1
|
Dai XF, Yang YX, Yang BZ. Glycosylation editing: an innovative therapeutic opportunity in precision oncology. Mol Cell Biochem 2025; 480:1951-1967. [PMID: 38861100 DOI: 10.1007/s11010-024-05033-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/06/2024] [Indexed: 06/12/2024]
Abstract
Cancer is still one of the most arduous challenges in the human society, even though humans have found many ways to try to conquer it. With our incremental understandings on the impact of sugar on human health, the clinical relevance of glycosylation has attracted our attention. The fact that altered glycosylation profiles reflect and define different health statuses provide novel opportunities for cancer diagnosis and therapeutics. By reviewing the mechanisms and critical enzymes involved in protein, lipid and glycosylation, as well as current use of glycosylation for cancer diagnosis and therapeutics, we identify the pivotal connection between glycosylation and cellular redox status and, correspondingly, propose the use of redox modulatory tools such as cold atmospheric plasma (CAP) in cancer control via glycosylation editing. This paper interrogates the clinical relevance of glycosylation on cancer and has the promise to provide new ideas for laboratory practice of cold atmospheric plasma (CAP) and precision oncology therapy.
Collapse
Affiliation(s)
- Xiao-Feng Dai
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.
| | - Yi-Xuan Yang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Bo-Zhi Yang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| |
Collapse
|
2
|
Rostami Z, Alizadeh-Navaei R, Golpoor M, Yazdani Z, Rafiei A. Synergistic effects of cold atmospheric plasma and doxorubicin on melanoma: A systematic review and meta-analysis. Sci Rep 2025; 15:7870. [PMID: 40050300 PMCID: PMC11885813 DOI: 10.1038/s41598-025-90508-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/13/2025] [Indexed: 03/09/2025] Open
Abstract
Melanoma is responsible for the majority of skin cancer deaths, but there are ways to combat this deadly disease. One method is using anti-neoplastic agents, such as Doxorubicin (DOX). Unfortunately, DOX can be toxic and may lead to drug resistance. However, researchers are excited about the potential of Cold Atmospheric Plasma (CAP) treatment cancer cells and overcome drug resistance selectively. To better understand the effectiveness of the combination of CAP and DOX on melanoma cell viability, cytotoxicity, and cell death, we conducted a comprehensive evaluation and meta-analysis in this study. 41 studies out of 121 met our inclusion criteria. The pooled analysis found that CAP and DOX combination had a significant effect on cell viability (ES = 6.75, 95% CI 1.65 to 11.85, and I2 = 71%) and cytotoxicity (ES = 11.71, 95% CI 3.69 to 19.73, and I2 = 56%). however, no statistically significant association was found between cell death with combination treatment. Our studies have confirmed that the combined treatment of CAP and DOX has a synergistic effect on reducing cell viability and increasing cytotoxicity in melanoma cells. These results can assist researchers in selecting more effective treatment methods to address melanoma.
Collapse
Affiliation(s)
- Zeinab Rostami
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, KM 18 Khazarabad Road, KhazarSq, Sari, Iran
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Alizadeh-Navaei
- Gastrointestinal Cancer Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Monireh Golpoor
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, KM 18 Khazarabad Road, KhazarSq, Sari, Iran
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Yazdani
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, KM 18 Khazarabad Road, KhazarSq, Sari, Iran
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Rafiei
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, KM 18 Khazarabad Road, KhazarSq, Sari, Iran.
| |
Collapse
|
3
|
Khalaf AT, Abdalla AN, Ren K, Liu X. Cold atmospheric plasma (CAP): a revolutionary approach in dermatology and skincare. Eur J Med Res 2024; 29:487. [PMID: 39367460 PMCID: PMC11453049 DOI: 10.1186/s40001-024-02088-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/28/2024] [Indexed: 10/06/2024] Open
Abstract
Cold atmospheric plasma (CAP) technology has emerged as a revolutionary therapeutic technology in dermatology, recognized for its safety, effectiveness, and minimal side effects. CAP demonstrates substantial antimicrobial properties against bacteria, viruses, and fungi, promotes tissue proliferation and wound healing, and inhibits the growth and migration of tumor cells. This paper explores the versatile applications of CAP in dermatology, skin health, and skincare. It provides an in-depth analysis of plasma technology, medical plasma applications, and CAP. The review covers the classification of CAP, its direct and indirect applications, and the penetration and mechanisms of action of its active components in the skin. Briefly introduce CAP's suppressive effects on microbial infections, detailing its impact on infectious skin diseases and its specific effects on bacteria, fungi, viruses, and parasites. It also highlights CAP's role in promoting tissue proliferation and wound healing and its effectiveness in treating inflammatory skin diseases such as psoriasis, atopic dermatitis, and vitiligo. Additionally, the review examines CAP's potential in suppressing tumor cell proliferation and migration and its applications in cosmetic and skincare treatments. The therapeutic potential of CAP in treating immune-mediated skin diseases is also discussed. CAP presents significant promise as a dermatological treatment, offering a safe and effective approach for various skin conditions. Its ability to operate at room temperature and its broad spectrum of applications make it a valuable tool in dermatology. Finally, introduce further research is required to fully elucidate its mechanisms, optimize its use, and expand its clinical applications.
Collapse
Grants
- grant number JCYJ20220530114204010 This work was supported by the Department of Dermatology, Southern University of Science and Technology Hospital, Shenzhen, China
- grant number JCYJ20220530114204010 This work was supported by the Department of Dermatology, Southern University of Science and Technology Hospital, Shenzhen, China
- grant number JCYJ20220530114204010 This work was supported by the Department of Dermatology, Southern University of Science and Technology Hospital, Shenzhen, China
- grant number JCYJ20220530114204010 This work was supported by the Department of Dermatology, Southern University of Science and Technology Hospital, Shenzhen, China
Collapse
Affiliation(s)
- Ahmad Taha Khalaf
- Medical College, Anhui University of Science and Technology (AUST), Huainan, 232001, China
| | - Ahmed N Abdalla
- Faculty of Electronic Information Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Kaixuan Ren
- Department of Dermatology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710006, China
| | - Xiaoming Liu
- Department of Dermatology, Southern University of Science and Technology Hospital, Shenzhen, 518055, China.
| |
Collapse
|
4
|
Jafari A, Sadeghi A, Lafouti M. Mechanical properties of human kidney cells and their effects on the atomic force microscope beam vibrations. Microsc Res Tech 2024; 87:1704-1717. [PMID: 38501545 DOI: 10.1002/jemt.24543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/20/2024]
Abstract
In the present investigation, the mechanical properties of normal and carcinomatous cells of kidney tissue (HEK-293, ACHN, respectively) were investigated using atomic force microscopy (AFM). Initially, the elastic modulus of ACHN cells was measured following chemotherapy with the anti-cancer drug Cisplatin and plasma treatment. The MTT assay was employed to ascertain the most effective dosages for incubation periods of 12, 24, 48, 72, and 96 h, guided by the IC50 concentration for cell viability during chemotherapy treatment. Analysis at these specified time points revealed a progressive increase in the elastic modulus of ACHN cells when subjected to Cisplatin-based chemotherapy. Specifically, the elastic modulus increased by 1.847, 4.416, 6.035, 8.029, and 9.727 times in comparison to untreated cells at 12, 24, 48, 72, and 96 h, respectively. ACHN cells were subsequently treated with plasma for 30 and 60 s for 24 and 48-h incubation periods. The plasma treatment increased the ACHN cell's elastic modulus. In the subsequent phase of the research, a combination of theoretical (finite element method [FEM]) and experimental methodologies was employed to investigate the resonant frequencies and magnitude of the frequency response function (FRF) concerning the movement of the AFM cantilever. This examination was conducted using ACHN cells as specimens, both before and after exposure to chemotherapy and plasma treatments. The results showed that higher sample elastic modulus increased the resonant frequency, indicating that treated cells had a higher resonant frequency than untreated cells. In conclusion, the FEM and experimental results were compared and found to be in good agreement. HIGHLIGHTS: Using Cisplatin anti-cancer drug increases the elastic modulus of ACHN cell. Applying plasma treatment increases the elastic modulus of ACHN cell. For both of the chemo and plasma therapies, increasing the incubation time increases the influence of therapies oh the cell mechanics. Using finite element modeling (FEM) the real dynamic behavior of atomic force microscope cantilever by considering human kidney cells as the soft samples is possible.
Collapse
Affiliation(s)
- Ali Jafari
- Renewable Energy Research Center, Damavand Branch, Islamic Azad University, Damavand, Iran
| | - Ali Sadeghi
- Renewable Energy Research Center, Damavand Branch, Islamic Azad University, Damavand, Iran
| | - Mansoureh Lafouti
- Renewable Energy Research Center, Damavand Branch, Islamic Azad University, Damavand, Iran
| |
Collapse
|
5
|
Zadeh NM, Sadeghi A, Lafouti M. Mechanical Properties of Mouse Lung Cells and Their Effects on the Atomic Force Microscope Beam Vibrations. Cell Biochem Biophys 2024; 82:1079-1099. [PMID: 38713404 DOI: 10.1007/s12013-024-01259-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2024] [Indexed: 05/08/2024]
Abstract
In the present investigation, the mechanical properties of mouse normal and carcinomatous (LL/2) lung tissue cells were investigated using atomic force microscopy (AFM). The normal lung cells have been derived directly from C57BL mice. Initially, the elastic modulus of LL/2 cells was measured following chemotherapy with the anti-cancer drug Cisplatin and plasma treatment. MTT evaluation was used to determine the optimal dosages for 24- and 48-h incubations based on the IC50 cell viability concentration during chemotherapy treatment. After 24 and 48 h, the results demonstrated that Cisplatin-based chemotherapy increases the elastic modulus of LL/2 cells by 1.599 and 2.308 times compared to untreated cells. LL/2 cells were subsequently treated with plasma for 30 and 60 s for 24 and 48-h incubation. The plasma treatment decreased the LL/2 cell's elastic modulus, and the time duration of plasma treatment increased the reduction amount of elastic modulus. During the second section of the study, theoretical (finite element analysis [FEM]) and experimental techniques were used to examine the resonant frequencies and magnitude of the frequency response function (FRF) of the AFM cantilever's movements when applying normal and cancerous cells before and after chemo and plasma treatments as specimens. The results indicated that increasing the samples' elastic modulus raises the resonant frequency, so the resonant frequency of treated cells as a sample is greater than untreated cells. In conclusion, the FEM and experimental results were compared and found to be in good agreement.
Collapse
Affiliation(s)
- Nazanin Maleki Zadeh
- Biomedical Department, Central Tehran Branch, Islamic Azad University, Damavand, Iran
| | - Ali Sadeghi
- Renewable Energy Research Center, Damavand Branch, Islamic Azad University, Damavand, Iran.
| | - Mansoureh Lafouti
- Renewable Energy Research Center, Damavand Branch, Islamic Azad University, Damavand, Iran
| |
Collapse
|
6
|
Abdo AI, Kopecki Z. Comparing Redox and Intracellular Signalling Responses to Cold Plasma in Wound Healing and Cancer. Curr Issues Mol Biol 2024; 46:4885-4923. [PMID: 38785562 PMCID: PMC11120013 DOI: 10.3390/cimb46050294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Cold plasma (CP) is an ionised gas containing excited molecules and ions, radicals, and free electrons, and which emits electric fields and UV radiation. CP is potently antimicrobial, and can be applied safely to biological tissue, birthing the field of plasma medicine. Reactive oxygen and nitrogen species (RONS) produced by CP affect biological processes directly or indirectly via the modification of cellular lipids, proteins, DNA, and intracellular signalling pathways. CP can be applied at lower levels for oxidative eustress to activate cell proliferation, motility, migration, and antioxidant production in normal cells, mainly potentiated by the unfolded protein response, the nuclear factor-erythroid factor 2-related factor 2 (Nrf2)-activated antioxidant response element, and the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) pathway, which also activates nuclear factor-kappa B (NFκB). At higher CP exposures, inactivation, apoptosis, and autophagy of malignant cells can occur via the degradation of the PI3K/Akt and mitogen-activated protein kinase (MAPK)-dependent and -independent activation of the master tumour suppressor p53, leading to caspase-mediated cell death. These opposing responses validate a hormesis approach to plasma medicine. Clinical applications of CP are becoming increasingly realised in wound healing, while clinical effectiveness in tumours is currently coming to light. This review will outline advances in plasma medicine and compare the main redox and intracellular signalling responses to CP in wound healing and cancer.
Collapse
Affiliation(s)
- Adrian I. Abdo
- Richter Lab, Surgical Specialties, Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
- Department of Surgery, The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville, SA 5011, Australia
| | - Zlatko Kopecki
- Future Industries Institute, STEM Academic Unit, University of South Australia, Mawson Lakes, SA 5095, Australia
| |
Collapse
|
7
|
Wang W, Zheng P, Yan L, Chen X, Wang Z, Liu Q. Mechanism of non-thermal atmospheric plasma in anti-tumor: influencing intracellular RONS and regulating signaling pathways. Free Radic Res 2024; 58:333-353. [PMID: 38767976 DOI: 10.1080/10715762.2024.2358026] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
Non-thermal atmospheric plasma (NTAP) has been proven to be an effective anti-tumor tool, with various biological effects such as inhibiting tumor proliferation, metastasis, and promoting tumor cell apoptosis. At present, the main conclusion is that ROS and RNS are the main effector components of NTAP, but the mechanisms of which still lack systematic summary. Therefore, in this review, we first summarized the mechanism by which NTAP directly or indirectly causes an increase in intracellular RONS concentration, and the multiple pathways dysregulation (i.e. NRF2, PI3K, MAPK, NF-κB) induced by intracellular RONS. Then, we generalized the relationship between NTAP induced pathways dysregulation and the various biological effects it brought. The summary of the anti-tumor mechanism of NTAP is helpful for its further research and clinical transformation.
