1
|
Badaraev AD, Plotnikov EV, Bukal VR, Dubinenko GE, Frueh J, Rutkowski S, Tverdokhlebov SI. Fabrication of PVA Coatings Applied to Electrospun PLGA Scaffolds to Prevent Postoperative Adhesions. J Funct Biomater 2025; 16:57. [PMID: 39997591 PMCID: PMC11856736 DOI: 10.3390/jfb16020057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/29/2025] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
There is currently a demand for anti-adhesive materials that are capable of preventing the formation of intra-abdominal adhesions. In this study, electrospun poly(lactide-co-glycolide) scaffolds were dip-coated in aqueous solutions of polyvinyl alcohol with concentrations of 3 wt.%, 6 wt.% and 9 wt.% to obtain a nontoxic and anti-adhesive biomedical material. The viscosities of the applied 3 wt.%, 6 wt.% and 9 wt.% polyvinyl alcohol solutions were 7.7 mPa∙s, 38.2 mPa∙s and 180.8 mPa∙s, respectively, and increased exponentially. It is shown that increasing the viscosity of the polyvinyl alcohol solution from 6 wt.% to 9 wt.% increases the thickness of the polyvinyl alcohol layer from (3.32 ± 0.97) µm to (8.09 ± 1.43) µm. No pronounced polyvinyl alcohol layer can be observed on samples dip-coated in 3 wt.% PVA solution. Increasing the viscosity of the polyvinyl alcohol solution from 3 wt.% to 9 wt.% increases the mechanical properties of the poly(lactide-co-glycolide) samples by a factor of 1.16-1.45. Cytotoxicity analysis of all samples reveals that none is toxic to 3T3-L1 fibroblast cells. A cell adhesion assay indicates that the anti-adhesion properties increase with increasing viscosity of the polyvinyl alcohol solution and the thickness of the polyvinyl alcohol layer on the poly(lactide-co-glycolide) scaffolds. Fluorescence images of the cells show that as the thickness of the polyvinyl alcohol coating increases, the number of cells decreases, and they do not cover the surface of the samples and form spherical three-dimensional agglomerates. The highest mechanical and anti-adhesion properties are obtained with the poly(lactide-co-glycolide) scaffold sample dip-coated in the 9 wt.% polyvinyl alcohol solution. This is because this sample has the thickest polyvinyl alcohol coating.
Collapse
Affiliation(s)
- Arsalan D. Badaraev
- Weinberg Research Center, School of Nuclear Science and Engineering, National Research Tomsk Polytechnic University, 30, Lenin Avenue, 634050 Tomsk, Russia; (A.D.B.); (V.R.B.); (G.E.D.); (J.F.)
| | - Evgenii V. Plotnikov
- Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, 634000 Tomsk, Russia;
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya Street, 634014 Tomsk, Russia
| | - Vladislav R. Bukal
- Weinberg Research Center, School of Nuclear Science and Engineering, National Research Tomsk Polytechnic University, 30, Lenin Avenue, 634050 Tomsk, Russia; (A.D.B.); (V.R.B.); (G.E.D.); (J.F.)
| | - Gleb E. Dubinenko
- Weinberg Research Center, School of Nuclear Science and Engineering, National Research Tomsk Polytechnic University, 30, Lenin Avenue, 634050 Tomsk, Russia; (A.D.B.); (V.R.B.); (G.E.D.); (J.F.)
| | - Johannes Frueh
- Weinberg Research Center, School of Nuclear Science and Engineering, National Research Tomsk Polytechnic University, 30, Lenin Avenue, 634050 Tomsk, Russia; (A.D.B.); (V.R.B.); (G.E.D.); (J.F.)
| | - Sven Rutkowski
- Weinberg Research Center, School of Nuclear Science and Engineering, National Research Tomsk Polytechnic University, 30, Lenin Avenue, 634050 Tomsk, Russia; (A.D.B.); (V.R.B.); (G.E.D.); (J.F.)
| | - Sergei I. Tverdokhlebov
- Weinberg Research Center, School of Nuclear Science and Engineering, National Research Tomsk Polytechnic University, 30, Lenin Avenue, 634050 Tomsk, Russia; (A.D.B.); (V.R.B.); (G.E.D.); (J.F.)
| |
Collapse
|
2
|
Mathur V, Agarwal P, Kasturi M, Srinivasan V, Seetharam RN, Vasanthan KS. Innovative bioinks for 3D bioprinting: Exploring technological potential and regulatory challenges. J Tissue Eng 2025; 16:20417314241308022. [PMID: 39839985 PMCID: PMC11748162 DOI: 10.1177/20417314241308022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/04/2024] [Indexed: 01/23/2025] Open
Abstract
The field of three dimensional (3D) bioprinting has witnessed significant advancements, with bioinks playing a crucial role in enabling the fabrication of complex tissue constructs. This review explores the innovative bioinks that are currently shaping the future of 3D bioprinting, focusing on their composition, functionality, and potential for tissue engineering, drug delivery, and regenerative medicine. The development of bioinks, incorporating natural and synthetic materials, offers unprecedented opportunities for personalized medicine. However, the rapid technological progress raises regulatory challenges regarding safety, standardization, and long-term biocompatibility. This paper addresses these challenges, examining the current regulatory frameworks and the need for updated guidelines to ensure patient safety and product efficacy. By highlighting both the technological potential and regulatory hurdles, this review offers a comprehensive overview of the future landscape of bioinks in bioprinting, emphasizing the necessity for cross-disciplinary collaboration between scientists, clinicians, and regulatory bodies to achieve successful clinical applications.
Collapse
Affiliation(s)
- Vidhi Mathur
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Prachi Agarwal
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Meghana Kasturi
- Department of Mechanical Engineering, University of Michigan, Dearborn, MI, USA
| | - Varadharajan Srinivasan
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Raviraja N Seetharam
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kirthanashri S Vasanthan
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
3
|
Gurdal M, Ercan G, Barut Selver O, Aberdam D, Zeugolis DI. Development of Biomimetic Substrates for Limbal Epithelial Stem Cells Using Collagen-Based Films, Hyaluronic Acid, Immortalized Cells, and Macromolecular Crowding. Life (Basel) 2024; 14:1552. [PMID: 39768260 PMCID: PMC11678493 DOI: 10.3390/life14121552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 01/05/2025] Open
Abstract
Despite the promising potential of cell-based therapies developed using tissue engineering techniques to treat a wide range of diseases, including limbal stem cell deficiency (LSCD), which leads to corneal blindness, their commercialization remains constrained. This is primarily attributable to the limited cell sources, the use of non-standardizable, unscalable, and unsustainable techniques, and the extended manufacturing processes required to produce transplantable tissue-like surrogates. Herein, we present the first demonstration of the potential of a novel approach combining collagen films (CF), hyaluronic acid (HA), human telomerase-immortalized limbal epithelial stem cells (T-LESCs), and macromolecular crowding (MMC) to develop innovative biomimetic substrates for limbal epithelial stem cells (LESCs). The initial step involved the fabrication and characterization of CF and CF enriched with HA (CF-HA). Subsequently, T-LESCs were seeded on CF, CF-HA, and tissue culture plastic (TCP). Thereafter, the effect of these matrices on basic cellular function and tissue-specific extracellular matrix (ECM) deposition with or without MMC was evaluated. The viability and metabolic activity of cells cultured on CF, CF-HA, and TCP were found to be similar, while CF-HA induced the highest (p < 0.05) cell proliferation. It is notable that CF and HA induced cell growth, whereas MMC increased (p < 0.05) the deposition of collagen IV, fibronectin, and laminin in the T-LESC culture. The data highlight the potential of, in particular, immortalized cells and MMC for the development of biomimetic cell culture substrates, which could be utilized in ocular surface reconstruction following further in vitro, in vivo, and clinical validation of the approach.
Collapse
Affiliation(s)
- Mehmet Gurdal
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, 35100 Izmir, Türkiye;
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, H91 TK33 Galway, Ireland;
| | - Gulinnaz Ercan
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, 35100 Izmir, Türkiye;
- Department of Stem Cell, Institute of Health Sciences, Ege University, 35100 Izmir, Türkiye;
| | - Ozlem Barut Selver
- Department of Stem Cell, Institute of Health Sciences, Ege University, 35100 Izmir, Türkiye;
- Department of Ophthalmology, Faculty of Medicine, Ege University, 35100 Izmir, Türkiye
| | - Daniel Aberdam
- INSERM U1138, Centre des Cordeliers, Université de Paris, 75006 Paris, France;
| | - Dimitrios I. Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, H91 TK33 Galway, Ireland;
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), D04 V1W8 Dublin, Ireland
| |
Collapse
|
4
|
Kimmins SD, Henríquez A, Torres C, Wilson L, Flores M, Pio E, Jullian D, Urbano B, Braun-Galleani S, Ottone C, Muñoz L, Claros M, Urrutia P. Immobilization of Naringinase onto Polydopamine-Coated Magnetic Iron Oxide Nanoparticles for Juice Debittering Applications. Polymers (Basel) 2024; 16:3279. [PMID: 39684024 DOI: 10.3390/polym16233279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Chemical amination of the enzyme was demonstrated to favor immobilization onto polydopamine (PDA)-coated magnetic nanoparticles (MNPs) for the first time, to the best of the author's knowledge. MNPs prepared via hydrothermal synthesis were coated with PDA for the immobilization of naringinase. X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy showed that the MNPs were composed mainly of Fe3O4 with an average size of 38.9 nm, and coated with a 15.1 nm PDA layer. Although the specific activities of α-L-rhamnosidase (RAM) and β-D-glucosidase (GLU) of free naringinase decreased with amination, the immobilization yields of the aminated enzyme increased by more than 40% for RAM and more than 10-fold for GLU. The immobilization improved the enzyme's thermal stability (at 50 °C), reaching a half-life of 40.7 and 23.1 h for RAM and GLU activities, respectively. The biocatalyst was successfully used for the debittering of grapefruit juice, detecting a reduction in naringin of 56% after 24 h. These results demonstrate that the enzyme amination is an effective strategy to enhance the immobilization on a PDA coating and could be applied to other enzymes in order to obtain an easily recoverable biocatalyst using a simple immobilization methodology.
Collapse
Affiliation(s)
- Scott D Kimmins
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile
| | - Antonella Henríquez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile
| | - Celia Torres
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile
| | - Lorena Wilson
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile
| | - Marcos Flores
- Laboratory of Surface and Nanomaterials, Physics Department, Faculty of Mathematical and Physical Sciences, University of Chile, Santiago 8330111, Chile
| | - Edgar Pio
- Instituto de Ciencias de la Ingeniería, Universidad de O'Higgins, Rancagua 2841959, Chile
| | - Domingo Jullian
- Instituto de Ciencias de la Ingeniería, Universidad de O'Higgins, Rancagua 2841959, Chile
| | - Bruno Urbano
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción 3349001, Chile
| | - Stephanie Braun-Galleani
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile
| | - Carminna Ottone
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile
| | - Lisa Muñoz
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile
| | - Martha Claros
- Departamento de Ingeniería Metalúrgica y de Materiales, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile
| | - Paulina Urrutia
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile
| |
Collapse
|
5
|
Koohkhezri M, Lotfi R, Zandi N, Emami Z, Tamjid E, Simchi A. Drug-Eluting and Antibacterial Core-Shell Polycaprolactone/Pectin Nanofibers Containing Ti 3C 2T x MXene and Medical Herbs for Wound Dressings. ACS APPLIED BIO MATERIALS 2024; 7:7244-7255. [PMID: 39498881 DOI: 10.1021/acsabm.4c00880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Fibrous scaffolds capable of delivering natural drugs and herbs show great promise for tissue regeneration and wound care, particularly in personalized medicine. This study presents the fabrication and characterization of drug-eluting antibacterial core-shell mats composed of polycaprolactone (PCL) and pectin nanofibers produced through coaxial electrospinning. Berberine chloride (BBR), an herbal compound with antineoplastic, anti-inflammatory, antilipidemic, and antidiabetic properties, served as the model drug. Poly(vinyl alcohol) (PVA) was blended with pectin to enhance the mechanical properties of the core fibers. The shell was modified with two-dimensional Ti3C2Tx (MXene) nanosheets and subjected to covalent and ionic cross-linking. Structural analysis confirmed the successful production of bead-free fibers with diameters ranging from 160 to 350 nm, depending on composition. The PCL core fibers were uniformly coated with a pectin/PVA shell approximately 90 nm thick. The inclusion of BBR and MXene increased the fiber diameter. Drug-release kinetics, modeled by using Korsmeyer-Peppas, revealed a two-stage release mechanism. An initial burst release occurred within the first 24 h (kinetic exponent n = 1.36), followed by sustained release over 2 weeks (n = 0.48). The release mechanisms were identified as case-II relaxational release in the first stage, transitioning to quasi-Fickian diffusion in the second. Incorporating MXene into the shell further prolonged drug release. The mechanical strength of the scaffolds improved significantly by a factor of 7 and 4 in wet and dry conditions, respectively. In vitro biocompatibility assays using L929 cells demonstrated excellent cell attachment and compatibility. Additionally, antibacterial tests against Escherichia coli showed that the inclusion of MXene enhanced antibacterial activity by 30%. These results suggest that the functional biocomposite scaffolds hold the potential for developing innovative, drug-eluting wound dressings.
