1
|
Zhang M, Liu J, Zhang W, Feng M, Yu X, Ye C. Neglected contributors to the transmission of bacterial antibiotic resistance in drinking water: Extracellular antibiotic resistance genes and the natural transformation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175970. [PMID: 39241883 DOI: 10.1016/j.scitotenv.2024.175970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/21/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
Antibiotic resistance genes (ARGs) have increasingly gained recognition as an "emerging contaminant" that poses a threat to the biosafety of drinking water. However, previous researches have primarily focused on the intracellular state of ARGs and rarely investigated the ecological characteristics (e.g., distribution and origin), environmental behavior (spread), and risks of extracellular form (eARGs) within drinking water systems. Therefore, this review evaluated isolation strategies and extraction methods for recovering eARGs from drinking water, elucidated the distribution characteristics of eARGs, and examined their impact on the antibiotic resistome from source water to tap water. We emphasized that chlorination and biological treatments significantly contribute to the prevalence and persistence of eARGs in drinking water. Moreover, we highlighted the role of biological reactors (e.g., biofilter, biological activated carbon) and drinking water distribution systems in facilitating the natural transformation of eARGs while significantly contributing to bacterial antibiotic resistance (BAR) propagation. Finally, we summarized the current risk assessment systems for ARGs and critically address remaining challenging questions necessary for better forecasting health risks associated with eARGs in drinking water environments. Collectively, this review enhances the understanding of ecological characteristics and environmental behavior of eARGs in drinking water while providing important implications for controlling and reducing BAR contamination not only in drinking water but also in other aquatic environments.
Collapse
Affiliation(s)
- Menglu Zhang
- Postdoctoral Research Station of Ecology, Fujian Normal University, Fuzhou 350117, China; College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse (Fujian Normal University), Fuzhou 350117, China.
| | - Jinchi Liu
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse (Fujian Normal University), Fuzhou 350117, China
| | - Weifang Zhang
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse (Fujian Normal University), Fuzhou 350117, China
| | - Mingbao Feng
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen 361102, China
| | - Xin Yu
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen 361102, China
| | - Chengsong Ye
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
2
|
Fan Y, Jiang X, Xiao Y, Li H, Chen J, Bai W. Natural antioxidants mitigate heavy metal induced reproductive toxicity: prospective mechanisms and biomarkers. Crit Rev Food Sci Nutr 2024; 64:11530-11542. [PMID: 37526321 DOI: 10.1080/10408398.2023.2240399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Heavy metals are harmful environmental pollutants that have attracted widespread attention, attributed to their health hazards to humans and animals. Due to the non-degradable property of heavy metals, organisms are inevitably exposed to heavy metals such as arsenic (As), cadmium (Cd), lead (Pb), and mercury (Hg). Several studies revealed that heavy metals can cause reproductive damage by the excessive production of reactive oxygen species (ROS), which exacerbates oxidative stress, inflammation, and endocrine disruption. Natural antioxidants, mainly polyphenols, carotenoids, and vitamins, have been shown to mitigate heavy metal-induced reproductive toxicity potentially. In this review, accumulated evidences on the influences of four non-essential heavy metals As, Cd, Pb, and Hg on both males and females reproductive system were established. The purpose of this review is to explore the potential mechanisms of the effects of heavy metals on reproductive function and point out the potential biomarkers of natural antioxidants interventions toward heavy metal-induced reproductive toxicity. Notably, increasing evidence proven that the regulations of hypothalamic-pituitary-gonadal axis, Nrf2, MAPK, or NF-κB pathways are the important mechanisms for the amelioration of heavy metal induced reproductive toxicity by natural antioxidants. It also provided a promising guidance for prevention and management of heavy metal-induced reproductive toxicity.