Collapse
Affiliation(s)
- Wenjie Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Peijia Zheng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Liang Yan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Xiaoman Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Zhicheng Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Qi Liu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Yan C, Zhao L, Zhang X, Chu Z, Zhou T, Zhang Y, Geng S, Guo K. Cold atmospheric plasma sensitizes melanoma cells to targeted therapy agents in vitro. JOURNAL OF BIOPHOTONICS 2024; 17:e202300356. [PMID: 38041219 DOI: 10.1002/jbio.202300356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023]
Abstract
Cold atmospheric plasma (CAP) has been reported to kill melanoma cells in vitro and in vivo. BRAF and MEK inhibitors are targeted therapy agents for advanced melanoma patients with BRAF mutations. However, low overall survival and relapse-free survival are still tough challenges due to drug resistance. In this study, we confirmed that CAP alleviated innate drug resistance and promoted the anti-tumor effect of targeted therapy in A875 and WM115 melanoma cells in vitro. Further, we revealed that CAP altered the expression of various molecules concerning MAPK and PI3K-AKT pathways in A875 cells. This study demonstrates that CAP promises to work as adjuvant treatment with targeted therapy to overcome drug resistance for malignant tumors in future.
Collapse
Affiliation(s)
- Cong Yan
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lihong Zhao
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xinyue Zhang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhaowei Chu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Tong Zhou
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yanbin Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Songmei Geng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Center for Dermatology Disease, Precision Medical Institute, Xi'an, China
| | - Kun Guo
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Center for Dermatology Disease, Precision Medical Institute, Xi'an, China
| |
Collapse
|
9
|
Bakhtiyari-Ramezani M, Nohekhan M, Akbari ME, Abbasvandi F, Bayat M, Akbari A, Nasiri M. Comparative assessment of direct and indirect cold atmospheric plasma effects, based on helium and argon, on human glioblastoma: an in vitro and in vivo study. Sci Rep 2024; 14:3578. [PMID: 38347045 PMCID: PMC10861458 DOI: 10.1038/s41598-024-54070-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 02/08/2024] [Indexed: 02/15/2024] Open
Abstract
Recent research has highlighted the promising potential of cold atmospheric plasma (CAP) in cancer therapy. However, variations in study outcomes are attributed to differences in CAP devices and plasma parameters, which lead to diverse compositions of plasma products, including electrons, charged particles, reactive species, UV light, and heat. This study aimed to evaluate and compare the optimal exposure time, duration, and direction-dependent cellular effects of two CAPs, based on argon and helium gases, on glioblastoma U-87 MG cancer cells and an animal model of GBM. Two plasma jets were used as low-temperature plasma sources in which helium or argon gas was ionized by high voltage (4.5 kV) and frequency (20 kHz). In vitro assessments on human GBM and normal astrocyte cell lines, using MTT assays, flow cytometry analysis, wound healing assays, and immunocytochemistry for Caspase3 and P53 proteins, demonstrated that all studied plasma jets, especially indirect argon CAP, selectively induced apoptosis, hindered tumor cell growth, and inhibited migration. These effects occurred concurrently with increased intracellular levels of reactive oxygen species and decreased total antioxidant capacity in the cells. In vivo results further supported these findings, indicating that single indirect argon and direct helium CAP therapy, equal to high dose Temozolomide treatment, induced tumor cell death in a rat model of GBM. This was concurrent with a reduction in tumor size observed through PET-CT scan imaging and a significant increase in the survival rate. Additionally, there was a decrease in GFAP protein levels, a significant GBM tumor marker, and an increase in P53 protein expression based on immunohistochemical analyses. Furthermore, Ledge beam test analysis revealed general motor function improvement after indirect argon CAP therapy, similar to Temozolomide treatment. Taken together, these results suggest that CAP therapy, using indirect argon and direct helium jets, holds great promise for clinical applications in GBM treatment.
Collapse
Affiliation(s)
- Mahdiyeh Bakhtiyari-Ramezani
- Plasma Physics and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute (NSTRI), P.O. Box: 14399-53991, Tehran, Iran.
| | - Mojtaba Nohekhan
- Plasma Physics and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute (NSTRI), P.O. Box: 14399-53991, Tehran, Iran
| | | | - Fereshteh Abbasvandi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Research Institute, ACECR, Tehran, Iran
| | - Mahdis Bayat
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Research Institute, ACECR, Tehran, Iran
| | - Atieh Akbari
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meysam Nasiri
- Department of Cellular and Molecular Biology, School of Biology, Damghan University, Damghan, Iran
| |
Collapse
|
10
|
Ma Y, Sun T, Ren K, Min T, Xie X, Wang H, Xu G, Dang C, Zhang H. Applications of cold atmospheric plasma in immune-mediated inflammatory diseases via redox homeostasis: evidence and prospects. Heliyon 2023; 9:e22568. [PMID: 38107323 PMCID: PMC10724573 DOI: 10.1016/j.heliyon.2023.e22568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/28/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023] Open
Abstract
As a representative technology in plasma medicine, cold atmospheric plasma (CAP) has beneficial outcomes in surface disinfection, wound repair, tissue regeneration, solid tumor therapy. Impact on immune response and inflammatory conditions was also observed in the process of CAP treatment. Relevant literatures were collected to assess efficacy and summarize possible mechanisms of the innovation. CAP mediates alteration in local immune microenvironment mainly through two ways. One is to down-regulate the expression level of several cytokines, impeding further conduction of immune or inflammatory signals. Intervening the functional phenotype of cells through different degree of oxidative stress is the other approach to manage the immune-mediated inflammatory disorders. A series of preclinical and clinical studies confirmed the therapeutic effect and side effects free of CAP. Moreover, several suggestions proposed in this manuscript might help to find directions for future investigation.
Collapse
Affiliation(s)
- Yuyi Ma
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Tuanhe Sun
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Kaijie Ren
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Tianhao Min
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xin Xie
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Haonan Wang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Guimin Xu
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Chengxue Dang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Hao Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| |
Collapse
|
11
|
Tian J, Wang X, Shi H, Wu H, Wang C, Liu N, Guan L, Zhang Z. Sestrin2/Keap1/Nrf2 pathway regulates mucus hypersecretion in pulmonary epithelium induced by traffic-related PM 2.5 and water-soluble extracts. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115455. [PMID: 37708689 DOI: 10.1016/j.ecoenv.2023.115455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 08/18/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023]
Abstract
The involvement of fine particulate matter (PM2.5) exposure in the progression of asthma has been extensively discussed in epidemiological and experimental evidence, which aroused widespread attention. Asthma is characterized by mucus hypersecretion. This study investigates the underlying toxic mechanism of traffic-related PM2.5 (TRPM2.5) and water-soluble extracts (WSE) on mucus hypersecretion in the lungs of rats with asthma and 16HBE cells. The ovalbumin-induced rats were administrated by instillation of TRPM2.5 and WSE in the trachea once three days for eight times. The results showed that TRPM2.5 and WSE had an adverse impact on mucus secretion. Specifically, conspicuous mucus stains and increased goblet cells in the bronchial epithelium by PAS staining were found in lung tissues of rats with asthma; MUC5AC gene and protein expression levels in lung tissues of rats with asthma and 16HBE cells were elevated. In addition, TRPM2.5 and WSE triggered oxidative damage via upregulation of malondialdehyde and myeloperoxidase as well as activation of the Sestrin2/Keap1/Nrf2 signaling pathway. Conversely, the knockdown of Sestrin2 effectively inhibited TRPM2.5 and WSE-induced mucus hypersecretion, oxidative stress, and Keap1/Nrf2 signaling pathway and its downstream target gene NQO1. Collectively, it was demonstrated that TRPM2.5 and WSE induced mucus hypersecretion mediated by the Sestrin2/Keap1/Nrf2 pathway.
Collapse
Affiliation(s)
- Jiayu Tian
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, 030001 Taiyuan, Shanxi, China; Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, 030001 Taiyuan, Shanxi, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China
| | - Xin Wang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, 030001 Taiyuan, Shanxi, China; Yantai Center for Disease Control and Prevention, 264003 Yantai, Shandong, China; Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, 030001 Taiyuan, Shanxi, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China
| | - Hao Shi
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, 030001 Taiyuan, Shanxi, China; Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, 030001 Taiyuan, Shanxi, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China
| | - Hongyan Wu
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, 030001 Taiyuan, Shanxi, China; Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, 030001 Taiyuan, Shanxi, China
| | - Caihong Wang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, 030001 Taiyuan, Shanxi, China; Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, 030001 Taiyuan, Shanxi, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China
| | - Nannan Liu
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, 030001 Taiyuan, Shanxi, China; Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, 030001 Taiyuan, Shanxi, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China
| | - Linlin Guan
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, 030001 Taiyuan, Shanxi, China; Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, 030001 Taiyuan, Shanxi, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China
| | - Zhihong Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, 030001 Taiyuan, Shanxi, China; Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, 030001 Taiyuan, Shanxi, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China.
| |
Collapse
|
12
|
Bai F, Ran Y, Zhai S, Xia Y. Cold Atmospheric Plasma: A Promising and Safe Therapeutic Strategy for Atopic Dermatitis. Int Arch Allergy Immunol 2023; 184:1184-1197. [PMID: 37703833 PMCID: PMC10733932 DOI: 10.1159/000531967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/04/2023] [Indexed: 09/15/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease. Microbial infection, immune system dysfunction, and skin barrier defunctionalization have been regarded as the central events in AD pathogenesis. Cold atmospheric plasma (CAP) is an unbound system composed of many free electrons, ions, and neutral particles, with macroscopic time and spatial scales. Based on dielectric barrier discharge, glow discharge, corona discharge, or arch discharge, CAP is generated at normal atmospheric pressure. Its special physical properties maintain its temperature at 20°C-40°C, combining the advantages of high safety and strong ionic activity. CAP has been tentatively used in inflammatory or pruritic skin disorders such as psoriasis, pruritus, and ichthyosis. Increasing data suggest that CAP can attack the microbial structure due to its unique effects, such as heat, ultraviolet radiation, and free radicals, resulting in its inactivation. Meanwhile, CAP regulates reactive oxygen species and reactive nitrogen species in and out of the cells, thereby improving cell immunocompetence. In addition, CAP has a beneficial effect on the skin barrier function via changing the skin lipid contents and increasing the skin permeability to drugs. This review summarizes the potential effects of CAP on the major pathogenic causes of AD and discusses the safety of CAP application in dermatology in order to expand the clinical application value of CAP to AD.
Collapse
Affiliation(s)
- Fan Bai
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi An, China
| | - Yutong Ran
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi An, China
| | - Siyue Zhai
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi An, China
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi An, China
| |
Collapse
|
13
|
Nitsch A, Qarqash S, Römer S, Schoon J, Ekkernkamp A, Niethard M, Reichert JC, Wassilew GI, Tzvetkov MV, Haralambiev L. Enhancing the Impact of Chemotherapy on Ewing Sarcoma Cells through Combination with Cold Physical Plasma. Int J Mol Sci 2023; 24:ijms24108669. [PMID: 37240019 DOI: 10.3390/ijms24108669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Although Ewing's sarcoma (ES) is a rare, but very aggressive tumor disease affecting the musculoskeletal system, especially in children, it is very aggressive and difficult to treat. Although medical advances and the establishment of chemotherapy represent a turning point in the treatment of ES, resistance to chemotherapy, and its side effects, continue to be problems. New treatment methods such as the application of cold physical plasma (CPP) are considered potential supporting tools since CPP is an exogenous source of reactive oxygen and nitrogen species, which have similar mechanisms of action in the tumor cells as chemotherapy. This study aims to investigate the synergistic effects of CPP and commonly used cytostatic chemotherapeutics on ES cells. The chemotherapy drugs doxorubicin and vincristine, the most commonly used in the treatment of ES, were applied to two different ES cell lines (RD-ES and A673) and their IC20 and IC50 were determined. In addition, individual chemotherapeutics in combination with CPP were applied to the ES cells and the effects on cell growth, cell viability, and apoptosis processes were examined. A single CPP treatment resulted in the dose-dependent growth inhibition of ES cells. The combination of different cytostatics and CPP led to significant growth inhibition, a reduction in cell viability, and higher rates of apoptosis compared to cells not additionally exposed to CPP. The combination of CPP treatment and the application of cytostatic drugs to ES cells showed promising results, significantly enhancing the cytotoxic effects of chemotherapeutic agents. These preclinical in vitro data indicate that the use of CPP can enhance the efficacy of common cytostatic chemotherapeutics, and thus support the translation of CPP as an anti-tumor therapy in clinical routine.
Collapse
Affiliation(s)
- Andreas Nitsch
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Sara Qarqash
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Sarah Römer
- Department of General Pharmacology, Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, 17487 Greifswald, Germany
| | - Janosch Schoon
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Axel Ekkernkamp
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
- Department of Trauma and Orthopaedic Surgery, BG Klinikum Unfallkrankenhaus Berlin, Warener Straße 7, 12683 Berlin, Germany
| | - Maya Niethard
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
- Sarcoma Centre, HELIOS-Klinikum Berlin-Buch, Schwanebecker Chaussee 50, 13125 Berlin, Germany
| | - Johannes C Reichert
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Georgi I Wassilew
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Mladen V Tzvetkov
- Department of General Pharmacology, Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, 17487 Greifswald, Germany
| | - Lyubomir Haralambiev
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
- Department of Trauma and Orthopaedic Surgery, BG Klinikum Unfallkrankenhaus Berlin, Warener Straße 7, 12683 Berlin, Germany
| |
Collapse
|
14
|
Holanda AGA, Cesário BC, Silva VM, Francelino LEC, Nascimento BHM, Damasceno KFA, Ishikawa U, Farias NBS, Junior RFA, Barboza CAG, Junior CA, Antunes JMAP, Moura CEB, Queiroz GF. Use of Cold Atmospheric Plasma in the Treatment of Squamous Cell Carcinoma: in vitro Effects and Clinical Application in Feline Tumors: A Pilot Study. Top Companion Anim Med 2023; 53-54:100773. [PMID: 36990177 DOI: 10.1016/j.tcam.2023.100773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/19/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Cold atmospheric plasma (CAP) has shown promising results against squamous cell carcinoma (SCC) in both in vivo and in vitro assays, mainly in humans and mice. Its applicability for treatment of feline tumors, however, remains unknown. This study aimed to evaluate the anticancer effects of CAP on a head and neck squamous cell carcinoma (HNSCC) cell lineage and against a clinical case of cutaneous SCC in a cat. Control and treatment groups employing the HNSCC cell line (SCC-25) were used, the latter exposed to CAP for 60 seconds, 90 seconds, or 120 seconds. The cells were subjected to the MTT assay nitric oxidation assay and thermographic in vitro analyses. The clinical application was performed in one cat with cutaneous SCC (3 sites). The lesions were treated and evaluated by thermographic, histopathological, and immunohistochemical examinations (caspase-3 and TNF-alpha). Treatment of the SCC-25 cells for 90 seconds and 120 seconds resulted in a significant nitrite concentration increase. Decreased cell viability was observed after 24 hours and 48 hours, regardless of exposure time. However, the cell viability reduction observed at 72 hours was significant only in the 120 seconds treatment. In vitro, the temperature decreased for all treatment times, while the plasma induced a slight increase in mean temperature (0.7°C) in the in vivo assay. Two of the 3 clinical tumors responded to the treatment: one with a complete response and the other, partial, while the third (lower lip SCC) remained stable. Both remaining tumors displayed apoptotic areas and increased expression of caspase-3 and TNF-alpha. Adverse effects were mild and limited to erythema and crusting. The CAP exhibited an in vitro anticancer effect on the HNSCC cell line, demonstrated by a dose-dependent cell viability reduction. In vivo, the therapy appears safe and effective against feline cutaneous SCC. The treatment did not result in a clinical response for 1 of 3 lesions (proliferative lower lip tumor), however, a biological effect was still demonstrated by the higher expression of apoptosis indicators.
