and structural characterization of Exo8574, a GH9 enzyme that showed activity with the substrate p-nitrophenyl-D-cellobioside (pNPC), consistent with cellobiohydrolase activity. Bioinformatics tools were used to perform phylogeny studies of Exo8574 and to identify conserved families and domains. Exo8574 showed 48.8 % homology to a protein from a bacterium belonging to the phylum Firmicutes. The high-quality three-dimensional (3D) model of Exo8574 was obtained by protein structure prediction AlphaFold 2, a neural network-based method. After the heterologous expression of Exo8574 and its purification, biochemical experiments showed that the optimal activity of the enzyme was at a temperature of 55 ºC and pH 6.0, which was enhanced in the presence of metal ions, especially Fe2 +. The estimated kinetic parameters of Exo8574 using the synthetic substrate p-nithrophenyl-beta-D-cellobioside (pNPC) were: Vmax = 9.14 ± 0.2 x10-5 μmol/min and Km = 248.27 ± 26.35 μmol/L. The thermostability test showed a 50 % loss of activity after 1 h incubation at 55 °C. The secondary structure contents of Exo8574 evaluated by Circular Dichroism were pH dependent, with greater structuring of protein in β-antiparallel and α-helices at pH 6.0. The similarity between the CD results and the Ramachandran plot of the 3D model suggests that a reliable model has been obtained. Altogether, the results of the biochemical and structural characterization showed that Exo8574 is capable of acting on p-nithrophenyl-beta-D-cellobioside (pNPC), a substrate that mimics bonds cleaved by cellobiohydrolases. These findings have significant implications for advancing in the field of biomass conversion while also contributing to efforts aimed at overcoming challenges in developing more efficient cellulase cocktails.
Collapse
Affiliation(s)
| | - Aisel Valle Garay
- Department of Cell Biology, Darcy Ribeiro Campus, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | - Tayná Diniz Frederico
- Department of Cell Biology, Darcy Ribeiro Campus, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | - Gideane Mendes de Oliveira
- Department of Cell Biology, Darcy Ribeiro Campus, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | - Betania Ferraz Quirino
- Embrapa-Agroenegy, Genetics and Biotechnology Laboratory, Brasília, DF 70770-901, Brazil
| | | | - Sonia Maria de Freitas
- Department of Cell Biology, Darcy Ribeiro Campus, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | - Ricardo Henrique Krüger
- Department of Cell Biology, Darcy Ribeiro Campus, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| |
Collapse
|
13
|
Xie J, Song K, Qiao G, Wang R, Wu H, Jia Q, Liu Y, Li Y, Xu M. Decoding G-Quadruplexes Sequence in Vitis vinifera: Regulatory Region Enrichment, Drought Stress Adaptation, and Sugar-Acid Metabolism Modulation. PLANTS (BASEL, SWITZERLAND) 2025; 14:1180. [PMID: 40284068 PMCID: PMC12030360 DOI: 10.3390/plants14081180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025]
Abstract
G-quadruplexes play a crucial role in transcription, translation, and DNA replication in plant genomes. Here, we comprehensively examined the prevalence and functions of G-quadruplexes in Vitis vinifera. A total of 467,813 G-quadruplexes were identified in grapevine genome, with enrichment in the promoter (0.54/kbp) and near transcription start sites (TSSs, 1.00/kbp), and showed conservative strand preference. The G-quadruplex density in centromeres exhibited heterogeneity. The differentially expressed genes (DEGs) under two-day drought stress manifested high G-quadruplex density in the promoter and TSS regions. The upregulated DEGs showed template strand-biased G-quadruplex enrichment, while downregulated DEGs displayed coding strand dominance linked to metal ion homeostasis and sugar-acid metabolism pathways, respectively. G-quadruplexes were enriched in key sugar-acid metabolism genes, including pyruvate kinase and sucrose synthase. The number of G-quadruplexes in sucrose transferase VINV genes was higher than that in the CWINV and NINV genes. This study revealed G-quadruplexes as regulatory elements of stress response and berry development, providing abundant genetic targets for precision breeding and the quality improvement of grapevines.
Collapse
Affiliation(s)
- Jun Xie
- College of Forestry, Gansu Agriculture University, Lanzhou 730070, China;
- State Key Laboratory of Efficient Production of Forest Resources, Yinchuan 750004, China
| | - Kangkang Song
- College of Forestry, Shandong Agricultural University, Tai’an 271018, China;
| | - Gaixia Qiao
- State Key Laboratory of Efficient Production of Forest Resources, Yinchuan 750004, China
| | - Rong Wang
- State Key Laboratory of Efficient Production of Forest Resources, Yinchuan 750004, China
| | - Hongyuan Wu
- Beijing Anling Ecological Construction Co., Ltd., Beijing 102300, China
| | - Qiaoxia Jia
- State Key Laboratory of Efficient Production of Forest Resources, Yinchuan 750004, China
| | - Yujuan Liu
- State Key Laboratory of Efficient Production of Forest Resources, Yinchuan 750004, China
| | - Yi Li
- College of Forestry, Gansu Agriculture University, Lanzhou 730070, China;
| | - Meilong Xu
- Horticulture Research Institute, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750012, China
| |
Collapse
|
14
|
Hartley GA, Okhovat M, Hoyt SJ, Fuller E, Pauloski N, Alexandre N, Alexandrov I, Drennan R, Dubocanin D, Gilbert DM, Mao Y, McCann C, Neph S, Ryabov F, Sasaki T, Storer JM, Svendsen D, Troy W, Wells J, Core L, Stergachis A, Carbone L, O'Neill RJ. Centromeric transposable elements and epigenetic status drive karyotypic variation in the eastern hoolock gibbon. CELL GENOMICS 2025; 5:100808. [PMID: 40088887 PMCID: PMC12008813 DOI: 10.1016/j.xgen.2025.100808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/10/2024] [Accepted: 02/12/2025] [Indexed: 03/17/2025]
Abstract
Great apes have maintained a stable karyotype with few large-scale rearrangements; in contrast, gibbons have undergone a high rate of chromosomal rearrangements coincident with rapid centromere turnover. Here, we characterize fully assembled centromeres in the eastern hoolock gibbon, Hoolock leuconedys (HLE), finding a diverse group of transposable elements (TEs) that differ from the canonical alpha-satellites found across centromeres of other apes. We find that HLE centromeres contain a CpG methylation centromere dip region, providing evidence that this epigenetic feature is conserved in the absence of satellite arrays. We uncovered a variety of atypical centromeric features, including protein-coding genes and mismatched replication timing. Further, we identify duplications and deletions in HLE centromeres that distinguish them from other gibbons. Finally, we observed differentially methylated TEs, topologically associated domain boundaries, and segmental duplications at chromosomal breakpoints, and thus propose that a combination of multiple genomic attributes with propensities for chromosome instability shaped gibbon centromere evolution.
Collapse
Affiliation(s)
- Gabrielle A Hartley
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA; Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Mariam Okhovat
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Savannah J Hoyt
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA; Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Emily Fuller
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA; Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Nicole Pauloski
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA; Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Nicolas Alexandre
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Ivan Alexandrov
- Department of Anatomy and Anthropology and Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ryan Drennan
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA; Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Danilo Dubocanin
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - David M Gilbert
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | - Yizi Mao
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Christine McCann
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA; Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Shane Neph
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Fedor Ryabov
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA; Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Takayo Sasaki
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | - Jessica M Storer
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA; Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Derek Svendsen
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA; Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | | | - Jackson Wells
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Leighton Core
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA; Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Andrew Stergachis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Lucia Carbone
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA; Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA; Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR, USA; Division of Genetics, Oregon National Primate Research Center, Portland, OR, USA
| | - Rachel J O'Neill
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA; Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA; Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA.
| |
Collapse
|
15
|
Luo J, Bian J, Murillo M, Hau PT, Feng Y, Chau ECT, Yan Y, Ng LC, Parsha ASK, Siu GKH, Chow FWN, Xiong Q. High-quality genome assembly and comparative analysis reveal extensive genomic variation in Talaromyces marneffei. Microb Genom 2025; 11:001400. [PMID: 40294122 PMCID: PMC12037069 DOI: 10.1099/mgen.0.001400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 03/21/2025] [Indexed: 04/30/2025] Open
Abstract
Talaromyces marneffei is a dimorphic fungus that transitions from a filamentous form at 25 °C to a pathogenic yeast form at 37 °C, demonstrating pathogenicity mostly in immunocompromised individuals, such as those with human immunodeficiency virus/AIDS. Though it is one of the most severe infectious fungi in Southeast Asia, the lack of comprehensive genomic analysis has hindered advancement in strain differentiation, diagnosis and treatment. In this study, we assembled a high-quality genome of T. marneffei ATCC 18224, resulting in a 28.9 Mb genome distributed across 11 contigs, using third-generation Oxford Nanopore Technologies sequencing reads. Notably, we identified a strain-specific 740-kb segmental duplication in strain ATCC 18224, potentially mediated by inserting a Ty1/Copia long terminal repeat (LTR) retrotransposon. This segmental duplication includes various functional genes, with 75 differentially expressed during its dimorphic transition. Comparative genomic analysis revealed large-scale rearrangements in strains PM1 and 11CN-20-091, which were inconsistent with the phylogenomic trees of six T. marneffei strains and required further investigation. Additionally, we observed substantial genetic structural variations in LTR retrotransposons, particularly within the Ty1/Copia family, including two significant recent expansions in strain ATCC 18224. In summary, the identification and characterization of these extensive genomic structural variations in T. marneffei contribute to a deep understanding of its genetic diversity and will facilitate improvements in genotyping, classification and genomic surveillance.
Collapse
Affiliation(s)
- Jinxia Luo
- Department of Health Technology and Informatics, Faculty of Health and Social Science, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Jingyuan Bian
- Department of Health Technology and Informatics, Faculty of Health and Social Science, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Michaela Murillo
- Department of Health Technology and Informatics, Faculty of Health and Social Science, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Pak-Ting Hau
- Department of Health Technology and Informatics, Faculty of Health and Social Science, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Yi Feng
- Department of Health Technology and Informatics, Faculty of Health and Social Science, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Eddie Chung-Ting Chau
- Department of Health Technology and Informatics, Faculty of Health and Social Science, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Yuyao Yan
- Department of Health Technology and Informatics, Faculty of Health and Social Science, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Laam-Ching Ng
- Department of Health Technology and Informatics, Faculty of Health and Social Science, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Ayesha S. K. Parsha
- Department of Health Technology and Informatics, Faculty of Health and Social Science, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Gilman Kit-Hang Siu
- Department of Health Technology and Informatics, Faculty of Health and Social Science, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Franklin Wang-Ngai Chow
- Department of Health Technology and Informatics, Faculty of Health and Social Science, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Qing Xiong
- Department of Health Technology and Informatics, Faculty of Health and Social Science, The Hong Kong Polytechnic University, Hong Kong, PR China
| |
Collapse
|
16
|
Zhong Y, Pan Q, Wang Y, Yu J, Li Y, Gu L, Hou M, Liang S, Guo J, Jiao X, Zhang Y. Development and Evaluation of a MinION Full-Length 16S rDNA Sequencing Analysis Pipeline for Rapid Diagnosis of Animal Gastrointestinal Diseases. Microorganisms 2025; 13:777. [PMID: 40284613 PMCID: PMC12029435 DOI: 10.3390/microorganisms13040777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Rapid and accurate detection of the causes of gastrointestinal diseases in farmed and companion animals is crucial for advancing livestock farming and safeguarding public health safety. Diseases caused by pathogenic bacteria infections often result in the overrepresentation of pathogens in the gut microbiota; however, gut microbiota dysbiosis without obvious pathogen overrepresentation can also lead to disorders such as inflammatory bowel disease (IBD). Traditional cultivation-based diagnostic methods are time-consuming and ineffective in identifying microbiota dysbiosis-associated diseases. In this study, we developed a sample-to-answer MinION full-length 16S rDNA sequencing analysis pipeline, accompanied by detailed bioinformatics scripts, for the rapid diagnosis of animal gastrointestinal diseases. The pipeline enables the detection of pathogens and microbiota dysbiosis-associated diseases in approximately six hours. The pipeline showed high sensitivity and specificity, as evident by the analysis of artificially contaminated samples, and accurately diagnosed bacterial infections in five cases, including chicken, duckling, and piglet samples from their respective farms, as well as a companion cat, outperforming traditional methods. It also rapidly identified IBD in five companion animals. The findings highlight the potential application of our developed sample-to-answer analysis pipeline in pathogen detection and the diagnosis of gut microbiota dysbiosis-related diseases in animals, thereby improving livestock health and public safety.
