1
|
Zhang B, Zheng S, Huang M, Wu Q, Dong W, Wu J, Liu H, Zhao D, Yu Y, Li J. Analysis of volatile compounds in Xiangjiao baijiu from different storage containers and years based on HS-GC-IMS and DI-GC-MS. Food Chem X 2024; 24:101976. [PMID: 39641112 PMCID: PMC11617706 DOI: 10.1016/j.fochx.2024.101976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/10/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024] Open
Abstract
The volatile compounds in 16 different storage containers and years of Xiangjiao Baijiu (XJBJ) were compared and analyzed via direct injection (DI) combined with gas chromatography-mass spectrometry (GC-MS) and headspace extraction (HS) coupled with gas chromatography-ion mobility spectrometry (HS-GC-IMS) for the first time. Through HS-GC-IMS analysis, it was found that the succession rules of 14 compounds such as furfural during aging process. A total of 60 compounds were identified using DI-GC-MS. Twenty-five of these compounds were further quantified, and 19 compounds had odor activity values (OAVs) > 1, which were important contributor to aroma of XJBJ. Among them, those with OAVs >1000 included ethyl hexanoate, ethyl octanoate, ethyl butanoate, and ethyl pentanoate. Combining the results of quantitative, OAVs and partial least squares-discriminant analysis (PLS-DA) revealed that 10 compounds such as ethyl octanoate were the important compounds that lead to the differences between different storage types of XJBJ.
Collapse
Affiliation(s)
- Bing Zhang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Siman Zheng
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Mingquan Huang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Qiang Wu
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
| | - Wei Dong
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Jihong Wu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Hongqin Liu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Dongrui Zhao
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yougui Yu
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
| | - Jinchen Li
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| |
Collapse
|
2
|
Wang J, Wang Z, He F, Pan Z, Du Y, Chen Z, He Y, Sun Y, Li M. Effect of microbial communities on flavor profile of Hakka rice wine throughout production. Food Chem X 2024; 21:101121. [PMID: 38292683 PMCID: PMC10824689 DOI: 10.1016/j.fochx.2024.101121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
Hakka rice wine is produced from grains by co-fermentation with abundant microbes in an open fermentation environment. Indigenous microbiota and enzymes convert the nutrients in grains into flavor compounds through enzymatic biochemical reactions and microbial metabolism. High-throughput sequencing technology revealed that non-Saccharomyces yeasts dominated the traditional fermentation process, with genera such as Kodamaea ohmeri, Candida orthopsilosis, and Trichosporon asteroides forming a dynamic community that highly correlated with the evolution of 80 volatile compounds in Hakka rice wine. Among the 104 volatile compounds detected by GC-MS, 22 aroma-active compounds with relative odor activity values (ROAV) > 1 were quantified, 11 of which made significant contributions (P < 0.05) to the overall aroma and were responsible for the sweet, grainy, and herbal aromas of Hakka rice wine.
Collapse
Affiliation(s)
- Junyi Wang
- Guangdong Provincial Key Lab of Food Safety and Quality, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
- College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Ziyi Wang
- Guangdong Provincial Key Lab of Food Safety and Quality, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
- College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Fangqing He
- Guangdong Provincial Key Lab of Food Safety and Quality, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
- College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Zhuangguang Pan
- Guangdong Provincial Key Lab of Food Safety and Quality, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
- College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Yixuan Du
- Guangdong Provincial Key Lab of Food Safety and Quality, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
- College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Zhiying Chen
- College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Yuxin He
- College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Yuanming Sun
- Guangdong Provincial Key Lab of Food Safety and Quality, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
- College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Meiying Li
- Guangdong Provincial Key Lab of Food Safety and Quality, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
- College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| |
Collapse
|
3
|
Zhang B, Wang J, Jiang X, Huang M, Liu H, Meng N, Wu J, Zhao D. Comparative study on key odorants of Jiujiang Fenggang Huangjiu and their succession regularities during aging using sensory-directed flavor analysis. Food Chem 2024; 430:137052. [PMID: 37549629 DOI: 10.1016/j.foodchem.2023.137052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023]
Abstract
Huangjiu was a Chinese national alcohol with a unique flavor. The key odorants in Jiujiang Fenggang Huangjiu (JJFG) and their succession regularities during aging were systematically researched by a sensomics analysis approach. The volatiles of JJFG were isolated by solvent-assisted flavor evaporation, 77 odorants were identified using gas chromatography-olfactometry-mass spectrometry combined with odor-specific magnitude estimation. Three aroma recombinants, prepared using odorants with odor activity values ≥ 1, all showed good similarities with their corresponding samples (92.1%∼97.5%). After omission/addition tests, 7 new key aroma compounds were found in JJFG, including 1-octen-3-one, 1-pentanol, guaiacol, ethyl 2-hydroxy-4-methylpentanoate, 2-phenethyl acetate, ethyl butanoate, and (E,Z)-2,6-nonadienal. Using orthogonal partial least squares-discriminant analysis, 20 compounds with VIP ≥ 1 were found to be important indicators during aging of JJFG. Among them, sotolon, 3-methylsulfanylpropanal, et al. increased with aging. The improved solid-phase extraction can effectively quantify sotolon, with a recovery rate of 80.96%∼91.75%.
Collapse
Affiliation(s)
- Bing Zhang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| | - Juan Wang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| | - Xinye Jiang
- Beijing Shenzhou Weiye Technology Co., Ltd, Beijing 102400, China.
| | - Mingquan Huang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| | - Hongqin Liu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| | - Nan Meng
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| | - Jihong Wu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| | - Dongrui Zhao
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| |
Collapse
|
4
|
Liu S, Zhang ZF, Mao J, Zhou Z, Zhang J, Shen C, Wang S, Marco ML, Mao J. Integrated meta-omics approaches reveal Saccharopolyspora as the core functional genus in huangjiu fermentations. NPJ Biofilms Microbiomes 2023; 9:65. [PMID: 37726290 PMCID: PMC10509236 DOI: 10.1038/s41522-023-00432-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/24/2023] [Indexed: 09/21/2023] Open
Abstract
Identification of the core functional microorganisms in food fermentations is necessary to understand the ecological and functional processes for making those foods. Wheat qu, which provides liquefaction and saccharifying power, and affects the flavor quality, is a key ingredient in ancient alcoholic huangjiu fermentation, while core microbiota of them still remains indistinct. In this study, metagenomics, metabolomics, microbial isolation and co-fermentation were used to investigate huangjiu. Although Aspergillus is usually regarded as core microorganism in wheat qu to initiate huangjiu fermentations, our metagenomic analysis showed that bacteria Saccharopolyspora are predominant in wheat qu and responsible for breakdown of starch and cellulose. Metabolic network and correlation analysis showed that Saccharopolyspora rectivirgula, Saccharopolyspora erythraea, and Saccharopolyspora hirsuta made the greatest contributions to huangjiu's metabolites, consisting of alcohols (phenylethanol, isoamylol and isobutanol), esters, amino acids (Pro, Arg, Glu and Ala) and organic acids (lactate, tartrate, acetate and citrate). S. hirsuta J2 isolated from wheat qu had the highest amylase, glucoamylase and protease activities. Co-fermentations of S. hirsuta J2 with S. cerevisiae HJ resulted in a higher fermentation rate and alcohol content, and huangjiu flavors were more similar to that of traditional huangjiu compared to co-fermentations of Aspergillus or Lactiplantibacillus with S. cerevisiae HJ. Genome of S. hirsuta J2 contained genes encoding biogenic amine degradation enzymes. By S. hirsuta J2 inoculation, biogenic amine content was reduced by 45%, 43% and 62% in huangjiu, sausage and soy sauce, respectively. These findings show the utility of Saccharopolyspora as a key functional organism in fermented food products.
Collapse
Affiliation(s)
- Shuangping Liu
- National Engineering Laboratory for Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang, 312000, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, Zhejiang, 312000, China
| | - Zhi-Feng Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Jieqi Mao
- Department of Food Science and Technology, National University of Singapore, Science Drive 2, 117542, Singapore, Singapore
| | - Zhilei Zhou
- National Engineering Laboratory for Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang, 312000, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, Zhejiang, 312000, China
| | - Jing Zhang
- National Engineering Laboratory for Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Caihong Shen
- National Engineering Research Center of Solid-State Brewing, Luzhou, China
| | - Songtao Wang
- National Engineering Research Center of Solid-State Brewing, Luzhou, China
| | - Maria L Marco
- Department of Food Science and Technology, University of California, Davis, CA, USA.
| | - Jian Mao
- National Engineering Laboratory for Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang, 312000, China.
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, Zhejiang, 312000, China.
| |
Collapse
|
5
|
Du R, Jiang J, Qu G, Wu Q, Xu Y. Directionally controlling flavor compound profile based on the structure of synthetic microbial community in Chinese liquor fermentation. Food Microbiol 2023; 114:104305. [PMID: 37290868 DOI: 10.1016/j.fm.2023.104305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/20/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023]
Abstract
Most traditional fermented foods are produced by spontaneous fermentation. It is difficult to produce traditional fermented foods with desired flavor compound profile. In this study, using Chinese liquor fermentation as a case, we aimed to directionally control flavor compound profile in food fermentation. Twenty key flavor compounds were identified in 80 Chinese liquor fermentations. Six microbial strains, identified as high producers of these key flavor compounds, were used to generate the minimal synthetic microbial community. A mathematical model was established to link the structure of the minimal synthetic microbial community and the profile of these key flavor compounds. This model could generate the optimal structure of synthetic microbial community to produce flavor compounds with desired profile. This work provided a strategy to realize the directional control of flavor compound profile via controlling the structure of the synthetic microbial community in Chinese liquor fermentation.