Collapse
Affiliation(s)
- André G A Holanda
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, Brazil.
| | - Bruna C Cesário
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, Brazil
| | - Victória M Silva
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, Brazil
| | - Luiz E C Francelino
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, Brazil
| | - Bruno H M Nascimento
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, Brazil
| | - Kássia F A Damasceno
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, Brazil
| | - Uta Ishikawa
- Department of Morphology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Naisandra B S Farias
- Department of Morphology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Raimundo F A Junior
- Department of Morphology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Carlos A G Barboza
- Department of Morphology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Clodomiro A Junior
- Department of Natural Sciences, Mathematics and Statistics, Federal Rural University of the Semi-Arid, RN, Brazil
| | - João M A P Antunes
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, Brazil
| | - Carlos E B Moura
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, Brazil
| | - Genilson F Queiroz
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, Brazil
| |
Collapse
|
15
|
Zimmermann T, Staebler S, Taudte RV, Ünüvar S, Grösch S, Arndt S, Karrer S, Fromm MF, Bosserhoff AK. Cold Atmospheric Plasma Triggers Apoptosis via the Unfolded Protein Response in Melanoma Cells. Cancers (Basel) 2023; 15:cancers15041064. [PMID: 36831408 PMCID: PMC9954601 DOI: 10.3390/cancers15041064] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Cold atmospheric plasma (CAP) describes a partially ionized gas carrying large amounts of reactive oxygen (ROS) and nitrogen species (RNS). Numerous studies reported strong antitumor activity of CAP, thus rendering it a promising approach for tumor therapy. Although several cellular mechanisms of its cytotoxicity were identified in recent years, the exact molecular effects and contributing signaling pathways are yet to be discovered. We discovered a strong activation of unfolded protein response (UPR) after CAP treatment with increased C/EBP homologous protein (CHOP) expression, which was mainly caused by protein misfolding and calcium loss in the endoplasmic reticulum. In addition, both ceramide level and ceramide metabolism were reduced after CAP treatment, which was then linked to the UPR activation. Pharmacological inhibition of ceramide metabolism resulted in sensitization of melanoma cells for CAP both in vitro and ex vivo. This study identified a novel mechanism of CAP-induced apoptosis in melanoma cells and thereby contributes to its potential application in tumor therapy.
Collapse
Affiliation(s)
- Tom Zimmermann
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Sebastian Staebler
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - R. Verena Taudte
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Erlangen-Nürnberg, 91054 Erlangen, Germany
- Core Facility Metabolomics/Mass Spectrometry, Philipps University Marburg, 35043 Marburg, Germany
| | - Sumeyya Ünüvar
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Sabine Grösch
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Stephanie Arndt
- Department of Dermatology, University Hospital of Regensburg, 93053 Regensburg, Germany
| | - Sigrid Karrer
- Department of Dermatology, University Hospital of Regensburg, 93053 Regensburg, Germany
| | - Martin F. Fromm
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Anja-Katrin Bosserhoff
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen-EMN, 91054 Erlangen, Germany
- Correspondence:
| |
Collapse
|
16
|
Chupradit S, Widjaja G, Radhi Majeed B, Kuznetsova M, Ansari MJ, Suksatan W, Turki Jalil A, Ghazi Esfahani B. Recent advances in cold atmospheric plasma (CAP) for breast cancer therapy. Cell Biol Int 2023; 47:327-340. [PMID: 36342241 DOI: 10.1002/cbin.11939] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/29/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
Abstract
The serious problems of conventional breast cancer therapy strategies such as drug resistance, severe side effects, and lack of selectivity prompted the development of various cold atmospheric plasma (CAP) devices. Due to its advanced technology, CAP can produce a unique environment rich in reactive oxygen and nitrogen species (RONS), photons, charged ions, and an electric field, making it a promising revolutionary platform for cancer therapy. Despite substantial technological successes, CAP-based therapeutic systems are encounter with distinct limitations, including low control of the generated RONS, poor knowledge about its anticancer mechanisms, and challenges concerning designing, manufacturing, clinical translation, and commercialization, which must be resolved. The latest developments in CAP-based therapeutic systems for breast cancer treatment are discussed in this review. More significantly, the integration of CAP-based medicine approaches with other breast cancer therapies, including chemo- and nanotherapy is thoroughly addressed.
Collapse
Affiliation(s)
- Supat Chupradit
- Department of Occupational Therapy, Faculty of Associated Medical Sciences, Chiang Mai University, Suthep, Chiang Mai, Thailand
| | - Gunawan Widjaja
- Universitas Krisnadwipayana, Universitas Indonesia, Jakarta, Indonesia
| | | | - Maria Kuznetsova
- Department of Propaedeutics of Dental Diseases, I.M. Sechenov First Moscow State Medical University, Moskva, Russia
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
| | - Wanich Suksatan
- HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Faculty of Nursing, Bangkok, Thailand
| | - Abduladheem Turki Jalil
- Faculty of Biology and Ecology, Yanka Kupala State University of Grodno, Grodno, Belarus.,College of Technical Engineering, The Islamic University, Najaf, Iraq.,Department of Dentistry, Kut University College, Kut, Wasit, Iraq
| | - Bahar Ghazi Esfahani
- Department of Biological Sciences and Technologies, University of Isfahan, Iran, Isfahan
| |
Collapse
|
17
|
Nitsch A, Sander C, Eggers B, Weiss M, Egger E, Kramer FJ, Erb HHH, Mustea A, Stope MB. Pleiotropic Devitalization of Renal Cancer Cells by Non-Invasive Physical Plasma: Characterization of Molecular and Cellular Efficacy. Cancers (Basel) 2023; 15:cancers15020481. [PMID: 36672432 PMCID: PMC9856574 DOI: 10.3390/cancers15020481] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/01/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Renal cell carcinoma (RCC) is the third most common urological tumor and has an extremely poor prognosis after metastasis has occurred. Therapeutic options are highly restricted, primarily due to resistance to classical chemotherapeutics. The development of new, innovative therapeutic procedures is thus of great urgency. In the present study, the influence of non-invasive physical plasma (NIPP) on malignant and non-malignant renal cells is characterized. The biological efficacy of NIPP has been demonstrated in malignant renal cell lines (786-O, Caki-1) and non-malignant primary human renal epithelial cells (HREpC). The cell responses that were experimentally examined were cell growth (cell number determination, calculation of growth rate and doubling time), cell motility (scratch assay, invasiveness assay), membrane integrity (uptake of fluorescent dye, ATP release), and induction of apoptosis (TUNEL assay, caspase-3/7 assay, comet assay). A single NIPP treatment of the malignant cells significantly inhibited cell proliferation, invasiveness, and metastasis. This treatment has been attributed to the disruption of membrane functionality and the induction of apoptotic mechanisms. Comparison of NIPP sensitivity of malignant 786-O and Caki-1 cells with non-malignant HREpC cells showed significant differences. Our results suggest that renal cancer cells are significantly more sensitive to NIPP than non-malignant renal cells. Treatment with NIPP could represent a promising innovative option for the therapy of RCC and might supplement established treatment procedures. Of high clinical relevance would be the chemo-sensitizing properties of NIPP, which could potentially allow a combination of NIPP treatment with low-dose chemotherapy.
Collapse
Affiliation(s)
- Andreas Nitsch
- Department of Trauma, Reconstructive Surgery and Rehabilitation Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Caroline Sander
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Benedikt Eggers
- Department of Oral, Maxillofacial and Plastic Surgery, University Hospital Bonn, Welschnonnenstr. 17, 53111 Bonn, Germany
| | - Martin Weiss
- Department of Women’s Health, Eberhard Karls Universität Tübingen, Calwerstraße 7, 72076 Tübingen, Germany
| | - Eva Egger
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Franz-Josef Kramer
- Department of Oral, Maxillofacial and Plastic Surgery, University Hospital Bonn, Welschnonnenstr. 17, 53111 Bonn, Germany
| | - Holger H. H. Erb
- Department of Urology, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Alexander Mustea
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Matthias B. Stope
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Correspondence: ; Tel.: +49-228-287-11361
| |
Collapse
|
18
|
Dai X, Zhou Y, Han F, Li J. Succinylation and redox status in cancer cells. Front Oncol 2022; 12:1081712. [PMID: 36605449 PMCID: PMC9807787 DOI: 10.3389/fonc.2022.1081712] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
Succinylation is a post-translational modification (PTM) event that associates metabolic reprogramming with various pathological disorders including cancers via transferring a succinyl group to a residue of the target protein in an enzymic or non-enzymic manner. With our incremental knowledge on the roles of PTM played in tumor initiation and progression, relatively little has been focused on succinylation and its clinical implications. By delineating the associations of succinylation with cancer hallmarks, we identify the, in general, promotive roles of succinylation in manifesting cancer hallmarks, and conceptualize two working modes of succinylation in driving oncogenic signaling, i.e., via altering the structure and charge of target proteins towards enhanced stability and activity. We also characterize succinylation as a reflection of cellular redox homeostatic status and metabolic state, and bring forth the possible use of hyper-succinylated genome for early cancer diagnosis or disease progression indication. In addition, we propose redox modulation tools such as cold atmospheric plasma as a promising intervention approach against tumor cells and cancer stemness via targeting the redox homeostatic environment cells established under a pathological condition such as hypoxia. Taken together, we emphasize the central role of succinylation in bridging the gap between cellular metabolism and redox status, and its clinical relevance as a mark for cancer diagnosis as well as a target in onco-therapeutics.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi, China,*Correspondence: Xiaofeng Dai, ; Jitian Li,
| | - Yanyan Zhou
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Fei Han
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jitian Li
- Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, China,*Correspondence: Xiaofeng Dai, ; Jitian Li,
| |
Collapse
|
19
|
Combined In Vitro Toxicity and Immunogenicity of Cold Plasma and Pulsed Electric Fields. Biomedicines 2022; 10:biomedicines10123084. [PMID: 36551840 PMCID: PMC9775231 DOI: 10.3390/biomedicines10123084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/11/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
In modern oncology, therapies are based on combining monotherapies to overcome treatment resistance and increase therapy precision. The application of microsecond-pulsed electric fields (PEF) is approved to enhance local chemotherapeutic drug uptake within combination electrochemotherapy regimens. Reactive oxygen species (ROS) have been implicated in anticancer effects, and cold physical plasma produces vast amounts of ROS, which have recently been shown to benefit head and neck cancer patients. PEF and cold plasma technology have been linked to immunogenic cell death (ICD) induction, a regulated cell death accompanied by sterile inflammation that promotes antitumor immunity. To this end, we investigated the combined effect of both treatments regarding their intracellular ROS accumulation, toxicity, ICD-related marker expression, and optimal exposure sequence in a leukemia model cell line. The combination treatment substantially increased ROS and intracellular glutathione levels, leading to additive cytotoxic effects accompanied by a significantly increased expression of ICD markers, such as the eat-me signal calreticulin (CRT). Preconditioned treatment with cold plasma followed by PEF exposure was the most potent treatment sequence. The results indicate additive effects of cold plasma and PEF, motivating further studies in skin and breast tumor models for the future improvement of ECT in such patients.
Collapse
|
20
|
Li X, Rui X, Li D, Wang Y, Tan F. Plasma oncology: Adjuvant therapy for head and neck cancer using cold atmospheric plasma. Front Oncol 2022; 12:994172. [PMID: 36249012 PMCID: PMC9560126 DOI: 10.3389/fonc.2022.994172] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/25/2022] [Indexed: 12/24/2022] Open
Abstract
The worldwide incidence of head and neck cancer (HNC) exceeds half a million cases annually, and up to half of the patients with HNC present with advanced disease. Surgical resection remains the mainstay of treatment for many HNCs, although radiation therapy, chemotherapy, targeted therapy, and immunotherapy might contribute to individual patient’s treatment plan. Irrespective of which modality is chosen, disease prognosis remains suboptimal, especially for higher staging tumors. Cold atmospheric plasma (CAP) has recently demonstrated a substantial anti-tumor effect. After a thorough literature search, we provide a comprehensive review depicting the oncological potential of CAP in HNC treatment. We discovered that CAP applies to almost all categories of HNC, including upper aerodigestive tract cancers, head and neck glandular cancers and skin cancers. In addition, CAP is truly versatile, as it can be applied not only directly for superficial or luminal tumors but also indirectly for deep solid organ tumors. Most importantly, CAP can work collaboratively with existing clinical oncotherapies with synergistic effect. After our attempts to elaborate the conceivable molecular mechanism of CAP’s anti-neoplastic effect for HNC, we provide a brief synopsis of recent clinical and preclinical trials emphasizing CAP’s applicability in head and neck oncology. In conclusion, we have enunciated our vision of plasma oncology using CAP for near future HNC treatment.
