1
|
Iungin O, Shydlovska O, Moshynets O, Vasylenko V, Sidorenko M, Mickevičius S, Potters G. Metal-based nanoparticles: an alternative treatment for biofilm infection in hard-to-heal wounds. J Wound Care 2024; 33:xcix-cx. [PMID: 38588056 DOI: 10.12968/jowc.2024.33.sup4a.xcix] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Metal-based nanoparticles (MNPs) are promoted as effective compounds in the treatment of bacterial infections and as possible alternatives to antibiotics. These MNPs are known to affect a broad spectrum of microorganisms using a multitude of strategies, including the induction of reactive oxygen species and interaction with the inner structures of the bacterial cells. The aim of this review was to summarise the latest studies about the effect of metal-based nanoparticles on pathogenic bacterial biofilm formed in wounds, using the examples of Gram-positive bacterium Staphylococcus aureus and Gram-negative bacterium Pseudomonas aeruginosa, as well as provide an overview of possible clinical applications.
Collapse
Affiliation(s)
- Olga Iungin
- 1 Kyiv National University of Technologies and Design (KNUTD), Kyiv, Ukraine
- 2 Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Olga Shydlovska
- 1 Kyiv National University of Technologies and Design (KNUTD), Kyiv, Ukraine
| | - Olena Moshynets
- 2 Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Volodymyr Vasylenko
- 3 Vytautas Magnus University, Faculty of Natural Science, Akademija, Lithuania
| | - Marina Sidorenko
- 3 Vytautas Magnus University, Faculty of Natural Science, Akademija, Lithuania
| | - Saulius Mickevičius
- 3 Vytautas Magnus University, Faculty of Natural Science, Akademija, Lithuania
| | - Geert Potters
- 4 Antwerp Maritime Academy, Antwerp, Belgium
- 5 University of Antwerp, Antwerp, Belgium
| |
Collapse
|
2
|
Ziai Y, Lanzi M, Rinoldi C, Zargarian SS, Zakrzewska A, Kosik-Kozioł A, Nakielski P, Pierini F. Developing strategies to optimize the anchorage between electrospun nanofibers and hydrogels for multi-layered plasmonic biomaterials. NANOSCALE ADVANCES 2024; 6:1246-1258. [PMID: 38356619 PMCID: PMC10863722 DOI: 10.1039/d3na01022h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/28/2024] [Indexed: 02/16/2024]
Abstract
Polycaprolactone (PCL), a recognized biopolymer, has emerged as a prominent choice for diverse biomedical endeavors due to its good mechanical properties, exceptional biocompatibility, and tunable properties. These attributes render PCL a suitable alternative biomaterial to use in biofabrication, especially the electrospinning technique, facilitating the production of nanofibers with varied dimensions and functionalities. However, the inherent hydrophobicity of PCL nanofibers can pose limitations. Conversely, acrylamide-based hydrogels, characterized by their interconnected porosity, significant water retention, and responsive behavior, present an ideal matrix for numerous biomedical applications. By merging these two materials, one can harness their collective strengths while potentially mitigating individual limitations. A robust interface and effective anchorage during the composite fabrication are pivotal for the optimal performance of the nanoplatforms. Nanoplatforms are subject to varying degrees of tension and physical alterations depending on their specific applications. This is particularly pertinent in the case of layered nanostructures, which require careful consideration to maintain structural stability and functional integrity in their intended applications. In this study, we delve into the influence of the fiber dimensions, orientation and surface modifications of the nanofibrous layer and the hydrogel layer's crosslinking density on their intralayer interface to determine the optimal approach. Comprehensive mechanical pull-out tests offer insights into the interfacial adhesion and anchorage between the layers. Notably, plasma treatment of the hydrophobic nanofibers and the stiffness of the hydrogel layer significantly enhance the mechanical effort required for fiber extraction from the hydrogels, indicating improved anchorage. Furthermore, biocompatibility assessments confirm the potential biomedical applications of the proposed nanoplatforms.