Collapse
Affiliation(s)
- Morvarid Koohkhezri
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran
| | - Roya Lotfi
- Center for Nanoscience and Nanotechnology, Institute for Convergence Science & Technology, Sharif University of Technology, Tehran 14588-89694, Iran
| | - Nooshin Zandi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran
| | - Zahra Emami
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran
| | - Elnaz Tamjid
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran 14588-89694, Iran
- Advanced Ceramics, University of Bremen, Bremen 28359, Germany
| | - Abdolreza Simchi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran
- Center for Bioscience and Technology, Institute for Convergence Science & Technology, Sharif University of Technology, Tehran 14588-89694, Iran
| |
Collapse
|
6
|
Shubina VS, Kobyakova MI, Penkov NV, Mitenko GV, Udaltsov SN, Shatalin YV. Two Novel Membranes Based on Collagen and Polyphenols for Enhanced Wound Healing. Int J Mol Sci 2024; 25:12353. [PMID: 39596422 PMCID: PMC11594507 DOI: 10.3390/ijms252212353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/12/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
Two novel membranes based on collagen and two polyphenols, taxifolin pentaglutarate (TfG5) and a conjugate of taxifolin with glyoxylic acid (DfTf), were prepared. Fourier transform infrared spectroscopy examination confirmed the preservation of the triple helical structure of collagen. A scanning electron microscopy study showed that both materials had a porous structure. The incorporation of DfTf into the freeze-dried collagen matrix increased the aggregation of collagen fibers to a higher extent than the incorporation of TfG5, resulting in a more compact structure of the material containing DfTf. It was found that NIH/3T3 mouse fibroblasts were attached to, and relatively evenly spread out on, the surface of both newly obtained membranes. In addition, it was shown that the membranes enhanced skin wound healing in rats with a chemical burn induced by acetic acid. The treatment with the materials led to a faster reepithelization and granulation tissue formation compared with the use of other agents (collagen without polyphenols and buffer saline). It was also found that, in the wound tissue, the level of thiobarbituric acid reactive substances (TBARS) was significantly higher and the level of low-molecular-weight SH-containing compounds (RSH) was significantly lower than those in healthy skin, indicating a rise in oxidative stress at the site of injury. The treatment with collagen membranes containing polyphenols significantly decreased the TBARS level and increased the RSH level, suggesting the antioxidant/anti-inflammatory effect of the materials. The membrane containing TfG5 was more effective than other ones (the collagen membrane containing DfTf and collagen without polyphenols). On the whole, the data obtained indicate that collagen materials containing DfTf and TfG5 have potential as powerful therapeutic agents for the treatment of burn wounds.
Collapse
Affiliation(s)
- Victoria S. Shubina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia;
| | - Margarita I. Kobyakova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia;
| | - Nikita V. Penkov
- Institute of Cell Biophysics, Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institutskaya 3, 142290 Pushchino, Russia;
| | - Gennady V. Mitenko
- Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institutskaya 2, 142290 Pushchino, Russia; (G.V.M.); (S.N.U.)
| | - Sergey N. Udaltsov
- Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institutskaya 2, 142290 Pushchino, Russia; (G.V.M.); (S.N.U.)
| | - Yuri V. Shatalin
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia;
| |
Collapse
|
7
|
Tran TXT, Sun GM, Tran HVA, Jeong YH, Slama P, Chang YC, Lee IJ, Kwak JY. Synthetic Extracellular Matrix of Polyvinyl Alcohol Nanofibers for Three-Dimensional Cell Culture. J Funct Biomater 2024; 15:262. [PMID: 39330237 PMCID: PMC11433135 DOI: 10.3390/jfb15090262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/28/2024] Open
Abstract
An ideal extracellular matrix (ECM) replacement scaffold in a three-dimensional cell (3D) culture should induce in vivo-like interactions between the ECM and cultured cells. Highly hydrophilic polyvinyl alcohol (PVA) nanofibers disintegrate upon contact with water, resulting in the loss of their fibrous morphology in cell cultures. This can be resolved by using chemical crosslinkers and post-crosslinking. A crosslinked, water-stable, porous, and optically transparent PVA nanofibrous membrane (NM) supports the 3D growth of various cell types. The binding of cells attached to the porous PVA NM is low, resulting in the aggregation of cultured cells in prolonged cultures. PVA NMs containing integrin-binding peptides of fibronectin and laminin were produced to retain the blended peptides as cell-binding substrates. These peptide-blended PVA NMs promote peptide-specific cell adherence and growth. Various cells, including epithelial cells, cultured on these PVA NMs form layers instead of cell aggregates and spheroids, and their growth patterns are similar to those of the cells cultured on an ECM-coated PVA NM. The peptide-retained PVA NMs are non-stimulatory to dendritic cells cultured on the membranes. These peptide-retaining PVA NMs can be used as an ECM replacement matrix by providing in vivo-like interactions between the matrix and cultured cells.
Collapse
Affiliation(s)
- Thi Xuan Thuy Tran
- Department of Pharmacology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (T.X.T.T.); (G.-M.S.); (H.V.A.T.)
- Department of Medical Sciences, The Graduate School, Ajou University, Suwon 16499, Republic of Korea
| | - Gyu-Min Sun
- Department of Pharmacology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (T.X.T.T.); (G.-M.S.); (H.V.A.T.)
| | - Hue Vy An Tran
- Department of Pharmacology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (T.X.T.T.); (G.-M.S.); (H.V.A.T.)
| | - Young Hun Jeong
- School of Mechanical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Petr Slama
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic;
| | - Young-Chae Chang
- Department of Cell Biology, School of Medicine, Catholic University of Daegu, Daegu 42272, Republic of Korea;
| | - In-Jeong Lee
- 3D Immune System Imaging Core Center, Ajou University, Suwon 16499, Republic of Korea
| | - Jong-Young Kwak
- Department of Pharmacology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (T.X.T.T.); (G.-M.S.); (H.V.A.T.)
- 3D Immune System Imaging Core Center, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
8
|
Wattanavijitkul T, Khamwannah J, Lohwongwatana B, Puncreobutr C, Reddy N, Yamdech R, Cherdchom S, Aramwit P. Development of Biocompatible Coatings with PVA/Gelatin Hydrogel Films on Vancomycin-Loaded Titania Nanotubes for Controllable Drug Release. ACS OMEGA 2024; 9:37052-37062. [PMID: 39246498 PMCID: PMC11375713 DOI: 10.1021/acsomega.4c03942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/27/2024] [Accepted: 08/15/2024] [Indexed: 09/10/2024]
Abstract
This study investigates the utilization of poly(vinyl alcohol) (PVA)/gelatin hydrogel films cross-linked with glutaraldehyde as a novel material to coat the surface of vancomycin-loaded titania nanotubes (TNTs), with a focus on enhancing biocompatibility and achieving controlled vancomycin release. Hydrogel films have emerged as promising candidates in tissue engineering and drug-delivery systems due to their versatile properties. The development of these hydrogel films involved varying the proportions of PVA, gelatin, and glutaraldehyde to achieve the desired properties, including the gel fraction, swelling behavior, biocompatibility, and biodegradation. Among the formulations tested, the hydrogel with a PVA-to-gelatin ratio of 25:75 and 0.2% glutaraldehyde was selected to coat vancomycin-loaded TNTs. The coated TNTs demonstrated slower release of vancomycin compared with the uncoated TNTs. In addition, the coated TNTs demonstrated the ability to promote osteogenesis, as evidenced by increased alkaline phosphatase activity and calcium accumulation. The vancomycin-loaded TNTs coated with hydrogel film demonstrated effectiveness against both E. coli and S. aureus. These findings highlight the potential benefits and therapeutic applications of using hydrogel films to coat implant materials, offering efficient drug delivery and controlled release. This study contributes valuable insights into the development of alternative materials for medical applications, thereby advancing the field of biomaterials and drug delivery systems.
Collapse
Affiliation(s)
- Thitima Wattanavijitkul
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences and Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jirapon Khamwannah
- Department of Metallurgical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Boonrat Lohwongwatana
- Department of Metallurgical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chedtha Puncreobutr
- Department of Metallurgical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Narendra Reddy
- Center for Incubation, Innovation, Research and Consultancy, Jyothy Institute of Technology, Thathaguni, Bengaluru, Karnataka 560082, India
| | - Rungnapha Yamdech
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences and Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sarocha Cherdchom
- Department of Preventive and Social Medicine and Center of Excellence in Nanomedicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pornanong Aramwit
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences and Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok 10330, Thailand
- The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok 10330, Thailand
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
9
|
Krishna DV, Sankar MR, Sarma PVGK, Samundeshwari EL. Copper nanoparticles loaded gelatin/ polyvinyl alcohol/ guar gum-based 3D printable multimaterial hydrogel for tissue engineering applications. Int J Biol Macromol 2024; 276:133866. [PMID: 39009268 DOI: 10.1016/j.ijbiomac.2024.133866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/01/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
Hydrogels are becoming increasingly significant in tissue engineering because of their numerous benefits, including biocompatibility, biodegradability, and their ability to provide a supportive structure for cell proliferation. This study presents the synthesis and characterization of a new multimaterial hydrogel with 3D-printing capabilities composed of copper nanoparticle-reinforced gelatin, polyvinyl alcohol (PVA), and guar gum-based biomaterials intended for tissue engineering applications. Combining CuNPs aims to enhance the hydrogel's antibacterial properties, mechanical strength, and bioactivity, which are essential for successful tissue regeneration. Hydrogels are chemically cross-linked with glyoxal and analyzed through different assessments to examine the compressive behavior, surface morphology, sorbing capacity, biocompatibility, thermal stability, and degradation properties. The results demonstrated that including CuNPs significantly improved the hydrogel's compressive modulus (4.18 MPa) for the hydrogel with the CuNPs and provided better antibacterial activity against common pathogens with controlled degradation. All the hydrogels exhibited a lower coefficient of friction, which was below 0.1. In vitro cell culture studies using chondrocytes indicated that the CuNPs-loaded hydrogel supported cell proliferation and growth of chondrogenic genes such as collagen type II (COL2) and aggrecan (ACAN). The biocompatibility and enhanced mechanical properties of the multimaterial hydrogel make it a promising candidate for developing customized, patient-specific tissue engineering scaffolds.
Collapse
Affiliation(s)
- D V Krishna
- Department of Mechanical Engineering, Indian Institute of Technology Tirupati, Andhra Pradesh 517619, India
| | - M R Sankar
- Department of Mechanical Engineering, Indian Institute of Technology Tirupati, Andhra Pradesh 517619, India.
| | - P V G K Sarma
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh 517502, India
| | - E L Samundeshwari
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh 517502, India
| |
Collapse
|
10
|
Lalebeigi F, Kashtiaray A, Aghamirza Moghim Aliabadi H, Moghadaskhou F, Pajoum Z, Nokandeh SM, Mahdavi M, Eivazzadeh-Keihan R, Maleki A. Agar-tragacanth/silk fibroin hydrogel containing Zn-based MOF as a novel nanobiocomposite with biological activity. Sci Rep 2024; 14:10508. [PMID: 38714808 PMCID: PMC11076289 DOI: 10.1038/s41598-024-61329-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/03/2024] [Indexed: 05/10/2024] Open
Abstract
In this study, a novel nanobiocomposite consisting of agar (Ag), tragacanth gum (TG), silk fibroin (SF), and MOF-5 was synthesized and extensively investigated by various analytical techniques and basic biological assays for potential biomedical applications. The performed Trypan blue dye exclusion assay indicated that the proliferation percentage of HEK293T cells was 71.19%, while the proliferation of cancer cells (K-562 and MCF-7) was significantly lower, at 10.74% and 3.33%. Furthermore, the Ag-TG hydrogel/SF/MOF-5 nanobiocomposite exhibited significant antimicrobial activity against both E. coli and S. aureus strains, with growth inhibition rates of 76.08% and 69.19% respectively. Additionally, the hemolytic index of fabricated nanobiocomposite was found approximately 19%. These findings suggest that the nanobiocomposite exhibits significant potential for application in cancer therapy and wound healing.
Collapse
Affiliation(s)
- Farnaz Lalebeigi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Amir Kashtiaray
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | | | - Fatemeh Moghadaskhou
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Zeinab Pajoum
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Seyede Mehrnoush Nokandeh
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| |
Collapse
|
11
|
Ziverec A, Bax D, Cameron R, Best S, Pasdeloup M, Courtial EJ, Mallein-Gerin F, Malcor JD. The diazirine-mediated photo-crosslinking of collagen improves biomaterial mechanical properties and cellular interactions. Acta Biomater 2024; 180:230-243. [PMID: 38574880 DOI: 10.1016/j.actbio.2024.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024]
Abstract
In tissue engineering, crosslinking with carbodiimides such as EDC is omnipresent to improve the mechanical properties of biomaterials. However, in collagen biomaterials, EDC reacts with glutamate or aspartate residues, inactivating the binding sites for cellular receptors and rendering collagen inert to many cell types. In this work, we have developed a crosslinking method that ameliorates the rigidity, stability, and degradation rate of collagen biomaterials, whilst retaining key interactions between cells and the native collagen sequence. Our approach relies on the UV-triggered reaction of diazirine groups grafted on lysines, leaving critical amino acid residues intact. Notably, GxxGER recognition motifs for collagen-binding integrins, ablated by EDC crosslinking, were left unreacted, enabling cell attachment, spreading, and colonization on films and porous scaffolds. In addition, our procedure conserves the architecture of biomaterials, improves their resistance to collagenase and cellular contraction, and yields material stiffness akin to that obtained with EDC. Importantly, diazirine-crosslinked collagen can host mesenchymal stem cells, highlighting its strong potential as a substrate for tissue repair. We have therefore established a new crosslinking strategy to modulate the mechanical features of collagen porous scaffolds without altering its biological properties, thereby offering an advantageous alternative to carbodiimide treatment. STATEMENT OF SIGNIFICANCE: This article describes an approach to improve the mechanical properties of collagen porous scaffolds, without impacting collagen's natural interactions with cells. This is significant because collagen crosslinking is overwhelmingly performed using carbodiimides, which results in a critical loss of cellular affinity. By contrast, our method leaves key cellular binding sites in the collagen sequence intact, enabling cell-biomaterial interactions. It relies on the fast, UV-triggered reaction of diazirine with collagen, and does not produce toxic by-products. It also supports the culture of mesenchymal stem cells, a pivotal cell type in a wide range of tissue repair applications. Overall, our approach offers an attractive option for the crosslinking of collagen, a prominent material in the growing field of tissue engineering.