Collapse
Affiliation(s)
- Xuran Li
- Shanghai Fourth People’s Hospital, and School of Medicine, Tongji University, Shanghai, China
| | | | - Danni Li
- Shanghai Fourth People’s Hospital, and School of Medicine, Tongji University, Shanghai, China
| | - Yanhong Wang
- Shanghai Fourth People’s Hospital, and School of Medicine, Tongji University, Shanghai, China
| | - Fei Tan
- Shanghai Fourth People’s Hospital, and School of Medicine, Tongji University, Shanghai, China
- Department of Surgery, The Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Surgery, The Royal College of Surgeons of England, London, United Kingdom
- *Correspondence: Fei Tan,
| |
Collapse
|
21
|
Kumar Dubey S, Dabholkar N, Narayan Pal U, Singhvi G, Kumar Sharma N, Puri A, Kesharwani P. Emerging innovations in cold plasma therapy against cancer: A paradigm shift. Drug Discov Today 2022; 27:2425-2439. [PMID: 35598703 PMCID: PMC9420777 DOI: 10.1016/j.drudis.2022.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/23/2022] [Accepted: 05/16/2022] [Indexed: 11/18/2022]
Abstract
Cancer is one of the major causes of mortality, accounting for ∼ 9.5 million deaths globally in 2018. The spectrum of conventional treatment for cancer includes surgery, chemotherapy and radiotherapy. Recently, cold plasma therapy surfaced as a novel technique in the treatment of cancer. The FDA approval of the first trial for the use of cold atmospheric plasma (CAP) in cancer therapy in 2019 is evidence of this. This review highlights the mechanisms of action of CAP. Additionally, its applications in anticancer therapy have been reviewed. In summary, this article will introduce the readers to the exciting field of plasma oncology and help them understand the current status and prospects of plasma oncology.
Collapse
Affiliation(s)
- Sunil Kumar Dubey
- R&D Healthcare Division, Emami, 13 BT Road, Belgharia, Kolkata 700056, India.
| | - Neha Dabholkar
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Udit Narayan Pal
- Council of Scientific and Industrial Research (CSIR)-Central Electronics Engineering Research Institute (CEERI), Pilani, Rajasthan 333031, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Navin Kumar Sharma
- School of Physics, Devi Ahilya Vishwavidyalaya, Indore, Madhya Pradesh 452001, India
| | - Anu Puri
- RNA Structure and Design Section, RNA Biology Laboratory (RBL), Center for Cancer Research, National Cancer Institute - Frederick, Frederick, MD 21702, USA
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
22
|
Wang Y, Mang X, Li X, Cai Z, Tan F. Cold atmospheric plasma induces apoptosis in human colon and lung cancer cells through modulating mitochondrial pathway. Front Cell Dev Biol 2022; 10:915785. [PMID: 35959493 PMCID: PMC9360593 DOI: 10.3389/fcell.2022.915785] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/11/2022] [Indexed: 11/29/2022] Open
Abstract
Cold atmospheric plasma (CAP) is an emerging and promising oncotherapy with considerable potential and advantages that traditional treatment modalities lack. The objective of this study was to investigate the effect and mechanism of plasma-inhibited proliferation and plasma-induced apoptosis on human lung cancer and colon cancer cells in vitro and in vivo. Piezobrush® PZ2, a handheld CAP unit based on the piezoelectric direct discharge technology, was used to generate and deliver non-thermal plasma. Firstly, CAPPZ2 treatment inhibited the proliferation of HT29 colorectal cancer cells and A549 lung cancer cells using CCK8 assay, caused morphological changes at the cellular and subcellular levels using transmission electron microscopy, and suppressed both types of tumor cell migration and invasion using the Transwell migration and Matrigel invasion assay. Secondly, we confirmed plasma-induced apoptosis in the HT29 and A549 cells using the AO/EB staining coupled with flow cytometry, and verified the production of apoptosis-related proteins, such as cytochrome c, PARP, cleaved caspase-3 and caspase-9, Bcl-2 and Bax, using western blotting. Finally, the aforementioned in vitro results were tested in vivo using cell-derived xenograft mouse models, and the anticancer effect was confirmed and attributed to CAP-mediated apoptosis. The immunohistochemical analysis revealed that the expression of cleaved caspase-9, caspase-3, PARP and Bax were upregulated whereas that of Bcl-2 downregulated after CAP treatment. These findings collectively suggest that the activation of the mitochondrial pathway is involved during CAPPZ2-induced apoptosis of human colon and lung cancer cells in vitro and in vivo.
Collapse
Affiliation(s)
- Yanhong Wang
- Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinyu Mang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xuran Li
- Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhengyu Cai
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fei Tan
- Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- The Royal College of Surgeons in Ireland, Dublin, Ireland
- The Royal College of Surgeons of England, London, United Kingdom
| |
Collapse
|
23
|
Golpour M, Alimohammadi M, Sohbatzadeh F, Fattahi S, Bekeschus S, Rafiei A. Cold atmospheric pressure plasma treatment combined with starvation increases autophagy and apoptosis in melanoma in vitro and in vivo. Exp Dermatol 2022; 31:1016-1028. [PMID: 35181947 DOI: 10.1111/exd.14544] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 12/01/2022]
Abstract
Despite advances in therapy, malignant melanoma remains a fatal disease. Among several emerging approaches to combat cancer, cold atmospheric pressure plasma (CAP) has shown promising results as a novel antitumor agent in preclinical models so far. The technology mainly relies on the emittance of various reactive oxygen and nitrogen species (ROS/RNS) that are tumor-toxic at high concentrations. Moreover, malignant melanoma has a metabolic dimension that can be targeted by mild starvation. To this end, we investigated the combined effect of starvation and CAP treatment on melanoma in vitro and in vivo. In vitro, starvation+CAP led to cell morphology changes, decreased metabolic activity and increased lipid peroxidation accompanied by apoptosis and DNA fragmentation in murine B16 melanoma cells but not murine non-malignant L929 fibroblasts. This was paralleled by increased apoptosis (Bax, Bcl-2 and Caspase-3) and autophagy (Lc3 and Atg5)-related gene expression. In vivo, starvation reduced tumor burden. Combination with CAP treatment augmented this effect significantly, albeit there was no difference of combination treatment to CAP exposure alone. Interestingly, there was an overall greater increase of Lc3 and Atg5 in the tumor tissue compared to CAP exposure alone, while starvation-induced autophagy-related gene expression was similar to in the combination group. These data collectively suggest that CAP-derived ROS/RNS treatment and autophagy-induction augment antitumor effects in malignant melanoma in vitro and in vivo.
Collapse
Affiliation(s)
- Monireh Golpour
- Molecular and Cell Biology Research Center, Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Science, Sari, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshad Sohbatzadeh
- Department of Atomic and Molecular Physics, Faculty of Science, University of Mazandaran, Babolsar, Iran
| | | | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| | - Alireza Rafiei
- Department of Immunology, Molecular and Cell Biology Research Center, School of Medicine, Mazandaran University of Medical Science, Sari, Iran
| |
Collapse
|
24
|
Zhao L, Yan C, Kong S, Jia T, Chu Z, Yang L, Wu J, Geng S, Guo K. Biosafety and differentially expressed genes analysis of melanoma cells treated with cold atmospheric plasma. JOURNAL OF BIOPHOTONICS 2022; 15:e202100403. [PMID: 35261164 DOI: 10.1002/jbio.202100403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Cold atmospheric plasma (CAP) has attracted increasing attention due to its anti-bacterial and anti-tumor effects. Melanoma is an aggressive malignancy with increasing incidence rate and poor prognosis. Evaluating cell viability, apoptosis rate and reactive species injection efficiency of melanoma cells and human keratinocyte cells (HaCaT) treated with CAP to analyze biological safety of CAP. RNA-sequencing (RNA-seq) of A875 cells before and after treatment was performed to further explore the anti-tumor mechanism of CAP. CAP had a more significant biological effect on melanoma cells than HaCaT cells by inhibiting proliferation and promoting apoptosis. RNA-sequencing analysis showed that besides MAPK and p53 apoptotic signaling pathways, necroptosis and autophagy also played important roles in CAP-induced melanoma cells death. CAP can selectively kill melanoma cells and has good biosafety cytologically. Besides apoptosis, CAP can induce cell death via autophagy and necroptosis.
Collapse
Affiliation(s)
- Lihong Zhao
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Cong Yan
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuzhen Kong
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tao Jia
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhaowei Chu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Li Yang
- Department of Dermatology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jian Wu
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, China
| | - Songmei Geng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Kun Guo
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
25
|
Zhai SY, Kong MG, Xia YM. Cold Atmospheric Plasma Ameliorates Skin Diseases Involving Reactive Oxygen/Nitrogen Species-Mediated Functions. Front Immunol 2022; 13:868386. [PMID: 35720416 PMCID: PMC9204314 DOI: 10.3389/fimmu.2022.868386] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Skin diseases are mainly divided into infectious diseases, non-infectious inflammatory diseases, cancers, and wounds. The pathogenesis might include microbial infections, autoimmune responses, aberrant cellular proliferation or differentiation, and the overproduction of inflammatory factors. The traditional therapies for skin diseases, such as oral or topical drugs, have still been unsatisfactory, partly due to systematic side effects and reappearance. Cold atmospheric plasma (CAP), as an innovative and non-invasive therapeutic approach, has demonstrated its safe and effective functions in dermatology. With its generation of reactive oxygen species and reactive nitrogen species, CAP exhibits significant efficacies in inhibiting bacterial, viral, and fungal infections, facilitating wound healing, restraining the proliferation of cancers, and ameliorating psoriatic or vitiligous lesions. This review summarizes recent advances in CAP therapies for various skin diseases and implicates future strategies for increasing effectiveness or broadening clinical indications.
Collapse
Affiliation(s)
- Si-yue Zhai
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Center of Plasma Biomedicine, State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an, China
| | - Michael G. Kong
- Center of Plasma Biomedicine, State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an, China
- School of Electrical Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Yu-min Xia
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
26
|
Abstract
AbstractSestrin2 is a conserved antioxidant, metabolism regulator, and downstream of P53. Sestrin2 can suppress oxidative stress and inflammation, thereby preventing the development and progression of cancer. However, Sestrin2 attenuates severe oxidative stress by activating nuclear factor erythroid 2-related factor 2 (Nrf2), thereby enhancing cancer cells survival and chemoresistance. Sestrin2 inhibits endoplasmic reticulum stress and activates autophagy and apoptosis in cancer cells. Attenuation of endoplasmic reticulum stress and augmentation of autophagy hinders cancer development but can either expedite or impede cancer progression under specific conditions. Furthermore, Sestrin2 can vigorously inhibit oncogenic signaling pathways through downregulation of mammalian target of rapamycin complex 1 (mTORC1) and hypoxia-inducible factor 1-alpha (HIF-1α). Conversely, Sestrin2 decreases the cytotoxic activity of T cells and natural killer cells which helps tumor cells immune evasion. Sestrin2 can enhance tumor cells viability in stress conditions such as glucose or glutamine deficiency. Cancer cells can also upregulate Sestrin2 during chemotherapy or radiotherapy to attenuate severe oxidative stress and ER stress, augment autophagy and resist the treatment. Recent studies unveiled that Sestrin2 is involved in the development and progression of several types of human cancer. The effect of Sestrin2 may differ depending on the type of tumor, for instance, several studies revealed that Sestrin2 protects against colorectal cancer, whereas results are controversial regarding lung cancer. Furthermore, Sestrin2 expression correlates with metastasis and survival in several types of human cancer such as colorectal cancer, lung cancer, and hepatocellular carcinoma. Targeted therapy for Sestrin2 or regulation of its expression by new techniques such as non-coding RNAs delivery and vector systems may improve cancer chemotherapy and overcome chemoresistance, metastasis and immune evasion that should be investigated by future trials.
Collapse
|
27
|
Murthy SRK, Cheng X, Zhuang T, Ly L, Jones O, Basadonna G, Keidar M, Canady J. BCL2A1 regulates Canady Helios Cold Plasma-induced cell death in triple-negative breast cancer. Sci Rep 2022; 12:4038. [PMID: 35260587 PMCID: PMC8904455 DOI: 10.1038/s41598-022-07027-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/09/2022] [Indexed: 01/01/2023] Open
Abstract
Breast cancer is the leading cause of cancer death among women. Triple-negative breast cancer (TNBC) has a poor prognosis and frequently relapses early compared with other subtypes. The Cold Atmospheric Plasma (CAP) is a promising therapy for prognostically poor breast cancer such as TNBC. The Canady Helios Cold Plasma (CHCP) induces cell death in the TNBC cell line without thermal damage, however, the mechanism of cell death by CAP treatment is ambiguous and the mechanism of resistance to cell death in some subset of cells has not been addressed. We investigate the expression profile of 48 apoptotic and 35 oxidative gene markers after CHCP treatment in six different types of breast cancer cell lines including luminal A (ER+ PR+/-HER2-), luminal B (ER+PR+/-HER2+), (ER-PR-HER2+), basal-like: ER-PR-HER2- cells were tested with CHCP at different power settings and at 4 different incubation time. The expression levels of the gene markers were determined at 4 different intervals after the treatment. The protein expression of BCL2A1 was only induced after CHCP treatment in TNBC cell lines (p < 0.01), whereas the HER2-positive and ER, PR positive cell lines showed little or no expression of BCL2A1. The BCL2A1 and TNF-alpha expression levels showed a significant correlation within TNBC cell lines (p < 0.01). Silencing BCL2A1 mRNA by siRNA increased the potency of the CHCP treatment. A Combination of CHCP and CPI203, a BET bromodomain inhibitor, and a BCL2A1 antagonist increased the CHCP-induced cell death (p < 0.05). Our results revealed that BCL2A1 is a key gene for resistance during CHCP induced cell death. This resistance in TNBCs could be reversed with a combination of siRNA or BCL2A1 antagonist-CHCP therapy.