Collapse
Affiliation(s)
- Yasamin Ziai
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences Warsaw 02-106 Poland
| | - Massimiliano Lanzi
- Department of Industrial Chemistry, University of Bologna 40136 Bologna Italy
| | - Chiara Rinoldi
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences Warsaw 02-106 Poland
| | - Seyed Shahrooz Zargarian
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences Warsaw 02-106 Poland
| | - Anna Zakrzewska
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences Warsaw 02-106 Poland
| | - Alicja Kosik-Kozioł
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences Warsaw 02-106 Poland
| | - Paweł Nakielski
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences Warsaw 02-106 Poland
| | - Filippo Pierini
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences Warsaw 02-106 Poland
| |
Collapse
|
3
|
Sagnelli D, D’Avino A, Rippa M, Vestri A, Marchesano V, Nenna G, Villani F, Ardila G, Centi S, Ratto F, Petti L. Photomobile Polymer-Piezoelectric Composite for Enhanced Actuation and Energy Generation. ACS APPLIED OPTICAL MATERIALS 2023; 1:1651-1660. [PMID: 37915969 PMCID: PMC10616835 DOI: 10.1021/acsaom.3c00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 11/03/2023]
Abstract
In this study, we present an innovative approach to increase the quantum yield and wavelength sensitivity of photomobile polymer (PMP) films based on azobenzene by doping the polymer matrix with noble metal nanoparticles. These doped PMP films showed faster and more significant bending under both UV as well as visible and near-infrared light regardless of whether it was coherent, incoherent, polarized, or unpolarized irradiation, expanding the potential of PMP-based actuators. To illustrate their practical implications, we created a proof-of-concept model of power generation by coupling it to flexible piezoelectric materials under simulated sunlight. This model has been tested under real operating conditions, thus demonstrating the possibility of generating electricity with variable light exposure. Additionally, our synthetic protocol is solvent-free, which is another benefit of environmental relevance. Our research lays the groundwork for the development of sunlight-sensitive devices, such as photomechanical actuators and advanced photovoltaic modules, which may break ground in the thriving field of smart materials. We are confident that the presented findings will contribute to the ongoing discourse in the field and inspire additional advances in renewable energy applications.
Collapse
Affiliation(s)
- Domenico Sagnelli
- Institute
of Applied Sciences and Intelligent Systems of CNR, Pozzuoli 80072, Italy
| | - Amalia D’Avino
- Institute
of Applied Sciences and Intelligent Systems of CNR, Pozzuoli 80072, Italy
| | - Massimo Rippa
- Institute
of Applied Sciences and Intelligent Systems of CNR, Pozzuoli 80072, Italy
| | - Ambra Vestri
- Institute
of Applied Sciences and Intelligent Systems of CNR, Pozzuoli 80072, Italy
| | - Valentina Marchesano
- Institute
of Applied Sciences and Intelligent Systems of CNR, Pozzuoli 80072, Italy
| | - Giuseppe Nenna
- Energy
and Sustainable Economic Development, ENEA,
Italian National Agency for New Technologies, Portici Research Centre, Portici, Naples 80055, Italy
| | - Fulvia Villani
- Energy
and Sustainable Economic Development, ENEA,
Italian National Agency for New Technologies, Portici Research Centre, Portici, Naples 80055, Italy
| | - Gustavo Ardila
- CNRS,
Grenoble INP, IMEP-LaHC, Univ. Grenoble
Alpes, Univ. Savoie Mont Blanc, Grenoble F-38000, France
| | - Sonia Centi
- Nello
Carrara Institute of Applied Physics of CNR, Sesto Fiorentino 50019, Italy
| | - Fulvio Ratto
- Nello
Carrara Institute of Applied Physics of CNR, Sesto Fiorentino 50019, Italy
| | - Lucia Petti
- Institute
of Applied Sciences and Intelligent Systems of CNR, Pozzuoli 80072, Italy
| |
Collapse
|
4
|
Xu Y, Chen H, Fang Y, Wu J. Hydrogel Combined with Phototherapy in Wound Healing. Adv Healthc Mater 2022; 11:e2200494. [PMID: 35751637 DOI: 10.1002/adhm.202200494] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/17/2022] [Indexed: 01/24/2023]
Abstract
Wound healing is a complex biological process that involves tissue regeneration. Traditional wound dressings are dry, cannot provide a moist environment for wound healing, and do not have high antibacterial properties. Hydrogels, which are capable of retaining large amounts of water, can create a moist healing environment. Currently, phototherapies have exhibited a high potential for the treatment of bacterial infections. Therefore, combining hydrogels with phototherapy can adequately overcome the shortcomings of traditional wound treatment methods and show great potential for wound healing owing to their high efficiency, low irritation, and good antibacterial performance. In this review, the application of hydrogels combined with phototherapy in wound healing is summarized. First, the basic principles of photodynamic therapy and photothermal therapy are briefly introduced. In addition, the progress of the application of hydrogel combined with phototherapy in wound healing is systematically investigated. Finally, the challenges and prospects of combining hydrogel with phototherapy in wound healing are discussed.