Collapse
Affiliation(s)
- Ying Zhong
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (Q.P.); (Y.W.); (J.Y.); (Y.L.); (L.G.); (M.H.); (S.L.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Qingyun Pan
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (Q.P.); (Y.W.); (J.Y.); (Y.L.); (L.G.); (M.H.); (S.L.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Yu Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (Q.P.); (Y.W.); (J.Y.); (Y.L.); (L.G.); (M.H.); (S.L.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Jinyan Yu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (Q.P.); (Y.W.); (J.Y.); (Y.L.); (L.G.); (M.H.); (S.L.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Yaomen Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (Q.P.); (Y.W.); (J.Y.); (Y.L.); (L.G.); (M.H.); (S.L.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Lifang Gu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (Q.P.); (Y.W.); (J.Y.); (Y.L.); (L.G.); (M.H.); (S.L.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Meicun Hou
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (Q.P.); (Y.W.); (J.Y.); (Y.L.); (L.G.); (M.H.); (S.L.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Shenglong Liang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (Q.P.); (Y.W.); (J.Y.); (Y.L.); (L.G.); (M.H.); (S.L.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Jia Guo
- Animal Hospital of Yangzhou University, Yangzhou University, Yangzhou 225009, China;
| | - Xinan Jiao
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (Q.P.); (Y.W.); (J.Y.); (Y.L.); (L.G.); (M.H.); (S.L.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Yunzeng Zhang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (Q.P.); (Y.W.); (J.Y.); (Y.L.); (L.G.); (M.H.); (S.L.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
17
|
Kos D, Jelinski M, Ruzzini A. Retrospective analysis of antimicrobial resistance associated with bovine respiratory disease. Appl Environ Microbiol 2025; 91:e0190924. [PMID: 39918326 PMCID: PMC11921372 DOI: 10.1128/aem.01909-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/19/2025] [Indexed: 03/20/2025] Open
Abstract
The administration and utility of antibiotics to control and treat bovine respiratory disease (BRD) in beef cattle feedlots is a growing concern. Antimicrobial resistance (AMR) among BRD-associated bacterial pathogens has been the subject of cultivation-dependent and cultivation-independent surveillance. Bacterial genome sequencing and metagenomic approaches facilitate the characterization of AMR in the beef industry; however, the current collection of cattle-associated AMR research programs lack connections to each other. A more integrated view of how antimicrobial use (AMU) is related to resistance at a gene level is needed. We sought to establish a catalog of commonly observed AMR genes (ARGs) in opportunistic bacterial pathogens that contribute to BRD using publicly available data sets that were generated by the scientific community with and without AMU in mind. The presence of these clinically relevant ARGs appeared to differ by geography. Greater sampling in North America facilitated the generation of a list of ARGs often encoded by Mannheimia haemolytica and Pasteurella multocida. Detection of clinically relevant ARGs in shotgun metagenomes of cattle-associated and accessible feedlot samples such as water, soil, and feces was possible but limited by relative sequence read abundance. An exception was the tylosin esterase-encoding gene estT, which is among the most frequently observed ARGs in M. haemolytica and feedlot-related metagenomic data sets. Finally, by re-evaluating studies on the impact of AMU on AMR in beef production systems, we show that conventional practices, including in-feed antibiotic use, increase the relative abundance of ARGs in animal-derived samples.IMPORTANCEThis retrospective analysis delivers a list of ARGs found in opportunistic pathogens that contribute to BRD. The high incidence of BRD in North America is linked to the origin and implementation of metaphylaxis to mitigate detrimental animal losses at feedlots. Notably, ARGs commonly observed in these pathogens isolated in North America were not conserved across the globe, underscoring the relationship between regional AMU and AMR. A positive relationship was also observed between the relative abundance of ARGs in cattle-associated metagenomes with greater exposure to antibiotics. Overall, this analysis should help to guide future surveillance efforts and experimental designs to more directly evaluate the impacts of feedlot practices on AMR.
Collapse
Affiliation(s)
- Daniel Kos
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Murray Jelinski
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Antonio Ruzzini
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
18
|
Zhang B, Qiu J, Qu Z, Xiao R, Wang L, Tian P, Zhang H, Chen W, Wang G. Bifidobacterium adolescentis FJSSZ23M10 modulates gut microbiota and metabolism to alleviate obesity through strain-specific genomic features. Food Funct 2025; 16:2415-2431. [PMID: 40008925 DOI: 10.1039/d4fo06449f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Obesity is a major global public health challenge, affecting billions and serving as a primary risk factor for many chronic diseases. Certain probiotics have shown promise in regulating energy balance and enhancing fat metabolism, offering potential strategies for managing obesity. In this study, we evaluated three strains of Bifidobacterium adolescentis and identified B. adolescentis FJSSZ23M10 as the most effective in alleviating high-fat diet (HFD)-induced obesity. This strain significantly reduced weight gain, improved abnormal serum biochemical indicators, decreased lipid accumulation in adipocytes, and enhanced energy expenditure. Furthermore, B. adolescentis FJSSZ23M10 treatment modulated the gut microbiota, notably increasing the abundance of Bifidobacterium and Faecalibaculum. Untargeted metabolomic analysis revealed that B. adolescentis FJSSZ23M10 uniquely upregulated beneficial metabolites, such as butyrate and pyruvic acid, suggesting its superior metabolic impact. Genomic analysis indicated that B. adolescentis FJSSZ23M10 harbored the highest abundance of unassigned genes and carbohydrate-active enzymes (CAZymes) compared to the other strains, highlighting its superior functional potential. Combining the shared and unique modifications in gut microbiota, metabolites, and genomic annotations, the study highlights that genomic differences among probiotics could shape their effects on gut microbiota and metabolites. Conclusively, the study underscores the critical role of probiotic genomic characteristics in determining their functional efficacy and suggests that the intake of the B. adolescentis FJSSZ23M10 strain with enriched genomic features, such as CAZymes, could represent a novel genomic-based strategy for alleviating obesity through gut microbiota modulation and metabolic regulation.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Food Science and Resources, Wuxi, Jiangsu 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Department of Microbiology and Immunology, National University of Singapore, 117545, Singapore
| | - Jiayin Qiu
- State Key Laboratory of Food Science and Resources, Wuxi, Jiangsu 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhihao Qu
- State Key Laboratory of Food Science and Resources, Wuxi, Jiangsu 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Rui Xiao
- State Key Laboratory of Food Science and Resources, Wuxi, Jiangsu 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Linlin Wang
- State Key Laboratory of Food Science and Resources, Wuxi, Jiangsu 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Peijun Tian
- State Key Laboratory of Food Science and Resources, Wuxi, Jiangsu 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Wuxi, Jiangsu 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Wuxi, Jiangsu 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Gang Wang
- State Key Laboratory of Food Science and Resources, Wuxi, Jiangsu 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| |
Collapse
|
19
|
Chenal M, Rivera-Millot A, Harrison LB, Khairalla AS, Nieves C, Bernet È, Esmaili M, Belkhir M, Perreault J, Veyrier FJ. Discovery of the widespread site-specific single-stranded nuclease family Ssn. Nat Commun 2025; 16:2388. [PMID: 40064889 PMCID: PMC11893778 DOI: 10.1038/s41467-025-57514-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Site-specific endonucleases that exclusively cut single-stranded DNA have hitherto never been described and constitute a barrier to the development of ssDNA-based technologies. We identify and characterize one such family, from the GIY-YIG superfamily, of widely distributed site-specific single-stranded nucleases (Ssn) exhibiting unique ssDNA cleavage properties. By first comprehensively studying the Ssn homolog from Neisseria meningitidis, we demonstrate that it interacts specifically with a sequence (called NTS) present in hundreds of copies and surrounding important genes in pathogenic Neisseria. In this species, NTS/Ssn interactions modulate natural transformation and thus constitute an additional mechanism shaping genome dynamics. We further identify thousands of Ssn homologs and demonstrate, in vitro, a range of Ssn nuclease specificities for their corresponding sequence. We demonstrate proofs of concept for applications including ssDNA detection and digestion of ssDNA from RCA. This discovery and its applications set the stage for the development of innovative ssDNA-based molecular tools and technologies.
Collapse
Affiliation(s)
- Martin Chenal
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, QC, Canada
| | - Alex Rivera-Millot
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, QC, Canada
| | - Luke B Harrison
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, QC, Canada
| | - Ahmed S Khairalla
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, QC, Canada
- Department of Biology, University of Regina, Regina, SK, Canada
| | - Cecilia Nieves
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, QC, Canada
| | - Ève Bernet
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, QC, Canada
| | - Mansoore Esmaili
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, QC, Canada
| | - Manel Belkhir
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, QC, Canada
| | | | - Frédéric J Veyrier
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, QC, Canada.
| |
Collapse
|
20
|
Cao J, Tong Y, Xiao Z, Chen H, Liu Z. Chromosome-level genome assembly of Jaguar guapote (Parachromis manguensis) by massive parallel sequencing. Sci Data 2025; 12:411. [PMID: 40064893 PMCID: PMC11894119 DOI: 10.1038/s41597-025-04752-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Parachromis managuensis is a native cichlid fish from Central America and is the most commonly traded species within its genus. This study presents the first chromosome-scale genome assembly of P. managuensis using PacBio HiFi long reads and Hi-C sequencing data. The size of the P. managuensis genome is approximately 896.66 Mb, with a scaffold N50 of 38.19 Mb. The assembled genome demonstrates high quality in terms of completeness and accuracy, with a BUSCO score of 98.85% and a quality value (QV) of 50.95. A total of 888.60 Mb (99.10%) sequences were anchored to 24 pseudochromosomes. Additionally, 21,145 protein-coding genes and 325.58 Mb (~36.31%) repetitive sequences were identified. This chromosome-level genome assembly provides a crucial reference for studying the evolution and ecological adaptability of P. managuensis.
Collapse
Affiliation(s)
- Jianmeng Cao
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China.
| | - Yannan Tong
- Hainan Academy of Ocean and Fisheries Science, Haikou, 570206, China
| | - Zhigang Xiao
- Menghai County Fisheries Technology Extension Station of Xishuangbanna Dai Autonomous Prefecture, Menghai, 666200, China
| | - Huizi Chen
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Zhigang Liu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| |
Collapse
|
21
|
Kwon T, Trujillo JD, Carossino M, Machkovech HM, Cool K, Lyoo EL, Singh G, Kafle S, Elango S, Vediyappan G, Wei W, Minor N, Matias-Ferreyra FS, Morozov I, Gaudreault NN, Balasuriya UBR, Hensley L, Diel DG, Ma W, Friedrich TC, Richt JA. Pathogenicity and transmissibility of bovine-derived HPAI H5N1 B3.13 virus in pigs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.04.641414. [PMID: 40093138 PMCID: PMC11908241 DOI: 10.1101/2025.03.04.641414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Since the first emergence of highly pathogenic avian influenza (HPAI) H5N1 viruses in dairy cattle, the virus has continued to spread, reaching 17 states and at least 970 dairy herds in the United States. Subsequently, spillovers of the virus from dairy cattle to humans have been reported. Pigs are an important reservoir in influenza ecology because they serve as a mixing vessel in which novel reassortant viruses with pandemic potential can be generated. Here, we show that oro-respiratory infection of pigs resulted in productive replication of a bovine-derived HPAI H5N1 B3.13 virus. Infectious virus was mainly identified in the lower respiratory tract of principal infected pigs, and sero-conversion was observed in most of the principal pigs at later time points. In one animal, we detected the emergence of a mutation in hemagglutinin (HA) previously associated with increased affinity for "mammalian-type" α2,6-linked sialic acid receptors, but this mutation did not reach consensus levels. Sentinel contact pigs remained sero-negative throughout the study, indicating lack of transmission. The results support that pigs are susceptible to a bovine-derived HPAI H5N1 B3.13 virus, but this virus did not replicate as robustly in pigs as mink-derived HPAI H5N1 and swine-adapted influenza viruses.