Collapse
Affiliation(s)
- Saravana R K Murthy
- Jerome Canady Research Institute for Advanced Biological and Technological Sciences, Takoma Park, MD, USA
| | - Xiaoqian Cheng
- Jerome Canady Research Institute for Advanced Biological and Technological Sciences, Takoma Park, MD, USA
| | | | - Lawan Ly
- Jerome Canady Research Institute for Advanced Biological and Technological Sciences, Takoma Park, MD, USA
| | - Olivia Jones
- Jerome Canady Research Institute for Advanced Biological and Technological Sciences, Takoma Park, MD, USA
| | | | | | - Jerome Canady
- Jerome Canady Research Institute for Advanced Biological and Technological Sciences, Takoma Park, MD, USA.
- The George Washington University, Washington, DC, USA.
- Holy Cross Hospital, Department of Surgery, Silver Spring, MD, USA.
| |
Collapse
|
28
|
Guo B, Li W, Liu Y, Xu D, Liu Z, Huang C. Aberrant Expressional Profiling of Small RNA by Cold Atmospheric Plasma Treatment in Human Chronic Myeloid Leukemia Cells. Front Genet 2022; 12:809658. [PMID: 35186012 PMCID: PMC8851033 DOI: 10.3389/fgene.2021.809658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/23/2021] [Indexed: 12/15/2022] Open
Abstract
Small RNAs (sRNAs), particularly microRNAs (miRNAs), are functional molecules that modulate mRNA transcripts and have been implicated in the etiology of various types of cancer. Cold atmospheric plasma (CAP) is a physical technology widely used in the field of cancer treatment after exhibiting extensive lethality on cancer cells. However, few studies have reported the exact role of miRNAs in CAP-induced anti-cancer effects. The aim of the present study was to determine whether miRNAs are involved in CAP-induced cytotoxicity by using high-throughput sequencing. Our research demonstrated that 28 miRNAs were significantly changed (17 upregulated and 11downregulated) following 24 h of treatment with a room-temperature argon plasma jet for 90 s compared with that of the untreated group in human chronic myeloid leukemia K562 cells. GO enrichment analysis revealed that these target genes were related to cell organelles, protein binding, and single-organism processes. Furthermore, KEGG pathway analysis demonstrated that the target genes of differentially expressed miRNAs were primarily involved in the cAMP signaling pathway, AMPK signaling pathway, and phosphatidylinositol signaling system. Taken together, our study demonstrated that CAP treatment could significantly alter the small RNA expression profile of chronic myeloid leukemia cells and provide a novel theoretical insight for elucidating the molecular mechanisms in CAP biomedicine application.
Collapse
Affiliation(s)
- Bo Guo
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Institute of Genetics and Developmental Biology, Translational Medicine Institute, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Wen Li
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Institute of Genetics and Developmental Biology, Translational Medicine Institute, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yijie Liu
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Institute of Genetics and Developmental Biology, Translational Medicine Institute, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Dehui Xu
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an, China
| | - Zhijie Liu
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an, China
| | - Chen Huang
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Institute of Genetics and Developmental Biology, Translational Medicine Institute, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Xi’an, China
- *Correspondence: Chen Huang,
| |
Collapse
|
29
|
Almeida-Ferreira C, Silva-Teixeira R, Gonçalves AC, Marto CM, Sarmento-Ribeiro AB, Caramelo F, Botelho MF, Laranjo M. Cold Atmospheric Plasma Apoptotic and Oxidative Effects on MCF7 and HCC1806 Human Breast Cancer Cells. Int J Mol Sci 2022; 23:ijms23031698. [PMID: 35163620 PMCID: PMC8836098 DOI: 10.3390/ijms23031698] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/21/2022] Open
Abstract
Breast cancer (BC) is a malignant neoplasia with the highest incidence and mortality rates in women worldwide. Currently, therapies include surgery, radiotherapy, and chemotherapy, including targeted therapies in some cases. However, treatments are often associated with serious adverse effects. Looking for new options in BC treatment, we evaluated the therapeutic potential of cold atmospheric plasma (CAP) in two cell lines (MCF7 and HCC1806) with distinct histological features. Apoptosis seemed to be the most prevalent type of death, as corroborated by several biochemical features, including phosphatidylserine exposure, the disruption of mitochondrial membrane potential, an increase in BAX/BCL2 ratio and procaspase 3 loss. Moreover, the accumulation of cells in the G2/M phase of the cell cycle points to the loss of replication ability and decreased survival. Despite reported toxic concentrations of peroxides in culture media exposed to plasma, intracellular peroxide concentration was overall decreased accompanying a reduction in GSH levels shortly after plasma exposure in both cell lines. In HCC1806, elevated nitric oxide (NO) concentration accompanied by reduced superoxide levels suggests that these cells are capable of converting plasma-derived nitrites into NO that competes with superoxide dismutase (SOD) for superoxide to form peroxinitrite. The concomitant inhibition of the antioxidative activity of cells during CAP treatment, particularly the inhibition of cytochrome c oxidase with sodium azide, synergistically increased plasma toxicity. Thus, this in vitro research enlightens the therapeutic potential of CAP in the treatment of breast cancer, elucidating its possible mechanisms of action.
Collapse
Affiliation(s)
- Catarina Almeida-Ferreira
- Faculty of Medicine, Institute of Biophysics, University of Coimbra, 3000-548 Coimbra, Portugal; (C.A.-F.); (R.S.-T.); (C.M.M.); (F.C.); (M.F.B.)
- Faculty of Medicine, Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (A.B.S.-R.)
| | - Rafael Silva-Teixeira
- Faculty of Medicine, Institute of Biophysics, University of Coimbra, 3000-548 Coimbra, Portugal; (C.A.-F.); (R.S.-T.); (C.M.M.); (F.C.); (M.F.B.)
- Faculty of Medicine, Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (A.B.S.-R.)
- Department of Cardiology, Hospital Center of Vila Nova de Gaia/Espinho, EPE, 4434-502 Vila Nova de Gaia, Portugal
| | - Ana Cristina Gonçalves
- Faculty of Medicine, Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (A.B.S.-R.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Laboratory of Oncobiology and Hematology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Carlos Miguel Marto
- Faculty of Medicine, Institute of Biophysics, University of Coimbra, 3000-548 Coimbra, Portugal; (C.A.-F.); (R.S.-T.); (C.M.M.); (F.C.); (M.F.B.)
- Faculty of Medicine, Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (A.B.S.-R.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Institute of Experimental Pathology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Bela Sarmento-Ribeiro
- Faculty of Medicine, Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (A.B.S.-R.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Laboratory of Oncobiology and Hematology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Francisco Caramelo
- Faculty of Medicine, Institute of Biophysics, University of Coimbra, 3000-548 Coimbra, Portugal; (C.A.-F.); (R.S.-T.); (C.M.M.); (F.C.); (M.F.B.)
- Faculty of Medicine, Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (A.B.S.-R.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Maria Filomena Botelho
- Faculty of Medicine, Institute of Biophysics, University of Coimbra, 3000-548 Coimbra, Portugal; (C.A.-F.); (R.S.-T.); (C.M.M.); (F.C.); (M.F.B.)
- Faculty of Medicine, Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (A.B.S.-R.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Mafalda Laranjo
- Faculty of Medicine, Institute of Biophysics, University of Coimbra, 3000-548 Coimbra, Portugal; (C.A.-F.); (R.S.-T.); (C.M.M.); (F.C.); (M.F.B.)
- Faculty of Medicine, Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, 3000-548 Coimbra, Portugal; (A.C.G.); (A.B.S.-R.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
30
|
Cold Physical Plasma in Cancer Therapy: Mechanisms, Signaling, and Immunity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9916796. [PMID: 35284036 PMCID: PMC8906949 DOI: 10.1155/2021/9916796] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 11/26/2021] [Indexed: 12/11/2022]
Abstract
Despite recent advances in therapy, cancer still is a devastating and life-threatening disease, motivating novel research lines in oncology. Cold physical plasma, a partially ionized gas, is a new modality in cancer research. Physical plasma produces various physicochemical factors, primarily reactive oxygen and nitrogen species (ROS/RNS), causing cancer cell death when supplied at supraphysiological concentrations. This review outlines the biomedical consequences of plasma treatment in experimental cancer therapy, including cell death modalities. It also summarizes current knowledge on intracellular signaling pathways triggered by plasma treatment to induce cancer cell death. Besides the inactivation of tumor cells, an equally important aspect is the inflammatory context in which cell death occurs to suppress or promote the responses of immune cells. This is mainly governed by the release of damage-associated molecular patterns (DAMPs) to provoke immunogenic cancer cell death (ICD) that, in turn, activates cells of the innate immune system to promote adaptive antitumor immunity. The pivotal role of the immune system in cancer treatment, in general, is highlighted by many clinical trials and success stories on using checkpoint immunotherapy. Hence, the potential of plasma treatment to induce ICD in tumor cells to promote immunity targeting cancer lesions systemically is also discussed.
Collapse
|
31
|
Qu J, Luo M, Zhang J, Han F, Hou N, Pan R, Sun X. A paradoxical role for sestrin 2 protein in tumor suppression and tumorigenesis. Cancer Cell Int 2021; 21:606. [PMID: 34784907 PMCID: PMC8596924 DOI: 10.1186/s12935-021-02317-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/04/2021] [Indexed: 02/07/2023] Open
Abstract
Sestrin 2, a highly conserved stress-induced protein, participates in the pathological processes of metabolic and age-related diseases. This p53-inducible protein also regulates cell growth and metabolism, which is closely related to malignant tumorigenesis. Sestrin 2 was reported to regulate various cellular processes, such as tumor cell proliferation, invasion and metastasis, apoptosis, anoikis resistance, and drug resistance. Although sestrin 2 is associated with colorectal, lung, liver, and other cancers, sestrin 2 expression varies among different types of cancer, and the effects and mechanisms of action of this protein are also different. Sestrin 2 was considered a tumor suppressor gene in most studies, whereas conflicting reports considered sestrin 2 an oncogene. Thus, this review aims to examine the literature regarding sestrin 2 in various cancers, summarize its roles in suppression and tumorigenesis, discuss potential mechanisms in the regulation of cancer, and provide a basis for follow-up research and potential cancer treatment development.
Collapse
Affiliation(s)
- Junsheng Qu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, Shandong, China
| | - Moyi Luo
- School of Clinical Medicine, Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jingwen Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, Shandong, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Fang Han
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, Shandong, China
| | - Ruiyan Pan
- School of Pharmacy, Weifang Medical University, Weifang, China.
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, Shandong, China.
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China.
| |
Collapse
|
32
|
Cheng X, Murthy SRK, Zhuang T, Ly L, Jones O, Basadonna G, Keidar M, Kanaan Y, Canady J. Canady Helios Cold Plasma Induces Breast Cancer Cell Death by Oxidation of Histone mRNA. Int J Mol Sci 2021; 22:ijms22179578. [PMID: 34502492 PMCID: PMC8430908 DOI: 10.3390/ijms22179578] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/24/2021] [Accepted: 09/01/2021] [Indexed: 12/29/2022] Open
Abstract
Breast cancer is the most common cancer among women worldwide. Its molecular receptor marker status and mutational subtypes complicate clinical therapies. Cold atmospheric plasma is a promising adjuvant therapy to selectively combat many cancers, including breast cancer, but not normal tissue; however, the underlying mechanisms remain unexplored. Here, four breast cancer cell lines with different marker status were treated with Canady Helios Cold Plasma™ (CHCP) at various dosages and their differential progress of apoptosis was monitored. Inhibition of cell proliferation, induction of apoptosis, and disruption of the cell cycle were observed. At least 16 histone mRNA types were oxidized and degraded immediately after CHCP treatment by 8-oxoguanine (8-oxoG) modification. The expression of DNA damage response genes was up-regulated 12 h post-treatment, indicating that 8-oxoG modification and degradation of histone mRNA during the early S phase of the cell cycle, rather than DNA damage, is the primary cause of cancer cell death induced by CHCP. Our report demonstrates for the first time that CHCP effectively induces cell death in breast cancer regardless of subtyping, through histone mRNA oxidation and degradation during the early S phase of the cell cycle.
Collapse
Affiliation(s)
- Xiaoqian Cheng
- Jerome Canady Research Institute for Advanced Biological and Technological Sciences, Takoma Park, MD 20912, USA; (X.C.); (S.R.K.M.); (T.Z.); (L.L.); (O.J.)
| | - Saravana R. K. Murthy
- Jerome Canady Research Institute for Advanced Biological and Technological Sciences, Takoma Park, MD 20912, USA; (X.C.); (S.R.K.M.); (T.Z.); (L.L.); (O.J.)
| | - Taisen Zhuang
- Jerome Canady Research Institute for Advanced Biological and Technological Sciences, Takoma Park, MD 20912, USA; (X.C.); (S.R.K.M.); (T.Z.); (L.L.); (O.J.)
| | - Lawan Ly
- Jerome Canady Research Institute for Advanced Biological and Technological Sciences, Takoma Park, MD 20912, USA; (X.C.); (S.R.K.M.); (T.Z.); (L.L.); (O.J.)
| | - Olivia Jones
- Jerome Canady Research Institute for Advanced Biological and Technological Sciences, Takoma Park, MD 20912, USA; (X.C.); (S.R.K.M.); (T.Z.); (L.L.); (O.J.)
| | - Giacomo Basadonna
- School of Medicine, University of Massachusetts, Worcester, MA 01605, USA;
| | - Michael Keidar
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA;
| | - Yasmine Kanaan
- Microbiology Department, Howard University, Washington, DC 20060, USA;
- Howard University Cancer Center, Howard University, Washington, DC 20060, USA
| | - Jerome Canady
- Jerome Canady Research Institute for Advanced Biological and Technological Sciences, Takoma Park, MD 20912, USA; (X.C.); (S.R.K.M.); (T.Z.); (L.L.); (O.J.)