Collapse
Affiliation(s)
- Rubing Du
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jian Jiang
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Guanyi Qu
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Qun Wu
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
6
|
Effect of Koji on Flavor Compounds and Sensory Characteristics of Rice Shochu. Molecules 2023; 28:molecules28062708. [PMID: 36985679 PMCID: PMC10053614 DOI: 10.3390/molecules28062708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/04/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Koji is an important starter for rice shochu brewing and influences the rice shochu quality. Consequently, we studied the impacts of koji on the flavor compounds and sensory characteristics of rice shochu using molds Aspergillus kawachii SICC 3.917 (A-K), Aspergillus oryzae SICC 3.79(A-O), Aspergillus Niger CICC 2372 (A-N), Rhizopus oryzae CICC 40260 (R-O), and the traditional starter Qu (control). The effects of koji on the aroma components, free amino acids (FAAs), and overall sensory aspects of rice shochu were studied. These findings indicated that koji significantly affected the rice shochu’s quality. The content of total FAAs in rice shochu A-K (30.586 ± 0.944 mg/L) and A-O (29.919 ± 0.278 mg/L) was higher than others. The content of flavor compounds revealed that the aroma of rice shochu with various koji varied greatly from the smells of alcohols and esters. Shochu A-O had a higher concentration of aroma compounds and it exhibited a strong aroma and harmonious taste compared with the others. This research using taste compounds, FAAs, flavor intensity, and partial least squares regression (PLSR) showed that shochu A-O appeared to possess the best sensory qualities, with elevated concentrations of alcohols and sweet FAAs and lesser concentrations of sour FAAs. Therefore, the A-O mold is promising for the manufacture of rice shochu with excellent flavor and sensory characteristics.
Collapse
|
7
|
Analysis of flavor-related compounds in fermented persimmon beverages stored at different temperatures. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Comparison of Fermentation Behaviors and Characteristics of Tomato Sour Soup between Natural Fermentation and Dominant Bacteria-Enhanced Fermentation. Microorganisms 2022; 10:microorganisms10030640. [PMID: 35336215 PMCID: PMC8954891 DOI: 10.3390/microorganisms10030640] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/22/2022] Open
Abstract
In this study, the correlations between microbial communities with physicochemical properties and volatile flavor compounds (VFCs) during the fermentation of traditional tomato sour soup (CTN) are explored. The results of high-throughput sequencing (HTS) of CTN showed that Lacticaseibacillus (28.67%), Enterobacter (12.37%), and Providencia (12.19%) were the dominant bacteria in the first round of fermentation, while Lacticaseibacillus (50.11%), Enterobacter (13.86%), and Providencia (8.61%) were the dominant bacteria in the second round of fermentation. Additionally, the dominant fungi genera of the first fermentation were Pichia (65.89%) and Geotrichum (30.56%), and the dominant fungi genera of the second fermentation were Pichia (73.68%), Geotrichum (13.99%), and Brettanomyces (5.15%). These results indicate that Lacticaseibacillus is one of the main dominant bacteria in CTN. Then, the dominant strain Lacticaseibacillus casei H1 isolated from CTN was used as a culture to ferment tomato sour soup to monitor dynamic changes in the physicochemical properties and VFCs during enhanced fermentation of tomato sour soup (TN). The physicochemical analysis showed that, compared with CTN, the TN group not only produced acid faster but also had an earlier peak of nitrite and a lower height. The results of the GC–IMS analysis showed that the ester and alcohol contents in the TN group were 1.26 times and 1.8 times that of the CTN group, respectively. Using an O2PLS-DA analysis, 11 bacterial genera and 18 fungal genera were identified as the functional core flora of the CTN group flavor production, further verifying the importance of dominant bacteria for the production of VFCs. This study proved that enhanced fermentation not only shortens the fermentation cycle of tomato sour soup, but also significantly improves its flavor quality, which has great value in the industrial production of tomato sour soup and in the development of a vegetable fermentation starter.
Collapse
|
9
|
Unraveling the difference in aroma characteristics of Huangjiu from Shaoxing region fermented with different brewing water, using descriptive sensory analysis, comprehensive two-dimensional gas chromatography-quadrupole mass spectrometry and multivariate data analysis. Food Chem 2022; 372:131227. [PMID: 34627089 DOI: 10.1016/j.foodchem.2021.131227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 09/06/2021] [Accepted: 09/23/2021] [Indexed: 11/21/2022]
Abstract
To investigate the specific difference in aroma characteristics of Huangjiu (Chinese rice wine) in Shaoxing region fermented with different brewing water, descriptive sensory analysis, comprehensive two-dimensional gas chromatography-quadrupole mass spectrometry (GC × GC-qMS) and multivariate statistical analysis were employed. The descriptive sensory analysis proved that Huangjiu fermented with Jianhu water had higher overall aroma intensity, and was more prominent in ester, sweet and alcoholic aroma than those fermented with deionized water and Nenjiang water. The results of aroma components analysis by GC × GC-qMS showed that the Huangjiu fermented with Jianhu water had higher concentration of some key aroma compounds, such as ethyl butyrate (OAV: 29-196), isoamyl acetate (OAV: 11-18) and ethyl hexanoate (OAV: 38-47). The multivariate statistical analysis further confirmed that 14 compounds could be used as key markers to distinguish the Huangjiu samples fermented with different brewing water. The correlation network between the volatile compounds in Huangjiu and the inorganic components in water indicated that the ions played an important role in the formation of the difference in aroma characteristics among the samples.
Collapse
|
10
|
Zhang J, Liu S, Sun H, Jiang Z, Xu Y, Mao J, Qian B, Wang L, Mao J. Metagenomics-based insights into the microbial community profiling and flavor development potentiality of baijiu Daqu and huangjiu wheat Qu. Food Res Int 2022; 152:110707. [PMID: 35181108 DOI: 10.1016/j.foodres.2021.110707] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/13/2021] [Accepted: 09/05/2021] [Indexed: 12/11/2022]
Abstract
Daqu and wheat Qu are saccharification and fermenting agents in Chinese huangjiu and baijiu production. This study aimed to investigate the difference between Daqu and wheat Qu in physicochemical indices, microbial communities, functional genes, and the metabolic network of key microbes responsible for flavor synthesis by whole-metagenome sequencing and metabolite analysis. Herein, physicochemical indices indicated that compared with wheat Qu, Daqu exhibited higher protease and cellulase activity and acidity, and lower glucoamylase and amylase enzyme activity. Metagenomic sequencing reveals that although Daqu and wheat Qu community composition have significant differences at species level, they have similar functional genes. Daqu were enriched in Pediococcus pentosaceus, Weissella paramesenteroides, Rasamsonia emersonii and Byssochlamys spectabilis (22.48% of the total abundance), while wheat Qu harbored greater abundances of Saccharopolyspora (54.78%, Saccharopolyspora rectivirgula, Saccharopolyspora shandongensis, Saccharopolyspora hirsuta, Saccharopolyspora spinose, and Saccharopolyspora erythraea). From a functional perspective, the important functions of Daqu and wheat Qu are both amino acid metabolism and carbohydrate metabolism. Meanwhile, a combined analysis among microbiota, functional genes, and dominant flavors indicated S. shandongensis, S. rectivirgula, and S. spinose might be the main contributor to the synthesis of flavor compounds in wheat Qu, while R. emersonii, W. paramesenteroides, Leuconostoc citreum, Leuconostoc mesenteroides, Weissella cibaria and P. pentosaceus may make the greatest contribution to flavor compounds synthesis in Daqu. This study reveals the microbial and functional dissimilarities of Daqu and wheat Qu, and helps elucidating different metabolic roles of microbes during flavor formation.