Collapse
Affiliation(s)
- Taeyong Kwon
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Jessie D. Trujillo
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Mariano Carossino
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Heather M. Machkovech
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Konner Cool
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Eu Lim Lyoo
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Gagandeep Singh
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Sujan Kafle
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Shanmugasundaram Elango
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Govindsamy Vediyappan
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Wanting Wei
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nicholas Minor
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Franco S. Matias-Ferreyra
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Igor Morozov
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Natasha N. Gaudreault
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Udeni B. R. Balasuriya
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Lisa Hensley
- Zoonotic and Emerging Disease Research Unit, National Bio and Agro-Defense Facility, Agricultural Research Service, United States Department of Agriculture, Manhattan, Kansas, USA
| | - Diego G. Diel
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Wenjun Ma
- Department of Veterinary Pathobiology, College of Veterinary Medicine, and Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Thomas C. Friedrich
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Juergen A. Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
22
|
Kane Y, Nalikka B, Tendu A, Omondi V, Bienes KM, Padane A, Duong V, Berthet N, Wong G. Genetic Diversity and Geographic Spread of Henipaviruses. Emerg Infect Dis 2025; 31:427-437. [PMID: 40023785 PMCID: PMC11878329 DOI: 10.3201/eid3103.241134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025] Open
Abstract
Henipaviruses, such as Hendra and Nipah viruses, are major zoonotic pathogens that cause encephalitis and respiratory infections in humans and animals. The recent emergence of Langya virus in China highlights the need to understand henipavirus host diversity and geographic spread to prevent future outbreaks. Our analysis of the National Center for Biotechnology Information Virus and VIRION databases revealed ≈1,117 henipavirus sequences and 142 complete genomes. Bats (64.7%) and shrews (11.7%) dominated the host species record, and the genera Pteropus and Crocidura contained key henipavirus hosts in Asia, Australia, and Africa. Henipaviruses found in the Eidolon bat genus exhibited the highest within-host genetic distance. Phylogenetic analysis revealed batborne and rodent- or shrew-derived henipaviruses diverged ≈11,000 years ago and the first known lineage originating in Eidolon genus bats ≈9,900 years ago. Pathogenic henipaviruses diverged from their ancestors 2,800-1,200 years ago. Including atypical hosts and regions in future investigations is necessary to control future outbreaks.
Collapse
|
23
|
Vendrell-Fernández S, Beamud B, Abou Haydar Y, Am de Sousa J, Burlaud-Gaillard J, Kornobis E, Raynal B, Vinh J, Bikard D, Ghigo JM. Incomplete lytic cycle of a widespread Bacteroides bacteriophage leads to the formation of defective viral particles. PLoS Biol 2025; 23:e3002787. [PMID: 40163458 DOI: 10.1371/journal.pbio.3002787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/27/2025] [Indexed: 04/02/2025] Open
Abstract
Advances in metagenomics have led to the identification of new intestinal temperate bacteriophages. However, their experimental characterization remains challenging due to a limited understanding of their lysogenic-lytic cycle and the common lack of plaque formation in vitro. In this study, we investigated the hankyphage, a widespread transposable phage of prominent Bacteroides symbionts. Hankyphages spontaneously produced virions in laboratory conditions even in the absence of inducer, but virions did not show any evidence of infectivity. To increase virion production and raise the chances of observing infection events, we identified a master repressor of the hankyphage lytic cycle, RepCHP, whose silencing amplified hankyphage gene expression, and enhanced replicative transposition and virion production. However, attempts to infect or lysogenize new host cells with different capsular types remained unsuccessful. Transmission electron microscopy and capsid DNA sequencing revealed an abnormal virion morphology and incomplete DNA packaging of the hankyphage, suggesting that it cannot complete its assembly in laboratory conditions for reasons that are yet to be identified. Still, metavirome and phylogenetic analyses were suggestive of hankyphage horizontal transmission. We could also detect the activity of diversity-generating retroelements (DGRs) that mutagenize the hankyphage tail fiber, and likely contribute to its broad host range. This study sheds light on the life cycle of this abundant intestinal bacteriophage and highlights important gaps in our understanding of the factors required for the completion of its life cycle. Elucidating this puzzle will be critical to gain a better understanding of the hankyphage biology and ecological role.
Collapse
Affiliation(s)
- Sol Vendrell-Fernández
- Institut Pasteur, Université Paris-Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, Paris, France
| | - Beatriz Beamud
- Institut Pasteur, Université Paris-Cité, UMR CNRS 3525, Synthetic Biology Laboratory, Paris, France
| | - Yasmina Abou Haydar
- Institut Pasteur, Université Paris-Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, Paris, France
| | - Jorge Am de Sousa
- Institut Pasteur, Université Paris-Cité, Microbial Evolutionary Genomics Laboratory, Paris, France
| | | | - Etienne Kornobis
- Institut Pasteur, Université Paris Cité, Plateforme Technologique Biomics, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Bertrand Raynal
- Institut Pasteur, Université Paris-Cité, Molecular Biophysics Platform, Paris, France
| | - Joelle Vinh
- ESPCI Paris, PSL University, UAR CNRS 2051, Biological Mass Spectrometry and Proteomics, Paris, France
| | - David Bikard
- Institut Pasteur, Université Paris-Cité, UMR CNRS 3525, Synthetic Biology Laboratory, Paris, France
| | - Jean-Marc Ghigo
- Institut Pasteur, Université Paris-Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, Paris, France
| |
Collapse
|
24
|
Javier MCF, Noblezada AC, Sienes PMQ, Guino-o RS, Palomar-Abesamis N, Malay MCD, del Castillo CS, Ferriols VMEN. Draft genome of the endangered visayan spotted deer ( Rusa alfredi), a Philippine endemic species. GIGABYTE 2025; 2025:gigabyte150. [PMID: 40041424 PMCID: PMC11876970 DOI: 10.46471/gigabyte.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/18/2025] [Indexed: 03/06/2025] Open
Abstract
The Visayan Spotted Deer (VSD), or Rusa alfredi, is an endangered and endemic species in the Philippines. Despite its status, genomic information on R. alfredi, and the genus Rusa in general, is missing. This study presents the first draft genome assembly of the VSD using the Illumina short-read sequencing technology. The resulting RusAlf_1.1 assembly has a 2.52 Gb total length, with a contig N50 of 46 Kb and scaffold N50 size of 75 Mb. The assembly has a BUSCO complete score of 95.5%, demonstrating the genome's completeness, and includes the annotation of 24,531 genes. Our phylogenetic analysis based on single-copy orthologs revealed a close evolutionary relationship between R. alfredi and the genus Cervus. RusAlf_1.1 represents a significant advancement in our understanding of the VSD. It opens opportunities for further research in population genetics and evolutionary biology, potentially contributing to more effective conservation and management strategies for this endangered species.
Collapse
Affiliation(s)
- Ma. Carmel F. Javier
- Philippine Genome Center Visayas, University of the Philippines Visayas, Miagao Iloilo, Philippines
| | - Albert C. Noblezada
- Philippine Genome Center Visayas, University of the Philippines Visayas, Miagao Iloilo, Philippines
| | | | - Robert S. Guino-o
- Angelo King Center for Research and Environmental Management, Silliman University, Dumaguete, Philippines
| | | | - Maria Celia D. Malay
- Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines
| | - Carmelo S. del Castillo
- Institute of Aquaculture, College of Fisheries and Ocean Sciences, University of the Philippines Visayas, Miagao Iloilo, Philippines
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Visayas, Miagao Iloilo, Philippines
| | - Victor Marco Emmanuel N. Ferriols
- Philippine Genome Center Visayas, University of the Philippines Visayas, Miagao Iloilo, Philippines
- Institute of Aquaculture, College of Fisheries and Ocean Sciences, University of the Philippines Visayas, Miagao Iloilo, Philippines
| |
Collapse
|
25
|
Panina K, Potapov M, Rumak D, Schneider C. Investigation on the origin of the "nose" in the genus Megalothorax Willem, 1900 (Neelidae, Collembola) by the means of integrative taxonomy. Zootaxa 2025; 5590:209-230. [PMID: 40173943 DOI: 10.11646/zootaxa.5590.2.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Indexed: 04/04/2025]
Abstract
Megalothorax Willem, 1900 is a genus of Collembola that comprises 36 species to date. For a long time, its diversity was overlooked, but recent integrative taxonomic works allowed us to understand better their seemingly cryptic diversity. Among the oddities of the genus are the so-called "nosed" species, i.e. species equipped with a frontal cuticular process, an unusual trait for Collembola. In this work, we describe a new "nosed" species from the north of European part of Russia and redescribe the first known "nosed" species: Megalothorax sanctistephani Christian, 1998. This species is known only from peculiar places: initially the catacombs of a cathedral in Vienna, and our new findings in underground tunnel in Paris and Botanical Garden of Kaliningrad. We also used long-read sequencing to obtain new DNA data for "nosed" species of Collembola. We investigated the evolution of the "nose" using molecular and morphological phylogeny approaches. This evolution remained unclear, as molecular and morphological data are conflicting on this specific point. The "nose" may have been acquired a single time, then lost secondarily in some species; or have been acquired independently several times.
Collapse
Affiliation(s)
- Ksenia Panina
- Moscow State Pedagogical University; Kibalchicha str.; 6; korp. 3; Moscow; 129278; Russia.
| | - Mikhail Potapov
- Moscow State Pedagogical University; Kibalchicha str.; 6; korp. 3; Moscow; 129278; Russia.
| | - Daria Rumak
- Moscow State Pedagogical University; Kibalchicha str.; 6; korp. 3; Moscow; 129278; Russia; Lomonosov Moscow State University; Leninsky Gory; 1-12; Moscow; 119234; Russia..
| | - Clément Schneider
- Senckenberg Gesellschaft für Naturforschung; Senckenberg Museum für Naturkunde Görlitz; Soil Zoology Department; Am Museum 1; 02826; Görlitz.
| |
Collapse
|
26
|
Nakamae K, Suzuki T, Yonezawa S, Yamamoto K, Kakuzaki T, Ono H, Naito Y, Bono H. Risk Prediction of RNA Off-Targets of CRISPR Base Editors in Tissue-Specific Transcriptomes Using Language Models. Int J Mol Sci 2025; 26:1723. [PMID: 40004186 PMCID: PMC11855689 DOI: 10.3390/ijms26041723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Base-editing technologies, particularly cytosine base editors (CBEs), allow precise gene modification without introducing double-strand breaks; however, unintended RNA off-target effects remain a critical concern and are under studied. To address this gap, we developed the Pipeline for CRISPR-induced Transcriptome-wide Unintended RNA Editing (PiCTURE), a standardized computational pipeline for detecting and quantifying transcriptome-wide CBE-induced RNA off-target events. PiCTURE identifies both canonical ACW (W = A or T/U) motif-dependent and non-canonical RNA off-targets, revealing a broader WCW motif that underlies many unanticipated edits. Additionally, we developed two machine learning models based on the DNABERT-2 language model, termed STL and SNL, which outperformed motif-only approaches in terms of accuracy, precision, recall, and F1 score. To demonstrate the practical application of our predictive model for CBE-induced RNA off-target risk, we integrated PiCTURE outputs with the Predicting RNA Off-target compared with Tissue-specific Expression for Caring for Tissue and Organ (PROTECTiO) pipeline and estimated RNA off-target risk for each transcript showing tissue-specific expression. The analysis revealed differences among tissues: while the brain and ovaries exhibited relatively low off-target burden, the colon and lungs displayed relatively high risks. Our study provides a comprehensive framework for RNA off-target profiling, emphasizing the importance of advanced machine learning-based classifiers in CBE safety evaluations and offering valuable insights to inform the development of safer genome-editing therapies.