Collapse
Affiliation(s)
- Yinglin Xu
- School of Biomedical Engineering, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Shenzhen, 518107, China
| | - Haolin Chen
- Department of Haematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Yifen Fang
- Department of Cardiology, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, 510006, China
| | - Jun Wu
- School of Biomedical Engineering, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
5
|
Cakir Hatir P. Light‐induced
hydrogels derived from poly(ethylene glycol) and acrylated methyl ricinoleate as biomaterials. J Appl Polym Sci 2022. [DOI: 10.1002/app.52754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Pinar Cakir Hatir
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences Istinye University Istanbul Turkey
| |
Collapse
|
6
|
Ratto F, Magni G, Aluigi A, Giannelli M, Centi S, Matteini P, Oberhauser W, Pini R, Rossi F. Cyanine-Doped Nanofiber Mats for Laser Tissue Bonding. NANOMATERIALS 2022; 12:nano12091613. [PMID: 35564323 PMCID: PMC9105542 DOI: 10.3390/nano12091613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023]
Abstract
In spite of an extensive body of academic initiatives and innovative products, the toolkit of wound dressing has always revolved around a few common concepts such as adhesive patches and stitches and their variants. Our work aims at an alternative solution for an immediate restitutio ad integrum of the mechanical functionality in cutaneous repairs. We describe the fabrication and the application of electrospun mats of bioactive nanofibers all made of biocompatible components such as a natural polysaccharide and a cyanine dye for use as laser-activatable plasters, resembling the ultrastructure of human dermis. In particular, we investigate their morphological features and mechanical moduli under conditions of physiological relevance, and we test their use to bind a frequent benchmark of connective tissue as rabbit tendon and a significant case of clinical relevance as human dermis. Altogether, our results point to the feasibility of a new material for wound dressing combining translational potential, strength close to human dermis, extensibility exceeding 15% and state-of-art adhesive properties.
Collapse
Affiliation(s)
- Fulvio Ratto
- Istituto di Fisica Applicata “Nello Carrara”, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy; (G.M.); (S.C.); (P.M.); (R.P.)
- Correspondence: (F.R.); (F.R.)
| | - Giada Magni
- Istituto di Fisica Applicata “Nello Carrara”, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy; (G.M.); (S.C.); (P.M.); (R.P.)
| | - Annalisa Aluigi
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, BO, Italy; (A.A.); (M.G.)
| | - Marta Giannelli
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, BO, Italy; (A.A.); (M.G.)
| | - Sonia Centi
- Istituto di Fisica Applicata “Nello Carrara”, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy; (G.M.); (S.C.); (P.M.); (R.P.)
| | - Paolo Matteini
- Istituto di Fisica Applicata “Nello Carrara”, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy; (G.M.); (S.C.); (P.M.); (R.P.)
| | - Werner Oberhauser
- Istituto di Chimica dei Composti Organometallici, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy;
| | - Roberto Pini
- Istituto di Fisica Applicata “Nello Carrara”, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy; (G.M.); (S.C.); (P.M.); (R.P.)
| | - Francesca Rossi
- Istituto di Fisica Applicata “Nello Carrara”, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy; (G.M.); (S.C.); (P.M.); (R.P.)