Collapse
Affiliation(s)
- Jing Zhang
- National Engineering Laboratory for Cereal Fermentation Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shuangping Liu
- National Engineering Laboratory for Cereal Fermentation Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang 31200, China; National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing, Zhejiang 31200, China
| | - Hailong Sun
- National Engineering Laboratory for Cereal Fermentation Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhengfei Jiang
- National Engineering Laboratory for Cereal Fermentation Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuezheng Xu
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing, Zhejiang 31200, China
| | - Jieqi Mao
- Department of Food Science and Technology, National University of Singapore, Science Drive 2, 117542, Singapore
| | - Bin Qian
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing, Zhejiang 31200, China
| | - Lan Wang
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing, Zhejiang 31200, China
| | - Jian Mao
- National Engineering Laboratory for Cereal Fermentation Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang 31200, China; National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing, Zhejiang 31200, China.
| |
Collapse
|
11
|
Succession Patterns of Aroma Components during Brewing Process of Broomcorn Millet (Panicum miliaceum L.) Huangjiu. Food Res Int 2022; 154:110982. [DOI: 10.1016/j.foodres.2022.110982] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/13/2022] [Accepted: 01/30/2022] [Indexed: 01/13/2023]
|
12
|
Yang H, Peng Q, Zhang H, Sun J, Shen C, Han X. The volatile profiles and microbiota structures of the wheat Qus used as traditional fermentation starters of Chinese rice wine from Shaoxing region. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
13
|
Shen C, Zhu H, Zhu W, Zhu Y, Peng Q, Elsheery NI, Fu J, Xie G, Zheng H, Han J, Hu B, Sun J, Wu P, Fan Y, Girma DB. The sensory and flavor characteristics of Shaoxing Huangjiu (Chinese rice wine) were significantly influenced by micro-oxygen and electric field. Food Sci Nutr 2021; 9:6006-6019. [PMID: 34760233 PMCID: PMC8565227 DOI: 10.1002/fsn3.2531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/18/2021] [Accepted: 06/10/2021] [Indexed: 11/06/2022] Open
Abstract
In order to improve the high cost of equipment and difficult management caused by the natural aging of Chinese rice wine (Huangjiu), micro-oxygen (MO) and electric field (PEF) technology are used to accelerate the aging of Huangjiu. The results showed that micro-oxygen and electric field have a significant effect on the sensory characteristics and flavor characteristics of Huangjiu. Compared with the naturally aged Huangjiu, the flavor compounds of Huangjiu treated with micro-oxygen and electric field increase significantly. Based on principal component analysis, Huangjiu processed at 0.35 mg L/day or 0.5 mg L/day combined electric field exhibited similar flavor to the natural aged Huangjiu, which was highly associated with long-chain fatty acid ethyl esters (C13-C18). Moreover, partial least squares regression demonstrated that sensory attributes of cereal aroma and astringency were highlighted after aging time, while fruit aroma, continuation, and full body were dominant after micro-oxygen and electric field treatment. Micro-oxygen and electric field effectively enhanced the quality of Huangjiu, which could be applied in other alcoholic beverages.
Collapse
Affiliation(s)
- Chi Shen
- National Engineering Research Center for Chinese CRW (branch center)Shaoxing UniversityShaoxingChina
| | - Hongyi Zhu
- National Engineering Research Center for Chinese CRW (branch center)Shaoxing UniversityShaoxingChina
| | - Wenxia Zhu
- National Engineering Research Center for Chinese CRW (branch center)Shaoxing UniversityShaoxingChina
| | - Yimeng Zhu
- National Engineering Research Center for Chinese CRW (branch center)Shaoxing UniversityShaoxingChina
| | - Qi Peng
- National Engineering Research Center for Chinese CRW (branch center)Shaoxing UniversityShaoxingChina
- California Institute of Food and Agricultural ResearchUniversity of CaliforniaDavisCAUSA
| | - Nabil I. Elsheery
- Agricultural Botany DepartmentFaculty of AgricultureTanta UniversityTantaEgypt
| | - Jianwei Fu
- National Engineering Research Center for Chinese CRW (branch center)Shaoxing UniversityShaoxingChina
| | - Guangfa Xie
- College of Biology and Environmental EngineeringCollege of Shaoxing CRWZhejiang Shuren UniversityHangzhouChina
| | - Huajun Zheng
- National Engineering Research Center for Chinese CRW (branch center)Shaoxing UniversityShaoxingChina
| | | | - Baowei Hu
- National Engineering Research Center for Chinese CRW (branch center)Shaoxing UniversityShaoxingChina
| | - Jianqiu Sun
- National Engineering Research Center for Chinese CRW (branch center)Shaoxing UniversityShaoxingChina
| | - Peng Wu
- School of Environmental Science and EngineeringSuzhou University of Science and TechnologyChina
| | - Yuyan Fan
- National Engineering Research Center for Chinese CRW (branch center)Shaoxing UniversityShaoxingChina
| | - Dula Bealu Girma
- National Engineering Research Center for Chinese CRW (branch center)Shaoxing UniversityShaoxingChina
| |
Collapse
|
14
|
Li X, Eu A, Liu S. Effect of co‐fermentation and sequential fermentation of
Candida versatilis
and
Lactococcus lactis
subsp.
cremoris
on unsalted pork hydrolysates components. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xinzhi Li
- Department of Food Science and Technology National University of Singapore Science Drive 3 Singapore 117543 Singapore
| | - Anastasia Eu
- Department of Food Science and Technology National University of Singapore Science Drive 3 Singapore 117543 Singapore
| | - Shao‐Quan Liu
- Department of Food Science and Technology National University of Singapore Science Drive 3 Singapore 117543 Singapore
- National University of Singapore (Suzhou) Research Institute No. 377 Linquan Street, Suzhou Industrial Park Suzhou Jiangsu 215123 China
| |
Collapse
|
15
|
Yu P, Du J, Cao C, Cai G, Sun J, Wu D, Lu J. Development of a novel multi-strain wheat Qu with high enzyme activities for Huangjiu fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4808-4817. [PMID: 33502765 DOI: 10.1002/jsfa.11127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/17/2021] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Wheat Qu has long been used as a fermentation starter to produce Huangjiu. Wheat Qu quality depends on its microbial community structure and the hydrolytic enzymes generated by the micro-organisms. RESULTS Strain YF1 and YF2 were successfully screened as they exhibited high acidic protease (231.9 ± 1.4 U g-1 ) and cellulase (7.1 ± 0.6 U g-1 ) activities. Based on a morphological and sequence analysis of the internal transcribed spacer (ITS) gene, YF1 and YF2 were identified as Rhizopus oryzae and Aspergillus niger, respectively. Cooked wheat Qu was produced using mixed fungal starter fermentations with Aspergillus oryzae SU-16, YF1, and YF2. For Qu-making, the optimized conditions for fermentation time, water content, and inoculum size were 47.8 h, 69.4%, and 6.1%, respectively. Under these conditions, compared with single-strain cooked wheat Qu, enzyme activities of amylase, acidic protease, and cellulase increased by 27.4%, 657.1%, and 1276.2%, respectively. Short peptides and free amino acids contents increased by 19.6% and 131.8%, respectively. This wheat Qu was used for Huangjiu brewing, and the alcohol content increased by approximately 14.6% because of the increased starch hydrolysis efficiency mainly attributed to its high enzyme activity. CONCLUSION Using mixed fungal strains as starter cultures may be an efficient strategy to improve wheat Qu quality, with great potential for application in industrial Huangjiu production. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Peibin Yu
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, Wuxi, P. R. China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, P. R. China
| | - Jing Du
- Department of Technologies, Jiangsu Yiming Biological Co., Ltd, Taizhou, P. R. China
| | - Chunlei Cao
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, Wuxi, P. R. China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, P. R. China
| | - Guolin Cai
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, Wuxi, P. R. China
| | - Junyong Sun
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, Wuxi, P. R. China
| | - Dianhui Wu
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, Wuxi, P. R. China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, P. R. China
| | - Jian Lu
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, Wuxi, P. R. China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, P. R. China
| |
Collapse
|
16
|
Zhou M, Bu T, Zheng J, Liu L, Yu S, Li S, Wu J. Peptides in Brewed Wines: Formation, Structure, and Function. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2647-2657. [PMID: 33621074 DOI: 10.1021/acs.jafc.1c00452] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The traditional low-alcoholic beverages, such as grape wine, sake, and rice wine, have been consumed all over the world for thousands of years, each with their unique methods of production that have been practiced for centuries. Moderate consumption of wine is generally touted as beneficial for health, although there is ongoing debate for the responsible components in wine. In this review, the structural and functional characteristics, the formation mechanisms, and their health-promoting activities of peptides in three brewed wines, grape wine, Chinese rice wine (also called Chinese Huangjiu or Chinese yellow wine), and Japanese sake, are discussed. The formation of peptides in wine imparts sensorial, technological, and biological attributes. Prospects on future research, with an emphasis on the peptide characterization, formation mechanism, physiological activity, and molecular mechanisms of action, are presented.
Collapse
Affiliation(s)
- Mengjie Zhou
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Tingting Bu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Jiexia Zheng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Ling Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Songfeng Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Shanshan Li
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 410 Agriculture/Forestry Centre, Edmonton, Alberta T6G 2P5, Canada
| |
Collapse
|
17
|
Yang Y, Hu W, Xia Y, Mu Z, Tao L, Song X, Zhang H, Ni B, Ai L. Flavor Formation in Chinese Rice Wine (Huangjiu): Impacts of the Flavor-Active Microorganisms, Raw Materials, and Fermentation Technology. Front Microbiol 2020; 11:580247. [PMID: 33281774 PMCID: PMC7691429 DOI: 10.3389/fmicb.2020.580247] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/22/2020] [Indexed: 11/13/2022] Open
Abstract
Huangjiu (Chinese rice wine) has been consumed for centuries in Asian countries and is known for its unique flavor and subtle taste. The flavor compounds of Huangjiu are derived from a wide range of sources, such as raw materials, microbial metabolic activities during fermentation, and chemical reactions that occur during aging. Of these sources, microorganisms have the greatest effect on the flavor quality of Huangjiu. To enrich the microbial diversity, Huangjiu is generally fermented under an open environment, as this increases the complexity of its microbial community and flavor compounds. Thus, understanding the formation of flavor compounds in Huangjiu will be beneficial for producing a superior flavored product. In this paper, a critical review of aspects that may affect the formation of Huangjiu flavor compounds is presented. The selection of appropriate raw materials and the improvement of fermentation technologies to promote the flavor quality of Huangjiu are discussed. In addition, the effects of microbial community composition, metabolic function of predominant microorganisms, and dynamics of microbial community on the flavor quality of Huangjiu are examined. This review thus provides a theoretical basis for manipulating the fermentation process by using selected microorganisms to improve the overall flavor quality of Huangjiu.