Collapse
Affiliation(s)
- Kazuki Nakamae
- Genome Editing Innovation Center, Hiroshima University, Higashi-Hiroshima 739-0046, Japan;
| | - Takayuki Suzuki
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-0046, Japan; (T.S.); (S.Y.)
| | - Sora Yonezawa
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-0046, Japan; (T.S.); (S.Y.)
| | | | | | - Hiromasa Ono
- Genome Editing Innovation Center, Hiroshima University, Higashi-Hiroshima 739-0046, Japan;
- Database Center for Life Science, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, 178-4-4 Wakashiba, Kashiwa 277-0871, Japan;
| | - Yuki Naito
- Database Center for Life Science, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, 178-4-4 Wakashiba, Kashiwa 277-0871, Japan;
| | - Hidemasa Bono
- Genome Editing Innovation Center, Hiroshima University, Higashi-Hiroshima 739-0046, Japan;
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-0046, Japan; (T.S.); (S.Y.)
- Database Center for Life Science, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, 178-4-4 Wakashiba, Kashiwa 277-0871, Japan;
| |
Collapse
|
27
|
Daigle A, Whitehouse LS, Zhao R, Emerson JJ, Schrider DR. Leveraging long-read assemblies and machine learning to enhance short-read transposable element detection and genotyping. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.11.637720. [PMID: 39990489 PMCID: PMC11844559 DOI: 10.1101/2025.02.11.637720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Transposable elements (TEs) are parasitic genomic elements that are ubiquitous across the tree of life and play a crucial role in genome evolution. Advances in long-read sequencing have allowed highly accurate TE detection, though at a higher cost than short-read sequencing. Recent studies using long reads have shown that existing short-read TE detection methods perform inadequately when applied to real data. In this study, we use a machine learning approach (called TEforest) to discover and genotype TE insertions and deletions with short-read data by using TEs detected from long-read genome assemblies as training data. Our method first uses a highly sensitive algorithm to discover potential TE insertion or deletion sites in the genome, extracting relevant features from short-read alignments. To discriminate between true and false TE insertions, we train a random forest model with a labeled ground-truth dataset for which we have calculated the same set of short-read features. We conduct a comprehensive benchmark of TEforest and traditional TE detection methods using real data, finding that TEforest identifies more true positives and fewer false positives across datasets with different read lengths and coverages, while also accurately inferring genotypes and the precise breakpoints of insertions. By learning short-read signatures of TEs previously only discoverable using long reads, our approach bridges the gap between large-scale population genetic studies and the accuracy of long-read assemblies. This work provides a user-friendly tool to study the prevalence and phenotypic effects of TE insertions across the genome.
Collapse
Affiliation(s)
- Austin Daigle
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Logan S. Whitehouse
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Roy Zhao
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697
| | - JJ Emerson
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697
| | - Daniel R. Schrider
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
28
|
Lazzarotto CR, Li Y, Flory AR, Chyr J, Yang M, Katta V, Urbina E, Lee G, Wood R, Matsubara A, Rashkin SR, Ma J, Cheng Y, Tsai SQ. Population-scale cellular GUIDE-seq-2 and biochemical CHANGE-seq-R profiles reveal human genetic variation frequently affects Cas9 off-target activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.10.637517. [PMID: 39990392 PMCID: PMC11844382 DOI: 10.1101/2025.02.10.637517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Genome editing enzymes can introduce targeted changes to the DNA in living cells 1-4 , transforming biological research and enabling the first approved gene editing therapy for sickle cell disease 5 . However, their genome-wide activity can be altered by genetic variation at on- or off-target sites 6-8 , potentially impacting both their precision and therapeutic safety. Due to a lack of scalable methods to measure genome-wide editing activity in cells from large populations and diverse target libraries, the frequency and extent of these variant effects on editing remains unknown. Here, we present the first population-scale study of how genetic variation affects the cellular genome-wide activity of CRISPR-Cas9, enabled by a novel, sensitive, and unbiased cellular assay, GUIDE-seq-2 with improved scalability and accuracy compared to the original broadly adopted method 9 . Analyzing Cas9 genome-wide activity at 1,115 on- and off-target sites across six guide RNAs in cells from 95 individuals spanning four genetically diverse populations, we found that variants frequently overlap off-target sites, with 13% significantly altering Cas9 editing activity by up to 33% indels. To understand common features of high-impact variants, we developed a new massively parallel biochemical assay, CHANGE-seq-R, to measure Cas9 activity across millions of mismatched target sites, and trained a deep neural network model, CHANGE-net, to accurately predict and interpret the effects of single-nucleotide variants on off-targets with up to six mismatches. Taken together, our findings illuminate a path to account for genetic variation when designing genome editing strategies for research and therapeutics.
Collapse
|
29
|
Griffin SO, Orlando V, Conyers C, Lawson R, Prior T, Jones E, Haynes E, Jensen EL. Draft Genome Assembly of Root Knot Nematode, Meloidogyne fallax. J Nematol 2025; 57:20250016. [PMID: 40242174 PMCID: PMC12002905 DOI: 10.2478/jofnem-2025-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Indexed: 04/18/2025] Open
Abstract
Meloidosgyne fallax (false Columbia root knot nematode) is an invasive crop pest recorded across Europe, Africa, North America, and Oceania. Here we present the draft genome assembly of M. fallax which was de novo assembled and scaffolded using M. chitwoodi (Columbia root knot nematode), a close relative of M. fallax.
Collapse
Affiliation(s)
- Sarah Olivia Griffin
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
- Fera Science Ltd., York Biotech Campus, York, YO41 1LZ, UK
| | | | - Chris Conyers
- Fera Science Ltd., York Biotech Campus, York, YO41 1LZ, UK
| | - Rebecca Lawson
- Fera Science Ltd., York Biotech Campus, York, YO41 1LZ, UK
| | - Thomas Prior
- Fera Science Ltd., York Biotech Campus, York, YO41 1LZ, UK
| | - Eleanor Jones
- Fera Science Ltd., York Biotech Campus, York, YO41 1LZ, UK
| | - Edward Haynes
- Fera Science Ltd., York Biotech Campus, York, YO41 1LZ, UK
| | - Evelyn L. Jensen
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
30
|
Zaychikova M, Malakhova M, Bespiatykh D, Kornienko M, Klimina K, Strokach A, Gorodnichev R, German A, Fursov M, Bagrov D, Vnukova A, Gracheva A, Kazyulina A, Shleeva M, Shitikov E. Vic9 mycobacteriophage: the first subcluster B2 phage isolated in Russia. Front Microbiol 2025; 15:1513081. [PMID: 39877753 PMCID: PMC11772480 DOI: 10.3389/fmicb.2024.1513081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/12/2024] [Indexed: 01/31/2025] Open
Abstract
Mycobacteriophages are viruses that specifically infect bacteria of the Mycobacterium genus. A substantial collection of mycobacteriophages has been isolated and characterized, offering valuable insights into their diversity and evolution. This collection also holds significant potential for therapeutic applications, particularly as an alternative to antibiotics in combating drug-resistant bacterial strains. In this study, we report the isolation and characterization of a new mycobacteriophage, Vic9, using Mycobacterium smegmatis mc (2)155 as the host strain. Vic9 has been classified within the B2 subcluster of the B cluster. Morphological analysis revealed that Vic9 has a structure typical of siphophages from this subcluster and forms characteristic plaques. The phage adsorbs onto host strain cells within 30 min, and according to one-step growth experiments, its latent period lasts about 90 min, followed by a growth period of 150 min, with an average yield of approximately 68 phage particles per infected cell. In host range experiments, Vic9 efficiently lysed the host strain and also exhibited the ability to lyse M. tuberculosis H37Rv, albeit with a low efficiency of plating (EOP ≈ 2 × 10-5), a typical feature of B2 phages. No lysis was observed in other tested mycobacterial species. The genome of Vic9 comprises 67,543 bp of double-stranded DNA and encodes 89 open reading frames. Our analysis revealed unique features in Vic9, despite its close relationship to other B2 subcluster phages, highlighting its distinct characteristics even among closely related phages. Particularly noteworthy was the discovery of a distinct 435 bp sequence within the gene cluster responsible for queuosine biosynthesis, as well as a recombination event within the structural cassette region (Vic_0033-Vic_0035) among members of the B1, B2, and B3 subclusters. These genetic features are of interest for further research, as they may reveal new mechanisms of phage-bacteria interactions and their potential for developing novel phage therapy methods.
Collapse
Affiliation(s)
- Marina Zaychikova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency Medicine, Moscow, Russia
| | - Maja Malakhova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency Medicine, Moscow, Russia
| | - Dmitry Bespiatykh
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency Medicine, Moscow, Russia
| | - Maria Kornienko
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency Medicine, Moscow, Russia
| | - Ksenia Klimina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency Medicine, Moscow, Russia
| | - Aleksandra Strokach
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency Medicine, Moscow, Russia
| | - Roman Gorodnichev
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency Medicine, Moscow, Russia
| | - Arina German
- Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| | - Mikhail Fursov
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russia
| | - Dmitry Bagrov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency Medicine, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Anna Vnukova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexandra Gracheva
- Federal State Budgetary Institution “National Medical Research Center of Phtisiopulmonology and Infectious Diseases” of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anastasia Kazyulina
- Federal State Budgetary Institution “National Medical Research Center of Phtisiopulmonology and Infectious Diseases” of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Margarita Shleeva
- Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| | - Egor Shitikov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency Medicine, Moscow, Russia
| |
Collapse
|
31
|
Mosquera-Yuqui F, Ramos-Lopez D, Hu X, Yang Y, Mendoza JL, Asare E, Habiger J, Hurtado-Gonzales OP, Espindola AS. A comparative template-switching cDNA approach for HTS-based multiplex detection of three viruses and one viroid commonly found in apple trees. Sci Rep 2025; 15:1657. [PMID: 39794400 PMCID: PMC11724120 DOI: 10.1038/s41598-025-86065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/08/2025] [Indexed: 01/13/2025] Open
Abstract
Exclusion is a keystone of integrated pest management to prevent the introduction of pathogens. U.S. plant quarantine programs employ PCR and high-throughput sequencing (HTS) to test imported plants for viruses and viroids of concern. Achieving a low limit of detection in any HTS protocol could be challenging. Following a template-switching cDNA amplification protocol, seven cDNA synthesis treatments were used to test simultaneously the relative abundance and coverage of the three most commonly latent RNA viruses found in apples: apple chlorotic leaf spot virus, apple stem grooving virus, and apple stem pitting virus, as well as the viroid apple hammerhead viroid. Amplified double-stranded cDNAs were subjected to library preparation using Nanopore SQK-DCS109 and Illumina Nextera XT, and sequenced with MinION and NextSeq2000, respectively. Treatments with oligo d(T)23-VN or its combination with random hexamers yielded the highest relative reads for viruses, while treatments containing the reverse primer pool produced more relative reads for AHVd. These treatments and random hexamers also generated the highest genome coverages, which were typically similar in both HTS workflows. However, relative abundances of viruses determined with SQK-DCS109 were up to 2.22-fold higher compared to Nextera XT. In contrast, Nextera XT yielded viroid reads 3.30-fold higher than SQK-DCS109. A framework of considerations for expanding this sensitive approach to other targets and crops is discussed.