- Correspondence: (F.R.); (F.R.)
| |
Collapse
|
7
|
Tri-functional SERS nanoplatform with tunable plasmonic property for synergistic antibacterial activity and antibacterial process monitoring. J Colloid Interface Sci 2022; 608:2266-2277. [PMID: 34794806 DOI: 10.1016/j.jcis.2021.10.132] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/10/2021] [Accepted: 10/23/2021] [Indexed: 11/21/2022]
Abstract
Strategies integrating synergistic high-efficiency bacterial killing and antibacterial process monitoring capability are desirable. Herein, a tri-functional surface-enhanced Raman spectroscopy (SERS) nanoplatform, namely 4-mercaptobenzoic acid-encoded gold nanorods@silver coated with a layer of bovine serum albumin (AuNRs@Ag@4-MBA@BSA), with excellent biocompatibility, stability, tunable plasmonic property and activatable photothermal effect is introduced for Ag+/photothermal therapy (PTT) synergistic antibacterial activity and antibacterial process monitoring. An exogenous etchant is used to controllably model the physiological process of metallic silver biodegradation. Ag shell etching causes the surface plasmon resonance band of SERS nanotags to red-shift to near-infrared region, activates the photothermal conversion capability, and triggers PTT, which in turn accelerates Ag shell etching. The antibacterial rates for Staphylococcus aureus and Escherichia coli after 10 min treatment can achieve 99.5% and 99.9%, respectively. Furthermore, the near-field effect and ultrasensitive property render the SERS intensity decrease ratio is dependent on Ag shell etching as well as temperature rising and thus relevant to antibacterial activity. We have demonstrated a strong correlation between SERS signal and antibacterial effect, and have verified the possibility of antibacterial process monitoring in vitro using SERS-based methodology. We envision that our integrated strategy being used for in vivo high-efficiency bacterial killing and antibacterial process monitoring.
Collapse
|
8
|
Zheng J, Cheng X, Zhang H, Bai X, Ai R, Shao L, Wang J. Gold Nanorods: The Most Versatile Plasmonic Nanoparticles. Chem Rev 2021; 121:13342-13453. [PMID: 34569789 DOI: 10.1021/acs.chemrev.1c00422] [Citation(s) in RCA: 217] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gold nanorods (NRs), pseudo-one-dimensional rod-shaped nanoparticles (NPs), have become one of the burgeoning materials in the recent years due to their anisotropic shape and adjustable plasmonic properties. With the continuous improvement in synthetic methods, a variety of materials have been attached around Au NRs to achieve unexpected or improved plasmonic properties and explore state-of-the-art technologies. In this review, we comprehensively summarize the latest progress on Au NRs, the most versatile anisotropic plasmonic NPs. We present a representative overview of the advances in the synthetic strategies and outline an extensive catalogue of Au-NR-based heterostructures with tailored architectures and special functionalities. The bottom-up assembly of Au NRs into preprogrammed metastructures is then discussed, as well as the design principles. We also provide a systematic elucidation of the different plasmonic properties associated with the Au-NR-based structures, followed by a discussion of the promising applications of Au NRs in various fields. We finally discuss the future research directions and challenges of Au NRs.
Collapse
Affiliation(s)
- Jiapeng Zheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xizhe Cheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Han Zhang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xiaopeng Bai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Ruoqi Ai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Lei Shao
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| |
Collapse
|
9
|
Rossi F, Magni G, Colasanti R, Banchelli M, Iacoangeli M, Carrassi E, Aiudi D, Di Rienzo A, Giannoni L, Pieri L, Dallari S, Pini R, Matteini P. Characterization and Ex Vivo Application of Indocyanine Green Chitosan Patches in Dura Mater Laser Bonding. Polymers (Basel) 2021; 13:polym13132130. [PMID: 34209537 PMCID: PMC8271756 DOI: 10.3390/polym13132130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/26/2021] [Accepted: 06/21/2021] [Indexed: 12/26/2022] Open
Abstract
Dura mater repair represents a final and crucial step in neurosurgery: an inadequate dural reconstruction determines dreadful consequences that significantly increase morbidity and mortality rates. Different dural substitutes have been used with suboptimal results. To overcome this issue, in previous studies, we proposed a laser-based approach to the bonding of porcine dura mater, evidencing the feasibility of the laser-assisted procedure. In this work, we present the optimization of this approach in ex vivo experiments performed on porcine dura mater. An 810-nm continuous-wave AlGaAs (Aluminium Gallium Arsenide) diode laser was used for welding Indocyanine Green-loaded patches (ICG patches) to the dura. The ICG-loaded patches were fabricated using chitosan, a resistant, pliable and stable in the physiological environment biopolymer; moreover, their absorption peak was very close to the laser emission wavelength. Histology, thermal imaging and leak pressure tests were used to evaluate the bonding effect. We demonstrated that the application of 3 watts (W), pulsed mode (Ton 30 ms, Toff 3.5 ms) laser light induces optimal welding of the ICG patch to the dura mater, ensuring an average fluid leakage pressure of 216 ± 105 mmHg, falling within the range of physiological parameters. This study demonstrated that the thermal effect is limited and spatially confined and that the laser bonding procedure can be used to close the dura mater. Our results showed the effectiveness of this approach and encourage further experiments in in vivo models.