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA;
- Department of Surgery, Holy Cross Hospital, Silver Spring, MD 20910, USA
- Correspondence: ; Tel.: +1-(301)-270-0147
| |
Collapse
|
33
|
Yamada S, Yassin MA, Weigel T, Schmitz T, Hansmann J, Mustafa K. Surface activation with oxygen plasma promotes osteogenesis with enhanced extracellular matrix formation in three-dimensional microporous scaffolds. J Biomed Mater Res A 2021; 109:1560-1574. [PMID: 33675166 DOI: 10.1002/jbm.a.37151] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 02/03/2021] [Accepted: 02/10/2021] [Indexed: 12/13/2022]
Abstract
Various types of synthetic polyesters have been developed as biomaterials for tissue engineering. These materials commonly possess biodegradability, biocompatibility, and formability, which are preferable properties for bone regeneration. The major challenge of using synthetic polyesters is the result of low cell affinity due to their hydrophobic nature, which hinders efficient cell seeding and active cell dynamics. To improve wettability, plasma treatment is widely used in industry. Here, we performed surface activation with oxygen plasma to hydrophobic copolymers, poly(l-lactide-co-trimethylene carbonate), which were shaped in 2D films and 3D microporous scaffolds, and then we evaluated the resulting surface properties and the cellular responses of rat bone marrow stem cells (rBMSC) to the material. Using scanning electron microscopy and Fourier-transform infrared spectroscopy, we demonstrated that short-term plasma treatment increased nanotopographical surface roughness and wettability with minimal change in surface chemistry. On treated surfaces, initial cell adhesion and elongation were significantly promoted, and seeding efficiency was improved. In an osteoinductive environment, rBMSC on plasma-treated scaffolds exhibited accelerated osteogenic differentiation with osteogenic markers including RUNX2, osterix, bone sialoprotein, and osteocalcin upregulated, and a greater amount of collagen matrix and mineral deposition were found. This study shows the utility of plasma surface activation for polymeric scaffolds in bone tissue engineering.
Collapse
Affiliation(s)
- Shuntaro Yamada
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Mohammed A Yassin
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Tobias Weigel
- Chair of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg, Würzburg, Germany
- Translational Center Regenerative Therapies, Fraunhofer Institute for Silicate Research (ISC), Würzburg, Germany
| | - Tobias Schmitz
- Chair of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg, Würzburg, Germany
| | - Jan Hansmann
- Chair of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg, Würzburg, Germany
- Translational Center Regenerative Therapies, Fraunhofer Institute for Silicate Research (ISC), Würzburg, Germany
- Department Electrical Engineering, University for Applied Sciences Würzburg/Schweinfurt, Schweinfurt, Germany
| | - Kamal Mustafa
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
34
|
Hsieh YH, Chao AC, Lin YC, Chen SD, Yang DI. The p53/NF-kappaB-dependent induction of sestrin2 by amyloid-beta peptides exerts antioxidative actions in neurons. Free Radic Biol Med 2021; 169:36-61. [PMID: 33852931 DOI: 10.1016/j.freeradbiomed.2021.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/24/2021] [Accepted: 04/04/2021] [Indexed: 12/30/2022]
Abstract
Accumulation of senile plaques mainly composed of neurotoxic amyloid-beta peptide (Aβ) is a pathological hallmark of Alzheimer's disease (AD). Sestrin2 inducible by various types of stressors is known to promote autophagy and exert antioxidative effects. In this work, we revealed the molecular mechanisms underlying Aβ induction of sestrin2 and tested whether antioxidation, in addition to autophagy regulation, also contributes to its neuroprotective effects in primary rat cortical neurons. We found that Aβ25-35 triggered nuclear translocation of p65 and p50, two subunits of nuclear factor-kappaB (NF-κB), and p53. Aβ25-35-induced sestrin2 expression was abolished by the p65 siRNA, the NF-κB inhibitor SN50, and the p53 inhibitor pifithrin-alpha (PFT-α). Further, Aβ25-35 enhanced binding of p50 and p53 to sestrin2 gene promoter that was abolished respectively by the p50 shRNA and PFT-α. Both p50 shRNA and PFT-α attenuated Aβ25-35-induced expression as well as nuclear translocation of all three transcription factors, namely p65, p50, and p53. Interestingly, p50 binding to the promoters of its target genes required p53 activity, whereas p50 also negatively regulated p53 binding to its target sequences. Suppression of sestrin2 expression by siRNA enhanced Aβ25-35- and Aβ1-42-induced production of reactive oxygen species (ROS), lipid peroxidation, and formation of 8-hydroxy-2-deoxyguanosine (8-OH-dG). In contrast, overexpression of the sestrin2 N-terminal or C-terminal fragments neutralized Aβ25-35-induced ROS production. We concluded that Aβ-induced sestrin2 contributing to antioxidant effects in neurons is in part mediated by p53 and NF-κB, which also mutually affect the expression of each other.
Collapse
Affiliation(s)
- Yi-Heng Hsieh
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei City, 112, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei City, 112, Taiwan
| | - A-Ching Chao
- Department of Neurology, College of Medicine, Kaohsiung Medical University, Kaohsiung City, 807, Taiwan; Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung City, 807, Taiwan
| | - Yi-Chun Lin
- Department of Neurology, Taipei City Hospital, Taipei City, 106, Taiwan
| | - Shang-Der Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City, 833, Taiwan; Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City, 833, Taiwan
| | - Ding-I Yang
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei City, 112, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei City, 112, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei City, 112, Taiwan.
| |
Collapse
|
35
|
Xu D, Ning N, Xu Y, Xia W, Liu D, Chen H, Kong MG. Effect of He Plasma Jet Versus Surface Plasma on the Metabolites of Acute Myeloid Leukemia Cells. Front Oncol 2021; 11:552480. [PMID: 33816218 PMCID: PMC8010173 DOI: 10.3389/fonc.2021.552480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
Cold atmospheric plasma, including plasma jet and surface plasma, can promote the apoptosis of cancer cells without causing significant damage to surrounding normal cells, which was hopeful to be applied to the clinical cancer therapy. However, experimental plasma devices used directly to clinical experiments has challenges in technology and methods, especially the difference in killing tumor cells efficiency of these two common plasma sources. Therefore, it is great necessity to explore the differences in treating tumors between different plasma sources. This paper achieved good killing efficiency by using two kinds of cold atmospheric plasma generating devices, namely plasma jet and surface plasma treatment along acute myeloid leukemia (AML). The results showed that the He plasma jet kills leukemia cells more efficiently than surface plasma with the same voltage and frequency and the same time. By GC-TOFMS and metabolomics analysis, this paper compared the differential metabolites of leukemia cells treated by two plasma devices and the key metabolic pathways closely related to differential metabolites. Simultaneously, we found alanine, aspartate and glutamate metabolism was most correlated with a key differential metabolite, glutamine. It was found that the glutaminase activity of He plasma jet group was lower than that of surface plasma group, which might be a reason for He plasma jet group to kill tumor cells better. It was also worth noting that relative quantity of glucose metabolites of plasma jet treatment group was lower than that of surface plasma treatment group. This study provides the basis for clinical trials for future.
Collapse
Affiliation(s)
- Dehui Xu
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, China
| | - Ning Ning
- The School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yujing Xu
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, China
| | - Wenjie Xia
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, China
| | - Dingxin Liu
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, China
| | - Hailan Chen
- Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States
| | - Michael G Kong
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, China.,Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States.,Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA, United States
| |
Collapse
|
36
|
Intracellular Responses Triggered by Cold Atmospheric Plasma and Plasma-Activated Media in Cancer Cells. Molecules 2021; 26:molecules26051336. [PMID: 33801451 PMCID: PMC7958621 DOI: 10.3390/molecules26051336] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
Cold atmospheric plasma (CAP), an ionized gas operating at room temperature, has been increasingly studied with respect to its potential use in medicine, where its beneficial effects on tumor reduction in oncology have been demonstrated. This review discusses the cellular changes appearing in cell membranes, cytoplasm, various organelles, and DNA content upon cells’ direct or indirect exposure to CAP or CAP-activated media/solutions (PAM), respectively. In addition, the CAP/PAM impact on the main cellular processes of proliferation, migration, protein degradation and various forms of cell death is addressed, especially in light of CAP use in the oncology field of plasma medicine.
Collapse
|
37
|
Mateu-Sanz M, Tornín J, Ginebra MP, Canal C. Cold Atmospheric Plasma: A New Strategy Based Primarily on Oxidative Stress for Osteosarcoma Therapy. J Clin Med 2021; 10:893. [PMID: 33672274 PMCID: PMC7926371 DOI: 10.3390/jcm10040893] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma is the most common primary bone tumor, and its first line of treatment presents a high failure rate. The 5-year survival for children and teenagers with osteosarcoma is 70% (if diagnosed before it has metastasized) or 20% (if spread at the time of diagnosis), stressing the need for novel therapies. Recently, cold atmospheric plasmas (ionized gases consisting of UV-Vis radiation, electromagnetic fields and a great variety of reactive species) and plasma-treated liquids have been shown to have the potential to selectively eliminate cancer cells in different tumors through an oxidative stress-dependent mechanism. In this work, we review the current state of the art in cold plasma therapy for osteosarcoma. Specifically, we emphasize the mechanisms unveiled thus far regarding the action of plasmas on osteosarcoma. Finally, we review current and potential future approaches, emphasizing the most critical challenges for the development of osteosarcoma therapies based on this emerging technique.
Collapse
Affiliation(s)
- Miguel Mateu-Sanz
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Escola d’Enginyeria Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC), 08930 Barcelona, Spain; (M.M.-S.); (J.T.); (M.-P.G.)
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08930 Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), UPC, 08034 Barcelona, Spain
| | - Juan Tornín
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Escola d’Enginyeria Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC), 08930 Barcelona, Spain; (M.M.-S.); (J.T.); (M.-P.G.)
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08930 Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), UPC, 08034 Barcelona, Spain
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Escola d’Enginyeria Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC), 08930 Barcelona, Spain; (M.M.-S.); (J.T.); (M.-P.G.)
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08930 Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), UPC, 08034 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08034 Barcelona, Spain
| | - Cristina Canal
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Escola d’Enginyeria Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC), 08930 Barcelona, Spain; (M.M.-S.); (J.T.); (M.-P.G.)
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08930 Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), UPC, 08034 Barcelona, Spain
| |
Collapse
|
38
|
Tavares-da-Silva E, Pereira E, Pires AS, Neves AR, Braz-Guilherme C, Marques IA, Abrantes AM, Gonçalves AC, Caramelo F, Silva-Teixeira R, Mendes F, Figueiredo A, Botelho MF. Cold Atmospheric Plasma, a Novel Approach against Bladder Cancer, with Higher Sensitivity for the High-Grade Cell Line. BIOLOGY 2021; 10:biology10010041. [PMID: 33435434 PMCID: PMC7828061 DOI: 10.3390/biology10010041] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/02/2021] [Accepted: 01/07/2021] [Indexed: 12/24/2022]
Abstract
Simple Summary Bladder cancer has a high incidence and mortality. Besides this, currently available therapies for this type of cancer have low efficacy and show considerable adverse effects, urging the need of new therapeutic approaches. Cold Atmospheric Plasma treatment presents itself as a promising alternative, having demonstrated antitumor effects against several types of cancer. The present work arises from a multidisciplinary team, namely, medical doctors and researchers, in an attempt to find new therapeutic strategies to fight bladder cancer. Therefore, our main objective is to evaluate Cold Atmospheric Plasma effects against bladder cancer, as well as the mechanisms by which it exerts its effects. The results obtained demonstrate that Cold Atmospheric Plasma treatment has a promising antitumor effect on bladder cancer, with higher sensitivity for the high-grade cell line. This new approach using Cold Atmospheric Plasma for the treatment of bladder cancer presents enormous clinical benefits, since it is able to selectively treat the tumor tissue, sparing the normal urothelium, with an additional glaring positive economic impact, since it entails a decrease in the cost of therapy in comparison with conventional therapeutic options. Abstract Antitumor therapies based on Cold Atmospheric Plasma (CAP) are an emerging medical field. In this work, we evaluated CAP effects on bladder cancer. Two bladder cancer cell lines were used, HT-1376 (stage III) and TCCSUP (stage IV). Cell proliferation assays were performed evaluating metabolic activity (MTT assay) and protein content (SRB assay). Cell viability, cell cycle, and mitochondrial membrane potential (Δψm) were assessed using flow cytometry. Reactive oxygen and nitrogen species (RONS) and reduced glutathione (GSH) were evaluated by fluorescence. The assays were carried out with different CAP exposure times. For both cell lines, we obtained a significant reduction in metabolic activity and protein content. There was a decrease in cell viability, as well as a cell cycle arrest in S phase. The Δψm was significantly reduced. There was an increase in superoxide and nitric oxide and a decrease in peroxide contents, while GSH content did not change. These results were dependent on the exposure time, with small differences for both cell lines, but overall, they were more pronounced in the TCCSUP cell line. CAP showed to have a promising antitumor effect on bladder cancer, with higher sensitivity for the high-grade cell line.
Collapse
Affiliation(s)
- Edgar Tavares-da-Silva
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, 3000-548 Coimbra, Portugal;
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal; (A.S.P.); (I.A.M.); (A.M.A.); (A.C.G.); (F.M.); (M.F.B.)
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal; (A.R.N.); (C.B.-G.); (F.C.); (R.S.-T.)
- Centro Hospitalar e Universitário de Coimbra (CHUC), Department of Urology and Renal Transplantation, 3004-561 Coimbra, Portugal
- Correspondence: (E.T.-d.-S.); (E.P.)
| | - Eurico Pereira
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal; (A.R.N.); (C.B.-G.); (F.C.); (R.S.-T.)
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, 3000-548 Coimbra, Portugal
- Correspondence: (E.T.-d.-S.); (E.P.)
| | - Ana S. Pires
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal; (A.S.P.); (I.A.M.); (A.M.A.); (A.C.G.); (F.M.); (M.F.B.)
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal; (A.R.N.); (C.B.-G.); (F.C.); (R.S.-T.)