Collapse
Affiliation(s)
- Yijin Yang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China.,School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Wuyao Hu
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yongjun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Zhiyong Mu
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Leren Tao
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xin Song
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Hui Zhang
- Shanghai Jinfeng Wine Co., Ltd., Shanghai, China
| | - Bin Ni
- Shanghai Jinfeng Wine Co., Ltd., Shanghai, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
18
|
Lara-Hidalgo C, Belloch C, Dorantes-Alvarez L, Flores M. Contribution of autochthonous yeasts with probiotic potential to the aroma profile of fermented Guajillo pepper sauce. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4940-4949. [PMID: 32474932 DOI: 10.1002/jsfa.10556] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 05/06/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Three yeast strains with probiotic potential, Hanseniaspora opuntiae, Pichia kudriavzevii, and Wickerhamomyces anomalus were inoculated in the fermentation of Guajillo chilli pepper (Capsicum annuum L.) sauce, and the different aroma profiles were investigated. Using headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) analysis and gas chromatography-olfactometry (GCO), flavour compound production was evaluated during the fermentation of the Guajillo chilli pepper sauces. RESULTS A total of 78 volatile compounds were identified during the yeast fermentation of the sauce. Most aldehydes and terpenes detected were present at the beginning of the fermentation, indicating a Guajillo chilli pepper origin. Among the 34 active aroma compounds detected by GCO, propanoic acid (cheesy), 3-methylbutanoic acid (sharp, cheese), ethyl 2-methylbutanoate (fruity), and 6-methyl-5-hepten-2-one (strong, citrus) were identified as key aroma contributors produced by the inoculation of the yeasts. A different aroma profile was produced by probiotic yeast. Hanseniaspora opuntiae produced an aroma profile with herbal and green notes based on high production of aldehydes, ketones, and acetic acid. Pichia kudriavzevii and W. anomalus produced fruity, green-herbal, and cheesy notes based on ester compounds, alcohol and branched-chain acids production although, the production of propanoic acid by W. anomalus increased the cheesy character in the sauces. CONCLUSION The aroma profile of fermented chilli pepper sauces depends not only on the chili pepper varieties used but also on the fermentation process as a source of aroma compounds. The use of probiotic yeast can be used to improve and diversify the aroma profile of fermented chilli pepper sauces. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Carlos Lara-Hidalgo
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC) Avda, Agustín Escardino 7, 46980 Paterna, Valencia, Spain
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas. Unidad Profesional Adolfo López Mateos. Av. Wilfrido Massieu S/N esq. Manuel L. Stampa, Nueva Industrial Vallejo, Gustavo A. Madero, C.P. 07738, Ciudad de México, Mexico
| | - Carmela Belloch
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC) Avda, Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Lidia Dorantes-Alvarez
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas. Unidad Profesional Adolfo López Mateos. Av. Wilfrido Massieu S/N esq. Manuel L. Stampa, Nueva Industrial Vallejo, Gustavo A. Madero, C.P. 07738, Ciudad de México, Mexico
| | - Mónica Flores
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC) Avda, Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| |
Collapse
|
19
|
Metabolite profile of whole grain ting (a Southern African fermented product) obtained using two strains of Lactobacillus fermentum. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.103042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
20
|
Tuersuntuoheti T, Wang Z, Zhang M, Asimi S, Liang S, Wang Z, Ren X, Sohail A. Changes of microbial diversity and volatile compounds in edible and deteriorated Qingke barley fresh noodles stored at 25 °C. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14736] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Tuohetisayipu Tuersuntuoheti
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing100048China
- Beijing Engineering and Technology Research Center of Food Additives Beijing Technology and Business University Beijing100048China
| | - Zhenhua Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing100048China
- Beijing Engineering and Technology Research Center of Food Additives Beijing Technology and Business University Beijing100048China
| | - Min Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing100048China
- Beijing Engineering and Technology Research Center of Food Additives Beijing Technology and Business University Beijing100048China
| | - Sailimuhan Asimi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing100048China
- Beijing Engineering and Technology Research Center of Food Additives Beijing Technology and Business University Beijing100048China
| | - Shan Liang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing100048China
- Beijing Engineering and Technology Research Center of Food Additives Beijing Technology and Business University Beijing100048China
| | - Ziyuan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing100048China
- Beijing Engineering and Technology Research Center of Food Additives Beijing Technology and Business University Beijing100048China
| | - Xin Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing100048China
- Beijing Engineering and Technology Research Center of Food Additives Beijing Technology and Business University Beijing100048China
| | - Amjad Sohail
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing100048China
- Beijing Engineering and Technology Research Center of Food Additives Beijing Technology and Business University Beijing100048China
| |
Collapse
|
21
|
Liu S, Hu J, Xu Y, Xue J, Zhou J, Han X, Ji Z, Mao J. Combined use of single molecule real-time DNA sequencing technology and culture-dependent methods to analyze the functional microorganisms in inoculated raw wheat Qu. Food Res Int 2020; 132:109062. [DOI: 10.1016/j.foodres.2020.109062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 01/29/2020] [Accepted: 02/02/2020] [Indexed: 12/11/2022]
|
22
|
Wang N, Chen S, Zhou Z. Age-dependent characterization of volatile organic compounds and age discrimination in Chinese rice wine using an untargeted GC/MS-based metabolomic approach. Food Chem 2020; 325:126900. [PMID: 32387958 DOI: 10.1016/j.foodchem.2020.126900] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 03/08/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022]
Abstract
An untargeted gas chromatography/mass spectrometry (GC/MS)-based metabolomics by XCMS-Online software combined with partial least squares regression (PLSR) was applied to characterize volatile organic compounds (VOCs) during Chinese rice wine aging and discriminate ages for the first time. Finally, seven different ages between 0 and 15 years were well discriminated by PLSR. Total 104 feature groups were isolated from all optimized candidate peaks, and 94 VOCs (including unknowns) were preliminarily identified as aging markers. Therein, alcohols, sulfides, phenols and their derivatives, small esters and acids exhibited significantly better discrimination of short-aged rice wines. Correspondingly, furans, aromatics, aldehydes, ketones, most esters and acids, discriminated the long-aged samples better. Meanwhile, the potential origins of certain VOCs were also proposed for further research. Overall, this untargeted GC/MS-based metabolomics coupled with PLSR was a feasible tool for a rapidly and globally age-dependent characterization of volatile metabolomic signals in Chinese rice wine and thus for age discrimination.
Collapse
Affiliation(s)
- Na Wang
- State Key Laboratory of Food Science & Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shuang Chen
- State Key Laboratory of Food Science & Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Zhemin Zhou
- State Key Laboratory of Food Science & Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
23
|
Liu X, Qian M, Dong H, Bai W, Zhao W, Li X, Liu G. Effect of ageing process on carcinogen ethyl carbamate (EC), its main precursors and aroma compound variation in Hakka Huangjiu produced in southern China. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Xiaoyan Liu
- College of Light Industry and Food Sciences Zhongkai University of Agriculture and Engineering Guangzhou 510225 China
| | - Min Qian
- College of Light Industry and Food Sciences Zhongkai University of Agriculture and Engineering Guangzhou 510225 China
| | - Hao Dong
- College of Light Industry and Food Sciences Zhongkai University of Agriculture and Engineering Guangzhou 510225 China
| | - Weidong Bai
- College of Light Industry and Food Sciences Zhongkai University of Agriculture and Engineering Guangzhou 510225 China
| | - Wenhong Zhao
- College of Light Industry and Food Sciences Zhongkai University of Agriculture and Engineering Guangzhou 510225 China
| | - Xiangluan Li
- College of Light Industry and Food Sciences Zhongkai University of Agriculture and Engineering Guangzhou 510225 China
| | - Gongliang Liu
- College of Light Industry and Food Sciences Zhongkai University of Agriculture and Engineering Guangzhou 510225 China
| |
Collapse
|
24
|
Fan G, Fu Z, Teng C, Liu P, Wu Q, Rahman MKR, Li X. Effects of aging on the quality of roasted sesame-like flavor Daqu. BMC Microbiol 2020; 20:67. [PMID: 32216749 PMCID: PMC7098102 DOI: 10.1186/s12866-020-01745-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 03/05/2020] [Indexed: 02/06/2023] Open
Abstract
Background Daqu, the saccharification, fermentation, and aroma-producing agents for Baijiu brewing, is prepared using a complex process. Aging is important for improving the quality of Daqu, but its impact has rarely been studied. This study investigated changes in the physicochemical properties, flavor compounds, and microbial communities during aging of Daqu with a roasted sesame-like flavor. Results The physicochemical properties changed continuously during aging to provide a high esterifying activity. Aging removed unpleasant flavor compounds and helped to stabilize the flavor compounds in mature Daqu. A high-throughput sequencing approach was used to analyze the changing composition of the microbial communities during aging. Aging helped to modify the microbial population to produce better Baijiu by eliminating low-abundance microbial communities and optimizing the proportion of predominant microbial communities. Nine genera of prokaryotic microbes formed the core microbiota in Daqu after aging. Regarding eukaryotic microbes, Zygomycota, the predominant community, increased in the first 2 months, then decreased in the third month of aging, while Ascomycota, the subdominant community, showed the opposite behavior. Absidia, Trichocomaceae_norank and Rhizopus were the predominant genera in the mature Daqu. Conclusions Significant correlations between microbiota and physicochemical properties or flavor compounds were observed, indicating that optimizing microbial communities is essential for aging Daqu. This study provides detailed information on aging during Daqu preparation.
