1
|
Schou KB, Mandacaru S, Tahir M, Tom N, Nilsson AS, Andersen JS, Tiberti M, Papaleo E, Bartek J. Exploring the structural landscape of DNA maintenance proteins. Nat Commun 2024; 15:7748. [PMID: 39237506 PMCID: PMC11377751 DOI: 10.1038/s41467-024-49983-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/25/2024] [Indexed: 09/07/2024] Open
Abstract
Evolutionary annotation of genome maintenance (GM) proteins has conventionally been established by remote relationships within protein sequence databases. However, often no significant relationship can be established. Highly sensitive approaches to attain remote homologies based on iterative profile-to-profile methods have been developed. Still, these methods have not been systematically applied in the evolutionary annotation of GM proteins. Here, by applying profile-to-profile models, we systematically survey the repertoire of GM proteins from bacteria to man. We identify multiple GM protein candidates and annotate domains in numerous established GM proteins, among other PARP, OB-fold, Macro, TUDOR, SAP, BRCT, KU, MYB (SANT), and nuclease domains. We experimentally validate OB-fold and MIS18 (Yippee) domains in SPIDR and FAM72 protein families, respectively. Our results indicate that, surprisingly, despite the immense interest and long-term research efforts, the repertoire of genome stability caretakers is still not fully appreciated.
Collapse
Affiliation(s)
- Kenneth Bødkter Schou
- Genome Integrity, Danish Cancer Institute, Danish Cancer Society, Strandboulevarden 49, 2100, Copenhagen, Denmark.
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Laboratory, Karolinska Institute, Solna, 171 77, Sweden.
| | - Samuel Mandacaru
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Muhammad Tahir
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Nikola Tom
- Lipidomics Core Facility, Danish Cancer Institute (DCI), DK-2100, Copenhagen, Denmark
| | - Ann-Sofie Nilsson
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Laboratory, Karolinska Institute, Solna, 171 77, Sweden
| | - Jens S Andersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Matteo Tiberti
- Cancer Structural Biology, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Elena Papaleo
- Cancer Structural Biology, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Jiri Bartek
- Genome Integrity, Danish Cancer Institute, Danish Cancer Society, Strandboulevarden 49, 2100, Copenhagen, Denmark.
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Laboratory, Karolinska Institute, Solna, 171 77, Sweden.
| |
Collapse
|
2
|
Ouyang Y, Al-Amodi A, Tehseen M, Alhudhali L, Shirbini A, Takahashi M, Raducanu VS, Yi G, Danazumi A, De Biasio A, Hamdan S. Single-molecule characterization of SV40 replisome and novel factors: human FPC and Mcm10. Nucleic Acids Res 2024; 52:8880-8896. [PMID: 38967018 PMCID: PMC11347169 DOI: 10.1093/nar/gkae565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 06/06/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024] Open
Abstract
The simian virus 40 (SV40) replisome only encodes for its helicase; large T-antigen (L-Tag), while relying on the host for the remaining proteins, making it an intriguing model system. Despite being one of the earliest reconstituted eukaryotic systems, the interactions coordinating its activities and the identification of new factors remain largely unexplored. Herein, we in vitro reconstituted the SV40 replisome activities at the single-molecule level, including DNA unwinding by L-Tag and the single-stranded DNA-binding protein Replication Protein A (RPA), primer extension by DNA polymerase δ, and their concerted leading-strand synthesis. We show that RPA stimulates the processivity of L-Tag without altering its rate and that DNA polymerase δ forms a stable complex with L-Tag during leading-strand synthesis. Furthermore, similar to human and budding yeast Cdc45-MCM-GINS helicase, L-Tag uses the fork protection complex (FPC) and the mini-chromosome maintenance protein 10 (Mcm10) during synthesis. Hereby, we demonstrate that FPC increases this rate, and both FPC and Mcm10 increase the processivity by stabilizing stalled replisomes and increasing their chances of restarting synthesis. The detailed kinetics and novel factors of the SV40 replisome establish it as a closer mimic of the host replisome and expand its application as a model replication system.
Collapse
Affiliation(s)
- Yujing Ouyang
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Amani Al-Amodi
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Muhammad Tehseen
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Lubna Alhudhali
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Afnan Shirbini
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Masateru Takahashi
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Vlad-Stefan Raducanu
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Gang Yi
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Ammar Usman Danazumi
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Alfredo De Biasio
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Samir M Hamdan
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| |
Collapse
|
3
|
Nasheuer HP, Meaney AM, Hulshoff T, Thiele I, Onwubiko NO. Replication Protein A, the Main Eukaryotic Single-Stranded DNA Binding Protein, a Focal Point in Cellular DNA Metabolism. Int J Mol Sci 2024; 25:588. [PMID: 38203759 PMCID: PMC10779431 DOI: 10.3390/ijms25010588] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Replication protein A (RPA) is a heterotrimeric protein complex and the main single-stranded DNA (ssDNA)-binding protein in eukaryotes. RPA has key functions in most of the DNA-associated metabolic pathways and DNA damage signalling. Its high affinity for ssDNA helps to stabilise ssDNA structures and protect the DNA sequence from nuclease attacks. RPA consists of multiple DNA-binding domains which are oligonucleotide/oligosaccharide-binding (OB)-folds that are responsible for DNA binding and interactions with proteins. These RPA-ssDNA and RPA-protein interactions are crucial for DNA replication, DNA repair, DNA damage signalling, and the conservation of the genetic information of cells. Proteins such as ATR use RPA to locate to regions of DNA damage for DNA damage signalling. The recruitment of nucleases and DNA exchange factors to sites of double-strand breaks are also an important RPA function to ensure effective DNA recombination to correct these DNA lesions. Due to its high affinity to ssDNA, RPA's removal from ssDNA is of central importance to allow these metabolic pathways to proceed, and processes to exchange RPA against downstream factors are established in all eukaryotes. These faceted and multi-layered functions of RPA as well as its role in a variety of human diseases will be discussed.
Collapse
Affiliation(s)
- Heinz Peter Nasheuer
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, Biochemistry, University of Galway, H91 TK33 Galway, Ireland
| | - Anna Marie Meaney
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, Biochemistry, University of Galway, H91 TK33 Galway, Ireland
| | - Timothy Hulshoff
- Molecular Systems Physiology Group, School of Biological and Chemical Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Ines Thiele
- Molecular Systems Physiology Group, School of Biological and Chemical Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Nichodemus O. Onwubiko
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, Biochemistry, University of Galway, H91 TK33 Galway, Ireland
| |
Collapse
|
4
|
Lim CJ. Telomere C-Strand Fill-In Machinery: New Insights into the Human CST-DNA Polymerase Alpha-Primase Structures and Functions. Subcell Biochem 2024; 104:73-100. [PMID: 38963484 DOI: 10.1007/978-3-031-58843-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Telomeres at the end of eukaryotic chromosomes are extended by a specialized set of enzymes and telomere-associated proteins, collectively termed here the telomere "replisome." The telomere replisome acts on a unique replicon at each chromosomal end of the telomeres, the 3' DNA overhang. This telomere replication process is distinct from the replisome mechanism deployed to duplicate the human genome. The G-rich overhang is first extended before the complementary C-strand is filled in. This overhang is extended by telomerase, a specialized ribonucleoprotein and reverse transcriptase. The overhang extension process is terminated when telomerase is displaced by CTC1-STN1-TEN1 (CST), a single-stranded DNA-binding protein complex. CST then recruits DNA polymerase α-primase to complete the telomere replication process by filling in the complementary C-strand. In this chapter, the recent structure-function insights into the human telomere C-strand fill-in machinery (DNA polymerase α-primase and CST) will be discussed.
Collapse
Affiliation(s)
- Ci Ji Lim
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
5
|
Wu Y, Fu W, Zang N, Zhou C. Structural characterization of human RPA70N association with DNA damage response proteins. eLife 2023; 12:e81639. [PMID: 37668474 PMCID: PMC10479964 DOI: 10.7554/elife.81639] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/09/2023] [Indexed: 09/06/2023] Open
Abstract
The heterotrimeric Replication protein A (RPA) is the ubiquitous eukaryotic single-stranded DNA (ssDNA) binding protein and participates in nearly all aspects of DNA metabolism, especially DNA damage response. The N-terminal OB domain of the RPA70 subunit (RPA70N) is a major protein-protein interaction element for RPA and binds to more than 20 partner proteins. Previous crystallography studies of RPA70N with p53, DNA2 and PrimPol fragments revealed that RPA70N binds to amphipathic peptides that mimic ssDNA. NMR chemical-shift studies also provided valuable information on the interaction of RPA70N residues with target sequences. However, it is still unclear how RPA70N recognizes and distinguishes such a diverse group of target proteins. Here, we present high-resolution crystal structures of RPA70N in complex with peptides from eight DNA damage response proteins. The structures show that, in addition to the ssDNA mimicry mode of interaction, RPA70N employs multiple ways to bind its partners. Our results advance the mechanistic understanding of RPA70N-mediated recruitment of DNA damage response proteins.