Collapse
Affiliation(s)
- Francesca Rossi
- Istituto di Fisica Applicata “Nello Carrara”, Consiglio Nazionale delle Ricerche, Sesto Fiorentino, 50019 Florence, Italy; (F.R.); (R.P.); (P.M.)
| | - Giada Magni
- Istituto di Fisica Applicata “Nello Carrara”, Consiglio Nazionale delle Ricerche, Sesto Fiorentino, 50019 Florence, Italy; (F.R.); (R.P.); (P.M.)
- Correspondence: (G.M.); (R.C.); (M.B.)
| | - Roberto Colasanti
- Department of Neurosurgery, Università Politecnica delle Marche, 60121 Ancona, Italy; (M.I.); (E.C.); (D.A.); (A.D.R.)
- Department of Neurosurgery, Padua University Hospital, 35128 Padua, Italy
- Correspondence: (G.M.); (R.C.); (M.B.)
| | - Martina Banchelli
- Istituto di Fisica Applicata “Nello Carrara”, Consiglio Nazionale delle Ricerche, Sesto Fiorentino, 50019 Florence, Italy; (F.R.); (R.P.); (P.M.)
- Correspondence: (G.M.); (R.C.); (M.B.)
| | - Maurizio Iacoangeli
- Department of Neurosurgery, Università Politecnica delle Marche, 60121 Ancona, Italy; (M.I.); (E.C.); (D.A.); (A.D.R.)
| | - Erika Carrassi
- Department of Neurosurgery, Università Politecnica delle Marche, 60121 Ancona, Italy; (M.I.); (E.C.); (D.A.); (A.D.R.)
| | - Denis Aiudi
- Department of Neurosurgery, Università Politecnica delle Marche, 60121 Ancona, Italy; (M.I.); (E.C.); (D.A.); (A.D.R.)
| | - Alessandro Di Rienzo
- Department of Neurosurgery, Università Politecnica delle Marche, 60121 Ancona, Italy; (M.I.); (E.C.); (D.A.); (A.D.R.)
| | - Luca Giannoni
- El.En. S.p.A., Calenzano, 50041 Florence, Italy; (L.G.); (L.P.)
| | - Laura Pieri
- El.En. S.p.A., Calenzano, 50041 Florence, Italy; (L.G.); (L.P.)
| | | | - Roberto Pini
- Istituto di Fisica Applicata “Nello Carrara”, Consiglio Nazionale delle Ricerche, Sesto Fiorentino, 50019 Florence, Italy; (F.R.); (R.P.); (P.M.)
| | - Paolo Matteini
- Istituto di Fisica Applicata “Nello Carrara”, Consiglio Nazionale delle Ricerche, Sesto Fiorentino, 50019 Florence, Italy; (F.R.); (R.P.); (P.M.)