Collapse
Affiliation(s)
- Guangsen Fan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048, China.,School of Food and health, Beijing Technology and Business University (BTBU), Beijing, 100048, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), No 11 Fucheng Street, Haidian District, Beijing, 100048, China
| | - Zhilei Fu
- School of Food and health, Beijing Technology and Business University (BTBU), Beijing, 100048, China
| | - Chao Teng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048, China.,School of Food and health, Beijing Technology and Business University (BTBU), Beijing, 100048, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), No 11 Fucheng Street, Haidian District, Beijing, 100048, China
| | - Pengxiao Liu
- School of Food and health, Beijing Technology and Business University (BTBU), Beijing, 100048, China
| | - Qiuhua Wu
- School of Food and health, Beijing Technology and Business University (BTBU), Beijing, 100048, China
| | - Md Khondakar Raziur Rahman
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048, China.,School of Food and health, Beijing Technology and Business University (BTBU), Beijing, 100048, China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048, China. .,School of Food and health, Beijing Technology and Business University (BTBU), Beijing, 100048, China. .,Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), No 11 Fucheng Street, Haidian District, Beijing, 100048, China.
| |
Collapse
|
25
|
Han X, Peng Q, Yang H, Hu B, Shen C, Tian R. Influence of different carbohydrate sources on physicochemical properties and metabolites of fermented greengage (Prunus mume) wines. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108929] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
26
|
Ren Q, Sun L, Sun Z, Liu Q, Lu X, Li Z, Xu J. Bacterial succession and the dynamics of flavor compounds in the Huangjiu fermented from corn. Arch Microbiol 2019; 202:299-308. [DOI: 10.1007/s00203-019-01748-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/28/2019] [Accepted: 10/10/2019] [Indexed: 10/25/2022]
|
27
|
Yu H, Xie T, Qian X, Ai L, Chen C, Tian H. Characterization of the volatile profile of Chinese rice wine by comprehensive two-dimensional gas chromatography coupled to quadrupole mass spectrometry. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:5444-5456. [PMID: 31081146 DOI: 10.1002/jsfa.9806] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Chinese rice wine (CRW) is a kind of traditional fermentation wine in China. Aged CRW is more popular among consumers owing to its harmonious and pleasant flavor. The volatile profile of CRW has been extensively studied using gas chromatography/mass spectrometry (GC/MS). However, flavor components in CRW are far richer than those detected by GC/MS. To obtain more information about the volatile profile of fresh (5-year) and aged (10-year) CRW, a method based on comprehensive two-dimensional gas chromatography coupled to quadrupole mass spectrometry (GC×GC/qMS) was developed. The major volatile compounds contributing to the characteristic aroma of fresh and aged CRW were identified by surrogate odor activity value (OAV). RESULTS Ninety-eight volatile compounds were detected in the 5-year CRW samples and 107 in the 10-year samples by GC×GC/qMS. The numbers of compounds detected by GC×GC/qMS for the 5-year and 10-year samples were 71.4 and 65.4% higher than those detected by GC/MS. The aged wine had a more complex volatile profile than the fresh wine, with an increase in esters and aldehydes and a decrease in alcohols and organic acids. There were 22 volatile compounds with surrogate OAV > 1. Nine were the potent key aroma compounds in CRW: ethyl isovalerate (OAV 500-33 500), ethyl butyrate (OAV 84-334), ethyl isobutyrate (OAV 49-170), 2-nonenal (OAV 20-100), ethyl heptanoate (OAV 1-74), ethyl hexanoate (OAV 60-77), phenylethyl alcohol (OAV 2-18), benzaldehyde (OAV 28-30) and hexanal (OAV 4-11). CONCLUSION GC×GC/qMS showed better separation than GC/MS. The presented GC×GC/qMS method was suitable for characterization of the volatile profile of CRW. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Haiyan Yu
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| | - Tong Xie
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| | - Xinhua Qian
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| | - Lianzhong Ai
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Chen Chen
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| | - Huaixiang Tian
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| |
Collapse
|
28
|
Xiang W, Xu Q, Zhang N, Rao Y, Zhu L, Zhang Q. Mucor indicus and Rhizopus oryzae co-culture to improve the flavor of Chinese turbid rice wine. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:5577-5585. [PMID: 31150111 DOI: 10.1002/jsfa.9831] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/09/2019] [Accepted: 05/27/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND One of the most important species used to ferment Chinese turbid rice wine (CTRW) at an industrial-scale level is Rhizopus oryzae, although the flavor of CTRW fermented by pure R. oryzae is inferior to that of traditional CTRW. RESULTS Mucor indicus was used as a cooperative species to improve the flavor of CTRW presented by R. oryzae. The flavor compounds in different fermentation stages were determined by headspace solid-phase microextraction-gas chromatography-mass spectrometry and high-performance liquid chromatography. It was noted that the M. indicus and R. oryzae co-culture changed the profiles of flavor compounds in CTRW, including esters, higher alcohols, amino acids and organic acids, and also significantly enhanced the concentration of sweet amino acids, fruity and floral esters, and higher alcohols. Sensory evaluation demonstrated that the CTRW fermented by M. indicus and R. oryzae had a more intense aroma, harmonious taste, continuation and full body mouth-feel because of more abundant flavor compounds. CONCLUSION Mucor indicus is a promising species for co-culture with R. oryzae to improve the flavor of CTRW. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenliang Xiang
- Key Laboratory of Food Biotechnology of Sichuan, Xihua University, Chengdu, China
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Qin Xu
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Nandi Zhang
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Yu Rao
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Lin Zhu
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Qing Zhang
- Key Laboratory of Food Biotechnology of Sichuan, Xihua University, Chengdu, China
- School of Food and Bioengineering, Xihua University, Chengdu, China
| |
Collapse
|
29
|
Zhang K, Li Q, Wu W, Yang J, Zou W. Wheat Qu and Its Production Technology, Microbiota, Flavor, and Metabolites. J Food Sci 2019; 84:2373-2386. [DOI: 10.1111/1750-3841.14768] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/26/2019] [Accepted: 07/12/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Kaizheng Zhang
- Sichuan Univ. of Science & Engineering No. 180, Xueyuan St., Huixing Rd. Zigong 643000 Sichuan China
| | - Qiong Li
- Sichuan Univ. of Science & Engineering No. 180, Xueyuan St., Huixing Rd. Zigong 643000 Sichuan China
| | - Wenchi Wu
- Sichuan Univ. of Science & Engineering No. 180, Xueyuan St., Huixing Rd. Zigong 643000 Sichuan China
| | - Jiangang Yang
- Sichuan Univ. of Science & Engineering No. 180, Xueyuan St., Huixing Rd. Zigong 643000 Sichuan China
| | - Wei Zou
- Sichuan Univ. of Science & Engineering No. 180, Xueyuan St., Huixing Rd. Zigong 643000 Sichuan China
| |
Collapse
|
30
|
Huang ZR, Guo WL, Zhou WB, Li L, Xu JX, Hong JL, Liu HP, Zeng F, Bai WD, Liu B, Ni L, Rao PF, Lv XC. Microbial communities and volatile metabolites in different traditional fermentation starters used for Hong Qu glutinous rice wine. Food Res Int 2019; 121:593-603. [DOI: 10.1016/j.foodres.2018.12.024] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/04/2018] [Accepted: 12/20/2018] [Indexed: 01/25/2023]
|
31
|
Park MK, Kim YS. Distinctive Formation of Volatile Compounds in Fermented Rice Inoculated by Different Molds, Yeasts, and Lactic Acid Bacteria. Molecules 2019; 24:molecules24112123. [PMID: 31195658 PMCID: PMC6600562 DOI: 10.3390/molecules24112123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/28/2019] [Accepted: 06/04/2019] [Indexed: 11/16/2022] Open
Abstract
Rice has been fermented to enhance its application in some foods. Although various microbes are involved in rice fermentation, their roles in the formation of volatile compounds, which are important to the characteristics of fermented rice, are not clear. In this study, diverse approaches, such as partial least squares-discriminant analysis (PLS-DA), metabolic pathway-based volatile compound formations, and correlation analysis between volatile compounds and microbes were applied to compare metabolic characteristics according to each microbe and determine microbe-specific metabolites in fermented rice inoculated by molds, yeasts, and lactic acid bacteria. Metabolic changes were relatively more activated in fermented rice inoculated by molds compared to other microbes. Volatile compound profiles were significantly changed depending on each microbe as well as the group of microbes. Regarding some metabolic pathways, such as carbohydrates, amino acids, and fatty acids, it could be observed that certain formation pathways of volatile compounds were closely linked with the type of microbes. Also, some volatile compounds were strongly correlated to specific microbes; for example, branched-chain volatiles were closely link to Aspergillus oryzae, while Lactobacillus plantarum had strong relationship with acetic acid in fermented rice. This study can provide an insight into the effects of fermentative microbes on the formation of volatile compounds in rice fermentation.