Collapse
Affiliation(s)
- Yeyao Wu
- School of Public Health & Sir Run Run Shaw Hospital, Zhejiang University School of MedicineZhejiangChina
| | - Wangmi Fu
- School of Public Health & Sir Run Run Shaw Hospital, Zhejiang University School of MedicineZhejiangChina
| | - Ning Zang
- School of Public Health & Sir Run Run Shaw Hospital, Zhejiang University School of MedicineZhejiangChina
| | - Chun Zhou
- School of Public Health & Sir Run Run Shaw Hospital, Zhejiang University School of MedicineZhejiangChina
| |
Collapse
|
6
|
Interdomain dynamics in human Replication Protein A regulates kinetics and thermodynamics of its binding to ssDNA. PLoS One 2023; 18:e0278396. [PMID: 36656834 PMCID: PMC9851514 DOI: 10.1371/journal.pone.0278396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 11/15/2022] [Indexed: 01/20/2023] Open
Abstract
Human Replication Protein A (hRPA) is a multidomain protein that interacts with ssDNA intermediates to provide the latter much-needed stability during DNA metabolism and maintain genomic integrity. Although the ssDNA organization with hRPA was studied recently through experimental means, characterizing the underlying mechanism at the atomic level remains challenging because of the dynamic domain architecture of hRPA and poorly understood heterogeneity of ssDNA-protein interactions. Here, we used a computational framework, precisely tailored to capture protein-ssDNA interactions, and investigated the binding of hRPA with a 60 nt ssDNA. Two distinct binding mechanisms are realized based on the hRPA domain flexibility. For a rigid domain architecture of hRPA, ssDNA binds sequentially with hRPA domains, resulting in slow association kinetics. The binding pathway involves the formation of stable and distinct intermediate states. On contrary, for a flexible domain architecture of hRPA, ssDNA binds synergistically to the A and B domains followed by the rest of hRPA. The domain dynamics in hRPA alleviates the free energy cost of domain orientation necessary for specific binding with ssDNA, leading to fast association kinetics along a downhill binding free energy landscape. An ensemble of free energetically degenerate intermediate states is encountered that makes it arduous to characterize them structurally. An excellent match between our results with the available experimental observations provides new insights into the rich dynamics of hRPA binding to ssDNA and in general paves the way to investigate intricate details of ssDNA-protein interactions, crucial for cellular functioning.
Collapse
|
7
|
Wieser TA, Wuttke DS. Replication Protein A Utilizes Differential Engagement of Its DNA-Binding Domains to Bind Biologically Relevant ssDNAs in Diverse Binding Modes. Biochemistry 2022; 61:2592-2606. [PMID: 36278947 PMCID: PMC9798700 DOI: 10.1021/acs.biochem.2c00504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Replication protein A (RPA) is a ubiquitous ssDNA-binding protein that functions in many DNA processing pathways to maintain genome integrity. Recent studies suggest that RPA forms a highly dynamic complex with ssDNA that can engage with DNA in many modes that are orchestrated by the differential engagement of the four DNA-binding domains (DBDs) in RPA. To understand how these modes influence RPA interaction with biologically relevant ligands, we performed a comprehensive and systematic evaluation of RPA's binding to a diverse set of ssDNA ligands that varied in sequence, length, and structure. These equilibrium binding data show that WT RPA binds structured ssDNA ligands differently from its engagement with minimal ssDNAs. Next, we investigated each DBD's contributions to RPA's binding modes through mutation of conserved, functionally important aromatic residues. Mutations in DBD-A and -B have a much larger effect on binding when ssDNA is embedded into DNA secondary structures compared to their association with unstructured minimal ssDNA. As our data support a complex interplay of binding modes, it is critical to define the trimer core DBDs' role in binding these biologically relevant ligands. We found that DBD-C is important for engaging DNA with diverse binding modes, including, unexpectedly, at short ssDNAs. Thus, RPA uses its constituent DBDs to bind biologically diverse ligands in unanticipated ways. These findings lead to a better understanding of how RPA carries out its functions at diverse locations of the genome and suggest a mechanism through which dynamic recognition can impact differential downstream outcomes.
Collapse
Affiliation(s)
- Thomas A Wieser
- Department of Biochemistry, University of Colorado Boulder, Jennie Smoly Caruthers Biotechnology Building, UCB 596, Boulder, Colorado80309, United States
| | - Deborah S Wuttke
- Department of Biochemistry, University of Colorado Boulder, Jennie Smoly Caruthers Biotechnology Building, UCB 596, Boulder, Colorado80309, United States
| |
Collapse
|
8
|
Guo JT, Malik F. Single-Stranded DNA Binding Proteins and Their Identification Using Machine Learning-Based Approaches. Biomolecules 2022; 12:biom12091187. [PMID: 36139026 PMCID: PMC9496475 DOI: 10.3390/biom12091187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/11/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022] Open
Abstract
Single-stranded DNA (ssDNA) binding proteins (SSBs) are critical in maintaining genome stability by protecting the transient existence of ssDNA from damage during essential biological processes, such as DNA replication and gene transcription. The single-stranded region of telomeres also requires protection by ssDNA binding proteins from being attacked in case it is wrongly recognized as an anomaly. In addition to their critical roles in genome stability and integrity, it has been demonstrated that ssDNA and SSB-ssDNA interactions play critical roles in transcriptional regulation in all three domains of life and viruses. In this review, we present our current knowledge of the structure and function of SSBs and the structural features for SSB binding specificity. We then discuss the machine learning-based approaches that have been developed for the prediction of SSBs from double-stranded DNA (dsDNA) binding proteins (DSBs).
Collapse
|
9
|
RPA1 controls chromatin architecture and maintains lipid metabolic homeostasis. Cell Rep 2022; 40:111071. [PMID: 35830798 DOI: 10.1016/j.celrep.2022.111071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/24/2022] [Accepted: 06/17/2022] [Indexed: 11/21/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease, with a prevalence of 25% worldwide. However, the underlying molecular mechanism involved in the development and progression of the NAFLD spectrum remains unclear. Single-stranded DNA-binding protein replication protein A1 (RPA1) participates in DNA replication, recombination, and damage repair. Here, we show that Rpa1+/- mice develop fatty liver disease during aging and in response to a high-fat diet. Liver-specific deletion of Rpa1 results in downregulation of genes related to fatty acid oxidation and impaired fatty acid oxidation, which leads to hepatic steatosis and hepatocellular carcinoma. Mechanistically, RPA1 binds gene regulatory regions, chromatin-remodeling factors, and HNF4A and remodels chromatin architecture, through which RPA1 promotes HNF4A transcriptional activity and fatty acid β oxidation. Collectively, our data demonstrate that RPA1 is an important regulator of NAFLD through controlling chromatin accessibility.
Collapse
|
10
|
Maleki Dana P, Sadoughi F, Mirzaei H, Asemi Z, Yousefi B. DNA damage response and repair in the development and treatment of brain tumors. Eur J Pharmacol 2022; 924:174957. [DOI: 10.1016/j.ejphar.2022.174957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 04/03/2022] [Accepted: 04/11/2022] [Indexed: 11/03/2022]
|
11
|
Kim SH, Kim GH, Kemp MG, Choi JH. TREX1 degrades the 3' end of the small DNA oligonucleotide products of nucleotide excision repair in human cells. Nucleic Acids Res 2022; 50:3974-3984. [PMID: 35357486 PMCID: PMC9023299 DOI: 10.1093/nar/gkac214] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/02/2022] [Accepted: 03/18/2022] [Indexed: 01/01/2023] Open
Abstract
The nucleotide excision repair (NER) machinery removes UV photoproducts from DNA in the form of small, excised damage-containing DNA oligonucleotides (sedDNAs) ∼30 nt in length. How cells process and degrade these byproducts of DNA repair is not known. Using a small scale RNA interference screen in UV-irradiated human cells, we identified TREX1 as a major regulator of sedDNA abundance. Knockdown of TREX1 increased the level of sedDNAs containing the two major UV photoproducts and their association with the NER proteins TFIIH and RPA. Overexpression of wild-type but not nuclease-inactive TREX1 significantly diminished sedDNA levels, and studies with purified recombinant TREX1 showed that the enzyme efficiently degrades DNA located 3′ of the UV photoproduct in the sedDNA. Knockdown or overexpression of TREX1 did not impact the overall rate of UV photoproduct removal from genomic DNA or cell survival, which indicates that TREX1 function in sedDNA degradation does not impact NER efficiency. Taken together, these results indicate a previously unknown role for TREX1 in promoting the degradation of the sedDNA products of the repair reaction. Because TREX1 mutations and inefficient DNA degradation impact inflammatory and immune signaling pathways, the regulation of sedDNA degradation by TREX1 may contribute to photosensitive skin disorders.
Collapse
Affiliation(s)
- Seon Hee Kim
- Biometrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon 305-340, Republic of Korea.,Department of Bio-Analytical Science, University of Science & Technology, Daejeon 305-340, Republic of Korea
| | - Geun Hoe Kim
- Biometrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon 305-340, Republic of Korea.,Department of Bio-Analytical Science, University of Science & Technology, Daejeon 305-340, Republic of Korea
| | - Michael G Kemp
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, OH 45435, USA.,Dayton Veterans Administration Medical Center, Dayton, OH 45428, USA
| | - Jun-Hyuk Choi
- Biometrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon 305-340, Republic of Korea.,Department of Bio-Analytical Science, University of Science & Technology, Daejeon 305-340, Republic of Korea
| |
Collapse
|
12
|
Jaiswal S, Han X, Lu HP. Probing Protein-DNA Conformational Dynamics in DNA Damage Recognition: Xeroderma Pigmentosum Group A Stabilizes the Damaged DNA-RPA14 Complex by Controlling Conformational Fluctuation Dynamics. J Phys Chem B 2022; 126:997-1003. [PMID: 35084844 DOI: 10.1021/acs.jpcb.1c07660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA damage inside biological systems may result in diseases like cancer. One of the major repairing mechanisms is the nucleotide excision repair (NER) that recognizes and repairs the damage caused by several internal and external exposures, such as DNA double-strand distortion due to the chemical modifications. Recognition of lesions is the initial stage of the DNA damage repair, which occurs with the help of several proteins like Replication Protein A (RPA) and Xeroderma Pigmentosum group A (XPA). The recognition process involves complex conformational dynamics of the proteins. Studying the dynamics of damage recognition by these proteins helps us to understand the mechanism and to develop therapeutics to increase the efficiency of recognition. Here, we use single-molecule fluorescence fluctuation measurements of a dye, labeled at a damaged position on DNA, to understand the interaction of the damage site with RPA14 and XPA. Our results suggest that interactive conformational dynamics of RPA14 with damaged DNA is inhomogeneous due to its low affinity for DNA, whereas binding of XPA with the already formed DNA-RPA14 complex may increase the specificity of damage recognition by controlling the conformational fluctuation dynamics of the complex.
