1
|
McLoughlin ST, McKenna AR, Fisher JP. 4D Bioprinting via Molecular Network Contraction for Membranous Tissue Fabrication. Adv Healthc Mater 2023; 12:e2300642. [PMID: 37463127 DOI: 10.1002/adhm.202300642] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/29/2023] [Accepted: 07/08/2023] [Indexed: 07/20/2023]
Abstract
Generation of thin membranous tissues (TMT), such as the cornea, epidermis, and periosteum, presents a difficult fabrication challenge in tissue engineering (TE). TMTs consist of several cell layers that are less than 100 µm in thickness per layer. While traditional methods provide the necessary resolution for TMT fabrication, they require significant handling and incorporation of several layers is limited. Extrusion bioprinting offers precise control over deposition of different biomaterials and cell populations within the same construct but lacks the resolution to generate biomimetic TMTs. For the first time, a 4D bioprinting strategy that allows for the generation of cell-laden TMTs is developed. Anionic gelatin methacrylate (GelMA) hydrogels are treated with cationic poly-l-lysine (PLL), which induces charge attraction, microscale network collapse, and macroscale hydrogel shrinking. The impact of shrinking on hydrogel properties, print resolution, and cell viability is presented. Additionally, this work suggests that a novel mechanism is occurring, where PLL exhibits a contractile force on GelMA and PLL molecular weight drives GelMA shrinking capabilities. Finally, it is shown that this phenomenon can occur while maintaining an encapsulated cell population. These findings address a critical barrier by generating macroscale tissue structures with their microscale TMT counterparts in the same print.
Collapse
Affiliation(s)
- Shannon T McLoughlin
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, MD, 20742, USA
| | - Abigail R McKenna
- Center for Engineering Complex Tissues, University of Maryland, College Park, MD, 20742, USA
- Department of Biology, University of Maryland, College Park, MD, 20742, USA
| | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
2
|
Vikulina AS, Campbell J. Biopolymer-Based Multilayer Capsules and Beads Made via Templating: Advantages, Hurdles and Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2502. [PMID: 34684943 PMCID: PMC8537085 DOI: 10.3390/nano11102502] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
One of the undeniable trends in modern bioengineering and nanotechnology is the use of various biomolecules, primarily of a polymeric nature, for the design and formulation of novel functional materials for controlled and targeted drug delivery, bioimaging and theranostics, tissue engineering, and other bioapplications. Biocompatibility, biodegradability, the possibility of replicating natural cellular microenvironments, and the minimal toxicity typical of biogenic polymers are features that have secured a growing interest in them as the building blocks for biomaterials of the fourth generation. Many recent studies showed the promise of the hard-templating approach for the fabrication of nano- and microparticles utilizing biopolymers. This review covers these studies, bringing together up-to-date knowledge on biopolymer-based multilayer capsules and beads, critically assessing the progress made in this field of research, and outlining the current challenges and perspectives of these architectures. According to the classification of the templates, the review sequentially considers biopolymer structures templated on non-porous particles, porous particles, and crystal drugs. Opportunities for the functionalization of biopolymer-based capsules to tailor them toward specific bioapplications is highlighted in a separate section.
Collapse
Affiliation(s)
- Anna S. Vikulina
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg, 1, 14476 Potsdam, Germany
- Bavarian Polymer Institute, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Dr.-Mack-Straße, 77, 90762 Fürth, Germany
| | - Jack Campbell
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK;
| |
Collapse
|
3
|
Paz-Artigas L, Ziani K, Alcaine C, Báez-Díaz C, Blanco-Blázquez V, Pedraz JL, Ochoa I, Ciriza J. Benefits of cryopreservation as long-term storage method of encapsulated cardiosphere-derived cells for cardiac therapy: A biomechanical analysis. Int J Pharm 2021; 607:121014. [PMID: 34400275 DOI: 10.1016/j.ijpharm.2021.121014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 02/08/2023]
Abstract
Cardiosphere-derived cells (CDCs) encapsulated within alginate-poly-L-lysine-alginate (APA) microcapsules present a promising treatment alternative for myocardial infarction. However, clinical translatability of encapsulated CDCs requires robust long-term preservation of microcapsule and cell stability, since cell culture at 37 °C for long periods prior to patient implantation involve high resource, space and manpower costs, sometimes unaffordable for clinical facilities. Cryopreservation in liquid nitrogen is a well-established procedure to easily store cells with good recovery rate, but its effects on encapsulated cells are understudied. In this work, we assess both the biological response of CDCs and the mechanical stability of microcapsules after long-term (i.e., 60 days) cryopreservation and compare them to encapsulated CDCs cultured at 37 °C. We investigate for the first time the effects of cryopreservation on stiffness and topographical features of microcapsules for cell therapy. Our results show that functionality of encapsulated CDCs is optimum during 7 days at 37 °C, while cryopreservation seems to better guarantee the stability of both CDCs and APA microcapsules properties during longer storage than 15 days. These results point out cryopreservation as a suitable technique for long-term storage of encapsulated cells to be translated from the bench to the clinic.
Collapse
Affiliation(s)
- Laura Paz-Artigas
- Tissue Microenvironment (TME) Lab. Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain; Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain
| | - Kaoutar Ziani
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine, CIBER-BBN, Spain
| | - Clara Alcaine
- Tissue Microenvironment (TME) Lab. Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain; Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain
| | - Claudia Báez-Díaz
- Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER CV), Spain
| | - Virginia Blanco-Blázquez
- Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER CV), Spain
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine, CIBER-BBN, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Ignacio Ochoa
- Tissue Microenvironment (TME) Lab. Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain; Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine, CIBER-BBN, Spain.
| | - Jesús Ciriza
- Tissue Microenvironment (TME) Lab. Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain; Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine, CIBER-BBN, Spain.
| |
Collapse
|
4
|
Orive G, Emerich D, Khademhosseini A, Matsumoto S, Hernández RM, Pedraz JL, Desai T, Calafiore R, de Vos P. Engineering a Clinically Translatable Bioartificial Pancreas to Treat Type I Diabetes. Trends Biotechnol 2018; 36:445-456. [PMID: 29455936 DOI: 10.1016/j.tibtech.2018.01.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/11/2018] [Accepted: 01/16/2018] [Indexed: 02/06/2023]
Abstract
Encapsulating, or immunoisolating, insulin-secreting cells within implantable, semipermeable membranes is an emerging treatment for type 1 diabetes. This approach can eliminate the need for immunosuppressive drug treatments to prevent transplant rejection and overcome the shortage of donor tissues by utilizing cells derived from allogeneic or xenogeneic sources. Encapsulation device designs are being optimized alongside the development of clinically viable, replenishable, insulin-producing stem cells, for the first time creating the possibility of widespread therapeutic use of this technology. Here, we highlight the status of the most advanced and widely explored implementations of cell encapsulation with an eye toward translating the potential of this technological approach to medical reality.