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, 3000-548 Coimbra, Portugal
| | - Ana R. Neves
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal; (A.R.N.); (C.B.-G.); (F.C.); (R.S.-T.)
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, 3000-548 Coimbra, Portugal
- Project Development Office, Department of Mathematics and Computer Science, Eindhoven University of Technology (TU/e), PO Box 513 5600 MB Eindhoven, The Netherlands
| | - Catarina Braz-Guilherme
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal; (A.R.N.); (C.B.-G.); (F.C.); (R.S.-T.)
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, 3000-548 Coimbra, Portugal
- University of Porto, Faculty of Medicine, 4200-319 Porto, Portugal
| | - Inês A. Marques
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal; (A.S.P.); (I.A.M.); (A.M.A.); (A.C.G.); (F.M.); (M.F.B.)
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal; (A.R.N.); (C.B.-G.); (F.C.); (R.S.-T.)
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, 3000-548 Coimbra, Portugal
- University of Coimbra, Faculty of Pharmacy, 3000-548 Coimbra, Portugal
| | - Ana M. Abrantes
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal; (A.S.P.); (I.A.M.); (A.M.A.); (A.C.G.); (F.M.); (M.F.B.)
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal; (A.R.N.); (C.B.-G.); (F.C.); (R.S.-T.)
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, 3000-548 Coimbra, Portugal
| | - Ana C. Gonçalves
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal; (A.S.P.); (I.A.M.); (A.M.A.); (A.C.G.); (F.M.); (M.F.B.)
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal; (A.R.N.); (C.B.-G.); (F.C.); (R.S.-T.)
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Laboratory of Oncobiology and Hematology and University Clinic of Hematology of Faculty of Medicine, 3000-548 Coimbra, Portugal
| | - Francisco Caramelo
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal; (A.R.N.); (C.B.-G.); (F.C.); (R.S.-T.)
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Laboratory of Biostatistics and Medical Informatics of Faculty of Medicine, 3000-548 Coimbra, Portugal
| | - Rafael Silva-Teixeira
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal; (A.R.N.); (C.B.-G.); (F.C.); (R.S.-T.)
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, 3000-548 Coimbra, Portugal
| | - Fernando Mendes
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal; (A.S.P.); (I.A.M.); (A.M.A.); (A.C.G.); (F.M.); (M.F.B.)
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal; (A.R.N.); (C.B.-G.); (F.C.); (R.S.-T.)
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, 3000-548 Coimbra, Portugal
- Politécnico de Coimbra, ESTeSC, DCBL, Rua 5 de Outubro-SM Bispo, Apartado 7006, 3046-854 Coimbra, Portugal
| | - Arnaldo Figueiredo
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, 3000-548 Coimbra, Portugal;
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal; (A.S.P.); (I.A.M.); (A.M.A.); (A.C.G.); (F.M.); (M.F.B.)
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal; (A.R.N.); (C.B.-G.); (F.C.); (R.S.-T.)
- Centro Hospitalar e Universitário de Coimbra (CHUC), Department of Urology and Renal Transplantation, 3004-561 Coimbra, Portugal
| | - Maria Filomena Botelho
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal; (A.S.P.); (I.A.M.); (A.M.A.); (A.C.G.); (F.M.); (M.F.B.)
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal; (A.R.N.); (C.B.-G.); (F.C.); (R.S.-T.)
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, 3000-548 Coimbra, Portugal
| |
Collapse
|
39
|
Adhikari M, Adhikari B, Adhikari A, Yan D, Soni V, Sherman J, Keidar M. Cold Atmospheric Plasma as a Novel Therapeutic Tool for the Treatment of Brain Cancer. Curr Pharm Des 2020; 26:2195-2206. [PMID: 32116185 DOI: 10.2174/1381612826666200302105715] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/04/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Studies from the past few years revealed the importance of Cold Atmospheric Plasma (CAP) on various kinds of diseases, including brain cancers or glioblastoma (GBM), and hence coined a new term 'Plasma Medicine' in the modern world for promising therapeutic approaches. Here, we focus on the efficacy of CAP and its liquid derivatives on direct interactions or with specific nanoparticles to show pivotal roles in brain cancer treatment. METHOD In the present review study, the authors studied several articles over the past decades published on the types of CAP and its effects on different brain cancers and therapy. RESULTS A growing body of evidence indicates that CAP and its derivatives like Plasma Activated Media/ Water (PAM/PAW) are introduced in different kinds of GBM. Recent studies proposed that CAP plays a remarkable role in GBM treatment. To increase the efficacy of CAP, various nanoparticles of different origins got specific attention in recent times. In this review, different strategies to treat brain cancers, including nanoparticles, are discussed as enhancers of CAP induced targeted nanotherapeutic approach. CONCLUSION CAP treatment and its synergistic effects with different nanoparticles hold great promise for clinical applications in early diagnosis and treatment of GBM treatment. However, results obtained from previous studies were still in the preliminary phase, and there must be a concern over the use of optimal methods for a dosage of CAP and nanoparticles for complete cure of GBM.
Collapse
Affiliation(s)
- Manish Adhikari
- Department of Mechanical and Aerospace Engineering, The George Washington University, Science & Engineering Hall, 800 22nd Street, NW, Washington, DC, 20052, United States
| | - Bhawana Adhikari
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Anupriya Adhikari
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Dayun Yan
- Department of Mechanical and Aerospace Engineering, The George Washington University, Science & Engineering Hall, 800 22nd Street, NW, Washington, DC, 20052, United States
| | - Vikas Soni
- Department of Mechanical and Aerospace Engineering, The George Washington University, Science & Engineering Hall, 800 22nd Street, NW, Washington, DC, 20052, United States
| | - Jonathan Sherman
- Neurological Surgery, The George Washington University, Foggy Bottom South Pavilion, 22nd Street, NW, 7th Floor, Washington, DC, 20037, United States
| | - Michael Keidar
- Department of Mechanical and Aerospace Engineering, The George Washington University, Science & Engineering Hall, 800 22nd Street, NW, Washington, DC, 20052, United States
| |
Collapse
|
40
|
Wang B J, Wang S, Xiao M, Zhang J, Wang A J, Guo Y, Tang Y, Gu J. Regulatory mechanisms of Sesn2 and its role in multi-organ diseases. Pharmacol Res 2020; 164:105331. [PMID: 33285232 DOI: 10.1016/j.phrs.2020.105331] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 02/07/2023]
Abstract
Sestrin2 (Sesn2) is a powerful anti-oxidant that can prevent acute and chronic diseases. The role of Sesn2 has been thoroughly reviewed in liver, nervous system, and immune system diseases. However, there is a limited number of reviews that have summarized the effects of Sesn2 in heart and vascular diseases, and very less literature-based information is available on involvement of Sesn2 in renal and respiratory pathologies. This review summarizes the latest research on Sesn2 in multi-organ stress responses, with a particular focus on the protective role of Sesn2 in cardiovascular, respiratory, and renal diseases, emphasizing the potential therapeutic benefit of targeting Sesn2 in stress-related diseases.
Collapse
Affiliation(s)
- Jie Wang B
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Shudong Wang
- Department of Cardiology at the First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Mengjie Xiao
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jingjing Zhang
- Department of Cardiology at the First Hospital of China Medical University, Department of Cardiology at the People's Hospital of Liaoning Province, Shenyang, Liaoning, 110016, China
| | - Jie Wang A
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yuanfang Guo
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yufeng Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, 250014, China
| | - Junlian Gu
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
41
|
Dai X, Bazaka K, Thompson EW, Ostrikov K(K. Cold Atmospheric Plasma: A Promising Controller of Cancer Cell States. Cancers (Basel) 2020; 12:cancers12113360. [PMID: 33202842 PMCID: PMC7696697 DOI: 10.3390/cancers12113360] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/18/2020] [Accepted: 10/30/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Cancer treatment is complicated by the distinct phenotypic attractor states in which cancer cells exist within individual tumors, and inherent plasticity of cells in transiting between these states facilitates the acquisition of drug-resistant and more stem cell-like phenotypes in cancer cells. Controlling these crucial transition switches is therefore critical for the long-term success of any cancer therapy. This paper highlights the most promising avenues for controlling cancer state transition events by cold atmospheric plasma (CAP) to enable the development of efficient tools for cancer prevention and management. The key switches in carcinogenesis can be used to halt or reverse cancer progression, and understanding how CAP can modulate these processes is critical for the development of CAP-based strategies for cancer prevention, detection and effective treatment. Abstract Rich in reactive oxygen and nitrogen species, cold atmospheric plasma has been shown to effectively control events critical to cancer progression; selectively inducing apoptosis, reducing tumor volume and vasculature, and halting metastasis by taking advantage of, e.g., synergies between hydrogen peroxide and nitrites. This paper discusses the efficacy, safety and administration of cold atmospheric plasma treatment as a potential tool against cancers, with a focus on the mechanisms by which cold atmospheric plasma may affect critical transitional switches that govern tumorigenesis: the life/death control, tumor angiogenesis and epithelial–mesenchymal transition, and drug sensitivity spectrum. We introduce the possibility of modeling cell transitions between the normal and cancerous states using cold atmospheric plasma as a novel research avenue to enhance our understanding of plasma-aided control of oncogenesis.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
- Wuhan Ammunition Life-Tech Company, Ltd., Wuhan 430200, China
- Hospital of Xi’an Jiaotong University, Xi’an 710061, China
- Correspondence: ; Tel.: +86-181-6887-0169
| | - Kateryna Bazaka
- Research School of Electrical, Energy and Materials Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, ACT 2600, Australia;
| | - Erik W. Thompson
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia; (E.W.T.); (K.O.)
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Kostya (Ken) Ostrikov
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia; (E.W.T.); (K.O.)
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
42
|
Zubor P, Wang Y, Liskova A, Samec M, Koklesova L, Dankova Z, Dørum A, Kajo K, Dvorska D, Lucansky V, Malicherova B, Kasubova I, Bujnak J, Mlyncek M, Dussan CA, Kubatka P, Büsselberg D, Golubnitschaja O. Cold Atmospheric Pressure Plasma (CAP) as a New Tool for the Management of Vulva Cancer and Vulvar Premalignant Lesions in Gynaecological Oncology. Int J Mol Sci 2020; 21:ijms21217988. [PMID: 33121141 PMCID: PMC7663780 DOI: 10.3390/ijms21217988] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/24/2022] Open
Abstract
Vulvar cancer (VC) is a specific form of malignancy accounting for 5–6% of all gynaecologic malignancies. Although VC occurs most commonly in women after 60 years of age, disease incidence has risen progressively in premenopausal women in recent decades. VC demonstrates particular features requiring well-adapted therapeutic approaches to avoid potential treatment-related complications. Significant improvements in disease-free survival and overall survival rates for patients diagnosed with post-stage I disease have been achieved by implementing a combination therapy consisting of radical surgical resection, systemic chemotherapy and/or radiotherapy. Achieving local control remains challenging. However, mostly due to specific anatomical conditions, the need for comprehensive surgical reconstruction and frequent post-operative healing complications. Novel therapeutic tools better adapted to VC particularities are essential for improving individual outcomes. To this end, cold atmospheric plasma (CAP) treatment is a promising option for VC, and is particularly appropriate for the local treatment of dysplastic lesions, early intraepithelial cancer, and invasive tumours. In addition, CAP also helps reduce inflammatory complications and improve wound healing. The application of CAP may realise either directly or indirectly utilising nanoparticle technologies. CAP has demonstrated remarkable treatment benefits for several malignant conditions, and has created new medical fields, such as “plasma medicine” and “plasma oncology”. This article highlights the benefits of CAP for the treatment of VC, VC pre-stages, and postsurgical wound complications. There has not yet been a published report of CAP on vulvar cancer cells, and so this review summarises the progress made in gynaecological oncology and in other cancers, and promotes an important, understudied area for future research. The paradigm shift from reactive to predictive, preventive and personalised medical approaches in overall VC management is also considered.
Collapse
Affiliation(s)
- Pavol Zubor
- Department of Gynaecological Oncology, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (Y.W.); (A.D.)
- OBGY Health & Care, Ltd., 010 01 Zilina, Slovakia
- Correspondence: or
| | - Yun Wang
- Department of Gynaecological Oncology, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (Y.W.); (A.D.)
| | - Alena Liskova
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (P.K.)
| | - Marek Samec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (P.K.)
| | - Lenka Koklesova
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (P.K.)
| | - Zuzana Dankova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Anne Dørum
- Department of Gynaecological Oncology, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (Y.W.); (A.D.)
| | - Karol Kajo
- Department of Pathology, St. Elizabeth Cancer Institute Hospital, 81250 Bratislava, Slovakia;
| | - Dana Dvorska
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Vincent Lucansky
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Bibiana Malicherova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Ivana Kasubova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Jan Bujnak
- Department of Obstetrics and Gynaecology, Kukuras Michalovce Hospital, 07101 Michalovce, Slovakia;
| | - Milos Mlyncek
- Department of Obstetrics and Gynaecology, Faculty Hospital Nitra, Constantine the Philosopher University, 949 01 Nitra, Slovakia;
| | - Carlos Alberto Dussan
- Department of Surgery, Orthopaedics and Oncology, University Hospital Linköping, 581 85 Linköping, Sweden;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (P.K.)