Collapse
Affiliation(s)
- Francisco Mosquera-Yuqui
- Institute for Biosecurity and Microbial Forensics (IBMF), Oklahoma State University, Stillwater, OK, USA
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, USA
| | - Daniel Ramos-Lopez
- Institute for Biosecurity and Microbial Forensics (IBMF), Oklahoma State University, Stillwater, OK, USA
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, USA
| | - Xiaojun Hu
- United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS), Plant Protection and Quarantine (PPQ), Plant Germplasm Quarantine Program (PGQP), United States, Beltsville, MD, USA
| | - Yu Yang
- United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS), Plant Protection and Quarantine (PPQ), Plant Germplasm Quarantine Program (PGQP), United States, Beltsville, MD, USA
| | - Joshua L Mendoza
- United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS), Plant Protection and Quarantine (PPQ), Plant Germplasm Quarantine Program (PGQP), United States, Beltsville, MD, USA
| | - Emmanuel Asare
- Department of Statistics, Oklahoma State University, Stillwater, OK, USA
| | - Joshua Habiger
- Department of Statistics, Oklahoma State University, Stillwater, OK, USA
| | - Oscar P Hurtado-Gonzales
- United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS), Plant Protection and Quarantine (PPQ), Plant Germplasm Quarantine Program (PGQP), United States, Beltsville, MD, USA
| | - Andres S Espindola
- Institute for Biosecurity and Microbial Forensics (IBMF), Oklahoma State University, Stillwater, OK, USA.
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
32
|
Yang G, Zhou Q, Yang J, Chen G, Niu Z, Orr M, Ferrari RR, Zhang Y, Shi X, Cheng R, Zhu C, Luo A. Chromosome-level genome assembly of Megachile sculpturalis Smith (Hymenoptera, Apoidea, Megachilidae). Sci Data 2025; 12:46. [PMID: 39794368 PMCID: PMC11724062 DOI: 10.1038/s41597-025-04385-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Megachile sculpturalis Smith, 1853 native to East Asia, is an important solitary bee species that has invaded both Europe and the United States. This study provides the first chromosome-level genome assembly of M. sculpturalis using a combination of Nanopore long reads, Illumina short reads, and Hi-C data. The genome comprises 296.99 Mb distributed across 16 chromosomes. N50, L50 and BUSCO completeness reached 19.128 Mb, 7 scaffolds, and 96.7%, respectively. The genome contains 104 Mb repetitive elements (35.02% of the assembly size) and 11,446 predicted protein-coding genes. This chromosome-level genome will serve as an essential genomic resource for future research on Megachilidae.
Collapse
Affiliation(s)
- Guang Yang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Biological Sciences, University of Chinese Academy of Science, Beijing, China
| | - Qingsong Zhou
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Juanjuan Yang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Guoai Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Biological Sciences, University of Chinese Academy of Science, Beijing, China
| | - Zeqing Niu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Michael Orr
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Entomologie, Staatliches Museum für Naturkunde Stuttgart, Stuttgart, Germany
| | - Rafael Rodrigues Ferrari
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Centro de Formação em Ciências Ambientais, Universidade Federal do Sul da Bahia, Porto Seguro, Brazil
| | - Yihan Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Biological Sciences, University of Chinese Academy of Science, Beijing, China
| | - Xiaoyu Shi
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Rui Cheng
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chaodong Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- College of Biological Sciences, University of Chinese Academy of Science, Beijing, China.
- International College, University of Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Arong Luo
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- International College, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
33
|
Molano LAG, Hirsch P, Hannig M, Müller R, Keller A. The PLSDB 2025 update: enhanced annotations and improved functionality for comprehensive plasmid research. Nucleic Acids Res 2025; 53:D189-D196. [PMID: 39565221 PMCID: PMC11701622 DOI: 10.1093/nar/gkae1095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/17/2024] [Accepted: 10/25/2024] [Indexed: 11/21/2024] Open
Abstract
Plasmids are extrachromosomal DNA molecules in bacteria and archaea, playing critical roles in horizontal gene transfer, antibiotic resistance, and pathogenicity. Since its first release in 2018, our database on plasmids, PLSDB, has significantly grown and enhanced its content and scope. From 34 513 records contained in the 2021 version, PLSDB now hosts 72 360 entries. Designed to provide life scientists with convenient access to extensive plasmid data and to support computer scientists by offering curated datasets for artificial intelligence (AI) development, this latest update brings more comprehensive and accurate information for plasmid research, with interactive visualization options. We enriched PLSDB by refining the identification and classification of plasmid host ecosystems and host diseases. Additionally, we incorporated annotations for new functional structures, including protein-coding genes and biosynthetic gene clusters. Further, we enhanced existing annotations, such as antimicrobial resistance genes and mobility typing. To accommodate these improvements and to host the increase plasmid sets, the webserver architecture and underlying data structures of PLSDB have been re-reconstructed, resulting in decreased response times and enhanced visualization of features while ensuring that users have access to a more efficient and user-friendly interface. The latest release of PLSDB is freely accessible at https://www.ccb.uni-saarland.de/plsdb2025.
Collapse
Affiliation(s)
| | - Pascal Hirsch
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, 66421 Homburg, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany
- PharmaScienceHub, 66123 Saarbrücken, Germany
| |
Collapse
|
34
|
Riggs CL, Kalyan G, Romney AL, Podrabsky JE. Detection of mitochondrial tDRs in killifish embryos and other non-model organisms. Methods Enzymol 2024; 711:283-311. [PMID: 39952710 DOI: 10.1016/bs.mie.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
In recent years a diversity of small noncoding RNAs have been identified that originate from the mitochondrial genome. These mitosRNAs are often dominated by tRNA-derived small RNAs (mito-tDRs). Differential expression of mito-tDRs is associated with responses to stress. They also appear to be expressed differentially during development and their expression may be enriched in stress-tolerant animals. Very little is currently known about roles or modes of action of these sequences, although they are implicated in a diversity of processes such as cell cycle regulation, mRNA stability, regulation of ROS production, and import of proteins into the mitochondrion. To better understand the various roles these sequences may play, it is critical that we understand their diversity, cellular location, and the context for their expression. This protocol outlines the methodologies used to detect mitosRNAs, including mito-tDRs, in embryos and cells of the annual killifish Austrofundulus limnaeus. We highlight critical steps in the isolation of RNA, creation of sequencing libraries, bioinformatics processing of sequence data, and methods for validation of expression that support a robust discovery pipeline for mitosRNAs even from species with incomplete reference genome sequences.
Collapse
Affiliation(s)
- Claire L Riggs
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA, United States; Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Gazal Kalyan
- Department of Biology, Portland State University, Portland, OR, United States
| | - Amie Lt Romney
- Department of Biology, Portland State University, Portland, OR, United States
| | - Jason E Podrabsky
- Department of Biology, Portland State University, Portland, OR, United States
| |
Collapse
|
35
|
Mykhailenko A, Zieliński P, Bednarz A, Schlyter F, Andersson MN, Antunes B, Borowski Z, Krokene P, Melin M, Morales-García J, Müller J, Nowak Z, Schebeck M, Stauffer C, Viiri H, Zaborowska J, Babik W, Nadachowska-Brzyska K. Complex Genomic Landscape of Inversion Polymorphism in Europe's Most Destructive Forest Pest. Genome Biol Evol 2024; 16:evae263. [PMID: 39656753 DOI: 10.1093/gbe/evae263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024] Open
Abstract
In many species, polymorphic genomic inversions underlie complex phenotypic polymorphisms and facilitate local adaptation in the face of gene flow. Multiple polymorphic inversions can co-occur in a genome, but the prevalence, evolutionary significance, and limits to complexity of genomic inversion landscapes remain poorly understood. Here, we examine genome-wide genetic variation in one of Europe's most destructive forest pests, the spruce bark beetle Ips typographus, scan for polymorphic inversions, and test whether inversions are associated with key traits in this species. We analyzed 240 individuals from 18 populations across the species' European range and, using a whole-genome resequencing approach, identified 27 polymorphic inversions covering ∼28% of the genome. The inversions vary in size and in levels of intra-inversion recombination, are highly polymorphic across the species range, and often overlap, forming a complex genomic architecture. We found no support for mechanisms such as directional selection, overdominance, and associative overdominance that are often invoked to explain the presence of large inversion polymorphisms in the genome. This suggests that inversions are either neutral or maintained by the combined action of multiple evolutionary forces. We also found that inversions are enriched in odorant receptor genes encoding elements of recognition pathways for host plants, mates, and symbiotic fungi. Our results indicate that the genome of this major forest pest of growing social, political, and economic importance harbors one of the most complex inversion landscapes described to date and raise questions about the limits of intraspecific genomic architecture complexity.
Collapse
Affiliation(s)
- Anastasiia Mykhailenko
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland
| | - Piotr Zieliński
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | - Aleksandra Bednarz
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | - Fredrik Schlyter
- Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences Alnarp, 234 22 Lomma, Sweden
- ETM, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, 165 00 Praha, Czechia
| | | | - Bernardo Antunes
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | - Zbigniew Borowski
- Departament of Forest Ecology, Forest Research Institute, 05-090 Raszyn, Poland
| | - Paal Krokene
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, 1433 Ås, Norway
| | - Markus Melin
- Forest Health and Bidiversity Group, Natural Resources Institute Finland, 80100 Joensuu, Finland
| | - Julia Morales-García
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland
| | - Jörg Müller
- Field Station Fabrikschleichach, Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, 96181 Rauhenebrach, Germany
- Bavarian Forest National Park, 94481 Grafenau, Germany
| | - Zuzanna Nowak
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | - Martin Schebeck
- Institute of Forest Entomology, Forest Pathology and Forest Protection, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria
| | - Christian Stauffer
- Institute of Forest Entomology, Forest Pathology and Forest Protection, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria
| | - Heli Viiri
- UPM Forest, UPM-Kymmene, 33100 Tampere, Finland
| | - Julia Zaborowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | - Wiesław Babik
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | | |
Collapse
|
36
|
Wang W, Yi J, Zhan J, Luo D, Chen Q, Yu S, Xie L, Chen K. Comparative Genomic Analysis of an Apiotrichum cacaoliposimilis Strain Isolated from a Patient with Urinary Tract Infection. Pol J Microbiol 2024; 73:475-489. [PMID: 39670642 PMCID: PMC11639406 DOI: 10.33073/pjm-2024-038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/12/2024] [Indexed: 12/14/2024] Open
Abstract
Opportunistic infections caused by fungi, particularly those occurring in immunocompromised patients, are considered challenging worldwide. Therefore, a comprehensive understanding of pathogenic fungi is necessary. The present study reports the isolation of a strain of Apiotrichum cacaoliposimilis, which is difficult to detect using conventional clinical assays, from the sterile urine samples of a patient with a urinary tract infection. Sanger sequencing of the internal transcribed spacer regions confirmed the genus of the microbe, while whole-genome sequencing yielded the initial genome assembly of A. cacaoliposimilis. A total of 7,161 predicted proteincoding genes were mapped using multiple databases, including Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, non-redundant protein database, Pathogen-Host Interactions Database, and Comprehensive Antibiotic Resistance Database. The phenotypic data, biochemical reactions, and antimicrobial susceptibility analyses were conducted to reveal the metabolic properties, virulence, and drug resistance profile of the isolated A. cacaoliposimilis. The rank-sum test revealed the differences in the intergeneric distribution of the highly virulent genes UgeB and Pem2. In addition, other genes exhibited significant overlap in terms of virulence factors with the clinical isolate Apiotrichum mycotoxinivorans GMU1709. Fortunately, similar to most fungi belonging to the Apiotrichum genus, the isolate investigated in the present study was also sensitive to the drug voriconazole (MIC = 0.06 μg/ml). In summary, the phylogenetic placement, potential pathogenic genes, drug sensitivity patterns, and morphological characteristics of the isolated A. cacaoliposimilis were determined precisely in the present study.