Collapse
Affiliation(s)
- Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain; BTI Biotechnology Institute, Vitoria, Spain; Joint first authors and contributed equally to the paper.
| | - Dwaine Emerich
- NsGene,225 Chapman Street, Providence, RI, USA; Joint first authors and contributed equally to the paper
| | - Ali Khademhosseini
- Department of Bioengineering, Department of Chemical and Biomolecular Engineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA, USA; Department of Radiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA; Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, USA; California NanoSystems Institute (CNSI), University of California-Los Angeles, Los Angeles, CA, USA. http://twitter.com/@khademh
| | - Shinichi Matsumoto
- Research and Development Center, Otsuka Pharmaceutical Factory, 115 Kuguhara, Tateiwa, Muya-cho, Naruto, Tokushima 772-8601, Japan
| | - R M Hernández
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - J L Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Tejal Desai
- University of California, San Francisco, Department of Bioengineering and Therapeutic Sciences, Byers Hall Room 203C, MC 2520, 1700 4th Street, San Francisco, CA, USA
| | - Riccardo Calafiore
- Department of Medicine, Section of Cardiovascular, Endocrine and Metabolic Clinical Physiology, Laboratory for Endocrine Cell Transplants and Biohybrid Organs, University of Perugia, Piazzale Gambuli, Perugia, Italy; Joint first authors and contributed equally to the paper
| | - Paul de Vos
- University of Groningen, Pathology and Medical Biology Section, Immunoendocrinology, Groningen, The Netherlands.
| |
Collapse
|
5
|
Abstract
The principle of immunoisolation of cells is based on encapsulation of cells in immunoprotective but semipermeable membranes that protect cells from hazardous effects of the host immune system but allows ingress of nutrients and outgress of therapeutic molecules. The technology was introduced in 1933 but has only received its deserved attention for its therapeutic application for three decades now.In the past decade important advances have been made in creating capsules that provoke minimal or no inflammatory responses. There are however new emerging challenges. These challenges relate to optimal nutrition and oxygen supply as well as standardization and documentation of capsule properties.It is concluded that the proof of principle of applicability of encapsulated grafts for treatment of human disease has been demonstrated and merits optimism about its clinical potential. Further innovation requires a much more systematic approach in identifying crucial properties of capsules and cellular grafts to allow sound interpretations of the results.
Collapse
Affiliation(s)
- Paul de Vos
- Division of Immuno-Endocrinology, Departments of Pathology and Laboratory Medicine, University of Groningen, Groningen, Groningen, The Netherlands.
| |
Collapse
|
6
|
Vaithilingam V, Steinkjer B, Ryan L, Larsson R, Tuch BE, Oberholzer J, Rokstad AM. In Vitro and In Vivo Biocompatibility Evaluation of Polyallylamine and Macromolecular Heparin Conjugates Modified Alginate Microbeads. Sci Rep 2017; 7:11695. [PMID: 28916826 PMCID: PMC5600981 DOI: 10.1038/s41598-017-11989-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/29/2017] [Indexed: 11/09/2022] Open
Abstract
Host reactivity to biocompatible immunoisolation devices is a major challenge for cellular therapies, and a human screening model would be of great value. We designed new types of surface modified barium alginate microspheres, and evaluated their inflammatory properties using human whole blood, and the intraperitoneal response after three weeks in Wistar rats. Microspheres were modified using proprietary polyallylamine (PAV) and coupled with macromolecular heparin conjugates (Corline Heparin Conjugate, CHC). The PAV-CHC strategy resulted in uniform and stable coatings with increased anti-clot activity and low cytotoxicity. In human whole blood, PAV coating at high dose (100 µg/ml) induced elevated complement, leukocyte CD11b and inflammatory mediators, and in Wistar rats increased fibrotic overgrowth. Coating of high dose PAV with CHC significantly reduced these responses. Low dose PAV (10 µg/ml) ± CHC and unmodified alginate microbeads showed low responses. That the human whole blood inflammatory reactions paralleled the host response shows a link between inflammatory potential and initial fibrotic response. CHC possessed anti-inflammatory activity, but failed to improve overall biocompatibility. We conclude that the human whole blood assay is an efficient first-phase screening model for inflammation, and a guiding tool in development of new generation microspheres for cell encapsulation therapy.
Collapse
Affiliation(s)
- Vijayaganapathy Vaithilingam
- Materials Science and Engineering, Commonwealth Scientific and Industrial Research Organization (CSIRO), North Ryde, New South Wales, Australia
| | - Bjørg Steinkjer
- Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Liv Ryan
- Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Rolf Larsson
- Corline System AB, Uppsala, Sweden.,Department of Immunology, Genetics and Pathology, University of Uppsala, Uppsala, Sweden
| | - Bernard Edward Tuch
- Materials Science and Engineering, Commonwealth Scientific and Industrial Research Organization (CSIRO), North Ryde, New South Wales, Australia. .,School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia.
| | - Jose Oberholzer
- Department of Surgery, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Anne Mari Rokstad
- Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,The Central Norway Regional Health Authority (RHA), Trondheim, Norway
| |
Collapse
|
7
|
Weber LM, Cheung CY, Anseth KS. Multifunctional Pancreatic Islet Encapsulation Barriers Achieved via Multilayer PEG Hydrogels. Cell Transplant 2017; 16:1049-1057. [DOI: 10.3727/000000007783472336] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The diverse requirements for a successful islet encapsulation barrier suggest the benefit of a barrier system that presents differing functionalities to encapsulated cells and host cells. Initially, multifunctional hydrogels were synthesized via the sequential photopolymerization of PEG hydrogel layers, each with different isolated functionalities. The ability to achieve localized biological functionalities was confirmed by immunostaining of different entrapped antibodies within each hydrogel layer. Survival of murine islets macroencapsulated within the interior gel of two-layer hydrogel constructs was then assessed. Maintenance of encapsulated islet survival and function was observed within multilayer hydrogels over 28 days in culture. Additionally, the functionalization of the islet-containing interior PEG gel layer with cell–matrix moieties, with either 100 μg/ml laminin or 5 mM of the adhesive peptide IKVAV found in laminin, resulted in increased insulin secretion from encapsulated islets similar to that in gels without an exterior hydrogel layer. Finally, through cell seeding experiments, the ability of an unmodified, exterior PEG layer to prevent interactions, and thus attachment, between nonencapsulated fibroblasts and entrapped ECM components within the interior PEG layer was demonstrated. Together the presented results support the potential of multilayer hydrogels for use as multifunctional islet encapsulation barriers that provide a localized biologically active islet microenvironment, while presenting an inert, immunoprotective exterior surface to the host environment, to minimize graft–host interactions.