Collapse
Affiliation(s)
- Audrey Ziverec
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR 5305, University Claude Bernard-Lyon 1 and University of Lyon, 7 Passage du Vercors, 69367 Lyon Cedex 07, France
| | - Daniel Bax
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Rd, Cambridge CB3 0FS, United Kingdom
| | - Ruth Cameron
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Rd, Cambridge CB3 0FS, United Kingdom
| | - Serena Best
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Rd, Cambridge CB3 0FS, United Kingdom
| | - Marielle Pasdeloup
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR 5305, University Claude Bernard-Lyon 1 and University of Lyon, 7 Passage du Vercors, 69367 Lyon Cedex 07, France
| | - Edwin-Joffrey Courtial
- 3dFAB, Univ Lyon, Université Lyon1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 43, Bd du 11 novembre 1918, 69622 Villeurbanne, France
| | - Frédéric Mallein-Gerin
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR 5305, University Claude Bernard-Lyon 1 and University of Lyon, 7 Passage du Vercors, 69367 Lyon Cedex 07, France
| | - Jean-Daniel Malcor
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR 5305, University Claude Bernard-Lyon 1 and University of Lyon, 7 Passage du Vercors, 69367 Lyon Cedex 07, France.
| |
Collapse
|
12
|
Remy M, Upara C, Ding QJ, Miszuk JM, Sun H, Hong L. MicroRNA-200c Release from Gelatin-Coated 3D-Printed PCL Scaffolds Enhances Bone Regeneration. ACS Biomater Sci Eng 2024; 10:2337-2350. [PMID: 38531043 PMCID: PMC11005014 DOI: 10.1021/acsbiomaterials.3c01105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
The fabrication of clinically relevant synthetic bone grafts relies on combining multiple biodegradable biomaterials to create a structure that supports the regeneration of defects while delivering osteogenic biomolecules that enhance regeneration. MicroRNA-200c (miR-200c) functions as a potent osteoinductive biomolecule to enhance osteogenic differentiation and bone formation; however, synthetic tissue-engineered bone grafts that sustain the delivery of miR-200c for bone regeneration have not yet been evaluated. In this study, we created novel, multimaterial, synthetic bone grafts from gelatin-coated 3D-printed polycaprolactone (PCL) scaffolds. We attempted to optimize the release of pDNA encoding miR-200c by varying gelatin types, concentrations, and polymer crosslinking materials to improve its functions for bone regeneration. We revealed that by modulating gelatin type, coating material concentration, and polymer crosslinking, we effectively altered the release rates of pDNA encoding miR-200c, which promoted osteogenic differentiation in vitro and bone regeneration in a critical-sized calvarial bone defect animal model. We also demonstrated that crosslinking the gelatin coatings on the PCL scaffolds with low-concentration glutaraldehyde was biocompatible and increased cell attachment. These results strongly indicate the potential use of gelatin-based systems for pDNA encoding microRNA delivery in gene therapy and further demonstrate the effectiveness of miR-200c for enhancing bone regeneration from synthetic bone grafts.
Collapse
Affiliation(s)
- Matthew
T. Remy
- Iowa
Institute for Oral Health Research, College
of Dentistry, The University of Iowa, Iowa City, Iowa 52242, United States
- Roy
J. Carver Department of Biomedical Engineering, College of Engineering, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Chawin Upara
- Iowa
Institute for Oral Health Research, College
of Dentistry, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Qiong J. Ding
- Iowa
Institute for Oral Health Research, College
of Dentistry, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Jacob M. Miszuk
- Iowa
Institute for Oral Health Research, College
of Dentistry, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Hongli Sun
- Iowa
Institute for Oral Health Research, College
of Dentistry, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Liu Hong
- Iowa
Institute for Oral Health Research, College
of Dentistry, The University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
13
|
Misbah MH, Quintanilla-Sierra L, Alonso M, Rodríguez-Cabello JC, Santos M. "In-situ" formation of elastin-like recombinamer hydrogels with tunable viscoelasticity through efficient one-pot process. Mater Today Bio 2024; 25:100999. [PMID: 38379933 PMCID: PMC10877175 DOI: 10.1016/j.mtbio.2024.100999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/22/2024] Open
Abstract
Despite the remarkable progress in the generation of recombinant elastin-like (ELR) hydrogels, further improvements are still required to enhance and control their viscoelasticity, as well as limit the use of expensive chemical reagents, time-consuming processes and several purification steps. To alleviate this issue, the reactivity of carboxylic groups from glutamic (E) acid distributed along the hydrophilic block of an amphiphilic ELR (coded as E50I60) with amine groups has been studied through a one-pot amidation reaction in aqueous solutions, for the first time. By means of this approach, immediate conjugation of E50I60 with molecules containing amine groups has been performed with a high yield, as demonstrated by the 1H NMR and MALDI-TOF spectroscopies. This has resulted in the preparation of viscoelastic irreversible hydrogels through the "in-situ" cross-linking of E50I60 with another ELR (coded as VKV24) containing amine groups from lysines (K). The rheology analysis demonstrated that the gelation process takes place following a dual mechanism dependent on the ELR concentration: physical cross-linking of I60 block through the hydrophobic interactions, and covalent cross-linking of E50I60 with VKV24 through the amidation reaction. While the chemical network formed between the hydrophilic E50 block and VKV24 ELR preserves the elasticity of ELR hydrogels, the self-assembly of the I60 block through the hydrophobic interactions provides a tunable physical network. The presented investigation serves as a basis for generating ELR hydrogels with tunable viscoelastic properties promising for tissue regeneration, through an ''in-situ", rapid, scalable, economically and feasible one-pot method.
Collapse
Affiliation(s)
- M. Hamed Misbah
- Nanoscience Department, Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, Kafrelsheikh, 33511, Egypt
| | - Luis Quintanilla-Sierra
- G.I.R. Bioforge, University of Valladolid, CIBER-BBN, Paseo de Belén 19, 47011, Valladolid, Spain
| | - Matilde Alonso
- G.I.R. Bioforge, University of Valladolid, CIBER-BBN, Paseo de Belén 19, 47011, Valladolid, Spain
| | | | - Mercedes Santos
- G.I.R. Bioforge, University of Valladolid, CIBER-BBN, Paseo de Belén 19, 47011, Valladolid, Spain
| |
Collapse
|
14
|
Lindenhahn P, Richter J, Pepelanova I, Seeger B, Volk HA, Hinkel R, Hiebl B, Scheper T, Hinrichs JB, Becker LS, Haverich A, Kaufeld T. A Novel Artificial Coronary Plaque to Model Coronary Heart Disease. Biomimetics (Basel) 2024; 9:197. [PMID: 38667208 PMCID: PMC11048636 DOI: 10.3390/biomimetics9040197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Experimental coronary artery interventions are currently being performed on non-diseased blood vessels in healthy animals. To provide a more realistic pathoanatomical scenario for investigations on novel interventional and surgical therapies, we aimed to fabricate a stenotic lesion, mimicking the morphology and structure of a human atherosclerotic plaque. METHODS In an interdisciplinary setting, we engineered a casting mold to create an atherosclerotic plaque with the dimensions to fit in a porcine coronary artery. Oscillatory rheology experiments took place along with long-term stability tests assessed by microscopic examination and weight monitoring. For the implantability in future in vivo setups, we performed a cytotoxicity assessment, inserted the plaque in resected pig hearts, and performed diagnostic imaging to visualize the plaque in its final position. RESULTS The most promising composition consists of gelatin, cholesterol, phospholipids, hydroxyapatite, and fine-grained calcium carbonate. It can be inserted in the coronary artery of human-sized pig hearts, producing a local partial stenosis and interacting like the atherosclerotic plaque by stretching and shrinking with the vessel wall and surrounding tissue. CONCLUSION This artificial atherosclerotic plaque model works as a simulating tool for future medical testing and could be crucial for further specified research on coronary artery disease and is going to help to provide information about the optimal interventional and surgical care of the disease.
Collapse
Affiliation(s)
- Philipp Lindenhahn
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30559 Hannover, Germany; (A.H.); (T.K.)
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hanover, 30559 Hannover, Germany
| | - Jannik Richter
- Institute of Technical Chemistry, Leibniz University of Hannover, 30167 Hannover, Germany; (J.R.); (T.S.)
| | - Iliyana Pepelanova
- Institute of Technical Chemistry, Leibniz University of Hannover, 30167 Hannover, Germany; (J.R.); (T.S.)
| | - Bettina Seeger
- Institute for Food Quality and Food Safety, University of Veterinary Medicine, 30559 Hannover, Germany;
| | - Holger A. Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hanover, 30559 Hannover, Germany
| | - Rabea Hinkel
- Department of Laboratory Animal Science, Leibnitz-Institut für Primatenforschung, Deutsches Primatenzentrum GmbH, Kellnerweg 4, 37077 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behavior, University of Veterinary Medicine, 30559 Hannover, Germany;
| | - Bernhard Hiebl
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behavior, University of Veterinary Medicine, 30559 Hannover, Germany;
| | - Thomas Scheper
- Institute of Technical Chemistry, Leibniz University of Hannover, 30167 Hannover, Germany; (J.R.); (T.S.)
| | - Jan B. Hinrichs
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (J.B.H.); (L.S.B.)
| | - Lena S. Becker
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (J.B.H.); (L.S.B.)
| | - Axel Haverich
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30559 Hannover, Germany; (A.H.); (T.K.)
| | - Tim Kaufeld
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30559 Hannover, Germany; (A.H.); (T.K.)
| |
Collapse
|
15
|
Eildermann K, Durashov M, Kuschnerus K, Poppe A, Weixler V, Photiadis J, Sigler M, Murin P. Tissue-engineered and autologous pericardium in congenital heart surgery: comparative histopathological study of human vascular explants. Eur J Cardiothorac Surg 2024; 65:ezae027. [PMID: 38290761 PMCID: PMC10924714 DOI: 10.1093/ejcts/ezae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/06/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024] Open
Abstract
OBJECTIVES The goal of this histological study was to assess the biocompatibility of vascular patches used in the repair of congenital heart defects. METHODS We examined tissue-engineered bovine (n = 7) and equine (n = 7) patches and autologous human pericardium (n = 7), all explanted due to functional issues or follow-up procedures. Techniques like Movat-Verhoeff, von Kossa and immunohistochemical staining were used to analyse tissue composition, detect calcifications and identify immune cells. A semi-quantitative scoring system was implemented to evaluate the biocompatibility aspects, thrombus formation, extent of pannus, inflammation of pannus, cellular response to patch material, patch degradation, calcification and neoadventitial inflammation. RESULTS We observed distinct material degradation patterns among types of patches. Bovine patches showed collagen disintegration and exudate accumulation, whereas equine patches displayed edematous swelling and material dissolution. Biocompatibility scores were lower in terms of cellular response, degradation and overall score for human autologous pericardial patches compared to tissue-engineered types. The extent of pannus formation was not influenced by the type of patch. Bovine patches had notable calcifications causing tissue hardening, and foreign body giant cells were more frequently seen in equine patches. Plasma cells were frequently detected in the neointimal tissue of engineered patches. CONCLUSIONS Our results confirm the superior biocompatibility of human autologous patches and highlight discernible variations in the changes of patch material and the cellular response to patch material between bovine and equine patches. Our approach implements the semi-quantitative scoring of various aspects of biocompatibility, facilitating a comparative quantitative analysis across all types of patches, despite their inherent differences.