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144 Doha, Qatar;
| | - Olga Golubnitschaja
- Predictive, Preventive Personalised (3P) Medicine, Department of Radiation Oncology, Rheinische Friedrich-Wilhelms-Universität Bonn, 53105 Bonn, Germany;
| |
Collapse
|
43
|
Genome-Wide Comparison of the Target Genes of the Reactive Oxygen Species and Non-Reactive Oxygen Species Constituents of Cold Atmospheric Plasma in Cancer Cells. Cancers (Basel) 2020; 12:cancers12092640. [PMID: 32947888 PMCID: PMC7565996 DOI: 10.3390/cancers12092640] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Cold atmospheric plasma is being applied to treat cancer by virtue of its preferential anti-proliferative effect on cancer cells over normal cells. This study aimed to systemically determine the distribution of target genes regulated by the reactive oxygen species and non-reactive oxygen species constituents of the plasma. After analyzing genome-wide expression data for a leukemia and a melanoma cancer cell line from a public database followed by experimental approaches, PTGER3 and HSPA6 genes were found regulated by the non-reactive oxygen species and non-reactive nitrogen species constituents of the plasma in the cancer cells. This study could contribute to elucidate the molecular mechanism how each physicochemical constituent of the plasma induces the specific molecular changes in cancer cells. Abstract Cold atmospheric plasma (CAP) can induce cancer cell death. The majority of gene regulation studies have been biased towards reactive oxygen species (ROS) among the physicochemical components of CAP. The current study aimed to systemically determine the distribution of target genes regulated by the ROS and non-ROS constituents of CAP. Genome-wide expression data from a public database, which were obtained after treating U937 leukemia and SK-mel-147 melanoma cells with CAP or H2O2, were analyzed, and gene sets regulated by either or both of them were identified. The results showed 252 and 762 genes in H2O2-treated U937 and SK-mel-147 cells, respectively, and 112 and 843 genes in CAP-treated U937 and SK-mel-147 cells, respectively, with expression changes higher than two-fold. Notably, only four and two genes were regulated by H2O2 and CAP in common, respectively, indicating that non-ROS constituents were responsible for the regulation of the majority of CAP-regulated genes. Experiments using ROS and nitrogen oxide synthase (NOS) inhibitors demonstrated the ROS- and reactive nitrogen species (RNS)-independent regulation of PTGER3 and HSPA6 when U937 cancer cells were treated with CAP. Taken together, this study identified CAP-specific genes regulated by constituents other than ROS or RNS and could contribute to the annotation of the target genes of specific constituents in CAP.
Collapse
|
44
|
Chae HS, Gil M, Saha SK, Kwak HJ, Park HW, Vellingiri B, Cho SG. Sestrin2 Expression Has Regulatory Properties and Prognostic Value in Lung Cancer. J Pers Med 2020; 10:jpm10030109. [PMID: 32882793 PMCID: PMC7565522 DOI: 10.3390/jpm10030109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/23/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022] Open
Abstract
Lung cancer remains the most dangerous type of cancer despite recent progress in therapeutic modalities. Development of prognostic markers and therapeutic targets is necessary to enhance lung cancer patient survival. Sestrin family genes (Sestrin1, Sestrin2, and Sestrin3) are involved in protecting cells from stress. In particular, Sestrin2, which mainly protects cells from oxidative stress and acts as a leucine sensor protein in mammalian target of rapamycin (mTOR) signaling, is thought to affect various cancers in different ways. To investigate the role of Sestrin2 expression in lung cancer cells, we knocked down Sestrin2 in A549, a non-small cell lung cancer cell line; this resulted in reduced cell proliferation, migration, sphere formation, and drug resistance, suggesting that Sestrin2 is closely related to lung cancer progression. We analyzed Sestrin2 expression in human tissue using various bioinformatic databases and confirmed higher expression of Sestrin2 in lung cancer cells than in normal lung cells using Oncomine and the Human Protein Atlas. Moreover, analyses using Prognoscan and KMplotter showed that Sestrin2 expression is negatively correlated with the survival of lung cancer patients in multiple datasets. Co-expressed gene analysis revealed Sestrin2-regulated genes and possible associated pathways. Overall, these data suggest that Sestrin2 expression has prognostic value and that it is a possible therapeutic target in lung cancer.
Collapse
Affiliation(s)
- Hee Sung Chae
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (H.S.C.); (M.G.); (S.K.S.); (H.J.K.)
| | - Minchan Gil
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (H.S.C.); (M.G.); (S.K.S.); (H.J.K.)
| | - Subbroto Kumar Saha
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (H.S.C.); (M.G.); (S.K.S.); (H.J.K.)
| | - Hee Jeung Kwak
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (H.S.C.); (M.G.); (S.K.S.); (H.J.K.)
| | - Hwan-Woo Park
- Department of Cell Biology, Konyang University College of Medicine, Daejeon 35365, Korea;
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641-046, India;
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (H.S.C.); (M.G.); (S.K.S.); (H.J.K.)
- Correspondence: ; Tel.: +82-2-450-4207; Fax: +82-2-444-4207
| |
Collapse
|
45
|
Wende K, Bruno G, Lalk M, Weltmann KD, von Woedtke T, Bekeschus S, Lackmann JW. On a heavy path - determining cold plasma-derived short-lived species chemistry using isotopic labelling. RSC Adv 2020; 10:11598-11607. [PMID: 35496584 PMCID: PMC9051657 DOI: 10.1039/c9ra08745a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/25/2020] [Indexed: 12/14/2022] Open
Abstract
Cold atmospheric plasmas (CAPs) are promising medical tools and are currently applied in dermatology and epithelial cancers. While understanding of the biomedical effects is already substantial, knowledge on the contribution of individual ROS and RNS and the mode of activation of biochemical pathways is insufficient. Especially the formation and transport of short-lived reactive species in liquids remain elusive, a situation shared with other approaches involving redox processes such as photodynamic therapy. Here, the contribution of plasma-generated reactive oxygen species (ROS) in plasma liquid chemistry was determined by labeling these via admixing heavy oxygen 18O2 to the feed gas or by using heavy water H2 18O as a solvent for the bait molecule. The inclusion of heavy or light oxygen atoms by the labeled ROS into the different cysteine products was determined by mass spectrometry. While products like cysteine sulfonic acid incorporated nearly exclusively gas phase-derived oxygen species (atomic oxygen and/or singlet oxygen), a significant contribution of liquid phase-derived species (OH radicals) was observed for cysteine-S-sulfonate. The role, origin, and reaction mechanisms of short-lived species, namely hydroxyl radicals, singlet oxygen, and atomic oxygen, are discussed. Interactions of these species both with the target cysteine molecule as well as the interphase and the liquid bulk are taken into consideration to shed light onto several reaction pathways resulting in observed isotopic oxygen incorporation. These studies give valuable insight into underlying plasma-liquid interaction processes and are a first step to understand these interaction processes between the gas and liquid phase on a molecular level.
Collapse
Affiliation(s)
- Kristian Wende
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald) Felix-Hausdorff-Str. 2 Greifswald 17489 Germany
| | - Giuliana Bruno
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald) Felix-Hausdorff-Str. 2 Greifswald 17489 Germany
| | - Michael Lalk
- Cellular Biochemistry & Metabolomics, University of Greifswald Felix-Hausdorff-Str. 4 Greifswald 17487 Germany
| | - Klaus-Dieter Weltmann
- Leibniz Institute for Plasma Science and Technology (INP Greifswald) Felix-Hausdorff-Str. 2 Greifswald 17489 Germany
| | - Thomas von Woedtke
- Leibniz Institute for Plasma Science and Technology (INP Greifswald) Felix-Hausdorff-Str. 2 Greifswald 17489 Germany
- Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center Walther-Rathenau-Str. 48 Greifswald 17489 Germany
| | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald) Felix-Hausdorff-Str. 2 Greifswald 17489 Germany
| | - Jan-Wilm Lackmann
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald) Felix-Hausdorff-Str. 2 Greifswald 17489 Germany
| |
Collapse
|
46
|
ROS from Physical Plasmas: Redox Chemistry for Biomedical Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9062098. [PMID: 31687089 PMCID: PMC6800937 DOI: 10.1155/2019/9062098] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/17/2019] [Accepted: 08/25/2019] [Indexed: 12/24/2022]
Abstract
Physical plasmas generate unique mixes of reactive oxygen and nitrogen species (RONS or ROS). Only a bit more than a decade ago, these plasmas, operating at body temperature, started to be considered for medical therapy with considerably little mechanistic redox chemistry or biomedical research existing on that topic at that time. Today, a vast body of evidence is available on physical plasma-derived ROS, from their spatiotemporal resolution in the plasma gas phase to sophisticated chemical and biochemical analysis of these species once dissolved in liquids. Data from in silico analysis dissected potential reaction pathways of plasma-derived reactive species with biological membranes, and in vitro and in vivo experiments in cell and animal disease models identified molecular mechanisms and potential therapeutic benefits of physical plasmas. In 2013, the first medical plasma systems entered the European market as class IIa devices and have proven to be a valuable resource in dermatology, especially for supporting the healing of chronic wounds. The first results in cancer patients treated with plasma are promising, too. Due to the many potentials of this blooming new field ahead, there is a need to highlight the main concepts distilled from plasma research in chemistry and biology that serve as a mechanistic link between plasma physics (how and which plasma-derived ROS are produced) and therapy (what is the medical benefit). This inevitably puts cellular membranes in focus, as these are the natural interphase between ROS produced by plasmas and translation of their chemical reactivity into distinct biological responses.
Collapse
|
47
|
Tornin J, Mateu-Sanz M, Rodríguez A, Labay C, Rodríguez R, Canal C. Pyruvate Plays a Main Role in the Antitumoral Selectivity of Cold Atmospheric Plasma in Osteosarcoma. Sci Rep 2019; 9:10681. [PMID: 31337843 PMCID: PMC6650457 DOI: 10.1038/s41598-019-47128-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 07/08/2019] [Indexed: 12/22/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary bone tumor but current therapies still have poor prognosis. Cold Atmospheric Plasma (CAP) and Plasma activated media (PAM) have shown potential to eliminate cancer cells in other tumors. It is thought that Reactive Oxygen and Nitrogen species (RONS) in PAM are key players but cell culture media composition alters treatment outcomes and data interpretation due to scavenging of certain RONS. In this work, an atmospheric pressure plasma jet was employed to obtain PAM in the presence or absence of pyruvate and used to treat the SaOS-2 (OS) cell line or hBM-MSC healthy cells. OS cells show higher sensitivity to PAM treatment than healthy cells, both in medium with and without pyruvate, activating apoptosis, DNA damage and deregulating cellular pathways mediated by c-JUN, AKT, AMPK or STAT3. In line with previous works, lack of pyruvate increases cytotoxic potential of PAM affecting cancer and healthy cells by increasing 10–100 times the concentration of H2O2 without altering that of nitrites and thus decreasing CAP anti-tumor selectivity. Suitable conditions for CAP anti-cancer selectivity can be obtained by modifying plasma process parameters (distance, flow, treatment time) to obtain adequate balance of the different RONS in cell culture media.
Collapse
Affiliation(s)
- Juan Tornin
- Biomaterials, Biomechanics and Tissue Engineering Group, Dpt. Materials Science and Metallurgy, Technical University of Catalonia (UPC), Escola d'Enginyeria Barcelona Est (EEBE), c/Eduard Maristany 14, 08019, Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
| | - Miguel Mateu-Sanz
- Biomaterials, Biomechanics and Tissue Engineering Group, Dpt. Materials Science and Metallurgy, Technical University of Catalonia (UPC), Escola d'Enginyeria Barcelona Est (EEBE), c/Eduard Maristany 14, 08019, Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
| | - Aida Rodríguez
- Hospital Universitario Central de Asturias - Instituto de Investigación Sanitaria del Principado de Asturias, Av. de Roma s/n, Oviedo, Spain
| | - Cédric Labay
- Biomaterials, Biomechanics and Tissue Engineering Group, Dpt. Materials Science and Metallurgy, Technical University of Catalonia (UPC), Escola d'Enginyeria Barcelona Est (EEBE), c/Eduard Maristany 14, 08019, Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain
| | - Rene Rodríguez
- Hospital Universitario Central de Asturias - Instituto de Investigación Sanitaria del Principado de Asturias, Av. de Roma s/n, Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias, Av. de Roma s/n, Oviedo, Spain.,CIBER oncology (CIBERONC), Madrid, Spain
| | - Cristina Canal
- Biomaterials, Biomechanics and Tissue Engineering Group, Dpt. Materials Science and Metallurgy, Technical University of Catalonia (UPC), Escola d'Enginyeria Barcelona Est (EEBE), c/Eduard Maristany 14, 08019, Barcelona, Spain. .,Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, Spain.
| |
Collapse
|
48
|
Gao J, Wang L, Xia C, Yang X, Cao Z, Zheng L, Ko R, Shen C, Yang C, Cheng C. Cold atmospheric plasma promotes different types of superficial skin erosion wounds healing. Int Wound J 2019; 16:1103-1111. [PMID: 31207094 DOI: 10.1111/iwj.13161] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/15/2019] [Accepted: 05/25/2019] [Indexed: 12/18/2022] Open
Abstract
Superficial skin erosion wounds are very common in the clinic, and conventional treatments are not always effective; thus, effective and novel therapy is needed. Cold atmospheric plasma (CAP) has been recognised as a promising approach to wound healing. The purpose of this study is to show the potential clinical application of CAP for the healing of different kinds of superficial skin wounds. Seven patients with different kinds of superficial skin wounds (two patients with pyoderma gangrenosum, two patients with trauma would, one patient with giant genital wart, one patient with diabetic foot, and one patient with chronic eczema) were recruited to this study. All patients accepted and received CAP treatment every other day till the wound healed. The expected results were complete wound healing after CAP treatment. All patients achieved complete wound healing after several rounds (range from two to eight) of CAP treatment, and there was no side effect observed. CAP may provide a new and effective choice to solve the problem of the healing of superficial wounds that are not only caused by trauma but also because of eczema. CAP has certain value in the treatment of superficial skin diseases in the future.
Collapse
Affiliation(s)
- Jing Gao
- Department of Dermatology, The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Liyun Wang
- Department of Dermatology, The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Chuankai Xia
- Department of Dermatology, The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Xingyu Yang
- Department of Dermatology, The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Zhicheng Cao
- Department of Dermatology, The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Lei Zheng
- Department of Dermatology, The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Randy Ko
- Department of Dermatology, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Changbing Shen
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, China.,Department of Dermatology, Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Musculoskeletal Research Center, Hinda and Arthur Marcus Institute for Aging Research, Harvard Medical School, Boston, Massachusetts
| | - Chunjun Yang
- Department of Dermatology, The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Cheng Cheng
- Applied Plasma Division, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, China
| |
Collapse
|