| |
Collapse
|
10
|
Han S, Zal T, Sokolov KV. Fate of Antibody-Targeted Ultrasmall Gold Nanoparticles in Cancer Cells after Receptor-Mediated Uptake. ACS NANO 2021; 15:9495-9508. [PMID: 34011152 PMCID: PMC8223898 DOI: 10.1021/acsnano.0c08128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Nanoparticles with ultrasmall sizes (less than 10 nm) offer many advantages in biomedical applications compared to their bigger counterparts, including better intratumoral distribution, improved pharmacokinetics (PK), and efficient body clearance. When functionalized with a biocompatible coating and a target-specific antibody, ultrasmall nanoparticles represent an attractive clinical translation platform. Although there is a tremendous body of work dedicated to PK and the biological effects of various nanoparticles, little is known about the fate of different components of functionalized nanoparticles in a biological environment such as in live cells. Here, we used luminescence properties of 5 nm gold nanoparticles (AuNPs) to study the intracellular trafficking and fate of the AuNPs functionalized with an organic layer consisting of a polyethylene glycol (PEG) coating and epidermal growth factor receptor (EGFR)-targeting antibody. We showed that intracellular uptake of the targeted 5 nm AuNPs results in a strong two-photon luminescence (TPL) that is characterized by broad emission and very short lifetimes compared to the fluorescence of the nanoparticle-conjugated fluorophore-tagged antibody, thereby allowing selective imaging of these components using TPL and two-photon excited fluorescence lifetime microscopy (2P-FLIM). Our results indicate that the nanoparticle's coating is detached from the particle's surface inside cells, leading to formation of nanoparticle clusters with a strong TPL. Furthermore, we observed an optically resolved spatial separation of the gold core and the antibody coating of the particles inside cells. We used data from two-photon microscopy, 2P-FLIM, electron microscopy, and in vitro assays to propose a model of interactions of functionalized 5 nm AuNPs with live cells.
Collapse
Affiliation(s)
- Sangheon Han
- Department of Bioengineering, Rice
University, 6100 Main Street, Houston, Texas 77005, United
States
- Department of Imaging Physics, The
University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard,
Houston, Texas 77030, United States
| | - Tomasz Zal
- Department of Leukemia, The University of
Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas
77030, United States
| | - Konstantin V. Sokolov
- Department of Bioengineering, Rice
University, 6100 Main Street, Houston, Texas 77005, United
States
- Department of Imaging Physics, The
University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard,
Houston, Texas 77030, United States
| |
Collapse
|
11
|
Cavigli L, Khlebtsov BN, Centi S, Khlebtsov NG, Pini R, Ratto F. Photostability of Contrast Agents for Photoacoustics: The Case of Gold Nanorods. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:E116. [PMID: 33419130 PMCID: PMC7825532 DOI: 10.3390/nano11010116] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022]
Abstract
Plasmonic particles as gold nanorods have emerged as powerful contrast agents for critical applications as the photoacoustic imaging and photothermal ablation of cancer. However, their unique efficiency of photothermal conversion may turn into a practical disadvantage, and expose them to the risk of overheating and irreversible photodamage. Here, we outline the main ideas behind the technology of photoacoustic imaging and the use of relevant contrast agents, with a main focus on gold nanorods. We delve into the processes of premelting and reshaping of gold nanorods under illumination with optical pulses of a typical duration in the order of few ns, and we present different approaches to mitigate this issue. We undertake a retrospective classification of such approaches according to their underlying, often implicit, principles as: constraining the initial shape; or speeding up their thermal coupling to the environment by lowering their interfacial thermal resistance; or redistributing the input energy among more particles. We discuss advantages, disadvantages and contexts of practical interest where one solution may be more appropriate than the other.
Collapse
Affiliation(s)
- Lucia Cavigli
- Istituto di Fisica Applicata Nello Carrara, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (S.C.); (R.P.); (F.R.)
| | - Boris N. Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, 410049 Saratov, Russia; (B.N.K.); (N.G.K.)
| | - Sonia Centi
- Istituto di Fisica Applicata Nello Carrara, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (S.C.); (R.P.); (F.R.)
| | - Nikolai G. Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, 410049 Saratov, Russia; (B.N.K.); (N.G.K.)
- Saratov State University, 83 Ulitsa Astrakhanskaya, 410026 Saratov, Russia
| | - Roberto Pini
- Istituto di Fisica Applicata Nello Carrara, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (S.C.); (R.P.); (F.R.)
| | - Fulvio Ratto
- Istituto di Fisica Applicata Nello Carrara, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (S.C.); (R.P.); (F.R.)
| |
Collapse
|