Collapse
Affiliation(s)
- Laney M. Weber
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, 80309-0424, USA
| | - Charles Y. Cheung
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, 80309-0424, USA
- Howard Hughes Medical Institute, University of Colorado, Boulder, CO, 80309-0424, USA
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, 80309-0424, USA
- Howard Hughes Medical Institute, University of Colorado, Boulder, CO, 80309-0424, USA
| |
Collapse
|
8
|
Cañibano-Hernández A, Saenz Del Burgo L, Espona-Noguera A, Orive G, Hernández RM, Ciriza J, Pedraz JL. Alginate Microcapsules Incorporating Hyaluronic Acid Recreate Closer in Vivo Environment for Mesenchymal Stem Cells. Mol Pharm 2017; 14:2390-2399. [PMID: 28558467 DOI: 10.1021/acs.molpharmaceut.7b00295] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The potential clinical application of alginate cell microencapsulation has advanced enormously during the past decade. However, the 3D environment created by alginate beads does not mimic the natural extracellular matrix surrounding cells in vivo, responsible of cell survival and functionality. As one of the most frequent macromolecules present in the extracellular matrix is hyaluronic acid, we have formed hybrid beads with alginate and hyaluronic acid recreating a closer in vivo cell environment. Our results show that 1% alginate-0.25% hyaluronic acid microcapsules retain 1.5% alginate physicochemical properties. Moreover, mesenchymal stem cells encapsulated in these hybrid beads show enhanced viability therapeutic protein release and mesenchymal stem cells' potential to differentiate into chondrogenic lineage. Although future studies with additional proteins need to be done in order to approach even more the extracellular matrix features, we have shown that hyaluronic acid protects alginate encapsulated mesenchymal stem cells by providing a niche-like environment and remaining them competent as a sustainable drug delivery system.
Collapse
Affiliation(s)
- Alberto Cañibano-Hernández
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU , Vitoria-Gasteiz 01006, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN , Vitoria-Gasteiz 01006, Spain
| | - Laura Saenz Del Burgo
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU , Vitoria-Gasteiz 01006, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN , Vitoria-Gasteiz 01006, Spain
| | - Albert Espona-Noguera
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU , Vitoria-Gasteiz 01006, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN , Vitoria-Gasteiz 01006, Spain
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU , Vitoria-Gasteiz 01006, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN , Vitoria-Gasteiz 01006, Spain
| | - Rosa M Hernández
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU , Vitoria-Gasteiz 01006, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN , Vitoria-Gasteiz 01006, Spain
| | - Jesús Ciriza
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU , Vitoria-Gasteiz 01006, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN , Vitoria-Gasteiz 01006, Spain
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU , Vitoria-Gasteiz 01006, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN , Vitoria-Gasteiz 01006, Spain
| |
Collapse
|
9
|
Paredes-Juarez GA, de Vos P, Bulte JWM. Recent progress in the use and tracking of transplanted islets as a personalized treatment for type 1 diabetes. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2017; 2:57-67. [PMID: 29276781 PMCID: PMC5737787 DOI: 10.1080/23808993.2017.1302305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Type 1 diabetes mellitus (T1DM) is an autoimmune disease in which the pancreas produces insufficient amounts of insulin. T1DM patients require exogenous sources of insulin to maintain euglycemia. Transplantation of naked or microencapsulated pancreatic islets represents an alternative paradigm to obtain an autonomous regulation of blood glucose levels in a controlled and personalized fashion. However, once transplanted, the fate of these personalized cellular therapeutics is largely unknown, justifying the development of non-invasive tracking techniques. AREAS COVERED In vivo imaging of naked pancreatic islet transplantation, monitoring of microencapsulated islet transplantation, visualizing pancreatic inflammation, imaging of molecular-genetic therapeutics, imaging of beta cell function. EXPERT COMMENTARY There are still several hurdles to overcome before (microencapsulated) islet cell transplantation will become a mainstay therapy. Non-invasive imaging methods that can track graft volume, graft rejection, graft function (insulin secretion) microcapsule engraftment, microcapsule rupture, and pancreatic inflammation are currently being developed to design the best experimental transplantation paradigms.
Collapse
Affiliation(s)
- Genaro A Paredes-Juarez
- Russell H. Morgan Department of Radiology, Division of Magnetic Resonance Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Paul de Vos
- University Medical Center Groningen (UMCG), Department of Pathology and Medical Biology, Section Immunoendocrinology. Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Jeff W M Bulte
- Russell H. Morgan Department of Radiology, Division of Magnetic Resonance Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
de Vos P, Smink AM, Paredes G, Lakey JRT, Kuipers J, Giepmans BNG, de Haan BJ, Faas MM. Enzymes for Pancreatic Islet Isolation Impact Chemokine-Production and Polarization of Insulin-Producing β-Cells with Reduced Functional Survival of Immunoisolated Rat Islet-Allografts as a Consequence. PLoS One 2016; 11:e0147992. [PMID: 26824526 PMCID: PMC4732769 DOI: 10.1371/journal.pone.0147992] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/11/2016] [Indexed: 11/18/2022] Open
Abstract
The primary aim of this study was to determine whether normal variations in enzyme-activities of collagenases applied for rat-islet isolation impact longevity of encapsulated islet grafts. Also we studied the functional and immunological properties of rat islets isolated with different enzyme preparations to determine whether this impacts these parameters. Rat-islets were isolated from the pancreas with two different collagenases with commonly accepted collagenase, neutral protease, and clostripain activities. Islets had a similar and acceptable glucose-induced insulin-release profile but a profound statistical significant difference in production of the chemokines IP-10 and Gro-α. The islets were studied with nanotomy which is an EM-based technology for unbiased study of ultrastructural features of islets such as cell-cell contacts, endocrine-cell condition, ER stress, mitochondrial conditions, and cell polarization. The islet-batch with higher chemokine-production had a lower amount of polarized insulin-producing β-cells. All islets had more intercellular spaces and less interconnected areas with tight cell-cell junctions when compared to islets in the pancreas. Islet-graft function was studied by implanting encapsulated and free islet grafts in rat recipients. Alginate-based encapsulated grafts isolated with the enzyme-lot inducing higher chemokine production and lower polarization survived for a two-fold shorter period of time. The lower survival-time of the encapsulated grafts was correlated with a higher influx of inflammatory cells at 7 days after implantation. Islets from the same two batches transplanted as free unencapsulated-graft, did not show any difference in survival or function in vivo. Lack of insight in factors contributing to the current lab-to-lab variation in longevity of encapsulated islet-grafts is considered to be a threat for clinical application. Our data suggest that seemingly minor variations in activity of enzymes applied for islet-isolation might contribute to longevity-variations of immunoisolated islet-grafts.