Collapse
Affiliation(s)
- Yueyao Fan
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Xinwei Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Yuhang Xiao
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Haiwei Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Jiali Chen
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Ali A, Vishnivetskaya TA, Chauhan A. Comparative analysis of prokaryotic microbiomes in high-altitude active layer soils: insights from Ladakh and global analogues using In-Silico approaches. Braz J Microbiol 2024; 55:2437-2452. [PMID: 38758507 PMCID: PMC11405653 DOI: 10.1007/s42770-024-01365-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/08/2024] [Indexed: 05/18/2024] Open
Abstract
The active layer is the portion of soil overlaying the permafrost that freezes and thaws seasonally. It is a harsh habitat in which a varied and vigorous microbial population thrives. The high-altitude active layer soil in northern India is a unique and important cryo-ecosystem. However, its microbiology remains largely unexplored. It represents a unique reservoir for microbial communities with adaptability to harsh environmental conditions. In the Changthang region of Ladakh, the Tsokar area is a high-altitude permafrost-affected area situated in the southern part of Ladakh, at a height of 4530 m above sea level. Results of the comparison study with the QTP, Himalayan, Alaskan, Russian, Canadian and Polar active layers showed that the alpha diversity was significantly higher in the Ladakh and QTP active layers as the environmental condition of both the sites were similar. Moreover, the sampling site in the Ladakh region was in a thawing condition at the time of sampling which possibly provided nutrients and access to alternative nitrogen and carbon sources to the microorganisms thriving in it. Analysis of the samples suggested that the geochemical parameters and environmental conditions shape the microbial alpha diversity and community composition. Further analysis revealed that the cold-adapted methanogens were present in the Ladakh, Himalayan, Polar and Alaskan samples and absent in QTP, Russian and Canadian active layer samples. These methanogens could produce methane at slow rates in the active layer soils that could increase the atmospheric temperature owing to climate change.
Collapse
Affiliation(s)
- Ahmad Ali
- Department of Zoology, Panjab University, Sector 14, 160014, Chandigarh, India
| | | | - Archana Chauhan
- Department of Zoology, Panjab University, Sector 14, 160014, Chandigarh, India.
| |
Collapse
|
4
|
You Z, Wang C, Yang X, Liu Z, Guan Y, Mu J, Shi H, Zhao Z. Effects of eutrophication on the horizontal transfer of antibiotic resistance genes in microalgal-bacterial symbiotic systems. ENVIRONMENTAL RESEARCH 2024; 251:118692. [PMID: 38493856 DOI: 10.1016/j.envres.2024.118692] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
Overloading of nutrients such as nitrogen causes eutrophication of freshwater bodies. The spread of antibiotic resistance genes (ARGs) poses a threat to ecosystems. However, studies on the enrichment and spread of ARGs from increased nitrogen loading in algal-bacterial symbiotic systems are limited. In this study, the transfer of extracellular kanamycin resistance (KR) genes from large (RP4) small (pEASY-T1) plasmids into the intracellular and extracellular DNA (iDNA, eDNA) of the inter-algal environment of Chlorella pyrenoidosa was investigated, along with the community structure of free-living (FL) and particle-attached (PA) bacteria under different nitrogen source concentrations (0-2.5 g/L KNO3). The results showed that KR gene abundance in the eDNA adsorbed on solid particles (D-eDNA) increased initially and then decreased with increasing nitrogen concentration, while the opposite was true for the rest of the free eDNA (E-eDNA). Medium nitrogen concentrations promoted the transfer of extracellular KR genes into the iDNA attached to algal microorganisms (A-iDNA), eDNA attached to algae (B-eDNA), and the iDNA of free microorganisms (C-iDNA); high nitrogen contributed to the transfer of KR genes into C-iDNA. The highest percentage of KR genes was found in B-eDNA with RP4 plasmid treatment (66.2%) and in C-iDNA with pEASY-T1 plasmid treatment (86.88%). In addition, dissolved oxygen (DO) significantly affected the bacterial PA and FL community compositions. Nephelometric turbidity units (NTU) reflected the abundance of ARGs in algae. Proteobacteria, Cyanobacteria, Bacteroidota, and Actinobacteriota were the main potential hosts of ARGs. These findings provide new insights into the distribution and dispersal of ARGs in the phytoplankton inter-algal environment.