Collapse
Affiliation(s)
- Katja Eildermann
- Department of Pediatric Cardiology and Intensive Care Medicine, Georg-August University Göttingen, Göttingen, Germany
| | - Maksim Durashov
- Department of Pediatric Cardiology and Intensive Care Medicine, Georg-August University Göttingen, Göttingen, Germany
| | - Kira Kuschnerus
- Department of Congenital Heart Surgery—Pediatric Heart Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
| | - Andrea Poppe
- Department of Pediatric Cardiology and Intensive Care Medicine, Georg-August University Göttingen, Göttingen, Germany
| | - Viktoria Weixler
- Department of Congenital Heart Surgery—Pediatric Heart Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
| | - Joachim Photiadis
- Department of Congenital Heart Surgery—Pediatric Heart Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
| | - Matthias Sigler
- Department of Pediatric Cardiology and Intensive Care Medicine, Georg-August University Göttingen, Göttingen, Germany
| | - Peter Murin
- Department of Congenital Heart Surgery—Pediatric Heart Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
| |
Collapse
|
16
|
Phang SJ, Teh HX, Looi ML, Fauzi MB, Neo YP, Arumugam B, Kuppusamy UR. PVA/PVP Nanofibres Incorporated with Ecklonia cava Phlorotannins Exhibit Excellent Cytocompatibility and Accelerate Hyperglycaemic Wound Healing. Tissue Eng Regen Med 2024; 21:243-260. [PMID: 37865625 PMCID: PMC10825108 DOI: 10.1007/s13770-023-00590-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 10/23/2023] Open
Abstract
BACKGROUND Diabetic foot ulcer (DFU) is a major debilitating complication of diabetes. The lack of effective diabetic wound dressings has been a significant problem in DFU management. In this study, we aim to establish a phlorotannin-incorporated nanofibre system and determine its potential in accelerating hyperglycaemic wound healing. METHODS The effective dose of Ecklonia cava phlorotannins (ECP) for hyperglycaemic wound healing was determined prior to phlorotannin nanofibre fabrication using polyvinyl-alcohol (PVA), polyvinylpyrrolidone (PVP), and ECP. Vapour glutaraldehyde was used for crosslinking of the PVA/PVP nanofibres. The phlorotannin nanofibres were characterised, and their safety and cytocompatibility were validated. Next, the wound healing effect of phlorotannin nanofibres was determined with 2D wound scratch assay, whereas immunofluorescence staining of Collagen-I (Col-I) and Cytokeratin-14 (CK-14) was performed in human dermal fibroblasts (HDF) and human epidermal keratinocytes (HEK), respectively. RESULTS Our results demonstrated that 0.01 μg/mL ECP significantly improved hyperglycaemic wound healing without compromising cell viability and proliferation. Among all nanofibres, PVA/PVP/0.01 wt% ECP nanofibres exhibited the best hyperglycaemic wound healing effect. They displayed a diameter of 334.7 ± 10.1 nm, a porosity of 40.7 ± 3.3%, and a WVTR of 1718.1 ± 32.3 g/m2/day. Besides, the FTIR spectra and phlorotannin release profile validated the successful vapour glutaraldehyde crosslinking and ECP incorporation. We also demonstrated the potential of phlorotannin nanofibres as a non-cytotoxic wound dressing as they support the viability and proliferation of both HDF and HEK. Furthermore, phlorotannin nanofibres significantly ameliorated the impaired hyperglycaemic wound healing and restored the hyperglycaemic-induced Col-I reduction in HDF. CONCLUSION Taken together, our findings show that phlorotannin nanofibres have the potential to be used as a diabetic wound dressing.
Collapse
Affiliation(s)
- Shou Jin Phang
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Huey Xhin Teh
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mee Lee Looi
- Centre for Future Learning, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Yun Ping Neo
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Selangor, Malaysia
| | - Bavani Arumugam
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Umah Rani Kuppusamy
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
17
|
Das IJ, Bal T. Evaluation of Opuntia-carrageenan superporous hydrogel (OPM-CRG SPH) as an effective biomaterial for drug release and tissue scaffold. Int J Biol Macromol 2024; 256:128503. [PMID: 38040152 DOI: 10.1016/j.ijbiomac.2023.128503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
The process of wound healing involves complex interplay of systems biology, dependent on coordination of various cell types, both intra and extracellular mechanisms, proteins, and signaling pathways. To enhance these interactions, drugs must be administered precisely and continuously, effectively regulating the intricate mechanisms involved in the body's response to injury. Controlled drug delivery systems (DDS) play a pivotal role in achieving this objective. A proficient DDS shields the wound from mechanical, oxidative, and enzymatic stress, against bacterial contamination ensuring an adequate oxygen supply while optimizing the localized and sustained delivery of drugs to target tissue. A pH-sensitive SPH was designed by blending two natural polysaccharides, Opuntia mucilage and carrageenan, using microwave irradiation and optimized according to swelling index at pH 1.2, 7.0, and 8.0 and % porosity. Optimized grade was analyzed for surface hydrophilicity-hydrophobicity using OCA. Analytical characterizations were performed using FTIR, TGA, XRD, DSC, reflecting semicrystalline behavior. Mechanical property confirmed adequate strength. In vitro drug release study with ciprofloxacin-HCL as model drug showed 97.8 % release within 10 h, fitting to the Korsmeyer-Peppas model following diffusion and erosion mechanism. In vitro antimicrobial, anti-inflammatory assays, zebrafish toxicity, and animal studies in mice with SPH concluded it as a novel biomaterial.
Collapse
Affiliation(s)
- Itishree Jogamaya Das
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Trishna Bal
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India.
| |
Collapse
|
18
|
Yang CJ, Anand A, Huang CC, Lai JY. Unveiling the Power of Gabapentin-Loaded Nanoceria with Multiple Therapeutic Capabilities for the Treatment of Dry Eye Disease. ACS NANO 2023; 17:25118-25135. [PMID: 38051575 DOI: 10.1021/acsnano.3c07817] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Dry eye (DE) disease, which is primarily linked to aqueous deficiency, is an escalating health issue worldwide, mainly due to the widespread use of electronic devices. The major obstacles in DE pharmacotherapy include insufficient therapeutic efficacy and low ocular bioavailability. This study presents the development of a ceria-based nanosystem to carry gabapentin (GBT), aiming to offer comprehensive relief from DE symptoms. We prepared multifunctional nanoceria capped with thiolated gelatin followed by cross-linking with glutaraldehyde, yielding a nanocarrier with desirable biocompatibility and antioxidant, anti-inflammatory, antiangiogenic, antiapoptotic, and neuronal protective activities. Specifically, the highly abundant thiol groups on gelatin increased the cellular uptake of the nanocarrier by 2.3-fold and its mucin-binding efficiency by 10-fold, thereby extending ocular retention and amplifying therapeutic activity. Moderate cross-linking of the thiolated gelatin not only enhanced the ocular bioavailability of the nanoceria but also provided slow, degradation-controlled release of GBT to promote the lacrimal stimulation to restore the tear film. In a rabbit model of DE, topical administration of our GBT/nanoceria nanoformulation resulted in comprehensive alleviation of symptoms, including repairing corneal epithelial damage, preserving corneal nerve density, and stimulating tear secretion, demonstrating superior performance in comparison to the free drug. These results underscore the safety and potential of this innovative nanoformulation for DE pharmacotherapy.
Collapse
Affiliation(s)
- Chia-Jung Yang
- Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Anisha Anand
- Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jui-Yang Lai
- Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
- Center for Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
19
|
da Silva PM, Esparza-Flores EE, Virgili AH, de Menezes EW, Fernandez-Lafuente R, Dal Magro L, Rodrigues RC. Effect of Support Matrix and Crosslinking Agents on Nutritional Properties of Orange Juice during Enzyme Clarification: A Comparative Study. Foods 2023; 12:3919. [PMID: 37959038 PMCID: PMC10647825 DOI: 10.3390/foods12213919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
This study investigated the impact of a support matrix and active group on the support to the nutritional properties of orange juice after juice clarification. Pectinase was immobilized on chitosan and aminated silica supports, activated with genipin or glutaraldehyde, and applied for juice clarification. The effects on various juice properties, including reducing sugars, total soluble solids, vitamin C, and phenolic compounds, juice color, and pH, were evaluated. The results revealed that the immobilization on chitosan activated using genipin resulted in the highest biocatalyst activity (1211.21 U·g-1). The juice treatments using the biocatalysts led to turbidity reduction in the juice (up to 90%), with the highest reductions observed in treatments involving immobilized enzyme on chitosan. Importantly, the enzymatic treatments preserved the natural sugar content, total soluble solids, and pH of the juice. Color differences between treated and raw juice samples were especially relevant for those treated using enzymes, with significant differences in L* and b*, showing loss of yellow vivid color. Analysis of phenolic compounds and vitamin C showed no significant alterations after the enzymatic treatment of the raw juice. According to our results, the clarification of orange juice using immobilized enzymes can be a compromise in turbidity reduction and color reduction to maintain juice quality.
Collapse
Affiliation(s)
- Pâmela M. da Silva
- Biocatalysis and Enzyme Technology Laboratory, Food Science and Technology Institute, Federal University of Rio Grande do Sul, 9500 Bento Gonçalves Avenue, P.O. Box 15090, Porto Alegre 91501-970, RS, Brazil; (P.M.d.S.); (E.E.E.-F.)
| | - Eli Emanuel Esparza-Flores
- Biocatalysis and Enzyme Technology Laboratory, Food Science and Technology Institute, Federal University of Rio Grande do Sul, 9500 Bento Gonçalves Avenue, P.O. Box 15090, Porto Alegre 91501-970, RS, Brazil; (P.M.d.S.); (E.E.E.-F.)
| | - Anike H. Virgili
- LSS—Laboratory of Solids and Surfaces, Instituto de Química, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, RS, Brazil; (A.H.V.); (E.W.d.M.)
| | - Eliana W. de Menezes
- LSS—Laboratory of Solids and Surfaces, Instituto de Química, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, RS, Brazil; (A.H.V.); (E.W.d.M.)
| | | | - Lucas Dal Magro
- Instituto Federal de Educação Ciência e Tecnologia Sul-Rio-Grandense—IFSul, Pelotas 96015-360, RS, Brazil;
| | - Rafael C. Rodrigues
- Biocatalysis and Enzyme Technology Laboratory, Food Science and Technology Institute, Federal University of Rio Grande do Sul, 9500 Bento Gonçalves Avenue, P.O. Box 15090, Porto Alegre 91501-970, RS, Brazil; (P.M.d.S.); (E.E.E.-F.)
| |
Collapse
|
20
|
Bonetti L, De Nardo L, Farè S. Crosslinking strategies in modulating methylcellulose hydrogel properties. SOFT MATTER 2023; 19:7869-7884. [PMID: 37817578 DOI: 10.1039/d3sm00721a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Methylcellulose (MC) hydrogels are ideal materials for the design of thermo-responsive platforms capable of exploiting the environment temperature as a driving force to activate their smart transition. However, MC hydrogels usually show reduced stability in an aqueous environment and low mechanical properties, limiting their applications' breadth. A possible approach intended to overcome these limitations is chemical crosslinking, which represents a simple yet effective strategy to modify the MC hydrogels' properties (e.g., physicochemical, mechanical, and biological). In this regard, understanding the selected crosslinking method's role in modulating the MC hydrogels' properties is a key factor in their design. This review offers a perspective on the main MC chemical crosslinking approaches reported in the literature. Three main categories can be distinguished: (i) small molecule crosslinkers, (ii) crosslinking by high-energy radiation, and (iii) crosslinking via MC chemical modification. The advantages and limitations of each approach are elucidated, and special consideration is paid to the thermo-responsive properties after crosslinking towards the development of MC hydrogels with enhanced physical stability and mechanical performance, preserving the thermo-responsive behavior.
Collapse
Affiliation(s)
- Lorenzo Bonetti
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 22, 20133, Milan, Italy.
| | - Luigi De Nardo
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 22, 20133, Milan, Italy.
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy
| | - Silvia Farè
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 22, 20133, Milan, Italy.
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy
| |
Collapse
|
21
|
Chiu YC, Huang KW, Lin YH, Yin WR, Hou YT. Development of a decellularized liver matrix-based nanocarrier for liver regeneration after partial hepatectomy. JOURNAL OF MATERIALS SCIENCE 2023; 58:15162-15180. [DOI: 10.1007/s10853-023-08971-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/18/2023] [Indexed: 10/08/2024]
|
22
|
Anumula L, Ramesh S, Chinni SK, Punamalli P, Kolaparthi VSK. Clinical Assessment of Moringa oleifera as a Natural Crosslinker for Enhanced Dentin Bond Durability: A Randomized Controlled Trial. Cureus 2023; 15:e46304. [PMID: 37916242 PMCID: PMC10616685 DOI: 10.7759/cureus.46304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Dentin biomodification is a biomimetic approach that strengthens the collagen network, making it less susceptible to enzymatic degradation and improving the durability of bonded restorative materials, using collagen crosslinkers. OBJECTIVE This study aimed to assess the effectiveness of Moringa oleifera as a natural crosslinker in improving the clinical success of resin-dentin restorations. METHOD A double-blind, controlled, randomized clinical trial was conducted in accordance with Consolidated Standards of Reporting Trials (CONSORT) guidelines, with 50 adult participants with initial carious lesions (ICDAS 4 and 5) enrolled. Participants were randomly assigned to either the experimental group (which received Moringa oleifera as a pretreatment liner) or the control group (standard restorative procedures without a liner). Functional and biological outcomes were assessed at baseline, six months, and 12 months using the FDI criteria. Statistical analysis included Fisher's exact test, Wilcoxon sign rank test, and Mann-Whitney U test. RESULTS Both groups exhibited excellent functional properties and marginal adaptation at baseline and six months. At the 12-month mark, the test group displayed clinically better functional properties (97.9%, n=47) compared to the control group (95.8%, n=46), but there was no significant difference (p-value>0.05). Marginal gaps were observed in both groups at six and 12 months (8.3%, n=4), with no significant inter-group variation (p-value>0.05). Radiographic examination showed a harmonious restoration-to-tooth transition. Patient satisfaction remained high, with the test group 4.2% (n=2) and control 2.1% (n=1) reporting minor issues at 12 months, though not statistically significant (p-value>0.05). Postoperative sensitivity was minimal, and tooth integrity was well-preserved. CONCLUSION Moringa oleifera, as a pretreatment liner, showed promise in enhancing the clinical success of resin-dentin restorations. Despite minor reported issues, the groups had no statistically significant differences regarding functional and biological outcomes.