Collapse
Affiliation(s)
- Sunidhi Jaiswal
- Department of Chemistry and Center for Photochemical Science, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Xiaonan Han
- Department of Chemistry and Center for Photochemical Science, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - H Peter Lu
- Department of Chemistry and Center for Photochemical Science, Bowling Green State University, Bowling Green, Ohio 43403, United States
| |
Collapse
|
13
|
Zeng B, Zhao W, Ma J, Wu Z. Replication protein A is required for juvenile hormone-dependent vitellogenesis and oocyte maturation in locusts. JOURNAL OF INSECT PHYSIOLOGY 2022; 136:104345. [PMID: 34902432 DOI: 10.1016/j.jinsphys.2021.104345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/05/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Aside from inhibiting insect metamorphosis, juvenile hormone (JH) has a well-known role in stimulating various aspects of insect reproduction. Replication protein A (RPA), a heterotrimeric complex comprised of RPA1, RPA2 and RPA3 subunits plays an essential role in DNA replication and DNA repair. Here we report that RPAs are highly expressed in the fat body of adult female locust, Locusta migratoria. While RPA1 is upregulated by the JH receptor Methoprene-tolerant (Met), RPA2 and RPA3 expression appears to be primarily controlled by Forkhead box O transcription factor (FoxO). Knockdown of RPA1, RPA2 or RPA3 results in markedly reducd vitellogenin (Vg) expression in the fat body, accompanied by arrested ovarian growth and inhibited oocyte maturation. In addition, depletion of an RPA subunit leads to increased expression of other RPA subunits as well as a pro-apoptotic gene, Smac that is involved in DNA repair and apoptosis. The data indicate a crucial role of RPAs in JH-dependent vitellogenesis and oocyte maturation.
Collapse
Affiliation(s)
- Baojuan Zeng
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Wenxiao Zhao
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jiajie Ma
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Zhongxia Wu
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
14
|
Brosh RM, Wu Y. An emerging picture of FANCJ's role in G4 resolution to facilitate DNA replication. NAR Cancer 2021; 3:zcab034. [PMID: 34873585 DOI: 10.1093/narcan/zcab034] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/28/2021] [Accepted: 08/13/2021] [Indexed: 02/06/2023] Open
Abstract
A well-accepted hallmark of cancer is genomic instability, which drives tumorigenesis. Therefore, understanding the molecular and cellular defects that destabilize chromosomal integrity is paramount to cancer diagnosis, treatment and cure. DNA repair and the replication stress response are overarching paradigms for maintenance of genomic stability, but the devil is in the details. ATP-dependent helicases serve to unwind DNA so it is replicated, transcribed, recombined and repaired efficiently through coordination with other nucleic acid binding and metabolizing proteins. Alternatively folded DNA structures deviating from the conventional anti-parallel double helix pose serious challenges to normal genomic transactions. Accumulating evidence suggests that G-quadruplex (G4) DNA is problematic for replication. Although there are multiple human DNA helicases that can resolve G4 in vitro, it is debated which helicases are truly important to resolve such structures in vivo. Recent advances have begun to elucidate the principal helicase actors, particularly in cellular DNA replication. FANCJ, a DNA helicase implicated in cancer and the chromosomal instability disorder Fanconi Anemia, takes center stage in G4 resolution to allow smooth DNA replication. We will discuss FANCJ's role with its protein partner RPA to remove G4 obstacles during DNA synthesis, highlighting very recent advances and implications for cancer therapy.
Collapse
Affiliation(s)
- Robert M Brosh
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Yuliang Wu
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| |
Collapse
|
15
|
Lin M, Malik FK, Guo JT. A comparative study of protein-ssDNA interactions. NAR Genom Bioinform 2021; 3:lqab006. [PMID: 33655206 PMCID: PMC7902235 DOI: 10.1093/nargab/lqab006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/24/2020] [Accepted: 01/26/2021] [Indexed: 12/18/2022] Open
Abstract
Single-stranded DNA-binding proteins (SSBs) play crucial roles in DNA replication, recombination and repair, and serve as key players in the maintenance of genomic stability. While a number of SSBs bind single-stranded DNA (ssDNA) non-specifically, the others recognize and bind specific ssDNA sequences. The mechanisms underlying this binding discrepancy, however, are largely unknown. Here, we present a comparative study of protein-ssDNA interactions by annotating specific and non-specific SSBs and comparing structural features such as DNA-binding propensities and secondary structure types of residues in SSB-ssDNA interactions, protein-ssDNA hydrogen bonding and π-π interactions between specific and non-specific SSBs. Our results suggest that protein side chain-DNA base hydrogen bonds are the major contributors to protein-ssDNA binding specificity, while π-π interactions may mainly contribute to binding affinity. We also found the enrichment of aspartate in the specific SSBs, a key feature in specific protein-double-stranded DNA (dsDNA) interactions as reported in our previous study. In addition, no significant differences between specific and non-specific groups with respect of conformational changes upon ssDNA binding were found, suggesting that the flexibility of SSBs plays a lesser role than that of dsDNA-binding proteins in conferring binding specificity.
Collapse
Affiliation(s)
- Maoxuan Lin
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Fareeha K Malik
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
- Research Center of Modeling and Simulation, National University of Science and Technology, Islamabad, 44000, Pakistan
| | - Jun-tao Guo
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
16
|
Gupta M, Concepcion CP, Fahey CG, Keshishian H, Bhutkar A, Brainson CF, Sanchez-Rivera FJ, Pessina P, Kim JY, Simoneau A, Paschini M, Beytagh MC, Stanclift CR, Schenone M, Mani DR, Li C, Oh A, Li F, Hu H, Karatza A, Bronson RT, Shaw AT, Hata AN, Wong KK, Zou L, Carr SA, Jacks T, Kim CF. BRG1 Loss Predisposes Lung Cancers to Replicative Stress and ATR Dependency. Cancer Res 2020; 80:3841-3854. [PMID: 32690724 PMCID: PMC7501156 DOI: 10.1158/0008-5472.can-20-1744] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/15/2020] [Accepted: 07/15/2020] [Indexed: 12/22/2022]
Abstract
Inactivation of SMARCA4/BRG1, the core ATPase subunit of mammalian SWI/SNF complexes, occurs at very high frequencies in non-small cell lung cancers (NSCLC). There are no targeted therapies for this subset of lung cancers, nor is it known how mutations in BRG1 contribute to lung cancer progression. Using a combination of gain- and loss-of-function approaches, we demonstrate that deletion of BRG1 in lung cancer leads to activation of replication stress responses. Single-molecule assessment of replication fork dynamics in BRG1-deficient cells revealed increased origin firing mediated by the prelicensing protein, CDC6. Quantitative mass spectrometry and coimmunoprecipitation assays showed that BRG1-containing SWI/SNF complexes interact with RPA complexes. Finally, BRG1-deficient lung cancers were sensitive to pharmacologic inhibition of ATR. These findings provide novel mechanistic insight into BRG1-mutant lung cancers and suggest that their dependency on ATR can be leveraged therapeutically and potentially expanded to BRG1-mutant cancers in other tissues. SIGNIFICANCE: These findings indicate that inhibition of ATR is a promising therapy for the 10% of non-small cell lung cancer patients harboring mutations in SMARCA4/BRG1. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/18/3841/F1.large.jpg.
Collapse
Affiliation(s)
- Manav Gupta
- Stem Cell Program, Division of Hematology/Oncology and Division of Pulmonary Medicine, Boston Children's Hospital, Boston, Massachusetts
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
- Biological and Biomedical Sciences PhD Program, Harvard University, Boston, Massachusetts
| | - Carla P Concepcion
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Caroline G Fahey
- Stem Cell Program, Division of Hematology/Oncology and Division of Pulmonary Medicine, Boston Children's Hospital, Boston, Massachusetts
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | | | - Arjun Bhutkar
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Christine F Brainson
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky
| | | | - Patrizia Pessina
- Stem Cell Program, Division of Hematology/Oncology and Division of Pulmonary Medicine, Boston Children's Hospital, Boston, Massachusetts
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Jonathan Y Kim
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Antoine Simoneau
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Margherita Paschini
- Stem Cell Program, Division of Hematology/Oncology and Division of Pulmonary Medicine, Boston Children's Hospital, Boston, Massachusetts
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Mary C Beytagh
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | | | - Monica Schenone
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - D R Mani
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Chendi Li
- Massachusetts General Hospital Cancer Center and Department of Medicine, Massachusetts General Hospital Harvard Medical School, Boston, Massachusetts
| | - Audris Oh
- Massachusetts General Hospital Cancer Center and Department of Medicine, Massachusetts General Hospital Harvard Medical School, Boston, Massachusetts
| | - Fei Li
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, New York
| | - Hai Hu
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, New York
| | - Angeliki Karatza
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, New York
| | - Roderick T Bronson
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts
| | - Alice T Shaw
- Massachusetts General Hospital Cancer Center and Department of Medicine, Massachusetts General Hospital Harvard Medical School, Boston, Massachusetts
| | - Aaron N Hata
- Massachusetts General Hospital Cancer Center and Department of Medicine, Massachusetts General Hospital Harvard Medical School, Boston, Massachusetts
| | - Kwok-Kin Wong
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, New York
| | - Lee Zou
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Howard Hughes Medical Institute, Cambridge, Massachusetts
| | - Carla F Kim
- Stem Cell Program, Division of Hematology/Oncology and Division of Pulmonary Medicine, Boston Children's Hospital, Boston, Massachusetts.