Collapse
Affiliation(s)
- Paul de Vos
- Immunoendocrinology, department of Pathology and Medical biology, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
- * E-mail:
| | - Alexandra M. Smink
- Immunoendocrinology, department of Pathology and Medical biology, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Genaro Paredes
- Immunoendocrinology, department of Pathology and Medical biology, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Jonathan R. T. Lakey
- Department of Surgery and Biomedical Engineering, University of California Irvine, Orange, CA, 92868, United States of America
| | - Jeroen Kuipers
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, P. O. Box 196, 9700 AD, Groningen, The Netherlands
| | - Ben N. G. Giepmans
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, P. O. Box 196, 9700 AD, Groningen, The Netherlands
| | - Bart J. de Haan
- Immunoendocrinology, department of Pathology and Medical biology, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Marijke M. Faas
- Immunoendocrinology, department of Pathology and Medical biology, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| |
Collapse
|
11
|
Ciriza J, Saenz del Burgo L, Virumbrales-Muñoz M, Ochoa I, Fernandez L, Orive G, Hernandez R, Pedraz J. Graphene oxide increases the viability of C2C12 myoblasts microencapsulated in alginate. Int J Pharm 2015. [DOI: 10.1016/j.ijpharm.2015.07.062] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
A novel multilayer immunoisolating encapsulation system overcoming protrusion of cells. Sci Rep 2014; 4:6856. [PMID: 25358640 PMCID: PMC4215319 DOI: 10.1038/srep06856] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 10/10/2014] [Indexed: 12/23/2022] Open
Abstract
Application of alginate-microencapsulated therapeutic cells is a promising approach for diseases that require a local and constant supply of therapeutic molecules. However most conventional alginate microencapsulation systems are associated with low mechanical stability and protrusion of cells which is associated with higher surface roughness and limits their clinical application. Here we have developed a novel multilayer encapsulation system that prevents cells from protruding from capsules. The system was tested using a therapeutic protein with anti-tumor activity overexpressed in mammalian cells. The cell containing core of the multilayer capsule was formed by flexible alginate, creating a cell sustaining environment. Surrounded by a poly-L-lysine layer the flexible core was enveloped in a high-G alginate matrix that is less flexible and has higher mechanical stability, which does not support cell survival. The cells in the core of the multilayer capsule did not show growth impairment and protein production was normal for periods up to 70 days in vitro. The additional alginate layer also lowered the surface roughness compared to conventional cell containing alginate-PLL capsules. Our system provides a solution for two important, often overlooked phenomena in cell encapsulation: preventing cell protrusion and improving surface roughness.
Collapse
|
13
|
Bhujbal SV, Paredes-Juarez GA, Niclou SP, de Vos P. Factors influencing the mechanical stability of alginate beads applicable for immunoisolation of mammalian cells. J Mech Behav Biomed Mater 2014; 37:196-208. [DOI: 10.1016/j.jmbbm.2014.05.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/21/2014] [Accepted: 05/26/2014] [Indexed: 01/11/2023]
|
14
|
Paredes Juárez GA, Spasojevic M, Faas MM, de Vos P. Immunological and technical considerations in application of alginate-based microencapsulation systems. Front Bioeng Biotechnol 2014; 2:26. [PMID: 25147785 PMCID: PMC4123607 DOI: 10.3389/fbioe.2014.00026] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 07/17/2014] [Indexed: 01/31/2023] Open
Abstract
Islets encapsulated in immunoprotective microcapsules are being proposed as an alternative for insulin therapy for treatment of type 1 diabetes. Many materials for producing microcapsules have been proposed but only alginate does currently qualify as ready for clinical application. However, many different alginate-based capsule systems do exist. A pitfall in the field is that these systems are applied without a targeted strategy with varying degrees of success as a consequence. In the current review, the different properties of alginate-based systems are reviewed in view of future application in humans. The use of allogeneic and xenogeneic islet sources are discussed with acknowledging the different degrees of immune protection the encapsulation system should supply. Also issues such as oxygen supply and the role of danger associated molecular patterns (DAMPS) in immune activation are being reviewed. A common property of the encapsulation systems is that alginates for medical application should have an extreme high degree of purity and lack pathogen-associated molecular patterns (PAMPs) to avoid activation of the recipient’s immune system. Up to now, non-inflammatory alginates are only produced on a lab-scale and are not yet commercially available. This is a major pitfall on the route to human application. Also the lack of predictive pre-clinical models is a burden. The principle differences between relevant innate and adaptive immune responses in humans and other species are reviewed. Especially, the extreme differences between the immune system of non-human primates and humans are cumbersome as non-human primates may not be predictive of the immune responses in humans, as opposed to the popular belief of regulatory agencies. Current insight is that although the technology is versatile major research efforts are required for identifying the mechanical, immunological, and physico-chemical requirements that alginate-based capsules should meet for successful human application.
Collapse
Affiliation(s)
- Genaro Alberto Paredes Juárez
- Section of Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| | - Milica Spasojevic
- Section of Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands ; Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen , Groningen , Netherlands
| | - Marijke M Faas
- Section of Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| | - Paul de Vos
- Section of Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| |
Collapse
|
15
|
de Vos P, Lazarjani HA, Poncelet D, Faas MM. Polymers in cell encapsulation from an enveloped cell perspective. Adv Drug Deliv Rev 2014; 67-68:15-34. [PMID: 24270009 DOI: 10.1016/j.addr.2013.11.005] [Citation(s) in RCA: 194] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/26/2013] [Accepted: 11/13/2013] [Indexed: 02/07/2023]
Abstract
In the past two decades, many polymers have been proposed for producing immunoprotective capsules. Examples include the natural polymers alginate, agarose, chitosan, cellulose, collagen, and xanthan and synthetic polymers poly(ethylene glycol), polyvinyl alcohol, polyurethane, poly(ether-sulfone), polypropylene, sodium polystyrene sulfate, and polyacrylate poly(acrylonitrile-sodium methallylsulfonate). The biocompatibility of these polymers is discussed in terms of tissue responses in both the host and matrix to accommodate the functional survival of the cells. Cells should grow and function in the polymer network as adequately as in their natural environment. This is critical when therapeutic cells from scarce cadaveric donors are considered, such as pancreatic islets. Additionally, the cell mass in capsules is discussed from the perspective of emerging new insights into the release of so-called danger-associated molecular pattern molecules by clumps of necrotic therapeutic cells. We conclude that despite two decades of intensive research, drawing conclusions about which polymer is most adequate for clinical application is still difficult. This is because of the lack of documentation on critical information, such as the composition of the polymer, the presence or absence of confounding factors that induce immune responses, toxicity to enveloped cells, and the permeability of the polymer network. Only alginate has been studied extensively and currently qualifies for application. This review also discusses critical issues that are not directly related to polymers and are not discussed in the other reviews in this issue, such as the functional performance of encapsulated cells in vivo. Physiological endocrine responses may indeed not be expected because of the many barriers that the metabolites encounter when traveling from the blood stream to the enveloped cells and back to circulation. However, despite these diffusion barriers, many studies have shown optimal regulation, allowing us to conclude that encapsulated grafts do not always follow nature's course but are still a possible solution for many endocrine disorders for which the minute-to-minute regulation of metabolites is mandatory.