Collapse
Affiliation(s)
- Lavanya Anumula
- Conservative Dentistry and Endodontics, Narayana Dental College and Hospital, Nellore, IND
- Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Sindhu Ramesh
- Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Suneel Kumar Chinni
- Conservative Dentistry and Endodontics, Narayana Dental College and Hospital, Nellore, IND
| | - Prasanth Punamalli
- Public Health Dentistry, Narayana Dental College and Hospital, Nellore, IND
| | | |
Collapse
|
23
|
Gaweł M, Domalik-Pyzik P, Douglas TEL, Reczyńska-Kolman K, Pamuła E, Pielichowska K. The Effect of Chitosan on Physicochemical Properties of Whey Protein Isolate Scaffolds for Tissue Engineering Applications. Polymers (Basel) 2023; 15:3867. [PMID: 37835916 PMCID: PMC10575415 DOI: 10.3390/polym15193867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
New scaffolds, based on whey protein isolate (WPI) and chitosan (CS), have been proposed and investigated as possible materials for use in osteochondral tissue repair. Two types of WPI-based hydrogels modified by CS were prepared: CS powder was incorporated into WPI in either dissolved or suspended powder form. The optimal chemical composition of the resulting WPI/CS hydrogels was chosen based on the morphology, structural properties, chemical stability, swelling ratio, wettability, mechanical properties, bioactivity, and cytotoxicity evaluation. The hydrogels with CS incorporated in powder form exhibited superior mechanical properties and higher porosity, whereas those with CS incorporated after dissolution showed enhanced wettability, which decreased with increasing CS content. The introduction of CS powder into the WPI matrix promoted apatite formation, as confirmed by energy dispersive spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR) analyses. In vitro cytotoxicity results confirmed the cytocompatibility of CS powder modified WPI hydrogels, suggesting their suitability as cell scaffolds. These findings demonstrate the promising potential of WPI/CS scaffolds for osteochondral tissue repair.
Collapse
Affiliation(s)
- Martyna Gaweł
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, 30-059 Kraków, Poland; (M.G.); (P.D.-P.); (K.R.-K.); (E.P.)
| | - Patrycja Domalik-Pyzik
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, 30-059 Kraków, Poland; (M.G.); (P.D.-P.); (K.R.-K.); (E.P.)
| | | | - Katarzyna Reczyńska-Kolman
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, 30-059 Kraków, Poland; (M.G.); (P.D.-P.); (K.R.-K.); (E.P.)
| | - Elżbieta Pamuła
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, 30-059 Kraków, Poland; (M.G.); (P.D.-P.); (K.R.-K.); (E.P.)
| | - Kinga Pielichowska
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, 30-059 Kraków, Poland; (M.G.); (P.D.-P.); (K.R.-K.); (E.P.)
| |
Collapse
|
24
|
Sun J, He H, Zhao K, Cheng W, Li Y, Zhang P, Wan S, Liu Y, Wang M, Li M, Wei Z, Li B, Zhang Y, Li C, Sun Y, Shen J, Li J, Wang F, Ma C, Tian Y, Su J, Chen D, Fan C, Zhang H, Liu K. Protein fibers with self-recoverable mechanical properties via dynamic imine chemistry. Nat Commun 2023; 14:5348. [PMID: 37660126 PMCID: PMC10475138 DOI: 10.1038/s41467-023-41084-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/23/2023] [Indexed: 09/04/2023] Open
Abstract
The manipulation of internal interactions at the molecular level within biological fibers is of particular importance but challenging, severely limiting their tunability in macroscopic performances and applications. It thus becomes imperative to explore new approaches to enhance biological fibers' stability and environmental tolerance and to impart them with diverse functionalities, such as mechanical recoverability and stimulus-triggered responses. Herein, we develop a dynamic imine fiber chemistry (DIFC) approach to engineer molecular interactions to fabricate strong and tough protein fibers with recoverability and actuating behaviors. The resulting DIF fibers exhibit extraordinary mechanical performances, outperforming many recombinant silks and synthetic polymer fibers. Remarkably, impaired DIF fibers caused by fatigue or strong acid treatment are quickly recovered in water directed by the DIFC strategy. Reproducible mechanical performance is thus observed. The DIF fibers also exhibit exotic mechanical stability at extreme temperatures (e.g., -196 °C and 150 °C). When triggered by humidity, the DIFC endows the protein fibers with diverse actuation behaviors, such as self-folding, self-stretching, and self-contracting. Therefore, the established DIFC represents an alternative strategy to strengthen biological fibers and may pave the way for their high-tech applications.
Collapse
Affiliation(s)
- Jing Sun
- School of Chemistry and Molecular Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai, 200241, China
| | - Haonan He
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Kelu Zhao
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Wenhao Cheng
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Yuanxin Li
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Peng Zhang
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Sikang Wan
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Yawei Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Mengyao Wang
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Ming Li
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Zheng Wei
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Bo Li
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Yi Zhang
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Cong Li
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yao Sun
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Jianlei Shen
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Chao Ma
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Yang Tian
- School of Chemistry and Molecular Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai, 200241, China
| | - Juanjuan Su
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Dong Chen
- College of Energy Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Chunhai Fan
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongjie Zhang
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Kai Liu
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China.
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China.
| |
Collapse
|
25
|
Zhao K, Li B, Sun Y, Jia B, Chen J, Cheng W, Zhao L, Li J, Wang F, Su J, Sun J, Han B, Liu Y, Zhang H, Liu K. Engineered Bicomponent Adhesives with Instantaneous and Superior Adhesion Performance for Wound Sealing and Healing Applications. ADVANCED FUNCTIONAL MATERIALS 2023; 33. [DOI: 10.1002/adfm.202303509] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Indexed: 10/05/2024]
Abstract
AbstractSurgical adhesives are playing an important role in wound repair and emergency hemostasis in clinical treatment. However, the development of strong bioglue with rapid in situ adhesion, durable adhesiveness, and flexibility in dynamic and moist physiological environments is still challenging. Herein, a new type of biosynthetic protein bioadhesives with superior adhesion performance is reported by developing a protein aldimine condensation strategy. Lysine‐rich recombinant proteins are designed and massively biosynthesized to instantaneously react with aldehyde cross‐linkers to realize in situ strong adhesion. The obtained bioadhesives show an ultra‐high adhesion strength of ≈101.6 kPa on porcine skin, outperforming extant clinical bioglues. In addition, they possess super biocompatibility, flexibility, biodegradability, and compliance with the tissues. Owing to the strong and instantaneous adhesion properties, the bioadhesives are qualified for dynamic wound closure, facilitating wound repair, and noncompressible hemorrhage. Importantly, they can be industrially encapsulated into custom‐made cartridge delivery tubes at low cost for clinical use. Therefore, biosynthetic bioadhesives have great potential for biological applications and are capable of scaling up to the industrial level for clinical transformation, which will be a successful paradigm for reforming existing clinical products.
Collapse
Affiliation(s)
- Kelu Zhao
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| | - Bo Li
- Engineering Research Center of Advanced Rare Earth Materials Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yao Sun
- Engineering Research Center of Advanced Rare Earth Materials Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
- Xiangfu Laboratory Jiaxing Zhejiang 314102 China
| | - Bo Jia
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
| | - Jing Chen
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
| | - Wenhao Cheng
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| | - Lai Zhao
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
| | - Juanjuan Su
- College of Materials Science and Opto‐Electronic Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Jing Sun
- School of Chemistry and Molecular Engineering Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development East China Normal University Shanghai 200062 China
| | - Bing Han
- Department of Orthodontics Cranial‐Facial Growth, and Development Center Peking University School and Hospital of Stomatology and National Center of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 China
| | - Yawei Liu
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
- Engineering Research Center of Advanced Rare Earth Materials Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
- Xiangfu Laboratory Jiaxing Zhejiang 314102 China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
- Engineering Research Center of Advanced Rare Earth Materials Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
- Xiangfu Laboratory Jiaxing Zhejiang 314102 China
| |
Collapse
|
26
|
Jin X, Park JY, Lee JS, Jung UW, Choi SH, Cha JK. Tissue integration patterns of non-crosslinked and crosslinked collagen membranes: an experimental in vivo study. J Periodontal Implant Sci 2023; 53:207-217. [PMID: 36468485 PMCID: PMC10315255 DOI: 10.5051/jpis.2203260163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/25/2022] [Accepted: 10/12/2022] [Indexed: 11/26/2023] Open
Abstract
PURPOSE Non-crosslinked and crosslinked collagen membranes are known to exhibit distinct degradation characteristics, resulting in contrasting orientations of the adjacent tissues and different biological processes. The aim of this study was to conduct a histomorphometric assessment of non-crosslinked and crosslinked collagen membranes regarding neovascularization, tissue integration, tissue encapsulation, and biodegradation. METHODS Guided bone regeneration was performed using either a non-crosslinked (BG) or a crosslinked collagen membrane (CM) in 15 beagle dogs, which were euthanized at 4, 8, and 16 weeks (n=5 each) for histomorphometric analysis. The samples were assessed regarding neovascularization, tissue integration, encapsulation, the remaining membrane area, and pseudoperiosteum formation. The BG and CM groups were compared at different time periods using nonparametric statistical methods. RESULTS The remaining membrane area of CM was significantly greater than that of BG at 16 weeks; however, there were no significant differences at 4 and 8 weeks. Conversely, the neovascularization score for CM was significantly less than that for BG at 16 weeks. BG exhibited significantly greater tissue integration and encapsulation scores than CM at all time periods, apart from encapsulation at 16 weeks. Pseudoperiosteum formation was observed in the BG group at 16 weeks. CONCLUSIONS Although BG membranes were more rapidly biodegraded than CM membranes, they were gradually replaced by connective tissue with complete integration and maturation of the surrounding tissues to form dense periosteum-like connective tissue. Further studies need to be performed to validate the barrier effect of the pseudoperiosteum.
Collapse
Affiliation(s)
- Xiang Jin
- Department of Periodontology, Research Institute of Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
| | - Jin-Young Park
- Department of Periodontology, Research Institute of Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
- Innovation Research and Support Center for Dental Science, Yonsei University Dental Hospital, Seoul, Korea
| | - Jung-Seok Lee
- Department of Periodontology, Research Institute of Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
- Innovation Research and Support Center for Dental Science, Yonsei University Dental Hospital, Seoul, Korea
| | - Ui-Won Jung
- Department of Periodontology, Research Institute of Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
| | - Seong-Ho Choi
- Department of Periodontology, Research Institute of Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
- Innovation Research and Support Center for Dental Science, Yonsei University Dental Hospital, Seoul, Korea
| | - Jae-Kook Cha
- Department of Periodontology, Research Institute of Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
- Innovation Research and Support Center for Dental Science, Yonsei University Dental Hospital, Seoul, Korea.
| |
Collapse
|
27
|
Indriyani NN, Anshori JA, Permadi N, Nurjanah S, Julaeha E. Bioactive Components and Their Activities from Different Parts of Citrus aurantifolia (Christm.) Swingle for Food Development. Foods 2023; 12:2036. [PMID: 37238855 PMCID: PMC10217416 DOI: 10.3390/foods12102036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Citrus aurantifolia is part of the Rutaceae family and belongs to the genus Citrus. It is widely used in food, the chemical industry, and pharmaceuticals because it has a unique flavor and odor. It is nutrient-rich and is beneficial as an antibacterial, anticancer, antioxidant, anti-inflammatory, and insecticide. Secondary metabolites present in C. aurantifolia are what give rise to biological action. Flavonoids, terpenoids, phenolics, limonoids, alkaloids, and essential oils are among the secondary metabolites/phytochemicals discovered in C. aurantifolia. Every portion of the plant's C. aurantifolia has a different composition of secondary metabolites. Environmental conditions such as light and temperature affect the oxidative stability of the secondary metabolites from C. aurantifolia. The oxidative stability has been increased by using microencapsulation. The advantages of microencapsulation are control of the release, solubilization, and protection of the bioactive component. Therefore, the chemical makeup and biological functions of the various plant components of C. aurantifolia must be investigated. The aim of this review is to discuss the bioactive components of C. aurantifolia such as essential oils, flavonoids, terpenoids, phenolic, limonoids, and alkaloids obtained from different parts of the plants and their biological activities such as being antibacterial, antioxidant, anticancer, an insecticide, and anti-inflammatory. In addition, various extraction techniques of the compounds out of different parts of the plant matrix as well as the microencapsulation of the bioactive components in food are also provided.
Collapse
Affiliation(s)
- Nastiti Nur Indriyani
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (N.N.I.); (J.A.A.)
| | - Jamaludin Al Anshori
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (N.N.I.); (J.A.A.)
| | - Nandang Permadi
- Doctorate Program in Biotechnology, Graduate School, Universitas Padjadjaran, Bandung 40132, Indonesia;
| | - Sarifah Nurjanah
- Department of Agricultural Engineering, Faculty of Agricultural Industrial Technology, Universitas Padjadjaran, Jatinangor 45363, Indonesia;
| | - Euis Julaeha
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (N.N.I.); (J.A.A.)
| |
Collapse
|
28
|
Fang W, Song T, Wang L, Han T, Xiang Z, Rojas OJ. Influence of formic acid esterified cellulose nanofibrils on compressive strength, resilience and thermal stability of polyvinyl alcohol-xylan hydrogel. Carbohydr Polym 2023; 308:120663. [PMID: 36813346 DOI: 10.1016/j.carbpol.2023.120663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/11/2023] [Accepted: 02/01/2023] [Indexed: 02/07/2023]
Abstract
Having competitive compressive strength and resilience as well as biocompatibility simultaneously still remains a challenge for composite hydrogels, which is critical if they are aimed for use as functional biomaterials. In the present work, a facile and green method was designed for producing a composite hydrogel based on polyvinyl alcohol (PVA) and xylan with sodium tri-metaphosphate (STMP) as cross-linker, aiming to specially enhance its compressive properties with the aid of eco-friendly produced formic acid esterified cellulose nanofibrils (CNFs). The CNF addition caused a compressive strength decrease of the hydrogels, although the values (2.34-4.57 MPa at a compressive strain of 70 %) were still at a high level among the reported PVA (or polysaccharide) based hydrogels so far. However, the compressive resilience of the hydrogels was enhanced significantly by the CNF addition, with maximal compressive strength retention of 88.49 % and 99.67 % in height recovery after 1000 compression cycles at a strain of 30 %, which reflects the significant influence of CNFs on the compressive recovery ability of the hydrogel. All materials used in the present work are naturally non-toxic with good biocompatible, which makes the synthesized hydrogels with great potential in biomedical applications, e.g., soft-tissue engineering.