Collapse
Affiliation(s)
- Wei Wang
- Department of Clinical Laboratory, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Department of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jinping Yi
- Department of Clinical Laboratory, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jiahuan Zhan
- Department of Clinical Laboratory, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Department of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Dong Luo
- Department of Clinical Laboratory, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qiang Chen
- Department of Clinical Laboratory, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Shengming Yu
- Department of Clinical Laboratory, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Department of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Ling Xie
- Department of Clinical Laboratory, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Department of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Kaisen Chen
- Department of Clinical Laboratory, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
37
|
Glendening AM, Stephens C, Vuruputoor VS, Stern DL, Hogenhout SA, Mathers TC, Chaganti T, Pauloski N, Cernak TA, Wegrzyn JL, Fetter KC. Genomes of two invasive Adelges species (hemlock woolly adelgid and pineapple gall adelgid) enable characterization of nicotinic acetylcholine receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.21.624573. [PMID: 39605547 PMCID: PMC11601503 DOI: 10.1101/2024.11.21.624573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Two invasive hemipteran adelgids cause widespread damage to North American conifers. Adelges tsugae (the hemlock woolly adelgid) has decimated Tsuga canadensis and Tsuga caroliniana (the Eastern and Carolina hemlocks, respectively). A. tsugae was introduced from East Asia and reproduces parthenogenetically in North America, where it can kill trees rapidly. A. abietis, introduced from Europe, makes "pineapple" galls on several North American spruce species, and weakens trees, increasing their susceptibility to other stresses. Broad-spectrum insecticides that are often used to control adelgid populations can have off-target impacts on beneficial insects and the development of more selective chemical treatments could improve control methods and minimize ecological damage. Whole genome sequencing was performed on both species to aid in development of targeted pest control solutions and improve species conservation. The assembled A. tsugae and A. abietis genomes are 220.75 Mbp and 253.16 Mbp, respectively, each consisting of nine chromosomes and both genomes are over 96% complete based on BUSCO assessment. Genome annotation identified 11,424 and 14,118 protein-coding genes in A. tsugae and A. abietis, respectively. Comparative analysis across 29 Hemipteran species and 14 arthropod outgroups identified 31,666 putative gene families. Gene family expansions in A. abietis included ABC transporters and carboxypeptidases involved in carbohydrate metabolism, while both species showed contractions in core histone families and oxidoreductase pathways. Gene family expansions in A. tsugae highlighted families associated with the regulation of cell differentiation and development (survival motor protein, SMN; juvenile hormone acid methyltransferase JHAMT) as well as those that may be involved in the suppression of plant immunity (clip domain serine protease-D, CLIPD; Endoplasmic reticulum aminopeptidase 1, ERAP1). Among the analyzed gene families, Nicotinic acetylcholine receptors (nAChRs) maintained consistent copy numbers and structural features across species, a finding particularly relevant given their role as targets for current forestry management insecticides. Detailed phylogenetic analysis of nAChR subunits across adelgids and other ecologically important insects revealed remarkable conservation in both sequence composition and predicted structural features, providing crucial insights for the development of more selective pest control strategies.
Collapse
Affiliation(s)
- A M Glendening
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA 06269
| | - Cole Stephens
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA 48109
| | - Vidya S Vuruputoor
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA 06269
| | - David L Stern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA, 20147
| | - Saskia A Hogenhout
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | - Tesko Chaganti
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA 48109
- Canton High School, Canton, MI, USA 48187
| | - Nicole Pauloski
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA 06269
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA 06269
| | - Tim A Cernak
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA 48109
| | - Jill L Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA 06269
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA 06269
| | - Karl C Fetter
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA 06269
| |
Collapse
|
38
|
Popowitch EB, Tran TH, Escapa IF, Bhatt E, Sozat AK, Ahmed N, Deming C, Roberts AQ, NISC Comparative Sequencing Program, Segre JA, Kong HH, Conlan S, Lemon KP, Kelly MS. Description of two novel Corynebacterium species isolated from human nasal passages and skin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.21.624533. [PMID: 39605597 PMCID: PMC11601546 DOI: 10.1101/2024.11.21.624533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Strains of two novel Corynebacterium species were cultured from samples of human nostrils and skin collected in the United States and Botswana. These strains demonstrated growth on Columbia Colistin-Nalidixic Acid agar with 5% sheep blood and in liquid media (brain heart infusion and tryptic soy broth) supplemented with Tween 80, a source of the fatty acid oleic acid. Cells were Gram-positive, non-spore-forming, non-motile bacilli that showed catalase but not oxidase activity. Major fatty acids in both of these species were 18:1 ω9c (oleic acid), 16:0 (palmitic acid), and 18:0 (stearic acid). Analysis of the 16S ribosomal RNA gene sequences identified these strains as belonging to the genus Corynebacterium (family Corynebacteriaceae). Whole-genome sequencing revealed that these strains formed distinct branches on a phylogenomic tree, with C. tuberculostearicum being the closest relative but with average nucleotide identities of < 95% relative to all previously described species. These results indicate that these strains represent novel species of Corynebacterium, for which we propose the names Corynebacterium hallux sp. nov., with the type strain CTNIH22T (=ATCC TSD-435T=DSM 117774T), and Corynebacterium nasorum sp. nov., with the type strain KPL3804T (=ATCC TSD-439T=DSM 117767T). We also describe the characteristics of two strains isolated from human nasal passages that are members of the recently named species Corynebacterium yonathiae.
Collapse
Affiliation(s)
- Elena B. Popowitch
- Division of Pediatric Infectious Diseases, Duke University School
of Medicine, Durham, NC, USA
| | - Tommy H. Tran
- Alkek Center for Metagenomics & Microbiome Research,
Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston,
Texas, USA
| | - Isabel Fernandez Escapa
- Alkek Center for Metagenomics & Microbiome Research,
Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston,
Texas, USA
| | | | | | - Nashwa Ahmed
- National Human Genome Research Institute, Bethesda, MD, USA
| | - Clayton Deming
- National Human Genome Research Institute, Bethesda, MD, USA
| | - Ari Q. Roberts
- Alkek Center for Metagenomics & Microbiome Research,
Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston,
Texas, USA
| | | | - Julia A. Segre
- National Human Genome Research Institute, Bethesda, MD, USA
| | - Heidi H. Kong
- National Institute of Arthritis and Musculoskeletal and Skin
Diseases, Bethesda, MD, USA
| | - Sean Conlan
- National Human Genome Research Institute, Bethesda, MD, USA
| | - Katherine P. Lemon
- Alkek Center for Metagenomics & Microbiome Research,
Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston,
Texas, USA
- Division of Infectious Diseases, Texas Children’s
Hospital, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Matthew S. Kelly
- Division of Pediatric Infectious Diseases, Duke University School
of Medicine, Durham, NC, USA
| |
Collapse
|
39
|
Song JM, Long HB, Ye M, Yang BR, Wu GJ, He HC, Wang JL, Li HW, Li XG, Deng DY, Li B, Yuan WL. Genomic characterization of a bla KPC-2-producing IncM2 plasmid harboring transposon ΔTn 6296 in Klebsiella michiganensis. Front Cell Infect Microbiol 2024; 14:1492700. [PMID: 39600872 PMCID: PMC11588702 DOI: 10.3389/fcimb.2024.1492700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/09/2024] [Indexed: 11/29/2024] Open
Abstract
Klebsiella michiganensis is an emerging hospital-acquired bacterial pathogen, particularly strains harboring plasmid-mediated carbapenemase genes. Here, we recovered and characterized a multidrug-resistant strain, bla KPC-2-producing Klebsiella michiganensis LS81, which was isolated from the abdominal drainage fluid of a clinical patient in China, and further characterized the co-harboring plasmid. K. michiganensis LS81 tested positive for the bla KPC-2 genes by PCR sequencing, with bla KPC-2 located on a plasmid as confirmed by S1 nuclease pulsed-field gel electrophoresis combined with Southern blotting. In the transconjugants, the bla KPC-2 genes were successfully transferred to the recipient strain E. coli EC600. Whole-genome sequencing and bioinformatics analysis confirmed that this strain belongs to sequence type 196 (ST196), with a complete genome comprising a 5,926,662bp circular chromosome and an 81,451bp IncM2 plasmid encoding bla KPC-2 (designated pLS81-KPC). The IncM2 plasmid carried multiple β-lactamase genes such as bla TEM-1B, bla CTX-M-3, and bla KPC-2 inserted in truncated Tn6296 with the distinctive core structure ISKpn27-bla KPC-2-ISKpn6. A comparison with 46 K. michiganensis genomes available in the NCBI database revealed that the closest phylogenetic relative of K. michiganensis LS81 is a clinical isolate from a wound swab in the United Kingdom. Ultimately, the pan-genomic analysis unveiled a substantial accessory genome within the strain, alongside significant genomic plasticity within the K. michiganensis species, emphasizing the necessity for continuous surveillance of this pathogen in clinical environments.
Collapse
Affiliation(s)
- Jian-Mei Song
- Department of Clinical Laboratory, The Affiliated Hospital of Yunnan University (The Second People’s Hospital of Yunnan Province), Kunming, Yunnan, China
- Department of Clinical Laboratory, Affiliated Qujing Hospital of Kunming Medical University (The First People’s Hospital of Qujing), Qujing, Yunnan, China
| | - Hu-Bo Long
- Department of Clinical Laboratory, The Affiliated Hospital of Yunnan University (The Second People’s Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Mei Ye
- Department of Clinical Laboratory, The Affiliated Hospital of Yunnan University (The Second People’s Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Bao-Rui Yang
- Department of Clinical Laboratory, The Affiliated Hospital of Yunnan University (The Second People’s Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Guang-Juan Wu
- Department of Clinical Laboratory, The Affiliated Hospital of Yunnan University (The Second People’s Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Hong-Chun He
- Department of General Surgery, The Affiliated Hospital of Yunnan University (The Second People’s Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Jun-Ling Wang
- Department of Clinical Laboratory, Affiliated Qujing Hospital of Kunming Medical University (The First People’s Hospital of Qujing), Qujing, Yunnan, China
| | - Hong-Wei Li
- Department of Clinical Laboratory, Affiliated Qujing Hospital of Kunming Medical University (The First People’s Hospital of Qujing), Qujing, Yunnan, China
| | - Xiao-Gang Li
- Department of General Surgery, The Affiliated Hospital of Yunnan University (The Second People’s Hospital of Yunnan Province), Kunming, Yunnan, China
| | - De-Yao Deng
- Department of Clinical Laboratory, The Affiliated Hospital of Yunnan University (The Second People’s Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Bo Li
- Department of General Surgery, The Affiliated Hospital of Yunnan University (The Second People’s Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Wen-Li Yuan
- Department of Clinical Laboratory, The Affiliated Hospital of Yunnan University (The Second People’s Hospital of Yunnan Province), Kunming, Yunnan, China
| |
Collapse
|
40
|
K C R, Cheng R, Zhou S, Lizarazo S, Smith DJ, Van Bortle K. Evidence of RNA polymerase III recruitment and transcription at protein-coding gene promoters. Mol Cell 2024; 84:4111-4124.e5. [PMID: 39393362 PMCID: PMC11560567 DOI: 10.1016/j.molcel.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/14/2024] [Accepted: 09/13/2024] [Indexed: 10/13/2024]
Abstract
The transcriptional interplay of human RNA polymerase I (RNA Pol I), RNA Pol II, and RNA Pol III remains largely uncharacterized due to limited integrative genomic analyses for all three enzymes. To address this gap, we applied a uniform framework to quantify global RNA Pol I, RNA Pol II, and RNA Pol III occupancies and identify both canonical and noncanonical patterns of gene localization. Most notably, our survey captures unexpected RNA Pol III recruitment at promoters of specific protein-coding genes. We show that such RNA Pol III-occupied promoters are enriched for small nascent RNAs terminating in a run of 4 Ts-a hallmark of RNA Pol III termination indicative of constrained RNA Pol III transcription. Taken further, RNA Pol III disruption generally reduces the expression of RNA Pol III-occupied protein-coding genes, suggesting RNA Pol III recruitment and transcription enhance RNA Pol II activity. These findings resemble analogous patterns of RNA Pol II activity at RNA Pol III-transcribed genes, altogether uncovering a reciprocal form of crosstalk between RNA Pol II and RNA Pol III.