Collapse
Affiliation(s)
- Ziqi You
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China.
| | - Ce Wang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Xiaobin Yang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Zikuo Liu
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Yueqiang Guan
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Jiandong Mu
- Hebei Ocean and Fisheries Science Research Institute, Qinhuangdao, 066200, China
| | - Huijuan Shi
- Museum of Hebei University, Hebei University, Baoding, Hebei, China.
| | - Zhao Zhao
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China.
| |
Collapse
|
5
|
Xue Y, Abdullah Al M, Chen H, Xiao P, Zhang H, Jeppesen E, Yang J. Relic DNA obscures DNA-based profiling of multiple microbial taxonomic groups in a river-reservoir ecosystem. Mol Ecol 2023; 32:4940-4952. [PMID: 37452629 DOI: 10.1111/mec.17071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/08/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Numerous studies have investigated the spatiotemporal variability in water microbial communities, yet the effects of relic DNA on microbial community profiles, especially microeukaryotes, remain far from fully understood. Here, total and active bacterial and microeukaryotic community compositions were characterized using propidium monoazide (PMA) treatment coupled with high-throughput sequencing in a river-reservoir ecosystem. Beta diversity analysis showed a significant difference in community composition between both the PMA untreated and treated bacteria and microeukaryotes; however, the differentiating effect was much stronger for microeukaryotes. Relic DNA only resulted in underestimation of the relative abundances of Bacteroidota and Nitrospirota, while other bacterial taxa exhibited no significant changes. As for microeukaryotes, the relative abundances of some phytoplankton (e.g. Chlorophyta, Dinoflagellata and Ochrophyta) and fungi were greater after relic DNA removal, whereas Cercozoa and Ciliophora showed the opposite trend. Moreover, relic DNA removal weakened the size and complexity of cross-trophic microbial networks and significantly changed the relationships between environmental factors and microeukaryotic community composition. However, there was no significant difference in the rates of temporal community turnover between the PMA untreated and treated samples for either bacteria or microeukaryotes. Overall, our results imply that the presence of relic DNA in waters can give misleading information of the active microbial community composition, co-occurrence networks and their relationships with environmental conditions. More studies of the abundance, decay rate and functioning of nonviable DNA in freshwater ecosystems are highly recommended in the future.
Collapse
Affiliation(s)
- Yuanyuan Xue
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Mamun Abdullah Al
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Huihuang Chen
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peng Xiao
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Hongteng Zhang
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Erik Jeppesen
- Department of Ecoscience, Aarhus University, Aarhus, Denmark
- Sino-Danish Centre for Education and Research, Beijing, China
- Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara, Turkey
- Institute of Marine Sciences, Middle East Technical University, Mersin, Turkey
| | - Jun Yang
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| |
Collapse
|
6
|
Shao M, Liu L, Liu B, Zheng H, Meng W, Liu Y, Zhang X, Ma X, Sun C, Luo X, Li F, Xing B. Hormetic Effect of Pyroligneous Acids on Conjugative Transfer of Plasmid-mediated Multi-antibiotic Resistance Genes within Bacterial Genus. ACS ENVIRONMENTAL AU 2023; 3:105-120. [PMID: 37102089 PMCID: PMC10125354 DOI: 10.1021/acsenvironau.2c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 04/28/2023]
Abstract
Spread of antibiotic resistance genes (ARGs) by conjugation poses great challenges to public health. Application of pyroligneous acids (PA) as soil amendments has been evidenced as a practical strategy to remediate pollution of ARGs in soils. However, little is known about PA effects on horizontal gene transfer (HGT) of ARGs by conjugation. This study investigated the effects of a woody waste-derived PA prepared at 450°C and its three distillation components (F1, F2, and F3) at different temperatures (98, 130, and 220°C) on conjugative transfer of plasmid RP4 within Escherichia coli. PA at relatively high amount (40-100 μL) in a 30-mL mating system inhibited conjugation by 74-85%, following an order of PA > F3 ≈ F2 ≈ F1, proving the hypothesis that PA amendments may mitigate soil ARG pollution by inhibiting HGT. The bacteriostasis caused by antibacterial components of PA, including acids, phenols, and alcohols, as well as its acidity (pH 2.81) contributed to the inhibited conjugation. However, a relatively low amount (10-20 μL) of PA in the same mating system enhanced ARG transfer by 26-47%, following an order of PA > F3 ≈ F2 > F1. The opposite effect at low amount is mainly attributed to the increased intracellular reactive oxygen species production, enhanced cell membrane permeability, increased extracellular polymeric substance contents, and reduced cell surface charge. Our findings highlight the hormesis (low-amount promotion and high-amount inhibition) of PA amendments on ARG conjugation and provide evidence for selecting an appropriate amount of PA amendment to control the dissemination of soil ARGs. Moreover, the promoted conjugation also triggers questions regarding the potential risks of soil amendments (e.g., PA) in the spread of ARGs via HGT.