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
- Harvard Stem Cell Institute, Cambridge, Massachusetts
| |
Collapse
|
17
|
Mazina OM, Somarowthu S, Kadyrova LY, Baranovskiy AG, Tahirov TH, Kadyrov FA, Mazin AV. Replication protein A binds RNA and promotes R-loop formation. J Biol Chem 2020; 295:14203-14213. [PMID: 32796030 DOI: 10.1074/jbc.ra120.013812] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/10/2020] [Indexed: 12/15/2022] Open
Abstract
Replication protein A (RPA), a major eukaryotic ssDNA-binding protein, is essential for all metabolic processes that involve ssDNA, including DNA replication, repair, and damage signaling. To perform its functions, RPA binds ssDNA tightly. In contrast, it was presumed that RPA binds RNA weakly. However, recent data suggest that RPA may play a role in RNA metabolism. RPA stimulates RNA-templated DNA repair in vitro and associates in vivo with R-loops, the three-stranded structures consisting of an RNA-DNA hybrid and the displaced ssDNA strand. R-loops are common in the genomes of pro- and eukaryotes, including humans, and may play an important role in transcription-coupled homologous recombination and DNA replication restart. However, the mechanism of R-loop formation remains unknown. Here, we investigated the RNA-binding properties of human RPA and its possible role in R-loop formation. Using gel-retardation and RNA/DNA competition assays, we found that RPA binds RNA with an unexpectedly high affinity (KD ≈ 100 pm). Furthermore, RPA, by forming a complex with RNA, can promote R-loop formation with homologous dsDNA. In reconstitution experiments, we showed that human DNA polymerases can utilize RPA-generated R-loops for initiation of DNA synthesis, mimicking the process of replication restart in vivo These results demonstrate that RPA binds RNA with high affinity, supporting the role of this protein in RNA metabolism and suggesting a mechanism of genome maintenance that depends on RPA-mediated DNA replication restart.
Collapse
Affiliation(s)
- Olga M Mazina
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Srinivas Somarowthu
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Lyudmila Y Kadyrova
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Andrey G Baranovskiy
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Tahir H Tahirov
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Farid A Kadyrov
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Alexander V Mazin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
18
|
Amir M, Mohammad T, Dohare R, Islam A, Ahmad F, Imtaiyaz Hassan M. Structure, function and therapeutic implications of OB-fold proteins: A lesson from past to present. Brief Funct Genomics 2020; 19:377-389. [PMID: 32393969 DOI: 10.1093/bfgp/elaa008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Oligonucleotide/oligosaccharide-binding (OB)-fold proteins play essential roles in the regulation of genome and its correct transformation to the subsequent generation. To maintain the genomic stability, OB-fold proteins are implicated in various cellular processes including DNA replication, DNA repair, cell cycle regulation and maintenance of telomere. The diverse functional spectrums of OB-fold proteins are mainly due to their involvement in protein-DNA and protein-protein complexes. Mutations and consequential structural alteration in the OB-fold proteins often lead to severe diseases. Here, we have investigated the structure, function and mode of action of OB-fold proteins (RPA, BRCA2, DNA ligases and SSBs1/2) in cellular pathways and their relationship with diseases and their possible use in therapeutic intervention. Due to the crucial role of OB-fold proteins in regulating the key physiological process, a detailed structural understanding in the context of underlying mechanism of action and cellular complexity offers a new avenue to target OB-proteins for therapeutic intervention.
Collapse
|
19
|
Khalili A, Craigie M, Donadoni M, Sariyer IK. Host-Immune Interactions in JC Virus Reactivation and Development of Progressive Multifocal Leukoencephalopathy (PML). J Neuroimmune Pharmacol 2019; 14:649-660. [PMID: 31452013 PMCID: PMC6898772 DOI: 10.1007/s11481-019-09877-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022]
Abstract
With the advent of immunomodulatory therapies and the HIV epidemic, the impact of JC Virus (JCV) on the public health system has grown significantly due to the increased incidence of Progressive Multifocal Leukoencephalopathy (PML). Currently, there are no pharmaceutical agents targeting JCV infection for the treatment and the prevention of viral reactivation leading to the development of PML. As JCV primarily reactivates in immunocompromised patients, it is proposed that the immune system (mainly the cellular-immunity component) plays a key role in the regulation of JCV to prevent productive infection and PML development. However, the exact mechanism of JCV immune regulation and reactivation is not well understood. Likewise, the impact of host factors on JCV regulation and reactivation is another understudied area. Here we discuss the current literature on host factor-mediated and immune factor-mediated regulation of JCV gene expression with the purpose of developing a model of the factors that are bypassed during JCV reactivation, and thus are potential targets for the development of therapeutic interventions to suppress PML initiation. Graphical Abstract.
Collapse
Affiliation(s)
- Amir Khalili
- Department of Neuroscience and Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Medical Education and Research Building, 7th Floor, Philadelphia, PA, 19140, USA
| | - Michael Craigie
- Department of Neuroscience and Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Medical Education and Research Building, 7th Floor, Philadelphia, PA, 19140, USA
| | - Martina Donadoni
- Department of Neuroscience and Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Medical Education and Research Building, 7th Floor, Philadelphia, PA, 19140, USA
| | - Ilker Kudret Sariyer
- Department of Neuroscience and Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Medical Education and Research Building, 7th Floor, Philadelphia, PA, 19140, USA.
| |
Collapse
|
20
|
Li S, Dong Z, Yang S, Feng J, Li Q. Chaperoning RPA during DNA metabolism. Curr Genet 2019; 65:857-864. [PMID: 30796471 DOI: 10.1007/s00294-019-00945-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/17/2022]
Abstract
Single-stranded DNA (ssDNA) is widely generated during DNA metabolisms including DNA replication, repair and recombination and is susceptible to digestion by nucleases and secondary structure formation. It is vital for DNA metabolism and genome stability that ssDNA is protected and stabilized, which are performed by the major ssDNA-binding protein, and replication protein A (RPA) in these processes. In addition, RPA-coated ssDNA also serves as a protein-protein-binding platform for coordinating multiple events during DNA metabolisms. However, little is known about whether and how the formation of RPA-ssDNA platform is regulated. Here we highlight our recent study of a novel RPA-binding protein, Regulator of Ty1 transposition 105 (Rtt105) in Saccharomyces cerevisiae, which regulates the RPA-ssDNA platform assembly at replication forks. We propose that Rtt105 functions as an "RPA chaperone" during DNA replication, likely also promoting the assembly of RPA-ssDNA platform in other processes in which RPA plays a critical role.
Collapse
Affiliation(s)
- Shuqi Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.,Laboratory of Host-Pathogen Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Ziqi Dong
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Shuangshuang Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Jianxun Feng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Qing Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China. .,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| |
Collapse
|
21
|
Li S, Xu Z, Xu J, Zuo L, Yu C, Zheng P, Gan H, Wang X, Li L, Sharma S, Chabes A, Li D, Wang S, Zheng S, Li J, Chen X, Sun Y, Xu D, Han J, Chan K, Qi Z, Feng J, Li Q. Rtt105 functions as a chaperone for replication protein A to preserve genome stability. EMBO J 2018; 37:embj.201899154. [PMID: 30065069 DOI: 10.15252/embj.201899154] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/28/2018] [Accepted: 07/06/2018] [Indexed: 02/05/2023] Open
Abstract
Generation of single-stranded DNA (ssDNA) is required for the template strand formation during DNA replication. Replication Protein A (RPA) is an ssDNA-binding protein essential for protecting ssDNA at replication forks in eukaryotic cells. While significant progress has been made in characterizing the role of the RPA-ssDNA complex, how RPA is loaded at replication forks remains poorly explored. Here, we show that the Saccharomyces cerevisiae protein regulator of Ty1 transposition 105 (Rtt105) binds RPA and helps load it at replication forks. Cells lacking Rtt105 exhibit a dramatic reduction in RPA loading at replication forks, compromised DNA synthesis under replication stress, and increased genome instability. Mechanistically, we show that Rtt105 mediates the RPA-importin interaction and also promotes RPA binding to ssDNA directly in vitro, but is not present in the final RPA-ssDNA complex. Single-molecule studies reveal that Rtt105 affects the binding mode of RPA to ssDNA These results support a model in which Rtt105 functions as an RPA chaperone that escorts RPA to the nucleus and facilitates its loading onto ssDNA at replication forks.
Collapse
Affiliation(s)
- Shuqi Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Zhiyun Xu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Jiawei Xu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Linyu Zuo
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Chuanhe Yu
- Department of Pediatrics and Department of Genetics and Development, Institute for Cancer Genetics, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Pu Zheng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Haiyun Gan
- Department of Pediatrics and Department of Genetics and Development, Institute for Cancer Genetics, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Xuezheng Wang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Longtu Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Sushma Sharma
- Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Andrei Chabes
- Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Di Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Sheng Wang
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Sihao Zheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Jinbao Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Xuefeng Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Yujie Sun
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Dongyi Xu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Junhong Han
- Division of Abdominal Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and National Collaborative Center for Biotherapy, Chengdu, China
| | - Kuiming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Zhi Qi
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jianxun Feng
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China .,State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Qing Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China .,State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
22
|
Dai Z, Wang S, Zhang W, Yang Y. Elevated Expression of RPA3 Is Involved in Gastric Cancer Tumorigenesis and Associated with Poor Patient Survival. Dig Dis Sci 2017; 62:2369-2375. [PMID: 28766245 DOI: 10.1007/s10620-017-4696-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 07/26/2017] [Indexed: 12/09/2022]
Abstract
BACKGROUND The replication protein A3 (RPA3) is a component of the RPA protein complex, which plays an essential role in multiple processes of DNA metabolism. AIMS However, the involvement of RPA3 in gastric cancer tumorigenesis has not yet been investigated. METHODS We stably knocked down RPA3 expression using short hairpin RNA in AGS cell line, and performed cell growth, colony formation and soft agar assays. Xenograft experiments were performed to examine tumor promoting properties of RPA3 in vivo. The qRT-PCR and immunohistochemistry were performed to evaluate RPA3 expression levels in 37 and 12 pairs of gastric cancer patient samples, respectively. Association between RPA3 expression and survival was evaluated in an independent cohort of 85 gastric cancer patients. RESULTS Downregulation of RPA3 inhibited cell growth, clonogenicity and soft agar growth in AGS cells. Decreased expression of RPA3 significantly reduced tumor growth rate in AGS xenografts. In addition, RPA3 was upregulated in cancerous tissues compared with matched noncancerous adjacent tissues in gastric cancer patients. High expression of RPA3 was associated with poor patient survival. CONCLUSION Upregulation of RPA3 is involved in gastric cancer tumorigenesis and is associated with poorer patient survival. RPA3 represents a new therapeutic target of gastric cancer and serves as a potential prognostic biomarker for patient survival in gastric cancer.