Collapse
|
16
|
Rokstad AMA, Lacík I, de Vos P, Strand BL. Advances in biocompatibility and physico-chemical characterization of microspheres for cell encapsulation. Adv Drug Deliv Rev 2014; 67-68:111-30. [PMID: 23876549 DOI: 10.1016/j.addr.2013.07.010] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 06/28/2013] [Accepted: 07/12/2013] [Indexed: 02/06/2023]
Abstract
Cell encapsulation has already shown its high potential and holds the promise for future cell therapies to enter the clinics as a large scale treatment option for various types of diseases. The advancement in cell biology towards this goal has to be complemented with functional biomaterials suitable for cell encapsulation. This cannot be achieved without understanding the close correlation between cell performance and properties of microspheres. The ongoing challenges in the field of cell encapsulation require a critical view on techniques and approaches currently utilized to characterize microspheres. This review deals with both principal subjects of microspheres characterization in the cell encapsulation field: physico-chemical characterization and biocompatibility. The up-to-day knowledge is summarized and discussed with the focus to identify missing knowledge and uncertainties, and to propose the mandatory next steps in characterization of microspheres for cell encapsulation. The primary conclusion of this review is that further success in development of microspheres for cell therapies cannot be accomplished without careful selection of characterization techniques, which are employed in conjunction with biological tests.
Collapse
Affiliation(s)
- Anne Mari A Rokstad
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Prinsesse Kristinasgt. 1, N-7491 Trondheim, Norway; The Central Norway Health Authority (RHA), Trondheim, Norway.
| | - Igor Lacík
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dubravska cesta 9, 845 41 Bratislava, Slovakia.
| | - Paul de Vos
- Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA11, 9700 RB Groningen, The Netherlands.
| | - Berit L Strand
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Prinsesse Kristinasgt. 1, N-7491 Trondheim, Norway; Department of Biotechnology, NTNU, Sem Saelandsvei 6/8, N-7491 Trondheim, Norway; The Central Norway Health Authority (RHA), Trondheim, Norway.
| |
Collapse
|
17
|
Zheng G, Liu X, Wang X, Chen L, Xie H, Wang F, Zheng H, Yu W, Ma X. Improving stability and biocompatibility of alginate/chitosan microcapsule by fabricating bi-functional membrane. Macromol Biosci 2014; 14:655-66. [PMID: 24436207 DOI: 10.1002/mabi.201300474] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/02/2013] [Indexed: 01/22/2023]
Abstract
Cell encapsulation technology holds promise for the cell-based therapy. But poor mechanical strength and biocompatibility of microcapsule membrane are still obstacles for the clinical applications. A novel strategy is presented to prepare AC₁ C₂ A microcapsules with bi-functional membrane (that is, both desirable biocompatibility and membrane stability) by sequentially complexing chitosans with higher deacetylation degree (C₁) and lower deacetylation degree (C₂) on alginate (A) gel beads. Both in vitro and in vivo evaluation of AC₁C₂ A microcapsules demonstrate higher membrane stability and less cell adhesion, because the introduction of C₂ increases membrane strength and decreases surface roughness. Moreover, diffusion test of AC₁C₂ A microcapsules displays no inward permeation of IgG protein suggesting good immunoisolation function. The results demonstrate that AC₁C₂ A microcapsules with bi-functional membrane could be a promising candidate for microencapsulated cell implantation with cost effective usage of naturally biocompatible polysaccharides.
Collapse
Affiliation(s)
- Guoshuang Zheng
- Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China; University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Gattás-Asfura K, Valdes M, Celik E, Stabler C. Covalent layer-by-layer assembly of hyperbranched polymers on alginate microcapsulesto impart stability and permselectivity. J Mater Chem B 2014; 2:8208-8219. [PMID: 25478165 DOI: 10.1039/c4tb01241k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The microencapsulation of cells has shown promise as a therapeutic vehicle for the treatment of a wide variety of diseases. While alginate microcapsules provide an ideal cell encapsulation material, polycations coatings are commonly employed to enhance stability and impart permselectivity. In this study, functionalized hyperbranched alginate and dendrimer polymers were used to generate discreet nanoscale coatings onto alginate microbeads via covalent layer-by-layer assembly. The bioorthogonal Staudinger ligation scheme was used to chemoselectively crosslink azide functionalized hyperbranched alginate (alginate-hN3) to methyl-2-diphenylphosphino-terephthalate (MDT) linked PAMAM dendrimer (PAMAM-MDT). Covalent layer-by-layer deposition of PAMAM-MDT/alginate-hN3 coatings onto alginate microbeads resulted in highly stable coatings, even after the inner alginate gel was liquefied to form microcapsules. The permselectivity of the coated microcapsules could be manipulated via the charge density of the PAMAM, the number of layers deposited, and the length of the functional arms. The cytocompatibility of the resulting PAMAM-MDT/alginate-hN3 coating was evaluated using a beta cell line, with no significant detrimental response observed. The biocompatibility of the coatings in vivo was also found comparable to uncoated alginate beads. The remarkable stability and versatile nature of these coatings provides an appealing option for bioencapsulation and the release of therapeutic agents.