Collapse
Affiliation(s)
- Min Kyung Park
- Department of Food Science and Engineering, Ewha Womans University, Seoul 03760, Korea.
| | - Young-Suk Kim
- Department of Food Science and Engineering, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
32
|
Lee SM, Hwang YR, Kim MS, Chung MS, Kim YS. Comparison of Volatile and Nonvolatile Compounds in Rice Fermented by Different Lactic Acid Bacteria. Molecules 2019; 24:molecules24061183. [PMID: 30917562 PMCID: PMC6471338 DOI: 10.3390/molecules24061183] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/12/2019] [Accepted: 03/24/2019] [Indexed: 11/16/2022] Open
Abstract
The production of rice-based beverages fermented by lactic acid bacteria (LAB) can increase the consumption of rice in the form of a dairy replacement. This study investigated volatile and nonvolatile components in rice fermented by 12 different LABs. Volatile compounds of fermented rice samples were analyzed using gas chromatography-mass spectrometry (GC-MS) combined with solid-phase microextraction (SPME), while nonvolatile compounds were determined using gas chromatography-time-of-flight/mass spectrometry (GC-TOF/MS) after derivatization. The 47 identified volatile compounds included acids, aldehydes, esters, furan derivatives, ketones, alcohols, benzene and benzene derivatives, hydrocarbons, and terpenes, while the 37 identified nonvolatile components included amino acids, organic acids, and carbohydrates. The profiles of volatile and nonvolatile components generally differed significantly between obligatorily homofermentative/facultatively heterofermentative LAB and obligatorily heterofermentative LAB. The rice sample fermented by Lactobacillus sakei (RTCL16) was clearly differentiated from the other samples on principal component analysis (PCA) plots. The results of PCA revealed that the rice samples fermented by LABs could be distinguished according to microbial strains.
Collapse
Affiliation(s)
- Sang Mi Lee
- Department of Food Science and Engineering, Ewha Womans University, Seoul 120-750, Korea.
| | - Young Rim Hwang
- Department of Food Science and Engineering, Ewha Womans University, Seoul 120-750, Korea.
| | - Moon Seok Kim
- Sempio Foods Company R&D Center, Cheongju 363-954, Korea.
| | - Myung Sub Chung
- Department of Food Science and Technology, Chung Ang University, 4726 Seodongdae-ro, Daeduk-myun, Ansung, Gyungki-do 17546, Korea.
| | - Young-Suk Kim
- Department of Food Science and Engineering, Ewha Womans University, Seoul 120-750, Korea.
| |
Collapse
|
33
|
Yu H, Xie T, Xie J, Ai L, Tian H. Characterization of key aroma compounds in Chinese rice wine using gas chromatography-mass spectrometry and gas chromatography-olfactometry. Food Chem 2019; 293:8-14. [PMID: 31151652 DOI: 10.1016/j.foodchem.2019.03.071] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 03/08/2019] [Accepted: 03/15/2019] [Indexed: 10/27/2022]
Abstract
To determine the key aroma compounds in Chinese rice wine (CRW), four types of CRW (YH, JF, SN, and XX) were analyzed by gas chromatography-mass spectrometry (GC-MS), gas chromatography-olfactometry (GC-O), and sensory evaluation. The contributions of the key aroma compounds to the flavor characteristics were determined by partial least squares regression. Sixty-one aroma compounds were detected. Twenty-five components were identified as odor-active compounds. On the basis of their odor active values, 18 odor-active compounds were determined as key aroma compounds. Ethyl isovalerate, ethyl butyrate, ethyl acetate, ethyl hexanoate, and phenylethyl alcohol were key aroma compounds in all four types of wine. The unique key aroma compounds of JF wine were isovaleraldehyde and isoamyl acetate; those of XX wine were 1-butanol, benzaldehyde, ethyl benzoate, ethyl phenylacetate, 2-octanone, and furfural; that of YH wine was ethyl 2-methylbutyrate; and those of SN wine were 1-butanol, 1-hexanol, 2-butenoic acid ethyl ester, and 3-methyl-1-butanol.
Collapse
Affiliation(s)
- Haiyan Yu
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai 201418,China
| | - Tong Xie
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai 201418,China
| | - Jingru Xie
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai 201418,China
| | - Lianzhong Ai
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Huaixiang Tian
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai 201418,China.
| |
Collapse
|
34
|
Ren Q, Sun L, Wu H, Wang Y, Wang Z, Zheng F, Lu X, Xu J. The changes of microbial community and flavor compound in the fermentation process of Chinese rice wine using Fagopyrum tataricum grain as feedstock. Sci Rep 2019; 9:3365. [PMID: 30833628 PMCID: PMC6399331 DOI: 10.1038/s41598-019-40337-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 02/13/2019] [Indexed: 12/12/2022] Open
Abstract
Chinese rice wine (CRW), a unique wine species, has a long history in China. Fagopyrum tataricum grain is a kind of high-quality grain with function in health care. The production of CRW wine with F. tataricum grain is beneficial to the development of new rice wine products. The flavor compounds and microorganisms in F. tataricum grain rice wine were studied. One hundred and seven volatile compounds (including 11 kinds of pyrazines that were rarely detected in wine) were detected and eight organic acids were measured. The microecological diversity in the fermentation process of F. tataricum rice wine was studied. It was found that Bacillus was the main bacterial genus, and the unclassfied_O_Saccharomycetales was the main fungi. Correlation analysis between microorganism and flavor compound shown there are 838 correlations. A total of 108 microbial genera maybe participate in the formation of flavor compounds. In addition, fourteen genera included unclassified_O_Saccharomycetales, Lactococcus, Pediococcus, Aspergillus, Cladosporium, Cochliobolus, Sporidiobolus, Pichia and Saccharomycopsis et al. were screened as functional significant microbiota and built correlation with flavor compounds. This work provides a perspective for bridging the gap between flavor compound and microbial community, and advances our understanding of mechanisms in F. tataricum rice wine fermentation.
Collapse
Affiliation(s)
- Qing Ren
- Beijing Advanced innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Leping Sun
- Beijing Advanced innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Huijun Wu
- Beijing Advanced innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Yousheng Wang
- Beijing Advanced innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Zhiwei Wang
- Beijing Advanced innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Fuping Zheng
- Beijing Advanced innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Xin Lu
- Beijing Advanced innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Jialiang Xu
- Beijing Advanced innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
35
|
Yan S, Dong D. Main parameters and the dynamics of volatile compounds during the fermentation of Chinese Mao- tofu from Huangshan region. Food Sci Biotechnol 2019; 28:1315-1325. [PMID: 31695930 DOI: 10.1007/s10068-019-00581-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 02/05/2019] [Accepted: 02/08/2019] [Indexed: 10/27/2022] Open
Abstract
The physico-chemical parameters and kinetics of the volatile compounds during the fermentation of Chinese Mao-tofu was investigated. The levels of water soluble proteins, amino nitrogen and acidity increased gradually throughout the fermentation process, while that of reducing sugars peaked after 2 days before gradually declining. The protease activity increased significantly and reached the maximum levels at day 3, then it slightly decreased. The hardness and firmness decreased during the first 3 days, but both increased subsequently. The viscosity and adhesiveness was inversely related to the hardness and firmness. Forty-four volatile compounds were identified and quantified. Correlation analysis revealed significant correlation of the content of water soluble proteins and amino nitrogen with most volatile compounds. Acidity levels were positively correlated with that of ethyl caproate and hexyl alcohol, and negatively with 2-methyl butyric acid, palmitic acid, ethyl laurate, 1-octen-3-ol and 1-nonanol. Reducing sugar content was also positively correlated with ethyl caproate.