Collapse
Affiliation(s)
- Zhongming Dai
- Department of Digestive Disease, PLA General Hospital, Beijing, 100853, People's Republic of China.,Department of Digestive Disease, Xinjiang Military Region General Hospital, Urumuqi, 830000, Xinjiang Province, People's Republic of China
| | - Shufang Wang
- Department of Digestive Disease, PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Weiping Zhang
- Department of Digestive Disease, Suzhou BenQ Hospital, Suzhou, 215000, Jiangsu Province, People's Republic of China
| | - Yunsheng Yang
- Department of Digestive Disease, PLA General Hospital, Beijing, 100853, People's Republic of China.
| |
Collapse
|
23
|
Abstract
In this Hypothesis, Greider describes a new model for telomere length regulation, which links DNA replication and telomere elongation. Telomere length is regulated around an equilibrium set point. Telomeres shorten during replication and are lengthened by telomerase. Disruption of the length equilibrium leads to disease; thus, it is important to understand the mechanisms that regulate length at the molecular level. The prevailing protein-counting model for regulating telomerase access to elongate the telomere does not explain accumulating evidence of a role of DNA replication in telomere length regulation. Here I present an alternative model: the replication fork model that can explain how passage of a replication fork and regulation of origin firing affect telomere length.
Collapse
Affiliation(s)
- Carol W Greider
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
24
|
Genomic instability during reprogramming by nuclear transfer is DNA replication dependent. Nat Cell Biol 2017; 19:282-291. [PMID: 28263958 DOI: 10.1038/ncb3485] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 02/03/2017] [Indexed: 02/06/2023]
Abstract
Somatic cells can be reprogrammed to a pluripotent state by nuclear transfer into oocytes, yet developmental arrest often occurs. While incomplete transcriptional reprogramming is known to cause developmental failure, reprogramming also involves concurrent changes in cell cycle progression and nuclear structure. Here we study cellular reprogramming events in human and mouse nuclear transfer embryos prior to embryonic genome activation. We show that genetic instability marked by frequent chromosome segregation errors and DNA damage arise prior to, and independent of, transcriptional activity. These errors occur following transition through DNA replication and are repaired by BRCA1. In the absence of mitotic nuclear remodelling, DNA replication is delayed and errors are exacerbated in subsequent mitosis. These results demonstrate that independent of gene expression, cell-type-specific features of cell cycle progression constitute a barrier sufficient to prevent the transition from one cell type to another during reprogramming.
Collapse
|
25
|
Risks at the DNA Replication Fork: Effects upon Carcinogenesis and Tumor Heterogeneity. Genes (Basel) 2017; 8:genes8010046. [PMID: 28117753 PMCID: PMC5295039 DOI: 10.3390/genes8010046] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/09/2017] [Accepted: 01/17/2017] [Indexed: 12/27/2022] Open
Abstract
The ability of all organisms to copy their genetic information via DNA replication is a prerequisite for cell division and a biological imperative of life. In multicellular organisms, however, mutations arising from DNA replication errors in the germline and somatic cells are the basis of genetic diseases and cancer, respectively. Within human tumors, replication errors additionally contribute to mutator phenotypes and tumor heterogeneity, which are major confounding factors for cancer therapeutics. Successful DNA replication involves the coordination of many large-scale, complex cellular processes. In this review, we focus on the roles that defects in enzymes that normally act at the replication fork and dysregulation of enzymes that inappropriately damage single-stranded DNA at the fork play in causing mutations that contribute to carcinogenesis. We focus on tumor data and experimental evidence that error-prone variants of replicative polymerases promote carcinogenesis and on research indicating that the primary target mutated by APOBEC (apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like) cytidine deaminases is ssDNA present at the replication fork. Furthermore, we discuss evidence from model systems that indicate replication stress and other cancer-associated metabolic changes may modulate mutagenic enzymatic activities at the replication fork.
Collapse
|
26
|
Kelly T. Historical Perspective of Eukaryotic DNA Replication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:1-41. [PMID: 29357051 DOI: 10.1007/978-981-10-6955-0_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The replication of the genome of a eukaryotic cell is a complex process requiring the ordered assembly of multiprotein replisomes at many chromosomal sites. The process is strictly controlled during the cell cycle to ensure the complete and faithful transmission of genetic information to progeny cells. Our current understanding of the mechanisms of eukaryotic DNA replication has evolved over a period of more than 30 years through the efforts of many investigators. The aim of this perspective is to provide a brief history of the major advances during this period.
Collapse
Affiliation(s)
- Thomas Kelly
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
27
|
Lee MW, Choi JH, Choi JG, Lee AR, Lee JH. NMR Study of the pH Effect on the DNA Binding Affinity of Human RPA. JOURNAL OF THE KOREAN MAGNETIC RESONANCE SOCIETY 2016. [DOI: 10.6564/jkmrs.2016.20.3.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Kim MG, Shin TH, Choi SR, Choi JG, Lee JH. NMR Study of Temperature-Dependent Single-Stranded DNA Binding Affinity of Human Replication Protein A. JOURNAL OF THE KOREAN MAGNETIC RESONANCE SOCIETY 2016. [DOI: 10.6564/jkmrs.2016.20.3.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Wu Y, Lu J, Kang T. Human single-stranded DNA binding proteins: guardians of genome stability. Acta Biochim Biophys Sin (Shanghai) 2016; 48:671-7. [PMID: 27217471 DOI: 10.1093/abbs/gmw044] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 04/15/2016] [Indexed: 01/03/2023] Open
Abstract
Single-stranded DNA-binding proteins (SSBs) are essential for maintaining the integrity of the genome in all organisms. All processes related to DNA, such as replication, excision, repair, and recombination, require the participation of SSBs whose oligonucleotide/oligosaccharide-binding (OB)-fold domain is responsible for the interaction with single-stranded DNA (ssDNA). For a long time, the heterotrimeric replication protein A (RPA) complex was believed to be the only nuclear SSB in eukaryotes to participate in ssDNA processing, while mitochondrial SSBs that are conserved with prokaryotic SSBs were shown to be essential for maintaining genome stability in eukaryotic mitochondria. In recent years, two new proteins, hSSB1 and hSSB2 (human SSBs 1/2), were identified and have better sequence similarity to bacterial and archaeal SSBs than RPA. This review summarizes the current understanding of these human SSBs in DNA damage repair and in cell-cycle checkpoint activation following DNA damage, as well as their relationships with cancer.
Collapse
Affiliation(s)
- Yuanzhong Wu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Jinping Lu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Tiebang Kang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| |
Collapse
|
30
|
Liu T, Huang J. Replication protein A and more: single-stranded DNA-binding proteins in eukaryotic cells. Acta Biochim Biophys Sin (Shanghai) 2016; 48:665-70. [PMID: 27151292 DOI: 10.1093/abbs/gmw041] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/07/2016] [Indexed: 01/30/2023] Open
Abstract
Single-stranded DNA-binding proteins (SSBs) play essential roles in DNA replication, recombinational repair, and maintenance of genome stability. In human, the major SSB, replication protein A (RPA), is a stable heterotrimer composed of subunits of RPA1, RPA2, and RPA3, each of which is conserved not only in mammals but also in all other eukaryotic species. In addition to RPA, other SSBs have also been identified in the human genome, including sensor of single-stranded DNA complexes 1 and 2 (SOSS1/2). In this review, we summarize our current understanding of how these SSBs contribute to the maintenance of genome stability.
Collapse
Affiliation(s)
- Ting Liu
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jun Huang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
31
|
Maréchal A, Zou L. RPA-coated single-stranded DNA as a platform for post-translational modifications in the DNA damage response. Cell Res 2014; 25:9-23. [PMID: 25403473 DOI: 10.1038/cr.2014.147] [Citation(s) in RCA: 340] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The Replication Protein A (RPA) complex is an essential regulator of eukaryotic DNA metabolism. RPA avidly binds to single-stranded DNA (ssDNA) through multiple oligonucleotide/oligosaccharide-binding folds and coordinates the recruitment and exchange of genome maintenance factors to regulate DNA replication, recombination and repair. The RPA-ssDNA platform also constitutes a key physiological signal which activates the master ATR kinase to protect and repair stalled or collapsed replication forks during replication stress. In recent years, the RPA complex has emerged as a key target and an important regulator of post-translational modifications in response to DNA damage, which is critical for its genome guardian functions. Phosphorylation and SUMOylation of the RPA complex, and more recently RPA-regulated ubiquitination, have all been shown to control specific aspects of DNA damage signaling and repair by modulating the interactions between RPA and its partners. Here, we review our current understanding of the critical functions of the RPA-ssDNA platform in the maintenance of genome stability and its regulation through an elaborate network of covalent modifications.
Collapse
Affiliation(s)
- Alexandre Maréchal
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Lee Zou
- 1] Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA [2] Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
32
|
Kemp MG, Gaddameedhi S, Choi JH, Hu J, Sancar A. DNA repair synthesis and ligation affect the processing of excised oligonucleotides generated by human nucleotide excision repair. J Biol Chem 2014; 289:26574-26583. [PMID: 25107903 DOI: 10.1074/jbc.m114.597088] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Ultraviolet (UV) photoproducts are removed from genomic DNA by dual incisions in humans in the form of 24- to 32-nucleotide-long oligomers (canonical 30-mers) by the nucleotide excision repair system. How the small, excised, damage-containing DNA oligonucleotides (sedDNAs) are processed in cells following the dual incision event is not known. Here, we demonstrate that sedDNAs are localized to the nucleus in two biochemically distinct forms, which include chromatin-associated, transcription factor II H-bound complexes and more readily solubilized, RPA-bound complexes. Because the nuclear mobility and repair functions of transcription factor II H and RPA are influenced by post-incision gap-filling events, we examined how DNA repair synthesis and DNA ligation affect sedDNA processing. We found that although these gap filling activities are not essential for the dual incision/sedDNA generation event per se, the inhibition of DNA repair synthesis and ligation is associated with a decrease in UV photoproduct removal rate and an accumulation of RPA-sedDNA complexes in the cell. These findings indicate that sedDNA processing and association with repair proteins following the dual incisions may be tightly coordinated with gap filling during nucleotide excision repair in vivo.