Collapse
Affiliation(s)
- Wei Fang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangzhou Key Laboratory of Sensing Materials & Devices, Centre for Advanced Analytical Science, School of Chemistry and Chemical Engineering, c/o School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, PR China
| | - Tao Song
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, PR China.
| | - Lisheng Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangzhou Key Laboratory of Sensing Materials & Devices, Centre for Advanced Analytical Science, School of Chemistry and Chemical Engineering, c/o School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Tingting Han
- Guangzhou Key Laboratory of Sensing Materials & Devices, Centre for Advanced Analytical Science, School of Chemistry and Chemical Engineering, c/o School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China.
| | - Zhouyang Xiang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, PR China
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical & Biological Engineering, 2360 East Mall, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Bioproducts Institute, Department of Chemistry, 2360 East Mall, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Bioproducts Institute, Department of Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
29
|
Urbánek P, Šuly P, Ševčík J, Hanulíková B, Kuřitka I, Šopík T, Stodůlka P. Controlled Drug Delivery Device for Cornea Treatment and Novel Method for Its Testing. Pharmaceuticals (Basel) 2023; 16:ph16040505. [PMID: 37111260 PMCID: PMC10143253 DOI: 10.3390/ph16040505] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
A new solution for local anesthetic and antibiotic delivery after eye surgery is presented. A contact lens-shaped collagen drug carrier was created and loaded by Levofloxacin and Tetracaine with a riboflavin crosslinked surface layer, thus impeding diffusion. The crosslinking was confirmed by Raman spectroscopy, whereas the drug release was investigated using UV-Vis spectrometry. Due to the surface barrier, the drug gradually releases into the corneal tissue. To test the function of the carrier, a 3D printed device and a new test method for a controlled drug release, which mimics the geometry and physiological lacrimation rate of the human eye, were developed. The experimental setup with simple geometry revealed that the prepared drug delivery device can provide the prolonged release profile of the pseudo-first-order for up to 72 h. The efficiency of the drug delivery was further demonstrated using a dead porcine cornea as a drug recipient, without the need to use live animals for testing. Our drug delivery system significantly surpasses the efficiency of antibiotic and anesthetic eyedrops that would have to be applied approximately 30 times per hour to achieve the same dose as that delivered continuously by our device.
Collapse
Affiliation(s)
- Pavel Urbánek
- Centre of Polymer Systems, Tomas Bata University in Zlín, trida Tomase Bati 5678, 76001 Zlin, Czech Republic
- Correspondence:
| | - Pavol Šuly
- Centre of Polymer Systems, Tomas Bata University in Zlín, trida Tomase Bati 5678, 76001 Zlin, Czech Republic
| | - Jakub Ševčík
- Centre of Polymer Systems, Tomas Bata University in Zlín, trida Tomase Bati 5678, 76001 Zlin, Czech Republic
| | - Barbora Hanulíková
- Centre of Polymer Systems, Tomas Bata University in Zlín, trida Tomase Bati 5678, 76001 Zlin, Czech Republic
| | - Ivo Kuřitka
- Centre of Polymer Systems, Tomas Bata University in Zlín, trida Tomase Bati 5678, 76001 Zlin, Czech Republic
| | - Tomáš Šopík
- Centre of Polymer Systems, Tomas Bata University in Zlín, trida Tomase Bati 5678, 76001 Zlin, Czech Republic
| | - Pavel Stodůlka
- Gemini Eye Clinic, U Gemini 360, 76001 Zlin, Czech Republic
| |
Collapse
|
30
|
Carvalho DN, Lobo FCM, Rodrigues LC, Fernandes EM, Williams DS, Mearns-Spragg A, Sotelo CG, Perez-Martín RI, Reis RL, Gelinsky M, Silva TH. Advanced Polymeric Membranes as Biomaterials Based on Marine Sources Envisaging the Regeneration of Human Tissues. Gels 2023; 9:gels9030247. [PMID: 36975696 PMCID: PMC10048504 DOI: 10.3390/gels9030247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
The self-repair capacity of human tissue is limited, motivating the arising of tissue engineering (TE) in building temporary scaffolds that envisage the regeneration of human tissues, including articular cartilage. However, despite the large number of preclinical data available, current therapies are not yet capable of fully restoring the entire healthy structure and function on this tissue when significantly damaged. For this reason, new biomaterial approaches are needed, and the present work proposes the development and characterization of innovative polymeric membranes formed by blending marine origin polymers, in a chemical free cross-linking approach, as biomaterials for tissue regeneration. The results confirmed the production of polyelectrolyte complexes molded as membranes, with structural stability resulting from natural intermolecular interactions between the marine biopolymers collagen, chitosan and fucoidan. Furthermore, the polymeric membranes presented adequate swelling ability without compromising cohesiveness (between 300 and 600%), appropriate surface properties, revealing mechanical properties similar to native articular cartilage. From the different formulations studied, the ones performing better were the ones produced with 3 % shark collagen, 3% chitosan and 10% fucoidan, as well as with 5% jellyfish collagen, 3% shark collagen, 3% chitosan and 10% fucoidan. Overall, the novel marine polymeric membranes demonstrated to have promising chemical, and physical properties for tissue engineering approaches, namely as thin biomaterial that can be applied over the damaged articular cartilage aiming its regeneration.
Collapse
Affiliation(s)
- Duarte Nuno Carvalho
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Flávia C. M. Lobo
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Luísa C. Rodrigues
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Emanuel M. Fernandes
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - David S. Williams
- Jellagen Limited, Unit G6, Capital Business Park, Parkway, St Mellons, Cardiff CF3 2PY, UK
| | - Andrew Mearns-Spragg
- Jellagen Limited, Unit G6, Capital Business Park, Parkway, St Mellons, Cardiff CF3 2PY, UK
| | - Carmen G. Sotelo
- Group of Food Biochemistry, Instituto de Investigaciones Marinas (IIM-CSIC), C/ Eduardo Cabello 6, 36208 Vigo, Spain
| | - Ricardo I. Perez-Martín
- Group of Food Biochemistry, Instituto de Investigaciones Marinas (IIM-CSIC), C/ Eduardo Cabello 6, 36208 Vigo, Spain
| | - Rui L. Reis
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital, Technische Universität Dresden, 01307 Dresden, Germany
| | - Tiago H. Silva
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
- Correspondence: ; Tel.: +351253510931
| |
Collapse
|
31
|
Cutting Edge Aquatic-Based Collagens in Tissue Engineering. Mar Drugs 2023; 21:md21020087. [PMID: 36827128 PMCID: PMC9959471 DOI: 10.3390/md21020087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
Aquatic-based collagens have attracted much interest due to their great potential application for biomedical sectors, including the tissue engineering sector, as a major component of the extracellular matrix in humans. Their physical and biochemical characteristics offer advantages over mammalian-based collagen; for example, they have excellent biocompatibility and biodegradability, are easy to extract, and pose a relatively low immunological risk to mammalian products. The utilization of aquatic-based collagen also has fewer religious restrictions and lower production costs. Aquatic-based collagen also creates high-added value and good environmental sustainability by aquatic waste utilization. Thus, this study aims to overview aquatic collagen's characteristics, extraction, and fabrication. It also highlights its potential application for tissue engineering and the regeneration of bone, cartilage, dental, skin, and vascular tissue. Moreover, this review highlights the recent research in aquatic collagen, future prospects, and challenges for it as an alternative biomaterial for tissue engineering and regenerative medicines.
Collapse
|
32
|
Synthesis and characterization of natural biomaterial composite nanofibers for ocular drug delivery systems. OPENNANO 2023. [DOI: 10.1016/j.onano.2023.100122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
33
|
Rojek K, Ćwiklińska M, Kuczak J, Guzowski J. Microfluidic Formulation of Topological Hydrogels for Microtissue Engineering. Chem Rev 2022; 122:16839-16909. [PMID: 36108106 PMCID: PMC9706502 DOI: 10.1021/acs.chemrev.1c00798] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Indexed: 02/07/2023]
Abstract
Microfluidics has recently emerged as a powerful tool in generation of submillimeter-sized cell aggregates capable of performing tissue-specific functions, so-called microtissues, for applications in drug testing, regenerative medicine, and cell therapies. In this work, we review the most recent advances in the field, with particular focus on the formulation of cell-encapsulating microgels of small "dimensionalities": "0D" (particles), "1D" (fibers), "2D" (sheets), etc., and with nontrivial internal topologies, typically consisting of multiple compartments loaded with different types of cells and/or biopolymers. Such structures, which we refer to as topological hydrogels or topological microgels (examples including core-shell or Janus microbeads and microfibers, hollow or porous microstructures, or granular hydrogels) can be precisely tailored with high reproducibility and throughput by using microfluidics and used to provide controlled "initial conditions" for cell proliferation and maturation into functional tissue-like microstructures. Microfluidic methods of formulation of topological biomaterials have enabled significant progress in engineering of miniature tissues and organs, such as pancreas, liver, muscle, bone, heart, neural tissue, or vasculature, as well as in fabrication of tailored microenvironments for stem-cell expansion and differentiation, or in cancer modeling, including generation of vascularized tumors for personalized drug testing. We review the available microfluidic fabrication methods by exploiting various cross-linking mechanisms and various routes toward compartmentalization and critically discuss the available tissue-specific applications. Finally, we list the remaining challenges such as simplification of the microfluidic workflow for its widespread use in biomedical research, bench-to-bedside transition including production upscaling, further in vivo validation, generation of more precise organ-like models, as well as incorporation of induced pluripotent stem cells as a step toward clinical applications.
Collapse
Affiliation(s)
- Katarzyna
O. Rojek
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Monika Ćwiklińska
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Julia Kuczak
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Jan Guzowski
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
34
|
Hydrophilic Core-Sheath fibers of Polyvinyl alcohol / Polyethylene composites through in situ ethylene polymerization. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
35
|
Lamparelli EP, Casagranda V, Pressato D, Maffulli N, Della Porta G, Bellini D. Synthesis and Characterization of a Novel Composite Scaffold Based on Hyaluronic Acid and Equine Type I Collagen. Pharmaceutics 2022; 14:pharmaceutics14091752. [PMID: 36145500 PMCID: PMC9505875 DOI: 10.3390/pharmaceutics14091752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/21/2022] Open
Abstract
Herein, the synthesis and characterization of a novel composite biopolymer scaffold—based on equine type I collagen and hyaluronic acid—were described by using a reaction in heterogeneous phase. The resulting biomimetic structure was characterized in terms of chemical, physical, and cytotoxicity properties using human-derived lymphocytes and chondrocytes. Firstly, FT-IR data proved a successful reticulation of hyaluronic acid within collagen structure with the appearance of a new peak at a wavenumber of 1735 cm−1 associated with ester carbonyl stretch. TGA and DSC characterizations confirmed different thermal stability of cross-linked scaffolds while morphological analysis by scanning electron microscopy (SEM) suggested the presence of a highly porous structure with open and interconnected void areas suitable for hosting cells. The enzymatic degradation profile confirmed scaffold higher endurance with collagenase as compared with collagen alone. However, it was particularly interesting that the mechanical behavior of the composite scaffold showed an excellent shape memory, especially when it was hydrated, with an improved Young’s modulus of 9.96 ± 0.53 kPa (p ≤ 0.001) as well as a maximum load at 97.36 ± 3.58 kPa compared to the simple collagen scaffold that had a modulus of 1.57 ± 0.08 kPa and a maximum load of 36.91 ± 0.24 kPa. Finally, in vitro cytotoxicity confirmed good product safety with human lymphocytes (viability of 81.92 ± 1.9 and 76.37 ± 1.2 after 24 and 48 h, respectively), whereas excellent gene expression profiles of chondrocytes with a significant upregulation of SOX9 and ACAN after 10 days of culture indicated our scaffold’s ability of preserving chondrogenic phenotype. The described material could be considered a potential tool to be implanted in patients with cartilage defects.
Collapse
Affiliation(s)
- Erwin Pavel Lamparelli
- Laboratory of Translational Medicine, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
| | | | | | - Nicola Maffulli
- Laboratory of Translational Medicine, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
- Centre for Sport and Exercise Medicine, Barts and The London School of Medicine, Queen Mary University of London, London E1 4NL, UK
| | - Giovanna Della Porta
- Laboratory of Translational Medicine, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
- Research Centre for Biomaterials BIONAM, Università di Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
- Correspondence: ; Tel./Fax: +39-089965234
| | - Davide Bellini
- Novagenit Srl, Viale Trento 115/117, 38017 Mezzolombardo, Italy
| |
Collapse
|
36
|
Iqbal MW, Riaz T, Mahmood S, Bilal M, Manzoor MF, Qamar SA, Qi X. Fucoidan-based nanomaterial and its multifunctional role for pharmaceutical and biomedical applications. Crit Rev Food Sci Nutr 2022; 64:354-380. [PMID: 35930305 DOI: 10.1080/10408398.2022.2106182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fucoidans are promising sulfated polysaccharides isolated from marine sources that have piqued the interest of scientists in recent years due to their widespread use as a bioactive substance. Bioactive coatings and films, unsurprisingly, have seized these substances to create novel, culinary, therapeutic, and diagnostic bioactive nanomaterials. The applications of fucoidan and its composite nanomaterials have a wide variety of food as well as pharmacological properties, including anti-oxidative, anti-inflammatory, anti-cancer, anti-thrombic, anti-coagulant, immunoregulatory, and anti-viral properties. Blends of fucoidan with other biopolymers such as chitosan, alginate, curdlan, starch, etc., have shown promising coating and film-forming capabilities. A blending of biopolymers is a recommended approach to improve their anticipated properties. This review focuses on the fundamental knowledge and current development of fucoidan, fucoidan-based composite material for bioactive coatings and films, and their biological properties. In this article, fucoidan-based edible bioactive coatings and films expressed excellent mechanical strength that can prolong the shelf-life of food products and maintain their biodegradability. Additionally, these coatings and films showed numerous applications in the biomedical field and contribute to the economy. We hope this review can deliver the theoretical basis for the development of fucoidan-based bioactive material and films.