Collapse
Affiliation(s)
- Km Gattás-Asfura
- Diabetes Research Institute, University of Miami, Miami, FL 33136 USA
| | - M Valdes
- Diabetes Research Institute, University of Miami, Miami, FL 33136 USA ; Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146 USA
| | - E Celik
- Department of Mechanical and Aerospace Engineering, University of Miami, Coral Gables, FL 33146 USA
| | - Cl Stabler
- Diabetes Research Institute, University of Miami, Miami, FL 33136 USA ; Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146 USA ; Department of Surgery and Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136 USA
| |
Collapse
|
19
|
Vaithilingam V, Kollarikova G, Qi M, Larsson R, Lacik I, Formo K, Marchese E, Oberholzer J, Guillemin GJ, Tuch BE. Beneficial effects of coating alginate microcapsules with macromolecular heparin conjugates-in vitro and in vivo study. Tissue Eng Part A 2013; 20:324-34. [PMID: 23971677 DOI: 10.1089/ten.tea.2013.0254] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pericapsular fibrotic overgrowth (PFO) is associated with poor survival of encapsulated pancreatic islets. Modification of the microcapsule membrane aimed at preventing PFO should improve graft survival. This study investigated the effect of macromolecular Corline Heparin Conjugate (CHC) binding on intrinsic properties of alginate microcapsules and assessed the anti-fibrotic potential of this strategy both in vitro and in vivo. CHC was bound to alginate microcapsules using a layer-by-layer approach incorporating avidin. CHC binding to alginate microcapsule was visualized by confocal microscopy. Effects of CHC binding on microcapsule size, strength, and permeability were assessed, and the anti-clotting activity of bound CHC was determined by coagulation assay. Effect of CHC binding on the viability of encapsulated human islets was assessed in vitro, and their ability to function was assessed both in vitro and in vivo in diabetic immunodeficient mice. The potential of bound CHC to reduce PFO was assessed in vivo in different rat transplantation models. Confocal microscopy demonstrated a uniform coating of CHC onto the surface of microcapsules. CHC binding affected neither size nor permeability but significantly increased the tensile strength of alginate microcapsules by ~1.3-fold. The bound CHC molecules were stable and retained their anti-clotting activity for 3 weeks in culture. CHC binding affected neither viability nor function of the encapsulated human islets in vitro. In vivo CHC binding did not compromise islet function, and diabetes was reversed in all recipients with mice exhibiting lower blood glucose levels similar to controls in oral glucose tolerance tests. CHC binding was beneficial and significantly reduced PFO in both syngeneic and allogeneic rat transplantation models by ~65% and ~43%, respectively. In conclusion, our results show a new method to successfully coat CHC on alginate microcapsules and demonstrate its beneficial effect in increasing capsule strength and reduce PFO. This strategy has the potential to improve graft survival of encapsulated human islets.
Collapse
Affiliation(s)
- Vijayaganapathy Vaithilingam
- 1 Department of Pharmacology, School of Medical Sciences, Faculty of Medicine, University of New South Wales , Randwick, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The design of new technologies for treatment of human disorders is a complex and difficult task. The aim of this article is to explore state of art discussion of various techniques and materials involve in cell encapsulations. Encapsulation of cells within semi-permeable polymer shells or beads is a potentially powerful tool, and has long been explored as a promising approach for the treatment of several human diseases such as lysosomal storage disease (LSD), neurological disorders, Parkinsons disease, dwarfism, hemophilia, cancer and diabetes using immune-isolation gene therapy.
Collapse
|
21
|
Pareta R, Sanders B, Babbar P, Soker T, Booth C, McQuilling J, Sivanandane S, Stratta RJ, Orlando G, Opara EC. Immunoisolation: where regenerative medicine meets solid organ transplantation. Expert Rev Clin Immunol 2013; 8:685-92. [PMID: 23078065 DOI: 10.1586/eci.12.64] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Immunoisolation refers to an immunological strategy in which nonself antigens present on an allograft or xenograft are not allowed to come in contact with the host immune system, and it is implemented to prevent allorecognition and avoid immunosuppression. In this setting, the two most promising technologies, encapsulation of pancreatic islets (EPI) and immunocloaking (IC), are used. In the case of EPI, islets are inserted in capsules that, allow exchange of oxygen, nutrients and other molecules. In the case of IC, a natural nanofilm is injected prior to renal transplantation within the vasculature of the graft with the intent to pave the inner surface of the vascular lumen and camouflage the antigens located on the membrane of endothelia cells. Significant progress achieved in experimental models is leading EPI and IC to clinical translation.
Collapse
Affiliation(s)
- Rajesh Pareta
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Acarregui A, Pedraz JL, Blanco FJ, Hernández RM, Orive G. Hydrogel-Based Scaffolds for Enclosing Encapsulated Therapeutic Cells. Biomacromolecules 2013; 14:322-30. [DOI: 10.1021/bm301690a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Argia Acarregui
- NanoBioCel Group,
Laboratory
of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Álava,
01006, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Álava, 01006, Spain
| | - Jose Luis Pedraz
- NanoBioCel Group,
Laboratory
of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Álava,
01006, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Álava, 01006, Spain
| | - Francisco Javier Blanco
- CIBER-BBN-Bioscaff Cartílago, INIBIC-Hospital Universitario A Coruña, A Coruña,
15006, Spain
| | - Rosa María Hernández
- NanoBioCel Group,
Laboratory
of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Álava,
01006, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Álava, 01006, Spain
| | - Gorka Orive
- NanoBioCel Group,
Laboratory
of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Álava,
01006, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Álava, 01006, Spain
| |
Collapse
|
23
|
Hillberg AL, Kathirgamanathan K, Lam JBB, Law LY, Garkavenko O, Elliott RB. Improving alginate-poly-L-ornithine-alginate capsule biocompatibility through genipin crosslinking. J Biomed Mater Res B Appl Biomater 2012; 101:258-68. [DOI: 10.1002/jbm.b.32835] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 09/11/2012] [Indexed: 12/11/2022]
|
24
|
Suzuki S, Asoh TA, Kikuchi A. Design of core-shell gel beads for time-programmed protein release. J Biomed Mater Res A 2012; 101:1345-52. [DOI: 10.1002/jbm.a.34427] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 08/20/2012] [Accepted: 08/22/2012] [Indexed: 11/06/2022]
|
25
|
Hoesli CA, Kiang RLJ, Mocinecová D, Speck M, Mošková DJ, Donald-Hague C, Lacík I, Kieffer TJ, Piret JM. Reversal of diabetes by βTC3 cells encapsulated in alginate beads generated by emulsion and internal gelation. J Biomed Mater Res B Appl Biomater 2012; 100:1017-28. [DOI: 10.1002/jbm.b.32667] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 11/24/2011] [Accepted: 12/10/2011] [Indexed: 11/10/2022]
|
26
|
Bocharova V, Zavalov O, MacVittie K, Arugula MA, Guz NV, Dokukin ME, Halámek J, Sokolov I, Privman V, Katz E. A biochemical logic approach to biomarker-activated drug release. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm32966b] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Vaithilingam V, Quayum N, Joglekar MV, Jensen J, Hardikar AA, Oberholzer J, Guillemin GJ, Tuch BE. Effect of alginate encapsulation on the cellular transcriptome of human islets. Biomaterials 2011; 32:8416-25. [PMID: 21889795 DOI: 10.1016/j.biomaterials.2011.06.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 06/20/2011] [Indexed: 10/17/2022]
Abstract
Encapsulation of human islets may prevent their immune rejection when transplanted into diabetic recipients. To assist in understanding why clinical outcomes with encapsulated islets were not ideal, we examined the effect of encapsulation on their global gene (mRNA) and selected miRNAs (non-coding (nc)RNA) expression. For functional studies, encapsulated islets were transplanted into peritoneal cavity of diabetic NOD-SCID mice. Genomics analysis and transplantation studies demonstrate that islet origin and isolation centres are a major source of variation in islet quality. In contrast, tissue culture and the encapsulation process had only a minimal effect, and did not affect islet viability. Microarray analysis showed that as few as 29 genes were up-regulated and 2 genes down-regulated (cut-off threshold 0.1) by encapsulation. Ingenuity analysis showed that up-regulated genes were involved mostly in inflammation, especially chemotaxis, and vascularisation. However, protein expression of these factors was not altered by encapsulation, raising doubts about the biosignificance of the gene changes. Encapsulation had no effect on levels of islet miRNAs. In vivo studies indicate differences among the centres in the quality of the islets isolated. We conclude that microencapsulation of human islets with barium alginate has little effect on their transcriptome.