Collapse
Affiliation(s)
- Rajendra K C
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Ruiying Cheng
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Sihang Zhou
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Simon Lizarazo
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Duncan J Smith
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Kevin Van Bortle
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
41
|
Martínez-Redondo GI, Vargas-Chávez C, Eleftheriadi K, Benítez-Álvarez L, Vázquez-Valls M, Fernández R. MATEdb2, a Collection of High-Quality Metazoan Proteomes across the Animal Tree of Life to Speed Up Phylogenomic Studies. Genome Biol Evol 2024; 16:evae235. [PMID: 39540856 PMCID: PMC11534026 DOI: 10.1093/gbe/evae235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Recent advances in high-throughput sequencing have exponentially increased the number of genomic data available for animals (Metazoa) in the last decades, with high-quality chromosome-level genomes being published almost daily. Nevertheless, generating a new genome is not an easy task due to the high cost of genome sequencing, the high complexity of assembly, and the lack of standardized protocols for genome annotation. The lack of consensus in the annotation and publication of genome files hinders research by making researchers lose time in reformatting the files for their purposes but can also reduce the quality of the genetic repertoire for an evolutionary study. Thus, the use of transcriptomes obtained using the same pipeline as a proxy for the genetic content of species remains a valuable resource that is easier to obtain, cheaper, and more comparable than genomes. In a previous study, we presented the Metazoan Assemblies from Transcriptomic Ensembles database (MATEdb), a repository of high-quality transcriptomic and genomic data for the two most diverse animal phyla, Arthropoda and Mollusca. Here, we present the newest version of MATEdb (MATEdb2) that overcomes some of the previous limitations of our database: (i) we include data from all animal phyla where public data are available, and (ii) we provide gene annotations extracted from the original GFF genome files using the same pipeline. In total, we provide proteomes inferred from high-quality transcriptomic or genomic data for almost 1,000 animal species, including the longest isoforms, all isoforms, and functional annotation based on sequence homology and protein language models, as well as the embedding representations of the sequences. We believe this new version of MATEdb will accelerate research on animal phylogenomics while saving thousands of hours of computational work in a plea for open, greener, and collaborative science.
Collapse
Affiliation(s)
- Gemma I Martínez-Redondo
- Metazoa Phylogenomics Lab, Biodiversity Program, Institute of Evolutionary Biology (CSIC-University Pompeu Fabra), 08003 Barcelona, Spain
| | - Carlos Vargas-Chávez
- Metazoa Phylogenomics Lab, Biodiversity Program, Institute of Evolutionary Biology (CSIC-University Pompeu Fabra), 08003 Barcelona, Spain
| | - Klara Eleftheriadi
- Metazoa Phylogenomics Lab, Biodiversity Program, Institute of Evolutionary Biology (CSIC-University Pompeu Fabra), 08003 Barcelona, Spain
| | - Lisandra Benítez-Álvarez
- Metazoa Phylogenomics Lab, Biodiversity Program, Institute of Evolutionary Biology (CSIC-University Pompeu Fabra), 08003 Barcelona, Spain
| | - Marçal Vázquez-Valls
- Metazoa Phylogenomics Lab, Biodiversity Program, Institute of Evolutionary Biology (CSIC-University Pompeu Fabra), 08003 Barcelona, Spain
| | - Rosa Fernández
- Metazoa Phylogenomics Lab, Biodiversity Program, Institute of Evolutionary Biology (CSIC-University Pompeu Fabra), 08003 Barcelona, Spain
| |
Collapse
|
42
|
Yoxsimer AM, Offenberg EG, Katzer AW, Bell MA, Massengill RL, Kingsley DM. Genomic Sequence of the Threespine Stickleback Iridovirus (TSIV) from Wild Gasterosteus aculeatus in Stormy Lake, Alaska. Viruses 2024; 16:1663. [PMID: 39599778 PMCID: PMC11598847 DOI: 10.3390/v16111663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/19/2024] [Accepted: 10/20/2024] [Indexed: 11/29/2024] Open
Abstract
The threespine stickleback iridovirus (TSIV), a double-stranded DNA virus, was the first megalocytivirus detected in wild North American fishes. We report a second occurrence of TSIV in threespine stickleback (Gasterosteus aculeatus) from Stormy Lake, Alaska, and assemble a nearly complete genome of TSIV. The 115-kilobase TSIV genome contains 94 open reading frames (ORFs), with 91 that share homology with other known iridoviruses. We identify three ORFs that likely originate from recent lateral gene transfers from a eukaryotic host and one ORF with homology to B22 poxvirus proteins that likely originated from a lateral gene transfer between viruses. Phylogenetic analysis of 24 iridovirus core genes and pairwise sequence identity analysis support TSIV as a divergent sister taxon to other megalocytiviruses and a candidate for a novel species designation. Screening of stickleback collected from Stormy Lake before and after a 2012 rotenone treatment to eliminate invasive fish shows 100% positivity for TSIV in the two years before treatment (95% confidence interval: 89-100% prevalence) and 0% positivity for TSIV in 2024 after treatment (95% confidence interval: 0 to 3.7% prevalence), suggesting that the rotenone treatment and subsequent crash and reestablishment of the stickleback population is associated with loss of TSIV.
Collapse
Affiliation(s)
- Alyssa M. Yoxsimer
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.M.Y.); (E.G.O.); (A.W.K.)
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Emma G. Offenberg
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.M.Y.); (E.G.O.); (A.W.K.)
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Austin Wolfgang Katzer
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.M.Y.); (E.G.O.); (A.W.K.)
| | - Michael A. Bell
- University of California Museum of Paleontology, Berkeley, CA 94720, USA;
| | | | - David M. Kingsley
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.M.Y.); (E.G.O.); (A.W.K.)
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
43
|
Menghwar H, Ma H, Briggs RE, Tatum FM, Casas E, Dassanayake RP. Complete genome sequence of a Histophilus somni strain 91 isolated from a beef calf with pneumonia. Microbiol Resour Announc 2024; 13:e0057024. [PMID: 39240084 PMCID: PMC11465810 DOI: 10.1128/mra.00570-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/01/2024] [Indexed: 09/07/2024] Open
Abstract
Histophilus somni is an important causative agent of bovine respiratory disease complex. Here, we report the complete genome sequence of a Histophilus somni strain 91, which was isolated from a pneumonic lung tissue sample collected from a beef calf.
Collapse
Affiliation(s)
- Harish Menghwar
- USA Department of Agriculture, Ruminant Diseases and Immunology Research Unit, Agricultural Research Service, National Animal Disease Center, Ames, Iowa, USA
- Oak Ridge Institute for Science and Education (ORISE), ARS Research Participation Program, Oak Ridge, Tennessee, USA
| | - Hao Ma
- USA Department of Agriculture, Ruminant Diseases and Immunology Research Unit, Agricultural Research Service, National Animal Disease Center, Ames, Iowa, USA
| | - Robert E. Briggs
- USA Department of Agriculture, Ruminant Diseases and Immunology Research Unit, Agricultural Research Service, National Animal Disease Center, Ames, Iowa, USA
| | - Fred M. Tatum
- USA Department of Agriculture, Ruminant Diseases and Immunology Research Unit, Agricultural Research Service, National Animal Disease Center, Ames, Iowa, USA
| | - Eduardo Casas
- USA Department of Agriculture, Ruminant Diseases and Immunology Research Unit, Agricultural Research Service, National Animal Disease Center, Ames, Iowa, USA
| | - Rohana P. Dassanayake
- USA Department of Agriculture, Ruminant Diseases and Immunology Research Unit, Agricultural Research Service, National Animal Disease Center, Ames, Iowa, USA
| |
Collapse
|
44
|
Shao Y, Garcia-Mauriño C, Clare S, Dawson NJR, Mu A, Adoum A, Harcourt K, Liu J, Browne HP, Stares MD, Rodger A, Brocklehurst P, Field N, Lawley TD. Primary succession of Bifidobacteria drives pathogen resistance in neonatal microbiota assembly. Nat Microbiol 2024; 9:2570-2582. [PMID: 39242817 PMCID: PMC11445081 DOI: 10.1038/s41564-024-01804-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/05/2024] [Indexed: 09/09/2024]
Abstract
Human microbiota assembly commences at birth, seeded by both maternal and environmental microorganisms. Ecological theory postulates that primary colonizers dictate microbial community assembly outcomes, yet such microbial priority effects in the human gut remain underexplored. Here using longitudinal faecal metagenomics, we characterized neonatal microbiota assembly for a cohort of 1,288 neonates from the UK. We show that the pioneering neonatal gut microbiota can be stratified into one of three distinct community states, each dominated by a single microbial species and influenced by clinical and host factors, such as maternal age, ethnicity and parity. A community state dominated by Enterococcus faecalis displayed stochastic microbiota assembly with persistent high pathogen loads into infancy. In contrast, community states dominated by Bifidobacterium, specifically B. longum and particularly B. breve, exhibited a stable assembly trajectory and long-term pathogen colonization resistance, probably due to strain-specific functional adaptions to a breast milk-rich neonatal diet. Consistent with our human cohort observation, B. breve demonstrated priority effects and conferred pathogen colonization resistance in a germ-free mouse model. Our findings solidify the crucial role of Bifidobacteria as primary colonizers in shaping the microbiota assembly and functions in early life.
Collapse
Affiliation(s)
- Yan Shao
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK.
| | | | - Simon Clare
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Nicholas J R Dawson
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Andre Mu
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Anne Adoum
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Katherine Harcourt
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Junyan Liu
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Hilary P Browne
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Mark D Stares
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Alison Rodger
- Institute for Global Health, University College London, London, UK
| | - Peter Brocklehurst
- Birmingham Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | - Nigel Field
- Institute for Global Health, University College London, London, UK
| | - Trevor D Lawley
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK.
| |
Collapse
|
45
|
Hartley GA, Okhovat M, Hoyt SJ, Fuller E, Pauloski N, Alexandre N, Alexandrov I, Drennan R, Dubocanin D, Gilbert DM, Mao Y, McCann C, Neph S, Ryabov F, Sasaki T, Storer JM, Svendsen D, Troy W, Wells J, Core L, Stergachis A, Carbone L, O’Neill RJ. Centromeric transposable elements and epigenetic status drive karyotypic variation in the eastern hoolock gibbon. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610280. [PMID: 39257810 PMCID: PMC11384015 DOI: 10.1101/2024.08.29.610280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Great apes have maintained a stable karyotype with few large-scale rearrangements; in contrast, gibbons have undergone a high rate of chromosomal rearrangements coincident with rapid centromere turnover. Here we characterize assembled centromeres in the Eastern hoolock gibbon, Hoolock leuconedys (HLE), finding a diverse group of transposable elements (TEs) that differ from the canonical alpha satellites found across centromeres of other apes. We find that HLE centromeres contain a CpG methylation centromere dip region, providing evidence this epigenetic feature is conserved in the absence of satellite arrays; nevertheless, we report a variety of atypical centromeric features, including protein-coding genes and mismatched replication timing. Further, large structural variations define HLE centromeres and distinguish them from other gibbons. Combined with differentially methylated TEs, topologically associated domain boundaries, and segmental duplications at chromosomal breakpoints, we propose that a "perfect storm" of multiple genomic attributes with propensities for chromosome instability shaped gibbon centromere evolution.