Collapse
Affiliation(s)
| | - Tahreem Riaz
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Shahid Mahmood
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | | | - Sarmad Ahmad Qamar
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei, Taiwan
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
37
|
Marwani HM, Ahmad S, Rahman MM. Fabrication of 3D Gelatin Hydrogel Nanocomposite Impregnated Co-Doped SnO2 Nanomaterial for the Catalytic Reduction of Environmental Pollutants. Gels 2022; 8:gels8080479. [PMID: 36005080 PMCID: PMC9407077 DOI: 10.3390/gels8080479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 02/01/2023] Open
Abstract
In the catalytic reduction of various environment pollutants, cobalt-doped tin oxide, i.e., Co-SnO2 intercalated gelatin (GL) hydrogel nanocomposite was prepared via direct mixing of Co-SnO2 doped with GL. Then, it was crosslinked internally using formaldehyde within a viscous solution of gelatin polymer, which led to the formation of GL/Co-SnO2 hydrogel nanocomposite. GL/Co-SnO2 hydrogel nanocomposite was fully characterized by using field-emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), powder X-ray diffraction (XRD), and attenuated total reflection–Fourier transform infrared spectroscopy (ATR-FTIR). The FESEM images indicate that the Co-SnO2 composite has a spherical structure on the GL matrix while EDX elucidates the elemental composition of each atom in the crosslinked GL/Co-SnO2 hydrogel nanocomposite. The GL/Co-SnO2 nanocomposite was checked for the reduction of various pollutants, including 2-nitro-phenol (2-NP), 2,6-dinitro-phenol (2,6-DNP), 4-nitro-phenol (4-NP), Congo red (CR), and methyl orange (MO) dyes with a strong sodium borohydride (NaBH4) reducing agent. The GL/Co-SnO2 nanocomposite synergistically reduced the MO in the presence of the reducing agent with greater reduction rate of 1.036 min−1 compared to other dyes. The reduction condition was optimized by changing various parameters, such as the catalyst amount, dye concentration, and the NaBH4 amount. Moreover, the GL/Co-SnO2 nanocomposite catalyst can be easily recovered, is recyclable, and revealed minimal loss of nanomaterials.
Collapse
Affiliation(s)
- Hadi M. Marwani
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia;
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Correspondence: (H.M.M.); (M.M.R.); Tel.: +966-12-6952293 (H.M.M.); Fax: +966-12-6952292 (H.M.M.)
| | - Shahid Ahmad
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia;
| | - Mohammed M. Rahman
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia;
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Correspondence: (H.M.M.); (M.M.R.); Tel.: +966-12-6952293 (H.M.M.); Fax: +966-12-6952292 (H.M.M.)
| |
Collapse
|
38
|
Origin of critical nature and stability enhancement in collagen matrix based biomaterials: Comprehensive modification technologies. Int J Biol Macromol 2022; 216:741-756. [PMID: 35908679 DOI: 10.1016/j.ijbiomac.2022.07.199] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/17/2022] [Accepted: 07/24/2022] [Indexed: 02/08/2023]
Abstract
Collagen is the most abundant protein in animals and one of the most important extracellular matrices that chronically plays an important role in biomaterials. However, the major concern about native collagen is the lack of its thermal stability and weak resistance to proteolytic degradation. Currently, a series of modification technologies have been explored for critical nature and stability enhancement in collagen matrix-based biomaterials, and prosperously large-scale progress has been achieved. The establishment of covalent bonds among collagen noumenon has been verified assuringly to have pregnant influences on its physicochemical properties and biological properties, enlightening to discuss the disparate modification technologies on specific effects on the multihierarchical structures and pivotal performances of collagen. In this review, various existing modification methods were classified from a new perspective, scilicet whether to introduce exogenous substances, to reveal the basic scientific theories of collagen modification. Understanding the role of modification technologies in the enhancement of collagen performance is crucial for developing novel collagen-based biomaterials. Moreover, the different modification effects caused by the interaction sites between the modifier and collagen, and the structure-activity relationship between the structure of the modifier and the properties of collagen were reviewed.
Collapse
|
39
|
Phang SJ, Basak S, Teh HX, Packirisamy G, Fauzi MB, Kuppusamy UR, Neo YP, Looi ML. Advancements in Extracellular Matrix-Based Biomaterials and Biofabrication of 3D Organotypic Skin Models. ACS Biomater Sci Eng 2022; 8:3220-3241. [PMID: 35861577 DOI: 10.1021/acsbiomaterials.2c00342] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Over the last decades, three-dimensional (3D) organotypic skin models have received enormous attention as alternative models to in vivo animal models and in vitro two-dimensional assays. To date, most organotypic skin models have an epidermal layer of keratinocytes and a dermal layer of fibroblasts embedded in an extracellular matrix (ECM)-based biomaterial. The ECM provides mechanical support and biochemical signals to the cells. Without advancements in ECM-based biomaterials and biofabrication technologies, it would have been impossible to create organotypic skin models that mimic native human skin. In this review, the use of ECM-based biomaterials in the reconstruction of skin models, as well as the study of complete ECM-based biomaterials, such as fibroblasts-derived ECM and decellularized ECM as a better biomaterial, will be highlighted. We also discuss the benefits and drawbacks of several biofabrication processes used in the fabrication of ECM-based biomaterials, such as conventional static culture, electrospinning, 3D bioprinting, and skin-on-a-chip. Advancements and future possibilities in modifying ECM-based biomaterials to recreate disease-like skin models will also be highlighted, given the importance of organotypic skin models in disease modeling. Overall, this review provides an overview of the present variety of ECM-based biomaterials and biofabrication technologies available. An enhanced organotypic skin model is expected to be produced in the near future by combining knowledge from previous experiences and current research.
Collapse
Affiliation(s)
- Shou Jin Phang
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Soumyadeep Basak
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee-247 667, Uttarakhand, India
| | - Huey Xhin Teh
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Gopinath Packirisamy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee-247 667, Uttarakhand, India
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur, Malaysia
| | - Umah Rani Kuppusamy
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yun Ping Neo
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500 Selangor, Malaysia
| | - Mee Lee Looi
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
40
|
Prevention of postoperative adhesion with a colloidal gel based on decyl group-modified Alaska pollock gelatin microparticles. Acta Biomater 2022; 149:139-149. [PMID: 35697199 DOI: 10.1016/j.actbio.2022.06.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/23/2022]
Abstract
Postoperative adhesion, bonding of the abdominal wall to damaged organs, causes severe complications after abdominal surgery. Despite the availability of physical barriers (i.e., solutions, films, and hydrogels), adhesion prevention materials that are a single-substance system with stability in wet tissue and ease of use have not been reported. Here, we report a microparticle based, sprayable adhesion prevention material comprising decyl group modified Alaska pollock gelatin (C10-ApGltn). C10-ApGltn microparticles (C10-MPs) were prepared by a coacervation method, freeze drying, and thermal crosslinking. The C10-MPs adhered to and formed a colloidal gel layer on intestinal serosal tissue by hydration without any crosslinking agents. After hydration of the C10-MPs, the resulting colloidal gel layer did not adhere to other tissues. Additionally, the C10-MP colloidal gel layer formed on the stomach serosal tissue showed stability when submersed in saline for 2 days. The colloidal gel layer also showed tissue followability. An in vivo rat adhesion model revealed that C10-MP colloidal gel layer on the cecum and abdominal wall defects effectively reduced postoperative adhesion and induced tissue remodeling, including re-mesothelialization. Therefore, C10-MPs are a potential anti-adhesion material for preventing postoperative adhesion. STATEMENT OF SIGNIFICANCE: We evaluated the postoperative adhesion prevention ability of a colloidal gel based on decyl group modified Alaska pollock gelatin (ApGltn) microparticles (C10-MPs). These microparticles are sprayable and form a colloidal gel with only hydration on the gastrointestinal tissue. We revealed that the modification of the decyl group into ApGltn improved the stability of C10-MP colloidal gel on the tissue by hydrophobic interaction in the in-vitro experiments. The gel prevented postoperative adhesion by being a physical barrier in the in-vivo rat adhesion model.
Collapse
|
41
|
Carvalho DN, Williams DS, Sotelo CG, Pérez-Martín RI, Mearns-Spragg A, Reis RL, Silva TH. Marine origin biomaterials using a compressive and absorption methodology as cell-laden hydrogel envisaging cartilage tissue engineering. BIOMATERIALS ADVANCES 2022; 137:212843. [PMID: 35929272 DOI: 10.1016/j.bioadv.2022.212843] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/08/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
In the recent decade, marine origin products have been growingly studied as building blocks complying with the constant demand of the biomedical sector regarding the development of new devices for Tissue Engineering and Regenerative Medicine (TERM). In this work, several combinations of marine collagen-chitosan-fucoidan hydrogel were formed using a newly developed eco-friendly compressive and absorption methodology to produce hydrogels (CAMPH), which consists of compacting the biopolymers solution while removing the excess of water. The hydrogel formulations were prepared by blending solutions of 5% collagen from jellyfish and/or 3% collagen from blue shark skin, with solutions of 3% chitosan from squid pens and solutions of 10% fucoidan from brown algae, at different ratios. The biopolymer physico-chemical characterization comprised Amino Acid analysis, ATR-FTIR, CD, SDS-PAGE, ICP, XRD, and the results suggested the shark/jellyfish collagen(s) conserved the triple helical structure and had similarities with type I and type II collagen, respectively. The studied collagens also contain a denaturation temperature of around 30-32 °C and a molecular weight between 120 and 125 kDa. Additionally, the hydrogel properties were determined by rheology, water uptake ability, degradation rate, and SEM, and the results showed that all formulations had interesting mechanical (strong viscoelastic character) and structural stability properties, with a significant positive highlight in the formulation of H3 (blending all biopolymers, i.e., 5% collagen from jellyfish, 3% collagen from skin shark, 3% chitosan and 10% of fucoidan) in the degradation test, that shows a mass loss around 18% over the 30 days, while the H1 and H2, present a mass loss of around 35% and 44%, respectively. Additionally, the in vitro cellular assessments using chondrocyte cells (ATDC5) in encapsulated state revealed, for all hydrogel formulations, a non-cytotoxic behavior. Furthermore, Live/Dead assay and Phalloidin/DAPI staining, to assess the cytoskeletal organization, proved that the hydrogels can provide a suitable microenvironment for cell adhesion, viability, and proliferation, after being encapsulated. Overall, the results show that all marine collagen (jellyfish/shark)-chitosan-fucoidan hydrogel formulations provide a good structural architecture and microenvironment, highlighting the H3 biomaterial due to containing more polymers in their composition, making it suitable for biomedical articular cartilage therapies.
Collapse
Affiliation(s)
- Duarte Nuno Carvalho
- 3B's Research Group, I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - David S Williams
- Jellagen Limited, Unit G6, Capital Business Park, Parkway, St Mellons, Cardiff CF3 2PY, United Kingdom
| | - Carmen G Sotelo
- Group of Food Biochemistry, Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello 6, Vigo, Pontevedra, Spain
| | - Ricardo I Pérez-Martín
- Group of Food Biochemistry, Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello 6, Vigo, Pontevedra, Spain
| | - Andrew Mearns-Spragg
- Jellagen Limited, Unit G6, Capital Business Park, Parkway, St Mellons, Cardiff CF3 2PY, United Kingdom
| | - Rui L Reis
- 3B's Research Group, I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Tiago H Silva
- 3B's Research Group, I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
42
|
Kim S, Lee HY, Lee HR, Jang JY, Yun JH, Shin YS, Kim CH. Liquid-type plasma-controlled in situ crosslinking of silk-alginate injectable gel displayed better bioactivities and mechanical properties. Mater Today Bio 2022; 15:100321. [PMID: 35757030 PMCID: PMC9214807 DOI: 10.1016/j.mtbio.2022.100321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/02/2022]
Abstract
Silk is a promising biomaterial for injectable hydrogel, but its long-gelation time and cytotoxic crosslinking methods are the main obstacles for clinical application. Here, we purpose a new in situ crosslinking technique of silk-alginate (S-A) injectable hydrogel using liquid-type non-thermal atmospheric plasma (LTP) in vocal fold (VF) wound healing. We confirmed that LTP induces the secondary structure of silk in a dose-dependent manner, resulting in improved mechanical properties. Significantly increased crosslinking of silk was observed with reduced gelation time. Moreover, controlled release of nitrate, an LTP effectors, from LTP-treated S-A hydrogel was detected over 7 days. In vitro experiments regarding biocompatibility showed activation of fibroblasts beyond the non-cytotoxicity of LTP-treated S-A hydrogels. An in vivo animal model of VF injury was established in New Zealand White rabbits. Full-thickness injury was created on the VF followed by hydrogel injection. In histologic analyses, LTP-treated S-A hydrogels significantly reduced a scar formation and promoted favorable wound healing. Functional analysis using videokymography showed eventual viscoelastic recovery. The LTP not only changes the mechanical structures of a hydrogel, but also has sustained biochemical effects on the damaged tissue due to controlled release of LTP effectors, and that LTP-treated S-A hydrogel can be used to enhance wound healing after VF injury.