Collapse
Affiliation(s)
- Michael G Kemp
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599 and
| | - Shobhan Gaddameedhi
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599 and
| | - Jun-Hyuk Choi
- Center for Bioanalysis, Department of Metrology for Quality of Life, Korea Research Institute of Standards and Science, Daejeon 305-340, South Korea
| | - Jinchuan Hu
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599 and
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599 and.
| |
Collapse
|
33
|
Banerjee P, deJesus R, Gjoerup O, Schaffhausen BS. Viral interference with DNA repair by targeting of the single-stranded DNA binding protein RPA. PLoS Pathog 2013; 9:e1003725. [PMID: 24204272 PMCID: PMC3812037 DOI: 10.1371/journal.ppat.1003725] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 09/09/2013] [Indexed: 11/18/2022] Open
Abstract
Correct repair of damaged DNA is critical for genomic integrity. Deficiencies in DNA repair are linked with human cancer. Here we report a novel mechanism by which a virus manipulates DNA damage responses. Infection with murine polyomavirus sensitizes cells to DNA damage by UV and etoposide. Polyomavirus large T antigen (LT) alone is sufficient to sensitize cells 100 fold to UV and other kinds of DNA damage. This results in activated stress responses and apoptosis. Genetic analysis shows that LT sensitizes via the binding of its origin-binding domain (OBD) to the single-stranded DNA binding protein replication protein A (RPA). Overexpression of RPA protects cells expressing OBD from damage, and knockdown of RPA mimics the LT phenotype. LT prevents recruitment of RPA to nuclear foci after DNA damage. This leads to failure to recruit repair proteins such as Rad51 or Rad9, explaining why LT prevents repair of double strand DNA breaks by homologous recombination. A targeted intervention directed at RPA based on this viral mechanism could be useful in circumventing the resistance of cancer cells to therapy.
Collapse
Affiliation(s)
- Pubali Banerjee
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Program in Molecular Microbiology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Rowena deJesus
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Ole Gjoerup
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Brian S. Schaffhausen
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
34
|
Trojandt S, Knies D, Pektor S, Ritz S, Mailänder V, Grabbe S, Reske-Kunz AB, Bros M. The chemotherapeutic agent topotecan differentially modulates the phenotype and function of dendritic cells. Cancer Immunol Immunother 2013; 62:1315-26. [PMID: 23666509 PMCID: PMC11029351 DOI: 10.1007/s00262-013-1431-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 04/28/2013] [Indexed: 11/24/2022]
Abstract
The camptothecin analogue topotecan (TPT) induces tumor cell apoptosis due to interference with topoisomerase I and is clinically used as a second-line chemotherapeutic in the treatment for metastasizing ovarian and small cell lung carcinoma. Based on the more recent finding of TPT-mediated inhibition of the transcription factor hypoxia-induced factor-1α, a hallmark of solid tumors, TPT, is currently tested in clinical trials for its suitability as a first-line chemotherapeutic for the treatment for various types of tumors. Due to the gained clinical interest in TPT and in light of its modulatory effect on signaling pathways, which are also of importance for immune cell functions, we asked for potential effects of TPT on dendritic cells (DCs), the main antigen-presenting cell population of the immune system. Here, we show that TPT at a therapeutically relevant dose partially activated monocyte-derived DCs as reflected by enhanced migratory activity, elevated expression of HLA-DR and costimulatory/maturation markers, and accordingly an increased allogenic CD4(+) T cell stimulation. In marked contrast, TPT prevented full maturation of DCs stimulated with a cocktail of proinflammatory mediators, accompanied by somewhat lower upregulation of NF-κB factors p65 and RelB.
Collapse
Affiliation(s)
- Stefanie Trojandt
- Department of Dermatology, Clinical Research Unit Allergology, Medical Center of the Johannes Gutenberg-University, Obere Zahlbacher-Str. 63, 55131, Mainz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Molecular biology, epidemiology, and pathogenesis of progressive multifocal leukoencephalopathy, the JC virus-induced demyelinating disease of the human brain. Clin Microbiol Rev 2012; 25:471-506. [PMID: 22763635 DOI: 10.1128/cmr.05031-11] [Citation(s) in RCA: 296] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is a debilitating and frequently fatal central nervous system (CNS) demyelinating disease caused by JC virus (JCV), for which there is currently no effective treatment. Lytic infection of oligodendrocytes in the brain leads to their eventual destruction and progressive demyelination, resulting in multiple foci of lesions in the white matter of the brain. Before the mid-1980s, PML was a relatively rare disease, reported to occur primarily in those with underlying neoplastic conditions affecting immune function and, more rarely, in allograft recipients receiving immunosuppressive drugs. However, with the onset of the AIDS pandemic, the incidence of PML has increased dramatically. Approximately 3 to 5% of HIV-infected individuals will develop PML, which is classified as an AIDS-defining illness. In addition, the recent advent of humanized monoclonal antibody therapy for the treatment of autoimmune inflammatory diseases such as multiple sclerosis (MS) and Crohn's disease has also led to an increased risk of PML as a side effect of immunotherapy. Thus, the study of JCV and the elucidation of the underlying causes of PML are important and active areas of research that may lead to new insights into immune function and host antiviral defense, as well as to potential new therapies.
Collapse
|
36
|
Yang J, Bachrati CZ, Hickson ID, Brown GW. BLM and RMI1 alleviate RPA inhibition of TopoIIIα decatenase activity. PLoS One 2012; 7:e41208. [PMID: 22911760 PMCID: PMC3401101 DOI: 10.1371/journal.pone.0041208] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 06/18/2012] [Indexed: 11/29/2022] Open
Abstract
RPA is a single-stranded DNA binding protein that physically associates with the BLM complex. RPA stimulates BLM helicase activity as well as the double Holliday junction dissolution activity of the BLM-topoisomerase IIIα complex. We investigated the effect of RPA on the ssDNA decatenase activity of topoisomerase IIIα. We found that RPA and other ssDNA binding proteins inhibit decatenation by topoisomerase IIIα. Complex formation between BLM, TopoIIIα, and RMI1 ablates inhibition of decatenation by ssDNA binding proteins. Together, these data indicate that inhibition by RPA does not involve species-specific interactions between RPA and BLM-TopoIIIα-RMI1, which contrasts with RPA modulation of double Holliday junction dissolution. We propose that topoisomerase IIIα and RPA compete to bind to single-stranded regions of catenanes. Interactions with BLM and RMI1 enhance toposiomerase IIIα activity, promoting decatenation in the presence of RPA.
Collapse
Affiliation(s)
- Jay Yang
- Department of Biochemistry and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Csanad Z. Bachrati
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Ian D. Hickson
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Grant W. Brown
- Department of Biochemistry and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
37
|
A protein array screen for Kaposi's sarcoma-associated herpesvirus LANA interactors links LANA to TIP60, PP2A activity, and telomere shortening. J Virol 2012; 86:5179-91. [PMID: 22379092 DOI: 10.1128/jvi.00169-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Kaposi's sarcoma-associated herpesvirus (KSHV) LANA protein functions in latently infected cells as an essential participant in KSHV genome replication and as a driver of dysregulated cell growth. To identify novel LANA protein-cell protein interactions that could contribute to these activities, we performed a proteomic screen in which purified, adenovirus-expressed Flag-LANA protein was incubated with an array displaying 4,192 nonredundant human proteins. Sixty-one interacting cell proteins were consistently detected. LANA interactions with high-mobility group AT-hook 1 (HMGA1), HMGB1, telomeric repeat binding factor 1 (TRF1), xeroderma pigmentosum complementation group A (XPA), pygopus homolog 2 (PYGO2), protein phosphatase 2A (PP2A)B subunit, Tat-interactive protein 60 (TIP60), replication protein A1 (RPA1), and RPA2 proteins were confirmed in coimmunoprecipitation assays. LANA-associated TIP60 retained acetyltransferase activity and, unlike human papillomavirus E6 and HIV-1 TAT proteins, LANA did not reduce TIP60 stability. The LANA-bound PP2A B subunit was associated with the PP2A A subunit but not the catalytic C subunit, suggesting a disruption of PP2A phosphatase activity. This is reminiscent of the role of simian virus 40 (SV40) small t antigen. Chromatin immunoprecipitation (ChIP) assays showed binding of RPA1 and RPA2 to the KSHV terminal repeats. Interestingly, LANA expression ablated RPA1 and RPA2 binding to the cell telomeric repeats. In U2OS cells that rely on the alternative mechanism for telomere maintenance, LANA expression had minimal effect on telomere length. However, LANA expression in telomerase immortalized endothelial cells resulted in telomere shortening. In KSHV-infected cells, telomere shortening may be one more mechanism by which LANA contributes to the development of malignancy.
Collapse
|
38
|
Abstract
Telomere DNA-binding proteins protect the ends of chromosomes in eukaryotes. A subset of these proteins are constructed with one or more OB folds and bind with G+T-rich single-stranded DNA found at the extreme termini. The resulting DNA-OB protein complex interacts with other telomere components to coordinate critical telomere functions of DNA protection and DNA synthesis. While the first crystal and NMR structures readily explained protection of telomere ends, the picture of how single-stranded DNA becomes available to serve as primer and template for synthesis of new telomere DNA is only recently coming into focus. New structures of telomere OB fold proteins alongside insights from genetic and biochemical experiments have made significant contributions towards understanding how protein-binding OB proteins collaborate with DNA-binding OB proteins to recruit telomerase and DNA polymerase for telomere homeostasis. This review surveys telomere OB protein structures alongside highly comparable structures derived from replication protein A (RPA) components, with the goal of providing a molecular context for understanding telomere OB protein evolution and mechanism of action in protection and synthesis of telomere DNA.