Collapse
Affiliation(s)
- Shoubao Yan
- 1School of Life Science, Huainan Normal University, Huainan, 232001 Anhui People's Republic of China.,Development and Research Center of Sichuan Cuisine, Chengdu, 610100 Sichuan Province People's Republic of China.,3Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 People's Republic of China
| | - Dong Dong
- 1School of Life Science, Huainan Normal University, Huainan, 232001 Anhui People's Republic of China
| |
Collapse
|
36
|
Yang Y, Xia Y, Wang G, Tao L, Yu J, Ai L. Effects of boiling, ultra-high temperature and high hydrostatic pressure on free amino acids, flavor characteristics and sensory profiles in Chinese rice wine. Food Chem 2019; 275:407-416. [DOI: 10.1016/j.foodchem.2018.09.128] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 09/15/2018] [Accepted: 09/20/2018] [Indexed: 11/28/2022]
|
37
|
Investigation on the formations of volatile compounds, fatty acids, and γ-lactones in white and brown rice during fermentation. Food Chem 2018; 269:347-354. [DOI: 10.1016/j.foodchem.2018.07.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/24/2018] [Accepted: 07/04/2018] [Indexed: 01/21/2023]
|
38
|
Cao J, Liu K, Zhang A, Yan W, Zheng Y, Zeng Q. 1H-NMR and viscosity studies of hydrogen bonding of Chinese rice wine. CYTA - JOURNAL OF FOOD 2018. [DOI: 10.1080/19476337.2018.1473497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Jingjing Cao
- School of Food Science and Engineering, HFUT, Anhui, PR China
- Engineering Research Center of Bio-process, Ministry of Education, HFUT, Anhui, PR China
| | - Kun Liu
- School of Food Science and Engineering, HFUT, Anhui, PR China
- Engineering Research Center of Bio-process, Ministry of Education, HFUT, Anhui, PR China
| | - Aona Zhang
- School of Food Science and Engineering, HFUT, Anhui, PR China
- Engineering Research Center of Bio-process, Ministry of Education, HFUT, Anhui, PR China
| | - Wanghui Yan
- School of Food Science and Engineering, HFUT, Anhui, PR China
- Engineering Research Center of Bio-process, Ministry of Education, HFUT, Anhui, PR China
| | - Yue Zheng
- School of Food Science and Engineering, HFUT, Anhui, PR China
- Engineering Research Center of Bio-process, Ministry of Education, HFUT, Anhui, PR China
| | - Qingmei Zeng
- School of Food Science and Engineering, HFUT, Anhui, PR China
- Engineering Research Center of Bio-process, Ministry of Education, HFUT, Anhui, PR China
| |
Collapse
|
39
|
Ji Z, Jin J, Yu G, Mou R, Mao J, Liu S, Zhou Z, Peng L. Characteristic of filamentous fungal diversity and dynamics associated with wheat Qu and the traditional fermentation of Chinese rice wine. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13743] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Zhongwei Ji
- National Engineering Laboratory for Cereal Fermentation Technology; Jiangnan University; Wuxi Jiangsu 214122 China
- School of Food Science and Technology; Jiangnan University; Wuxi Jiangsu 214122 China
- Synergetic Innovation Center of Food Safety and Nutrition; Jiangnan University; Wuxi Jiangsu 214122 China
- National Engineering Research Center of Chinese Rice Wine; Shaoxing Zhejiang 31200 China
| | - Jianshun Jin
- Kuaijishan Shaoxing Wine Co. Ltd.; Shaoxing Zhejiang 312000 China
| | - Guansong Yu
- Kuaijishan Shaoxing Wine Co. Ltd.; Shaoxing Zhejiang 312000 China
| | - Rang Mou
- National Engineering Laboratory for Cereal Fermentation Technology; Jiangnan University; Wuxi Jiangsu 214122 China
| | - Jian Mao
- National Engineering Laboratory for Cereal Fermentation Technology; Jiangnan University; Wuxi Jiangsu 214122 China
- School of Food Science and Technology; Jiangnan University; Wuxi Jiangsu 214122 China
- Synergetic Innovation Center of Food Safety and Nutrition; Jiangnan University; Wuxi Jiangsu 214122 China
- National Engineering Research Center of Chinese Rice Wine; Shaoxing Zhejiang 31200 China
| | - Shuangping Liu
- National Engineering Laboratory for Cereal Fermentation Technology; Jiangnan University; Wuxi Jiangsu 214122 China
- School of Food Science and Technology; Jiangnan University; Wuxi Jiangsu 214122 China
- Synergetic Innovation Center of Food Safety and Nutrition; Jiangnan University; Wuxi Jiangsu 214122 China
| | - Zhilei Zhou
- National Engineering Laboratory for Cereal Fermentation Technology; Jiangnan University; Wuxi Jiangsu 214122 China
- Synergetic Innovation Center of Food Safety and Nutrition; Jiangnan University; Wuxi Jiangsu 214122 China
| | - Lin Peng
- National Engineering Laboratory for Cereal Fermentation Technology; Jiangnan University; Wuxi Jiangsu 214122 China
- Synergetic Innovation Center of Food Safety and Nutrition; Jiangnan University; Wuxi Jiangsu 214122 China
| |
Collapse
|
40
|
Liu J, Zhao W, Li S, Zhang A, Zhang Y, Liu S. Characterization of the Key Aroma Compounds in Proso Millet Wine Using Headspace Solid-Phase Microextraction and Gas Chromatography-Mass Spectrometry. Molecules 2018; 23:molecules23020462. [PMID: 29461466 PMCID: PMC6017027 DOI: 10.3390/molecules23020462] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/14/2018] [Accepted: 02/17/2018] [Indexed: 11/16/2022] Open
Abstract
The volatile compounds in proso millet wine were extracted by headspace solid-phase microextraction (85 μm polyacrylate (PA), 100 μm polydimethylsiloxane (PDMS), 75 μm Carboxen (CAR)/PDMS, and 50/30 μm divinylbenzene (DVB)/CAR/PDMS fibers), and analyzed using gas chromatography-mass spectrometry; the odor characteristics and intensities were analyzed by the odor activity value (OAV). Different sample preparation factors were used to optimize this method: sample amount, extraction time, extraction temperature, and content of NaCl. A total of 64 volatile compounds were identified from the wine sample, including 14 esters, seven alcohols, five aldehydes, five ketones, 12 benzene derivatives, 12 hydrocarbons, two terpenes, three phenols, two acids, and two heterocycles. Ethyl benzeneacetate, phenylethyl alcohol, and benzaldehyde were the main volatile compounds found in the samples. According to their OAVs, 14 volatile compounds were determined to be odor-active compounds (OAV > 1), and benzaldehyde, benzeneacetaldehyde, 1-methyl-naphthalene, 2-methyl-naphthalene, and biphenyl were the prominent odor-active compounds (OAV > 50), having a high OAV. Principal component analysis (PCA) showed the difference of distribution of the 64 volatile compounds and 14 odor-active compounds with four solid-phase microextraction (SPME) fibers.
Collapse
Affiliation(s)
- Jingke Liu
- Institute Millet Crops of Heibei Academy of Agriculture and Forestry, Shijiazhuang 050035, China.
- National Millet Improvement Center of China, Shijiazhuang 050035, China.
- Minor Cereal Crops Research Laboratory of Hebei Province, Shijiazhuang 050035, China.
| | - Wei Zhao
- Institute Millet Crops of Heibei Academy of Agriculture and Forestry, Shijiazhuang 050035, China.
- National Millet Improvement Center of China, Shijiazhuang 050035, China.
- Minor Cereal Crops Research Laboratory of Hebei Province, Shijiazhuang 050035, China.
| | - Shaohui Li
- Institute Millet Crops of Heibei Academy of Agriculture and Forestry, Shijiazhuang 050035, China.
- National Millet Improvement Center of China, Shijiazhuang 050035, China.
- Minor Cereal Crops Research Laboratory of Hebei Province, Shijiazhuang 050035, China.
| | - Aixia Zhang
- Institute Millet Crops of Heibei Academy of Agriculture and Forestry, Shijiazhuang 050035, China.
- National Millet Improvement Center of China, Shijiazhuang 050035, China.
- Minor Cereal Crops Research Laboratory of Hebei Province, Shijiazhuang 050035, China.
| | - Yuzong Zhang
- Institute Millet Crops of Heibei Academy of Agriculture and Forestry, Shijiazhuang 050035, China.
- National Millet Improvement Center of China, Shijiazhuang 050035, China.
- Minor Cereal Crops Research Laboratory of Hebei Province, Shijiazhuang 050035, China.
| | - Songyan Liu
- Shijiazhuang Livestock Products Quality Inspection & Supervision Center, Shijiazhuang 050041, China.
| |
Collapse
|
41
|
Yang Y, Xia Y, Wang G, Zhang H, Xiong Z, Yu J, Yu H, Ai L. Comparison of oenological property, volatile profile, and sensory characteristic of Chinese rice wine fermented by different starters during brewing. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2017.1325900] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yijin Yang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Yongjun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Guangqiang Wang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Hui Zhang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Zhiqiang Xiong
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Jianshen Yu
- Shanghai Jinfeng Wine Co., Ltd., Shanghai, PR China
| | - Haiyan Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, PR China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| |
Collapse
|
42
|
Peng Q, Xu X, Xing W, Hu B, Shen C, Tian R, Li X, Xu Q, Chen J, Chen F, Zou H, Xie G. Ageing status characterization of Chinese spirit using scent characteristics combined with chemometric analysis. INNOV FOOD SCI EMERG 2017. [DOI: 10.1016/j.ifset.2017.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Yang Y, Xia Y, Wang G, Yu J, Ai L. Effect of mixed yeast starter on volatile flavor compounds in Chinese rice wine during different brewing stages. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.01.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Wei XL, Liu SP, Yu JS, Yu YJ, Zhu SH, Zhou ZL, Hu J, Mao J. Innovation Chinese rice wine brewing technology by bi-acidification to exclude rice soaking process. J Biosci Bioeng 2016; 123:460-465. [PMID: 28043775 DOI: 10.1016/j.jbiosc.2016.11.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 11/14/2016] [Accepted: 11/30/2016] [Indexed: 01/18/2023]
Abstract
As a traditional fermented alcoholic beverage of China, Chinese rice wine (CRW) had a long history of more than 5000 years. Rice soaking process was the most crucial step during CRW brewing process, because rice soaking quality directly determined the quality of CRW. However, rice soaking water would cause the eutrophication of water bodies and waste of water. The longer time of rice soaking, the higher the content of biogenic amine, and it would have a huge impact on human health. An innovation brewing technology was carried out to exclude the rice soaking process and the Lactobacillus was added to make up for the total acid. Compared to the traditional brewing technology, the new technology saved water resources and reduced environmental pollution. The concentration of biogenic amine was also decreased by 27.16%, which improving the security of the CRW. The esters increased led to more soft-tasted CRW and less aging time; the quality of CRW would be improved with less alcohol.