Collapse
Affiliation(s)
- Sungryeal Kim
- Department of Otolaryngology, College of Medicine, Inha University, Incheon, South Korea.,Department of Medical Sciences, Graduate School of Ajou University, Suwon, South Korea
| | - Hye-Young Lee
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, South Korea
| | - Hye Ran Lee
- Department of Otorhino-laryngology-Head and Neck Surgery, Catholic Kwandong University, College of Medicine, Incheon, South Korea
| | - Jeon Yeob Jang
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, South Korea
| | - Ju Hyun Yun
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, South Korea
| | - Yoo Seob Shin
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, South Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, South Korea
| |
Collapse
|
43
|
Ding K, Zheng C, Huang X, Zhang S, Li M, Lei Y, Wang Y. A PEGylation method of fabricating bioprosthetic heart valves based on glutaraldehyde and 2-amino-4-pentenoic acid co-crosslinking with improved antithrombogenicity and cytocompatibility. Acta Biomater 2022; 144:279-291. [PMID: 35365404 DOI: 10.1016/j.actbio.2022.03.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 02/04/2022] [Accepted: 03/10/2022] [Indexed: 12/13/2022]
Abstract
With the development of diagnostic techniques, the incidence of bioprosthetic heart valve thrombosis (BHVT) is found to be seriously underestimated. Developing bioprosthetic heart valves (BHVs) that have good hemocompatibility without sacrificing other properties such as hydrodynamics and durability will be an effective strategy to alleviate BHVT. In this study, we developed a PEGylation method by co-crosslinking and subsequent radical polymerization. 2-amino-4-pentenoic acid was used to introduce carbon-carbon double bonds for glutaraldehyde crosslinked pericardia. Then poly (ethylene glycol) diacrylate (PEGDA) was immobilized on pericardia by radical polymerization. A comprehensive evaluation of the modified pericardia was performed including structural characterization, hemocompatibility, cytocompatibility, mechanical properties, component stability, hydrodynamic performance and durability of the BHVs. The modified pericardia significantly reduced platelet adhesion by more than 75% compared with traditional glutaraldehyde crosslinked pericardia. Cell viability in the modified pericardia group was nearly 5-fold higher than that in glutaraldehyde crosslinked pericardia. The hydrodynamic performance met the requirements of ISO 5840-3 under physiological aortic valve conditions and its durability was proved after 200 million cycles of accelerated fatigue test. In conclusion, PEGDA modified pericardia exhibited improved antithrombogenicity and cytocompatibility properties compared with glutaraldehyde crosslinked pericardia. STATEMENT OF SIGNIFICANCE: Bioprosthetic valve (BHV) implantation requires BHV to be structurally stable as well as biocompatible in vivo. Traditional glutaraldehyde crosslinking method prepared BHV suffers from severe cytotoxicity, thrombosis, and calcification. BHV modification methods that have simultaneously improved structural stability and biocompatibility were rarely reported. Here, we proposed a PEGylation method for BHV based on co-crosslinking strategy that could improve its structural stability as well as hemocompatibility. We take the advantage of high efficiency of glutaraldehyde crosslinking and demonstrate the feasibility and superiority of the PEGylated strategy, offering a promising option in glutaraldehyde-based BHV fabrication in the future.
Collapse
Affiliation(s)
- Kailei Ding
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China
| | - Cheng Zheng
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China
| | - Xueyu Huang
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China
| | - Shumang Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China
| | - Meiling Li
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China
| | - Yang Lei
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China.
| |
Collapse
|
44
|
Furtado M, Chen L, Chen Z, Chen A, Cui W. Development of fish collagen in tissue regeneration and drug delivery. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
45
|
Chinh NT, Trang TDM, Dung HT, Lu LT, Dung NT, Quyen NTC, Hong PT, Le VTT, Mao CV, Hoang T. A Ternary Biocomposite Based on Modified Fish Scale Collagen and Ginsenoside Rb1: Preparation, Properties and Bioactivities. POLYM INT 2022. [DOI: 10.1002/pi.6389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nguyen Thuy Chinh
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay Ha Noi 100000 Vietnam
- Institute for Tropical Technology Vietnam Academy of Science and Technology, 18, Hoang Quoc Viet Cau Giay Ha Noi 100000 Vietnam
| | - Tran Do Mai Trang
- Institute for Tropical Technology Vietnam Academy of Science and Technology, 18, Hoang Quoc Viet Cau Giay Ha Noi 100000 Vietnam
| | - Hoang Tran Dung
- Institute for Tropical Technology Vietnam Academy of Science and Technology, 18, Hoang Quoc Viet Cau Giay Ha Noi 100000 Vietnam
| | - Le Trong Lu
- Institute for Tropical Technology Vietnam Academy of Science and Technology, 18, Hoang Quoc Viet Cau Giay Ha Noi 100000 Vietnam
| | - Nguyen Tien Dung
- Faculty of Chemistry Hanoi National University of Education, 136 Xuan Thuy, Cau Giay Ha Noi 100000 Vietnam
| | - Ngo Thi Cam Quyen
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay Ha Noi 100000 Vietnam
- Institute of Environmental Sciences Nguyen Tat Thanh University Ho Chi Minh City 700000 Vietnam
| | - Pham Thi Hong
- Faculty of Chemistry Hanoi National University of Education, 136 Xuan Thuy, Cau Giay Ha Noi 100000 Vietnam
| | - Vu Thi Thu Le
- Thai Nguyen University of Agriculture and Forestry, Quyet Thang Thai Nguyen 250000 Vietnam
| | - Can Van Mao
- Vietnam Military Medical University, 160 Phung Hung, Phuc La, Ha Dong Hanoi 100000 Vietnam
| | - Thai Hoang
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay Ha Noi 100000 Vietnam
- Institute for Tropical Technology Vietnam Academy of Science and Technology, 18, Hoang Quoc Viet Cau Giay Ha Noi 100000 Vietnam
| |
Collapse
|
46
|
Stie MB, Kalouta K, Vetri V, Foderà V. Protein materials as sustainable non- and minimally invasive strategies for biomedical applications. J Control Release 2022; 344:12-25. [PMID: 35182614 DOI: 10.1016/j.jconrel.2022.02.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 01/17/2023]
Abstract
Protein-based materials have found applications in a wide range of biomedical fields because of their biocompatibility, biodegradability and great versatility. Materials of different physical forms including particles, hydrogels, films, fibers and microneedles have been fabricated e.g. as carriers for drug delivery, factors to promote wound healing and as structural support for the generation of new tissue. This review aims at providing an overview of the current scientific knowledge on protein-based materials, and selected preclinical and clinical studies will be reviewed in depth as examples of the latest progress within the field of protein-based materials, specifically focusing on non- and minimally invasive strategies mainly for topical application.
Collapse
Affiliation(s)
- Mai Bay Stie
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Center for Biopharmaceuticals and Biobarriers in Drug Delivery, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Kleopatra Kalouta
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Center for Biopharmaceuticals and Biobarriers in Drug Delivery, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Dipartimento di Fisica e Chimica, Università Degli Studi di Palermo, Viale delle Scienze ed. 18, 90128 Palermo, Italy
| | - Valeria Vetri
- Dipartimento di Fisica e Chimica, Università Degli Studi di Palermo, Viale delle Scienze ed. 18, 90128 Palermo, Italy
| | - Vito Foderà
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Center for Biopharmaceuticals and Biobarriers in Drug Delivery, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
47
|
Yun J, Lee J, Kim S, Koo KT, Seol YJ, Lee YM. The effect of hard-type crosslinked hyaluronic acid with particulate bone substitute on bone regeneration: positive or negative? J Periodontal Implant Sci 2022; 52:312-324. [PMID: 36047584 PMCID: PMC9436643 DOI: 10.5051/jpis.2104700235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/19/2021] [Accepted: 01/24/2022] [Indexed: 11/08/2022] Open
Abstract
Purpose Methods Results Conclusions
Collapse
Affiliation(s)
- Junseob Yun
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Jungwon Lee
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
- One-Stop Specialty Center, Seoul National University Dental Hospital, Seoul, Korea
| | - Sungtae Kim
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Ki-Tae Koo
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Yang-Jo Seol
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Yong-Moo Lee
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| |
Collapse
|
48
|
Highly stretchable gamma-irradiated poly (vinyl alcohol)/Tannic acid composite hydrogels with superior transparency and antibacterial activity. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02777-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
49
|
Functionalization of Electrospun Polycaprolactone Scaffolds with Matrix-Binding Osteocyte-Derived Extracellular Vesicles Promotes Osteoblastic Differentiation and Mineralization. Ann Biomed Eng 2021; 49:3621-3635. [PMID: 34664147 PMCID: PMC8671272 DOI: 10.1007/s10439-021-02872-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022]
Abstract
Synthetic polymeric materials have demonstrated great promise for bone tissue engineering based on their compatibility with a wide array of scaffold-manufacturing techniques, but are limited in terms of the bioactivity when compared to naturally occurring materials. To enhance the regenerative properties of these materials, they are commonly functionalised with bioactive factors to guide growth within the developing tissue. Extracellular matrix vesicles (EVs) play an important role in facilitating endochondral ossification during long bone development and have recently emerged as important mediators of cell-cell communication coordinating bone regeneration, and thus represent an ideal target to enhance the regenerative properties of synthetic scaffolds. Therefore, in this paper we developed tools and protocols to enable the attachment of MLO-Y4 osteocyte-derived EVs onto electrospun polycaprolactone (PCL) scaffolds for bone repair. Initially, we optimize a method for the functionalization of PCL materials with collagen type-1 and fibronectin, inspired by the behaviour of matrix vesicles during endochondral ossification, and demonstrate that this is an effective method for the adhesion of EVs to the material surface. We then used this functionalization process to attach osteogenic EVs, collected from mechanically stimulated MLO-Y4 osteocytes, to collagen-coated electrospun PCL scaffolds. The EV-functionalized scaffold promoted osteogenic differentiation (measured by increased ALP activity) and mineralization of the matrix. In particular, EV-functionalised scaffolds exhibited significant increases in matrix mineralization particularly at earlier time points compared to uncoated and collagen-coated controls. This approach to matrix-based adhesion of EVs provides a mechanism for incorporating vesicle signalling into polyester scaffolds and demonstrates the potential of osteocyte derived EVs to enhance the rate of bone tissue regeneration.
Collapse
|
50
|
Czibulya Z, Csík A, Tóth F, Pál P, Csarnovics I, Zelkó R, Hegedűs C. The Effect of the PVA/Chitosan/Citric Acid Ratio on the Hydrophilicity of Electrospun Nanofiber Meshes. Polymers (Basel) 2021; 13:3557. [PMID: 34685316 PMCID: PMC8540897 DOI: 10.3390/polym13203557] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
In this study, scaffolds were prepared via an electrospinning method for application in oral cavities. The hydrophilicity of the fiber mesh is of paramount importance, as it promotes cell spreading; however, the most commonly used polyvinyl alcohol (PVA) and other hydrophilic fiber meshes immediately disintegrate in aqueous media. In contrast, the excessive hydrophobicity of the scaffolds already inhibits cells adhesion on the surface. Therefore, the hydrophilicity of the fiber meshes needed to be optimized. Scaffolds with different polyvinyl alcohol (PVA)/chitosan/citric acid ratios were prepared. The addition of chitosan and the heat initiated cross-linkage of the polymers via citric acid enhanced the scaffolds' hydrophobicity. The optimization of this property could be followed by contact angle measurements, and the increased number of cross-linkages were also supported by IR spectroscopy results. The fibers' physical parameters were monitored via low-vacuum scanning electron microscopy (SEM) and atomic force microscopy (AFM). As biocompatibility is essential for dental applications, Alamar Blue assay was used to prove that meshes do not have any negative effects on dental pulp stem cells. Our results showed that the optimization of the fiber nets was successful, as they will not disintegrate in intraoral cavities during dental applications.
Collapse
Affiliation(s)
- Zsuzsanna Czibulya
- Biomaterials and Prosthetic Dentistry, Faculty of Dentistry, University of Debrecen, 98. Nagyerdei Blvd, H-4032 Debrecen, Hungary; (F.T.); (C.H.)
| | - Attila Csík
- Laboratory of Materials Science, Institute for Nuclear Research (ATOMKI), 18/c Bem Square, H-4026 Debrecen, Hungary;
| | - Ferenc Tóth
- Biomaterials and Prosthetic Dentistry, Faculty of Dentistry, University of Debrecen, 98. Nagyerdei Blvd, H-4032 Debrecen, Hungary; (F.T.); (C.H.)
| | - Petra Pál
- Department of Experimental Physics, Faculty of Science and Technology, University of Debrecen, 18/a Bem Square, H-4002 Debrecen, Hungary; (P.P.); (I.C.)
| | - István Csarnovics
- Department of Experimental Physics, Faculty of Science and Technology, University of Debrecen, 18/a Bem Square, H-4002 Debrecen, Hungary; (P.P.); (I.C.)
| | - Romána Zelkó
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, 7–9 Hőgyes Street, H-1092 Budapest, Hungary;
| | - Csaba Hegedűs
- Biomaterials and Prosthetic Dentistry, Faculty of Dentistry, University of Debrecen, 98. Nagyerdei Blvd, H-4032 Debrecen, Hungary; (F.T.); (C.H.)
| |
Collapse
|