Collapse
Affiliation(s)
- Martin P Horvath
- Department of Biology, University of Utah, Salt Lake City, Utah 84112-0840, USA.
| |
Collapse
|
39
|
Prakash A, Borgstahl GEO. The structure and function of replication protein A in DNA replication. Subcell Biochem 2012; 62:171-96. [PMID: 22918586 DOI: 10.1007/978-94-007-4572-8_10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In all organisms from bacteria and archaea to eukarya, single-stranded DNA binding proteins play an essential role in most, if not all, nuclear metabolism involving single-stranded DNA (ssDNA). Replication protein A (RPA), the major eukaryotic ssDNA binding protein, has two important roles in DNA metabolism: (1) in binding ssDNA to protect it and to keep it unfolded, and (2) in coordinating the assembly and disassembly of numerous proteins and protein complexes during processes such as DNA replication. Since its discovery as a vital player in the process of replication, RPAs roles in recombination and DNA repair quickly became evident. This chapter summarizes the current understanding of RPA's roles in replication by reviewing the available structural data, DNA-binding properties, interactions with various replication proteins, and interactions with DNA repair proteins when DNA replication is stalled.
Collapse
Affiliation(s)
- Aishwarya Prakash
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Given Medical Building, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | | |
Collapse
|
40
|
Brocardo MG, Borowiec JA, Henderson BR. Adenomatous polyposis coli protein regulates the cellular response to DNA replication stress. Int J Biochem Cell Biol 2011; 43:1354-64. [PMID: 21664290 DOI: 10.1016/j.biocel.2011.05.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 05/12/2011] [Accepted: 05/24/2011] [Indexed: 10/18/2022]
Abstract
The adenomatous polyposis coli (APC) tumor suppressor traffics between nucleus and cytoplasm to perform distinct functions. Here we identify a specific role for APC in the DNA replication stress response. The silencing of APC caused an accumulation of asynchronous cells in early S phase and delayed S phase progression in cells released from hydroxyurea-mediated replication arrest. Immunoprecipitation assays revealed a selective binding of APC to replication protein A 32kDa subunit (RPA32), and the APC-RPA32 complex increased at chromatin after hydroxyurea treatment. Interestingly, APC knock-down prevented accumulation at chromatin of the stress-induced S33- and S29-phosphorylated forms of RPA32, and reduced the expression of ATR-phosphorylated forms of S317-phospho-Chk1 and γ-H2AX. Using RPA32-inducible cells we showed that reconstitution of RPA32 diminished the S-phase delay caused by loss of APC. In contrast to full-length APC, the truncated APC mutant protein expressed in SW480 colon cancer cells was impaired in its binding and regulation of RPA32, and failed to regulate cell cycle after replication stress. We propose that APC associates with RPA at stalled DNA replication forks and promotes the ATR-dependent phosphorylation of RPA32, Chk1 and γ-H2AX in response to DNA replication stress, thereby influencing the rate of re-entry into the cell cycle.
Collapse
Affiliation(s)
- Mariana G Brocardo
- Westmead Institute for Cancer Research, University of Sydney, Westmead Millennium Institute at Westmead Hospital, Westmead, New South Wales 2145, Australia.
| | | | | |
Collapse
|
41
|
Cavero S, Limbo O, Russell P. Critical functions of Rpa3/Ssb3 in S-phase DNA damage responses in fission yeast. PLoS Genet 2010; 6:e1001138. [PMID: 20885790 PMCID: PMC2944793 DOI: 10.1371/journal.pgen.1001138] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 08/24/2010] [Indexed: 11/24/2022] Open
Abstract
Replication Protein A (RPA) is a heterotrimeric, single-stranded DNA (ssDNA)–binding complex required for DNA replication and repair, homologous recombination, DNA damage checkpoint signaling, and telomere maintenance. Whilst the larger RPA subunits, Rpa1 and Rpa2, have essential interactions with ssDNA, the molecular functions of the smallest subunit Rpa3 are unknown. Here, we investigate the Rpa3 ortholog Ssb3 in Schizosaccharomyces pombe and find that it is dispensable for cell viability, checkpoint signaling, RPA foci formation, and meiosis. However, increased spontaneous Rad11Rpa1 and Rad22Rad52 nuclear foci in ssb3Δ cells indicate genome maintenance defects. Moreover, Ssb3 is required for resistance to genotoxins that disrupt DNA replication. Genetic interaction studies indicate that Ssb3 has a close functional relationship with the Mms1-Mms22 protein complex, which is required for survival after DNA damage in S-phase, and with the mitotic functions of Mus81-Eme1 Holliday junction resolvase that is required for recovery from replication fork collapse. From these studies we propose that Ssb3 plays a critical role in mediating RPA functions that are required for repair or tolerance of DNA lesions in S-phase. Rpa3 orthologs in humans and other species may have a similar function. Proteins that bind single-stranded DNA (ssDNA) are essential for DNA replication, most types of DNA repair including homologous recombination, DNA damage signaling, and maintenance of telomeres. In eukaryotes, the most ubiquitous and abundant ssDNA binding protein is Replication Protein A (RPA), a 3-subunit protein complex consisting of large (Rpa1), medium (Rpa2), and small (Rpa3) subunits. Rpa1 and Rpa2 directly bind ssDNA, whilst the function of Rpa3 is largely unknown. Here, we discover that in fission yeast a 2-subunit complex of Rpa1 and Rpa2 is sufficient for the essential DNA replication function of RPA and its role in homologous recombination repair of double-strand breaks. Rpa3 is not required for these functions, but it is needed for survival of many types of DNA damage that stall or collapse replication forks. Genetic studies indicate close functional links between the Rpa3-dependent activities of RPA, the repair of collapsed replication forks by Mus81-Eme1 Holliday junction resolvase, and the newly discovered Mms1-Mms22 protein complex that is essential for resistance to genotoxins that disrupt DNA replication.
Collapse
Affiliation(s)
- Santiago Cavero
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Oliver Limbo
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Paul Russell
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
42
|
Kang YH, Lee CH, Seo YS. Dna2 on the road to Okazaki fragment processing and genome stability in eukaryotes. Crit Rev Biochem Mol Biol 2010; 45:71-96. [PMID: 20131965 DOI: 10.3109/10409230903578593] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
DNA replication is a primary mechanism for maintaining genome integrity, but it serves this purpose best by cooperating with other proteins involved in DNA repair and recombination. Unlike leading strand synthesis, lagging strand synthesis has a greater risk of faulty replication for several reasons: First, a significant part of DNA is synthesized by polymerase alpha, which lacks a proofreading function. Second, a great number of Okazaki fragments are synthesized, processed and ligated per cell division. Third, the principal mechanism of Okazaki fragment processing is via generation of flaps, which have the potential to form a variety of structures in their sequence context. Finally, many proteins for the lagging strand interact with factors involved in repair and recombination. Thus, lagging strand DNA synthesis could be the best example of a converging place of both replication and repair proteins. To achieve the risky task with extraordinary fidelity, Okazaki fragment processing may depend on multiple layers of redundant, but connected pathways. An essential Dna2 endonuclease/helicase plays a pivotal role in processing common structural intermediates that occur during diverse DNA metabolisms (e.g. lagging strand synthesis and telomere maintenance). Many roles of Dna2 suggest that the preemptive removal of long or structured flaps ultimately contributes to genome maintenance in eukaryotes. In this review, we describe the function of Dna2 in Okazaki fragment processing, and discuss its role in the maintenance of genome integrity with an emphasis on its functional interactions with other factors required for genome maintenance.
Collapse
Affiliation(s)
- Young-Hoon Kang
- Center for DNA Replication and Genome Instability, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | | | | |
Collapse
|
43
|
Richard DJ, Bolderson E, Khanna KK. Multiple human single-stranded DNA binding proteins function in genome maintenance: structural, biochemical and functional analysis. Crit Rev Biochem Mol Biol 2010; 44:98-116. [PMID: 19367476 DOI: 10.1080/10409230902849180] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
DNA exists predominantly in a duplex form that is preserved via specific base pairing. This base pairing affords a considerable degree of protection against chemical or physical damage and preserves coding potential. However, there are many situations, e.g. during DNA damage and programmed cellular processes such as DNA replication and transcription, in which the DNA duplex is separated into two single-stranded DNA (ssDNA) strands. This ssDNA is vulnerable to attack by nucleases, binding by inappropriate proteins and chemical attack. It is very important to control the generation of ssDNA and protect it when it forms, and for this reason all cellular organisms and many viruses encode a ssDNA binding protein (SSB). All known SSBs use an oligosaccharide/oligonucleotide binding (OB)-fold domain for DNA binding. SSBs have multiple roles in binding and sequestering ssDNA, detecting DNA damage, stimulating strand-exchange proteins and helicases, and mediation of protein-protein interactions. Recently two additional human SSBs have been identified that are more closely related to bacterial and archaeal SSBs. Prior to this it was believed that replication protein A, RPA, was the only human equivalent of bacterial SSB. RPA is thought to be required for most aspects of DNA metabolism including DNA replication, recombination and repair. This review will discuss in further detail the biological pathways in which human SSBs function.
Collapse
Affiliation(s)
- Derek J Richard
- Cancer and Cell Biology Division, The Queensland Institute of Medical Research, 300 Herston Road, Herston, QLD 4006, Australia
| | | | | |
Collapse
|
44
|
Kemp MG, Akan Z, Yilmaz S, Grillo M, Smith-Roe SL, Kang TH, Cordeiro-Stone M, Kaufmann WK, Abraham RT, Sancar A, Unsal-Kaçmaz K. Tipin-replication protein A interaction mediates Chk1 phosphorylation by ATR in response to genotoxic stress. J Biol Chem 2010; 285:16562-71. [PMID: 20233725 DOI: 10.1074/jbc.m110.110304] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mammalian Timeless is a multifunctional protein that performs essential roles in the circadian clock, chromosome cohesion, DNA replication fork protection, and DNA replication/DNA damage checkpoint pathways. The human Timeless exists in a tight complex with a smaller protein called Tipin (Timeless-interacting protein). Here we investigated the mechanism by which the Timeless-Tipin complex functions as a mediator in the ATR-Chk1 DNA damage checkpoint pathway. We find that the Timeless-Tipin complex specifically mediates Chk1 phosphorylation by ATR in response to DNA damage and replication stress through interaction of Tipin with the 34-kDa subunit of replication protein A (RPA). The Tipin-RPA interaction stabilizes Timeless-Tipin and Tipin-Claspin complexes on RPA-coated ssDNA and in doing so promotes Claspin-mediated phosphorylation of Chk1 by ATR. Our results therefore indicate that RPA-covered ssDNA not only supports recruitment and activation of ATR but also, through Tipin and Claspin, it plays an important role in the action of ATR on its critical downstream target Chk1.