Collapse
Affiliation(s)
- Gabrielle A. Hartley
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Mariam Okhovat
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Savannah J. Hoyt
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Emily Fuller
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Nicole Pauloski
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Nicolas Alexandre
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Ivan Alexandrov
- Department of Anatomy and Anthropology and Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Israel
| | - Ryan Drennan
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Danilo Dubocanin
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - David M. Gilbert
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | - Yizi Mao
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Christine McCann
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Shane Neph
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Fedor Ryabov
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
- Department of Biomolecular Engineering, University of California Santa Cruz, CA, USA
| | - Takayo Sasaki
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | - Jessica M. Storer
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Derek Svendsen
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | | | - Jackson Wells
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Leighton Core
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Andrew Stergachis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Lucia Carbone
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR, USA
- Division of Genetics, Oregon National Primate Research Center, Portland, OR, USA
| | - Rachel J. O’Neill
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
| |
Collapse
|
46
|
Wang Z, Liu J, Qi X, Su D, Yang J, Cui X. Study of Endogenous Viruses in the Strawberry Plants. Viruses 2024; 16:1306. [PMID: 39205280 PMCID: PMC11359110 DOI: 10.3390/v16081306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Endogenous viral elements (EVEs) have been reported to exist widely in the genomes of eukaryotic organisms, and they are closely associated with the growth, development, genetics, adaptation, and evolution of their hosts. In this study, two methods-homologous sequence search and genome alignment-were used to explore the endogenous viral sequences in the genomes of Fragaria species. Results revealed abundant endogenous pararetroviruses (EPRVs) in the genomes of Fragaria species, including 786 sequences belonging to five known taxa such as Caulimovirus and other unclassified taxa. Differences were observed in the detected EPRVs between the two methods, with the homologous sequence search having a greater number of EPRVs. On the contrary, genome alignment identified various types and sources of virus-like sequences. Furthermore, through genome alignment, a 267-bp sequence with 95% similarity to the gene encoding the aphid-transmitted protein of Strawberry vein banding virus (Caulimovirus venafragariae) was discovered in the F. chiloensis genome, which was likely a recent insertion. In addition, the statistical analysis of the genome alignment results indicated a remarkably higher abundance of virus-like sequences in the genomes of polyploid strawberries compared with diploid ones. Moreover, the differences in virus-like sequences were observed between the genomes of Fragaria species and those of their close relatives. This study enriched the diversity of viruses that infect strawberries, and laid a theoretical foundation for further research on the origin of endogenous viruses in the strawberry genome, host-virus interactions, adaptation, evolution, and their functions.
Collapse
Affiliation(s)
- Zongneng Wang
- School of Life Sciences, Yunnan University, Kunming 650500, China; (Z.W.); (J.L.); (X.Q.); (D.S.)
| | - Jian Liu
- School of Life Sciences, Yunnan University, Kunming 650500, China; (Z.W.); (J.L.); (X.Q.); (D.S.)
| | - Xingyang Qi
- School of Life Sciences, Yunnan University, Kunming 650500, China; (Z.W.); (J.L.); (X.Q.); (D.S.)
| | - Daifa Su
- School of Life Sciences, Yunnan University, Kunming 650500, China; (Z.W.); (J.L.); (X.Q.); (D.S.)
| | - Junyu Yang
- School of Life Sciences, Yunnan University, Kunming 650500, China; (Z.W.); (J.L.); (X.Q.); (D.S.)
- Yunnan International Joint Laboratory of Virology and Immunology, Kunming 650500, China
| | - Xiaolong Cui
- School of Life Sciences, Yunnan University, Kunming 650500, China; (Z.W.); (J.L.); (X.Q.); (D.S.)
| |
Collapse
|
47
|
Tedersoo L, Magurno F, Alkahtani S, Mikryukov V. Phylogenetic classification of arbuscular mycorrhizal fungi: new species and higher-ranking taxa in Glomeromycota and Mucoromycota (class Endogonomycetes). MycoKeys 2024; 107:273-325. [PMID: 39169987 PMCID: PMC11336396 DOI: 10.3897/mycokeys.107.125549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/20/2024] [Indexed: 08/23/2024] Open
Abstract
Arbuscular mycorrhizal (AM) fungi - Glomeromycota and Endogonomycetes - comprise multiple species and higher-level taxa that have remained undescribed. We propose a mixed morphology- and DNA-based classification framework to promote taxonomic communication and shed light into the phylogenetic structure of these ecologically essential fungi. Based on eDNA samples and long reads as type materials, we describe 15 new species and corresponding genera (Pseudoentrophosporakesseensis, Hoforsarebekkae, Kahvenarebeccae, Kelottijaerviashannonae, Kungsaengenashadiae, Langduoadianae, Lehetuaindrekii, Lokrumastenii, Moosteastephanieae, Nikkaluoktamahdiehiae, Parniguacraigii, Riederbergasylviae, Ruuacoralieae, Tammsaareavivikae and Unemaeeanathalieae), the genus Parvocarpum as well as 19 families (Pseudoentrophosporaceae, Hoforsaceae, Kahvenaceae, Kelottijaerviaceae, Kungsaengenaceae, Langduoaceae, Lehetuaceae, Lokrumaceae, Moosteaceae, Nikkaluoktaceae, Parniguaceae, Riederbergaceae, Ruuaceae, Tammsaareaceae, Unemaeeaceae, Bifigurataceae, Planticonsortiaceae, Jimgerdemanniaceae and Vinositunicaceae) and 17 orders (Hoforsales, Kahvenales, Kelottijaerviales, Kungsaengenales, Langduoales, Lehetuales, Lokrumales, Moosteales, Nikkaluoktales, Parniguales, Riederbergales, Ruuales, Tammsaareales, Unemaeeales, Bifiguratales and Densosporales), and propose six combinations (Diversisporabareae, Diversisporanevadensis, Fuscutatacerradensis, Fuscutatareticulata, Viscosporadeserticola and Parvocarpumbadium) based on phylogenetic evidence. We highlight further knowledge gaps in the phylogenetic structure of AM fungi and propose an alphanumeric coding system for preliminary communication and reference-based eDNA quality-filtering of the remaining undescribed genus- and family-level groups. Using AM fungi as examples, we hope to offer a sound, mixed framework for classification to boost research in the alpha taxonomy of fungi, especially the "dark matter fungi".
Collapse
Affiliation(s)
- Leho Tedersoo
- Mycology and Microbiology Center, University of Tartu, 2 Liivi, 50409 Tartu, Estonia
- Department of Zoology, College of Science, King Saud University, 12371 Riyadh, Saudi Arabia
| | - Franco Magurno
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, 12371 Riyadh, Saudi Arabia
| | - Vladimir Mikryukov
- Mycology and Microbiology Center, University of Tartu, 2 Liivi, 50409 Tartu, Estonia
| |
Collapse
|
48
|
Shabardina V, Dharamshi JE, Ara PS, Antó M, Bascón FJ, Suga H, Marshall W, Scazzocchio C, Casacuberta E, Ruiz-Trillo I. Ichthyosporea: a window into the origin of animals. Commun Biol 2024; 7:915. [PMID: 39075159 PMCID: PMC11286789 DOI: 10.1038/s42003-024-06608-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/19/2024] [Indexed: 07/31/2024] Open
Abstract
Ichthyosporea is an underexplored group of unicellular eukaryotes closely related to animals. Thanks to their phylogenetic position, genomic content, and development through a multinucleate coenocyte reminiscent of some animal embryos, the members of Ichthyosporea are being increasingly recognized as pivotal to the study of animal origins. We delve into the existing knowledge of Ichthyosporea, identify existing gaps and discuss their life cycles, genomic insights, development, and potential to be model organisms. We also discuss the underestimated diversity of ichthyosporeans, based on new environmental data analyses. This review will be an essential resource for researchers venturing into the study of ichthyosporeans.
Collapse
Affiliation(s)
- Victoria Shabardina
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain.
| | - Jennah E Dharamshi
- Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden
| | - Patricia S Ara
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Meritxell Antó
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Fernando J Bascón
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Hiroshi Suga
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Japan
| | - Wyth Marshall
- Bluefrontier Biological Services, Campbell River, BC, Canada
| | - Claudio Scazzocchio
- Department of Life Sciences, Imperial College London, London, UK
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Elena Casacuberta
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain.
- ICREA, Barcelona, Spain.
| |
Collapse
|
49
|
Ramesh S, Go M, Call ME, Call MJ. Deep mutational scanning reveals transmembrane features governing surface expression of the B cell antigen receptor. Front Immunol 2024; 15:1426795. [PMID: 39108267 PMCID: PMC11300204 DOI: 10.3389/fimmu.2024.1426795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/05/2024] [Indexed: 09/17/2024] Open
Abstract
B cells surveil the body for foreign matter using their surface-expressed B cell antigen receptor (BCR), a tetrameric complex comprising a membrane-tethered antibody (mIg) that binds antigens and a signaling dimer (CD79AB) that conveys this interaction to the B cell. Recent cryogenic electron microscopy (cryo-EM) structures of IgM and IgG isotype BCRs provide the first complete views of their architecture, revealing that the largest interaction surfaces between the mIg and CD79AB are in their transmembrane domains (TMDs). These structures support decades of biochemical work interrogating the requirements for assembly of a functional BCR and provide the basis for explaining the effects of mutations. Here we report a focused saturating mutagenesis to comprehensively characterize the nature of the interactions in the mIg TMD that are required for BCR surface expression. We examined the effects of 600 single-amino-acid changes simultaneously in a pooled competition assay and quantified their effects by next-generation sequencing. Our deep mutational scanning results reflect a feature-rich TMD sequence, with some positions completely intolerant to mutation and others requiring specific biochemical properties such as charge, polarity or hydrophobicity, emphasizing the high value of saturating mutagenesis over, for example, alanine scanning. The data agree closely with published mutagenesis and the cryo-EM structures, while also highlighting several positions and surfaces that have not previously been characterized or have effects that are difficult to rationalize purely based on structure. This unbiased and complete mutagenesis dataset serves as a reference and framework for informed hypothesis testing, design of therapeutics to regulate BCR surface expression and to annotate patient mutations.
Collapse
Affiliation(s)
- Samyuktha Ramesh
- Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Margareta Go
- Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Matthew E. Call
- Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Melissa J. Call
- Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
50
|
Rajendra KC, Cheng R, Zhou S, Lizarazo S, Smith D, Van Bortle K. Evidence of RNA polymerase III recruitment and transcription at protein-coding gene promoters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.08.598009. [PMID: 38895345 PMCID: PMC11185800 DOI: 10.1101/2024.06.08.598009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
RNA polymerase (Pol) I, II, and III are most commonly described as having distinct roles in synthesizing ribosomal RNA (rRNA), messenger RNA (mRNA), and specific small noncoding (nc)RNAs, respectively. This delineation of transcriptional responsibilities is not definitive, however, as evidenced by instances of Pol II recruitment to genes conventionally transcribed by Pol III, including the co-transcription of RPPH1 - the catalytic RNA component of RNase P. A comprehensive understanding of the interplay between RNA polymerase complexes remains lacking, however, due to limited comparative analyses for all three enzymes. To address this gap, we applied a uniform framework for quantifying global Pol I, II, and III occupancies that integrates currently available human RNA polymerase ChIP-seq datasets. Occupancy maps are combined with a comprehensive multi-class promoter set that includes protein-coding genes, noncoding genes, and repetitive elements. While our genomic survey appropriately identifies recruitment of Pol I, II, and III to canonical target genes, we unexpectedly discover widespread recruitment of the Pol III machinery to promoters of specific protein-coding genes, supported by colocalization patterns observed for several Pol III-specific subunits. We show that Pol III-occupied Pol II promoters are enriched for small, nascent RNA reads terminating in a run of 4 Ts, a unique hallmark of Pol III transcription termination and evidence of active Pol III activity at these sites. Pol III disruption differentially modulates the expression of Pol III-occupied coding genes, which are functionally enriched for ribosomal proteins and genes broadly linked to unfavorable outcomes in cancer. Our map also identifies additional, currently unannotated genomic elements occupied by Pol III with clear signatures of nascent RNA species that are sensitive to disruption of La (SSB) - a Pol III-related RNA chaperone protein. These findings reshape our current understanding of the interplay between Pols II and III and identify potentially novel small ncRNAs with broad implications for gene regulatory paradigms and RNA biology.
Collapse
Affiliation(s)
- K C Rajendra
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Ruiying Cheng
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Sihang Zhou
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Simon Lizarazo
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Duncan Smith
- Department of Biology, New York University, New York, NY
| | - Kevin Van Bortle
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|