Collapse
Affiliation(s)
- Mengying Shao
- Institute
of Coastal Environmental Pollution Control, Ministry of Education
Key Laboratory of Marine Environment and Ecology, College of Environmental
Science and Engineering, Frontiers Science Center for Deep Ocean Multispheres
and Earth System, Ocean University of China, Qingdao 266100, China
- Marine
Ecology and Environmental Science Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Liuqingqing Liu
- Institute
of Coastal Environmental Pollution Control, Ministry of Education
Key Laboratory of Marine Environment and Ecology, College of Environmental
Science and Engineering, Frontiers Science Center for Deep Ocean Multispheres
and Earth System, Ocean University of China, Qingdao 266100, China
- Marine
Ecology and Environmental Science Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Bingjie Liu
- Institute
of Coastal Environmental Pollution Control, Ministry of Education
Key Laboratory of Marine Environment and Ecology, College of Environmental
Science and Engineering, Frontiers Science Center for Deep Ocean Multispheres
and Earth System, Ocean University of China, Qingdao 266100, China
- Ministry
of Ecology and Environment, South China
Institute of Environmental Sciences, Guangzhou 510535, China
| | - Hao Zheng
- Institute
of Coastal Environmental Pollution Control, Ministry of Education
Key Laboratory of Marine Environment and Ecology, College of Environmental
Science and Engineering, Frontiers Science Center for Deep Ocean Multispheres
and Earth System, Ocean University of China, Qingdao 266100, China
- Marine
Ecology and Environmental Science Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Sanya
Oceanographic Institution, Ocean University
of China, Sanya 572000, China
| | - Wei Meng
- Institute
of Coastal Environmental Pollution Control, Ministry of Education
Key Laboratory of Marine Environment and Ecology, College of Environmental
Science and Engineering, Frontiers Science Center for Deep Ocean Multispheres
and Earth System, Ocean University of China, Qingdao 266100, China
| | - Yifan Liu
- Institute
of Coastal Environmental Pollution Control, Ministry of Education
Key Laboratory of Marine Environment and Ecology, College of Environmental
Science and Engineering, Frontiers Science Center for Deep Ocean Multispheres
and Earth System, Ocean University of China, Qingdao 266100, China
| | - Xiao Zhang
- Institute
of Coastal Environmental Pollution Control, Ministry of Education
Key Laboratory of Marine Environment and Ecology, College of Environmental
Science and Engineering, Frontiers Science Center for Deep Ocean Multispheres
and Earth System, Ocean University of China, Qingdao 266100, China
| | - Xiaohan Ma
- Institute
of Coastal Environmental Pollution Control, Ministry of Education
Key Laboratory of Marine Environment and Ecology, College of Environmental
Science and Engineering, Frontiers Science Center for Deep Ocean Multispheres
and Earth System, Ocean University of China, Qingdao 266100, China
- Marine
Ecology and Environmental Science Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Cuizhu Sun
- Institute
of Coastal Environmental Pollution Control, Ministry of Education
Key Laboratory of Marine Environment and Ecology, College of Environmental
Science and Engineering, Frontiers Science Center for Deep Ocean Multispheres
and Earth System, Ocean University of China, Qingdao 266100, China
- Marine
Ecology and Environmental Science Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Xianxiang Luo
- Institute
of Coastal Environmental Pollution Control, Ministry of Education
Key Laboratory of Marine Environment and Ecology, College of Environmental
Science and Engineering, Frontiers Science Center for Deep Ocean Multispheres
and Earth System, Ocean University of China, Qingdao 266100, China
- Marine
Ecology and Environmental Science Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Sanya
Oceanographic Institution, Ocean University
of China, Sanya 572000, China
| | - Fengmin Li
- Institute
of Coastal Environmental Pollution Control, Ministry of Education
Key Laboratory of Marine Environment and Ecology, College of Environmental
Science and Engineering, Frontiers Science Center for Deep Ocean Multispheres
and Earth System, Ocean University of China, Qingdao 266100, China
- Marine
Ecology and Environmental Science Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Sanya
Oceanographic Institution, Ocean University
of China, Sanya 572000, China
| | - Baoshan Xing
- Stockbridge
School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|