Collapse
|
28
|
de Haan BJ, Rossi A, Faas MM, Smelt MJ, Sonvico F, Colombo P, de Vos P. Structural surface changes and inflammatory responses against alginate-based microcapsules after exposure to human peritoneal fluid. J Biomed Mater Res A 2011; 98:394-403. [DOI: 10.1002/jbm.a.33123] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 02/09/2011] [Accepted: 03/25/2011] [Indexed: 11/06/2022]
|
29
|
An in situ formed biodegradable hydrogel for reconstruction of the corneal endothelium. Colloids Surf B Biointerfaces 2011; 82:1-7. [DOI: 10.1016/j.colsurfb.2010.07.043] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2010] [Accepted: 07/21/2010] [Indexed: 01/06/2023]
|
30
|
Xie HG, Li XX, Lv GJ, Xie WY, Zhu J, Luxbacher T, Ma R, Ma XJ. Effect of surface wettability and charge on protein adsorption onto implantable alginate-chitosan-alginate microcapsule surfaces. J Biomed Mater Res A 2010; 92:1357-65. [PMID: 19353563 DOI: 10.1002/jbm.a.32437] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Alginate-chitosan-alginate (ACA) microcapsules have been developed as a device for the transplantation of living cells. However, protein adsorption onto the surface of microcapsules immediately upon their implantation decides their ultimate biocompatibility. In this work, the chemical composition of the ACA membranes was determined using X-ray photoelectron spectroscopy (XPS). The surface wettability and charge were determined by contact angle and zeta potential measurements, respectively. Then, the effects of surface wettability and charge on bovine fibrinogen (Fgn) and gamma globulin (IgG) adsorption onto ACA microcapsules were evaluated. The results showed that ACA microcapsules had a hydrophilic membrane. So, the surface wettability of ACA microcapsules had little effect on protein adsorption. There was a negative zeta potential of ACA microcapsules which varies with the viscosity or G content of alginate used, indicating a varying degree of net negatively charged groups on the surface of ACA microcapsules. The amount of adsorbed protein increased with increasing of positive charge. Furthermore, the interaction between proteins and ACA microcapsules is dominated by electrostatic repulsion at pH 7.4 and that is of electrostatic attraction at pH 6.0. This work could help to explain the bioincompatibility of ACA microcapsules and will play an important role in the optimization of the microcapsule design.
Collapse
Affiliation(s)
- Hong-Guo Xie
- Biotechnology Division, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
de Vos P, Spasojevic M, Faas MM. Treatment of diabetes with encapsulated islets. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 670:38-53. [PMID: 20384217 DOI: 10.1007/978-1-4419-5786-3_5] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Cell encapsulation has been proposed for the treatment of a wide variety of diseases since it allows for transplantation of cells in the absence of undesired immunosuppression. The technology has been proposed to be a solution for the treatment of diabetes since it potentially allows a mandatory minute-to-minute regulation of glucose levels without side-effects. Encapsulation is based on the principle that transplanted tissue is protected for the host immune system by a semipermeable capsule. Many different concepts of capsules have been tested. During the past two decades three major approaches of encapsulation have been studied. These include (i) intravascular macrocapsules, which are anastomosed to the vascular system as AV shunt, (ii) extravascular macrocapsules, which are mostly diffusion chambers transplanted at different sites and (iii) extravascular microcapsules transplanted in the peritoneal cavity. The advantages and pitfalls of the three approaches are discussed and compared in view of applicability in clinical islet transplantation.
Collapse
Affiliation(s)
- Paul de Vos
- Department of Pathology and Laboratory Medicine, Section of Immunoendocrinology, University of Groningen. Hanzeplein 1, 9700 RB Groningen, The Netherlands.
| | | | | |
Collapse
|
32
|
Li AA, Hou DY, Shen F, Seidlitz EP, Potter MA. Luciferase Therapeutic Microcapsules for Gene Therapy. ACTA ACUST UNITED AC 2009; 37:235-44. [DOI: 10.3109/10731190903356537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
33
|
Mazumder MAJ, Burke NAD, Shen F, Potter MA, Stöver HDH. Core-Cross-Linked Alginate Microcapsules for Cell Encapsulation. Biomacromolecules 2009; 10:1365-73. [PMID: 19397289 DOI: 10.1021/bm801330j] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- M. A. Jafar Mazumder
- Department of Chemistry, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada, L8S 4M1, and Department of Pathology and Molecular Medicine, McMaster University, 1200 Main Street West, Hamilton, Ontario, Canada, L8N 3Z5
| | - Nicholas A. D. Burke
- Department of Chemistry, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada, L8S 4M1, and Department of Pathology and Molecular Medicine, McMaster University, 1200 Main Street West, Hamilton, Ontario, Canada, L8N 3Z5
| | - Feng Shen
- Department of Chemistry, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada, L8S 4M1, and Department of Pathology and Molecular Medicine, McMaster University, 1200 Main Street West, Hamilton, Ontario, Canada, L8N 3Z5
| | - Murray A. Potter
- Department of Chemistry, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada, L8S 4M1, and Department of Pathology and Molecular Medicine, McMaster University, 1200 Main Street West, Hamilton, Ontario, Canada, L8N 3Z5
| | - Harald D. H. Stöver
- Department of Chemistry, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada, L8S 4M1, and Department of Pathology and Molecular Medicine, McMaster University, 1200 Main Street West, Hamilton, Ontario, Canada, L8N 3Z5
| |
Collapse
|
34
|
Mazumder MAJ, Shen F, Burke NAD, Potter MA, Stöver HDH. Self-cross-linking polyelectrolyte complexes for therapeutic cell encapsulation. Biomacromolecules 2008; 9:2292-300. [PMID: 18665640 DOI: 10.1021/bm800580c] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Self-cross-linking polyelectrolytes are used to strengthen the surface of calcium alginate beads for cell encapsulation. Poly([2-(methacryloyloxy)ethyl]trimethylammonium chloride), containing 30 mol % 2-aminoethyl methacrylate, and poly(sodium methacrylate), containing 30 mol % 2-(methacryloyloxy)ethyl acetoacetate, were prepared by radical polymerization. Sequential deposition of these polyelectrolytes on calcium alginate films or beads led to a shell consisting of a covalently cross-linked polyelectrolyte complex that resisted osmotic pressure changes as well as challenges with citrate and high ionic strength. Confocal laser fluorescence microscopy revealed that both polyelectrolytes were concentrated in the outer 7-25 microm of the calcium alginate beads. The thickness of this cross-linked shell increased with exposure time. GPC studies of solutions permeating through analogous flat model membranes showed molecular weight cut-offs between 150 and 200 kg/mol for poly(ethylene glycol), suitable for cell encapsulation. C 2C 12 mouse cells were shown to be viable within calcium alginate capsules coated with the new polyelectrolytes, even though some of the capsules showed fibroid overcoats when implanted in mice due to an immune response.