Collapse
Affiliation(s)
- Xiao Lu Wei
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shuang Ping Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center of Chinese Rice Wine, Shaoxing, Zhejiang 31200, China
| | - Jian Shen Yu
- Shanghai Jinfeng Wine Co., Ltd., Shanghai 200063, China
| | - Yong Jian Yu
- Jiangsu Hengshun Vinegar Industry Co., Ltd., Zhenjiang 212043, PR China
| | - Sheng Hu Zhu
- Jiangsu Hengshun Vinegar Industry Co., Ltd., Zhenjiang 212043, PR China
| | - Zhi Lei Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center of Chinese Rice Wine, Shaoxing, Zhejiang 31200, China
| | - Jian Hu
- Shanghai Jinfeng Wine Co., Ltd., Shanghai 200063, China
| | - Jian Mao
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center of Chinese Rice Wine, Shaoxing, Zhejiang 31200, China.
| |
Collapse
|
45
|
Liu SP, Mao J, Liu YY, Meng XY, Ji ZW, Zhou ZL, Ai-lati A. Bacterial succession and the dynamics of volatile compounds during the fermentation of Chinese rice wine from Shaoxing region. World J Microbiol Biotechnol 2015; 31:1907-21. [DOI: 10.1007/s11274-015-1931-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 08/23/2015] [Indexed: 01/14/2023]
|
46
|
Liu D, Zhang H, Xu B, Tan J. Development of a kinetic model structure for simultaneous saccharification and fermentation in rice wine production. JOURNAL OF THE INSTITUTE OF BREWING 2015. [DOI: 10.1002/jib.270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Dengfeng Liu
- Key Laboratory of Industrial Advanced Process Control for Light Industry of Ministry of Education; Jiangnan University; Wuxi 214122 China
- Department of Bioengineering; University of Missouri; Columbia MO 65211 USA
| | - Hongtao Zhang
- Key Laboratory of Industrial Biotechnology of Ministry of Education; Jiangnan University; Wuxi 214122 China
| | - Baoguo Xu
- Key Laboratory of Industrial Advanced Process Control for Light Industry of Ministry of Education; Jiangnan University; Wuxi 214122 China
| | - Jinglu Tan
- Department of Bioengineering; University of Missouri; Columbia MO 65211 USA
| |
Collapse
|
47
|
Shen C, Mao J, Chen Y, Meng X, Ji Z. Extraction optimization of polysaccharides from Chinese rice wine from the Shaoxing region and evaluation of its immunity activities. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:1991-1996. [PMID: 25204439 DOI: 10.1002/jsfa.6909] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 09/05/2014] [Accepted: 09/05/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND Chinese rice wine is well known for its unique flavor and high nutritional value. It is of interest to investigate the functional components of Chinese rice wine and their health benefits. RESULTS Response surface design of three factors - pH, ethanol concentration and precipitation time - at three levels was utilized to optimize the extraction of Chinese rice wine polysaccharide (CRWP). The results indicated that the CRWP yield was 77.287% at the optimal levels for pH 8.4, ethanol concentration 88% and precipitation time 23 h. In addition, immune activity of CRWP was investigated by measuring body weight, spleen index and thymus index. Furthermore, immunity activity of CRWP was investigated by measuring lymphocyte proliferation, phagocytic index and phagocytic percentage of immunosuppressed mice. Compared with the control mice and model mice, it was found that CRWP has beneficial immune activities in vivo. CONCLUSION These findings indicate that CRWP has immune activities in vivo by modulating the immune response, and implies full development and utilization of the nutritional value of Chinese rice wine. However, further work will be conducted in the future to elucidate the structure-bioactivity relationship for CRWP.
Collapse
Affiliation(s)
- Chi Shen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jian Mao
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center of Chinese Rice Wine, Shaoxing, Zhejiang 31200, China
| | - Yongquan Chen
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiangyong Meng
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center of Chinese Rice Wine, Shaoxing, Zhejiang 31200, China
| | - Zhongwei Ji
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center of Chinese Rice Wine, Shaoxing, Zhejiang 31200, China
| |
Collapse
|
48
|
Xu E, Long J, Wu Z, Li H, Wang F, Xu X, Jin Z, Jiao A. Characterization of Volatile Flavor Compounds in Chinese Rice Wine Fermented from Enzymatic Extruded Rice. J Food Sci 2015; 80:C1476-89. [DOI: 10.1111/1750-3841.12935] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 05/17/2015] [Indexed: 12/01/2022]
Affiliation(s)
- Enbo Xu
- The State Key Lab of Food Science and Technology, School of Food Science and Technology; Jiangnan Univ; Wuxi 214122 China
- Synergetic Innovation Center of Food Safety and Nutrition; Jiangnan Univ; Wuxi 214122 China
| | - Jie Long
- The State Key Lab of Food Science and Technology, School of Food Science and Technology; Jiangnan Univ; Wuxi 214122 China
- Synergetic Innovation Center of Food Safety and Nutrition; Jiangnan Univ; Wuxi 214122 China
| | - Zhengzong Wu
- The State Key Lab of Food Science and Technology, School of Food Science and Technology; Jiangnan Univ; Wuxi 214122 China
- Synergetic Innovation Center of Food Safety and Nutrition; Jiangnan Univ; Wuxi 214122 China
| | - Hongyan Li
- The State Key Lab of Food Science and Technology, School of Food Science and Technology; Jiangnan Univ; Wuxi 214122 China
- Synergetic Innovation Center of Food Safety and Nutrition; Jiangnan Univ; Wuxi 214122 China
| | - Fang Wang
- The State Key Lab of Food Science and Technology, School of Food Science and Technology; Jiangnan Univ; Wuxi 214122 China
- Synergetic Innovation Center of Food Safety and Nutrition; Jiangnan Univ; Wuxi 214122 China
| | - Xueming Xu
- The State Key Lab of Food Science and Technology, School of Food Science and Technology; Jiangnan Univ; Wuxi 214122 China
- Synergetic Innovation Center of Food Safety and Nutrition; Jiangnan Univ; Wuxi 214122 China
| | - Zhengyu Jin
- The State Key Lab of Food Science and Technology, School of Food Science and Technology; Jiangnan Univ; Wuxi 214122 China
- Synergetic Innovation Center of Food Safety and Nutrition; Jiangnan Univ; Wuxi 214122 China
| | - Aiquan Jiao
- The State Key Lab of Food Science and Technology, School of Food Science and Technology; Jiangnan Univ; Wuxi 214122 China
- Synergetic Innovation Center of Food Safety and Nutrition; Jiangnan Univ; Wuxi 214122 China
| |
Collapse
|
49
|
Li JJ, Song CX, Hou CJ, Huo DQ, Shen CH, Luo XG, Yang M, Fa HB. Development of a colorimetric sensor array for the discrimination of Chinese liquors based on selected volatile markers determined by GC-MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:10422-10430. [PMID: 25289884 DOI: 10.1021/jf503345z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A new colorimetric sensor array was developed for the discrimination of 12 high-alcoholic Chinese base liquors from Luzhou Co., Ltd., and 15 commercial Chinese liquor of different brands as well as flavor types. Seventeen volatile compounds within four chemical groups were determined as markers in the base liquor by GC-MS analysis and factor analysis method (FAM). A specialized colorimetric sensor array composed of 20 sensitive dots was fabricated accordingly to obtain sensitive interaction with different types of volatile markers. Discrimination of the liquor samples was subsequently performed using chemometric and statistical methods, including principal component analysis (PCA) and hierarchical clustering analysis (HCA). The results suggested that facile identification of either base liquors with high-alcoholic volume or commercial liquors of the same flavor types could be achieved by analysis of the color change profiles. The response of the sensor improved significantly in comparison with those that rely on nonspecific interactions, and no misclassification was observed for both liquor samples using two chemometric methods. Besides, it was also found that the discrimination is closely related to the characteristic flavor compounds (esters, aldehydes, and acids) and alcoholic strength in liquors, and its performance was even comparable with that of GC-MS.
Collapse
Affiliation(s)
- Jun-Jie Li
- Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, and ‡College of Chemistry and Chemical Engineering, Chongqing University , Chongqing 400044, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Wang P, Mao J, Meng X, Li X, Liu Y, Feng H. Changes in flavour characteristics and bacterial diversity during the traditional fermentation of Chinese rice wines from Shaoxing region. Food Control 2014. [DOI: 10.1016/j.foodcont.2014.03.018] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|