Collapse
Affiliation(s)
- Michael G Kemp
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Broderick S, Rehmet K, Concannon C, Nasheuer HP. Eukaryotic single-stranded DNA binding proteins: central factors in genome stability. Subcell Biochem 2010; 50:143-163. [PMID: 20012581 DOI: 10.1007/978-90-481-3471-7_8] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The single-stranded DNA binding proteins (SSBs) are required to maintain the integrity of the genome in all organisms. Replication protein A (RPA) is a nuclear SSB protein found in all eukaryotes and is required for multiple processes in DNA metabolism such as DNA replication, DNA repair, DNA recombination, telomere maintenance and DNA damage signalling. RPA is a heterotrimeric complex, binds ssDNA with high affinity, and interacts specifically with multiple proteins to fulfil its function in eukaryotes. RPA is phosphorylated in a cell cycle and DNA damage-dependent manner with evidence suggesting that phosphorylation has an important function in modulating the cellular DNA damage response. Considering the DNA-binding properties of RPA a mechanism of "molecular counting" to initiate DNA damage-dependent signalling is discussed. Recently a human homologue to the RPA2 subunit, called RPA4, was discovered and RPA4 can substitute for RPA2 in the RPA complex resulting in an "alternative" RPA (aRPA), which can bind to ssDNA with similar affinity as canonical RPA. Additional human SSBs, hSSB1 and hSSB2, were recently identified, with hSSB1 being localized in the nucleus and having implications in DNA repair. Mitochondrial SSBs (mtSSBs) have been found in all eukaryotes studied. mtSSBs are related to prokaryotic SSBs and essential to main the genome stability in eukaryotic mitochondria. Recently human mtSSB was identified as a novel binding partner of p53 and that it is able to stimulate the intrinsic exonuclease activity of p53. These findings and recent results associated with mutations in RPA suggest a link of SSBs to cancer.
Collapse
Affiliation(s)
- Sandra Broderick
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway, Galway, Ireland
| | | | | | | |
Collapse
|
46
|
Orba Y, Suzuki T, Makino Y, Kubota K, Tanaka S, Kimura T, Sawa H. Large T antigen promotes JC virus replication in G2-arrested cells by inducing ATM- and ATR-mediated G2 checkpoint signaling. J Biol Chem 2009; 285:1544-54. [PMID: 19903823 DOI: 10.1074/jbc.m109.064311] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Large T antigen (TAg) of the human polyomavirus JC virus (JCV) possesses DNA binding and helicase activities, which, together with various cellular proteins, are required for replication of the viral genome. We now show that JCV-infected cells expressing TAg accumulate in the G(2) phase of the cell cycle as a result of the activation of ATM- and ATR-mediated G(2) checkpoint pathways. Transient transfection of cells with a TAg expression vector also induced G(2) checkpoint signaling and G(2) arrest. Analysis of TAg mutants with different subnuclear localizations suggested that the association of TAg with cellular DNA contributes to the induction of G(2) arrest. Abrogation of G(2) arrest by inhibition of ATM and ATR, Chk1, and Wee1 suppressed JCV genome replication. In addition, abrogation of the G(2)-M transition by Cdc2 depletion disabled Wee1 depletion-induced suppression of JCV genome replication, suggesting that JCV replication is facilitated by G(2) arrest resulting from G(2) checkpoint signaling. Moreover, inhibition of ATM and ATR by caffeine suppressed JCV production. The observation that oligodendrocytes productively infected with JCV in vivo also undergo G(2) arrest suggests that G(2) checkpoint inhibitors such as caffeine are potential therapeutic agents for JCV infection.
Collapse
Affiliation(s)
- Yasuko Orba
- Department of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Deng X, Prakash A, Dhar K, Baia GS, Kolar C, Oakley GG, Borgstahl GEO. Human replication protein A-Rad52-single-stranded DNA complex: stoichiometry and evidence for strand transfer regulation by phosphorylation. Biochemistry 2009; 48:6633-43. [PMID: 19530647 PMCID: PMC2710861 DOI: 10.1021/bi900564k] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The eukaryotic single-stranded DNA-binding protein, replication protein A (RPA), is essential in DNA metabolism and is phosphorylated in response to DNA-damaging agents. Rad52 and RPA participate in the repair of double-stranded DNA breaks (DSBs). It is known that human RPA and Rad52 form a complex, but the molecular mass, stoichiometry, and exact role of this complex in DSB repair are unclear. In this study, absolute molecular masses of individual proteins and complexes were measured in solution using analytical size-exclusion chromatography coupled with multiangle light scattering, the protein species present in each purified fraction were verified via sodium dodecyl sulfate−polyacrylamide gel electrophoresis (SDS−PAGE)/Western analyses, and the presence of biotinylated ssDNA in the complexes was verified by chemiluminescence detection. Then, employing UV cross-linking, the protein partner holding the ssDNA was identified. These data show that phosphorylated RPA promoted formation of a complex with monomeric Rad52 and caused the transfer of ssDNA from RPA to Rad52. This suggests that RPA phosphorylation may regulate the first steps of DSB repair and is necessary for the mediator function of Rad52.
Collapse
Affiliation(s)
- Xiaoyi Deng
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 987696 Nebraska Medical Center, Omaha, Nebraska 68198-7696, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Sakaguchi K, Ishibashi T, Uchiyama Y, Iwabata K. The multi-replication protein A (RPA) system--a new perspective. FEBS J 2009; 276:943-63. [PMID: 19154342 DOI: 10.1111/j.1742-4658.2008.06841.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Replication protein A (RPA) complex has been shown, using both in vivo and in vitro approaches, to be required for most aspects of eukaryotic DNA metabolism: replication, repair, telomere maintenance and homologous recombination. Here, we review recent data concerning the function and biological importance of the multi-RPA complex. There are distinct complexes of RPA found in the biological kingdoms, although for a long time only one type of RPA complex was believed to be present in eukaryotes. Each complex probably serves a different role. In higher plants, three distinct large and medium subunits are present, but only one species of the smallest subunit. Each of these protein subunits forms stable complexes with their respective partners. They are paralogs as complex. Humans possess two paralogs and one analog of RPA. The multi-RPA system can be regarded as universal in eukaryotes. Among eukaryotic kingdoms, paralogs, orthologs, analogs and heterologs of many DNA synthesis-related factors, including RPA, are ubiquitous. Convergent evolution seems to be ubiquitous in these processes. Using recent findings, we review the composition and biological functions of RPA complexes.
Collapse
Affiliation(s)
- Kengo Sakaguchi
- Department of Applied Biological Science, Tokyo University of Science, Chiba, Japan.
| | | | | | | |
Collapse
|
49
|
Haring SJ, Mason AC, Binz SK, Wold MS. Cellular functions of human RPA1. Multiple roles of domains in replication, repair, and checkpoints. J Biol Chem 2008; 283:19095-111. [PMID: 18469000 PMCID: PMC2441558 DOI: 10.1074/jbc.m800881200] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 05/05/2008] [Indexed: 11/06/2022] Open
Abstract
In eukaryotes, the single strand DNA (ssDNA)-binding protein, replication protein A (RPA), is essential for DNA replication, repair, and recombination. RPA is composed of the following three subunits: RPA1, RPA2, and RPA3. The RPA1 subunit contains four structurally related domains and is responsible for high affinity ssDNA binding. This study uses a depletion/replacement strategy in human cells to reveal the contributions of each domain to RPA cellular functions. Mutations that substantially decrease ssDNA binding activity do not necessarily disrupt cellular RPA function. Conversely, mutations that only slightly affect ssDNA binding can dramatically affect cellular function. The N terminus of RPA1 is not necessary for DNA replication in the cell; however, this region is important for the cellular response to DNA damage. Highly conserved aromatic residues in the high affinity ssDNA-binding domains are essential for DNA repair and cell cycle progression. Our findings suggest that as long as a threshold of RPA-ssDNA binding activity is met, DNA replication can occur and that an RPA activity separate from ssDNA binding is essential for function in DNA repair.
Collapse
Affiliation(s)
- Stuart J Haring
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
50
|
Bartos JD, Willmott LJ, Binz SK, Wold MS, Bambara RA. Catalysis of strand annealing by replication protein A derives from its strand melting properties. J Biol Chem 2008; 283:21758-68. [PMID: 18522944 DOI: 10.1074/jbc.m800856200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic DNA-binding protein replication protein A (RPA) has a strand melting property that assists polymerases and helicases in resolving DNA secondary structures. Curiously, previous results suggested that human RPA (hRPA) promotes undesirable recombination by facilitating annealing of flaps produced transiently during DNA replication; however, the mechanism was not understood. We designed a series of substrates, representing displaced DNA flaps generated during maturation of Okazaki fragments, to investigate the strand annealing properties of RPA. Until cleaved by FEN1 (flap endonuclease 1), such flaps can initiate homologous recombination. hRPA inhibited annealing of strands lacking secondary structure but promoted annealing of structured strands. Apparently, both processes primarily derive from the strand melting properties of hRPA. These properties slowed the spontaneous annealing of unstructured single strands, which occurred efficiently without hRPA. However, structured strands without hRPA displayed very slow spontaneous annealing because of stable intramolecular hydrogen bonding. hRPA appeared to transiently melt the single strands so that they could bind to form double strands. In this way, melting ironically promoted annealing. Time course measurements in the presence of hRPA suggest that structured single strands achieve an equilibrium with double strands, a consequence of RPA driving both annealing and melting. Promotion of annealing reached a maximum at a specific hRPA concentration, presumably when all structured single-stranded DNA was melted. Results suggest that displaced flaps with secondary structure formed during Okazaki fragment maturation can be melted by hRPA and subsequently annealed to a complementary ectopic DNA site, forming recombination intermediates that can lead to genomic instability.
Collapse
Affiliation(s)
- Jeremy D Bartos
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|