Collapse
Affiliation(s)
- M A Jafar Mazumder
- Department of Chemistry, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada
| | | | | | | | | |
Collapse
|
35
|
Abbah SA, Lu WW, Chan D, Cheung KMC, Liu WG, Zhao F, Li ZY, Leong JCY, Luk KDK. Osteogenic behavior of alginate encapsulated bone marrow stromal cells: an in vitro study. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2008; 19:2113-9. [PMID: 17136608 DOI: 10.1007/s10856-006-0013-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 12/29/2005] [Indexed: 05/12/2023]
Abstract
Sodium alginate is a useful polymer for the encapsulation and immobilization of a variety of cells in tissue engineering because it is biocompatible, biodegradable and easy to process into injectable microbeads. Despite these properties, little is known of the efficacy of calcium cross-linked alginate gel beads as a biodegradable scaffold for osteogenic cell proliferation and differentiation. In this study, we investigated the ability of rabbit derived bone marrow cells (BMCs) to proliferate and differentiate in alginate microbeads and compared them with BMCs cultured in poly-L-lysine (PLL) coated microbeads and on conventional 2D plastic surfaces. Results show that levels of proliferation and differentiation in microbeads and on tissue culture plastics were comparable. Cell proliferation in microbeads however diminished after fortification with a coating layer of PLL. Maximum cell numbers observed were, 3.32 x 10(5) +/- 1.72 x 103; 3.11 x 10(5) +/- 1.52 x 10(3) and 3.28 x 10(5) +/- 1.21 x 10(3 ) for the uncoated, PLL coated and plastic surface groups respectively. Alkaline phosphatase and protein expressions reflected the stage of cell differentiation. We conclude that calcium cross-linked alginate microbeads can act as a scaffold for BMC proliferation and osteogenic differentiation and has potential for use as 3D degradable scaffold.
Collapse
Affiliation(s)
- S A Abbah
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Sassoon Road, Pokfulam, Hong Kong, P. R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Zhang WJ, Li BG, Zhang C, Xie XH, Tang TT. Biocompatibility and membrane strength of C3H10T1/2 cell-loaded alginate-based microcapsules. Cytotherapy 2008; 10:90-7. [DOI: 10.1080/14653240701762372] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
37
|
Rinaudo M. Main properties and current applications of some polysaccharides as biomaterials. POLYM INT 2008. [DOI: 10.1002/pi.2378] [Citation(s) in RCA: 672] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Thanos CG, Bintz BE, Emerich DF. Stability of alginate-polyornithine microcapsules is profoundly dependent on the site of transplantation. J Biomed Mater Res A 2007; 81:1-11. [PMID: 17089418 DOI: 10.1002/jbm.a.31033] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Alginate encapsulation is a form of cell-based therapy with numerous preclinical successes but recalcitrant complications related to stability and reproducibility. Understanding how alginate stability varies across different transplant sites will help identify indications that might benefit most from this approach. Alginate stability has been quantified in the peritoneum, but there are no systematic studies comparing its relative stability across transplant sites. This study compares the stability of alginate-polycation microcapsules implanted in the peritoneum to those implanted in the brain and subcutaneous space at 14, 28, 60, 90, 120, and 180 days in-life. Using Fourier-Transform Infrared Spectroscopy (FTIR), the surface of explanted capsules was analyzed for the relative proportion of alginate (outer coat) and the polycationic polyornithine (middle coat). Using a mathematic relationship between FTIR peaks related to these two material components, an index was generated to compare the stability of four different alginates. A notable difference was observed with rapid breakdown in the peritoneum. Conversely, identical alginate capsules transplanted into the brain or subcutaneous space were stable for the 6 month study. These data suggest that (1) successful intraperitoneal transplantation requires modifications of the capsule configuration, the host environment, or both and (2) that sites such as the brain and subcutaneous space are inherently less hostile to conventional alginate capsule configurations.
Collapse
Affiliation(s)
- C G Thanos
- LCT BioPharma, Incorporated, Providence, RI 02906, USA.
| | | | | |
Collapse
|
39
|
Thanos CG, Calafiore R, Basta G, Bintz BE, Bell WJ, Hudak J, Vasconcellos A, Schneider P, Skinner SJM, Geaney M, Tan P, Elliot RB, Tatnell M, Escobar L, Qian H, Mathiowitz E, Emerich DF. Formulating the alginate–polyornithine biocapsule for prolonged stability: Evaluation of composition and manufacturing technique. J Biomed Mater Res A 2007; 83:216-24. [PMID: 17607741 DOI: 10.1002/jbm.a.31472] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Alginate encapsulation is one of the most widely used techniques for introducing cell-based therapeutics into the body. Numerous encapsulation methodologies exist, utilizing a variety of alginates, purification technologies, and unique polycationic membrane components. The stability of a conventional alginate formulation encapsulated using a commercially available technique and apparatus has been characterized extensively. The current study employs an encapsulation protocol and ultra-pure alginate pioneered at the University of Perugia. The enhanced microcapsules were produced, characterized, and implanted into the brain, peritoneal cavity, and subcutaneous space of Long-Evans rats. After 14, 28, 60, 90, 120, and 180 or 215 days, capsules were explanted and the surface was analyzed using Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Image analysis was carried out to measure changes in diameter and wall thickness. FTIR peak analysis and surface morphology from SEM indicated that the enhanced encapsulation technique and formulation produced a stable biocapsule capable of survival in all sites, including the harsh peritoneal environment, for at least 215 days. Preimplant analysis showed a marked increase in the structural integrity of the enhanced formulation with improved elasticity and burst strength compared with the baseline formulation, which remained stable for less than 60 days. The enhanced microcapsule composition showed advantages in physical strength and longevity, indicating that small changes in encapsulation methodologies and materials selection can dramatically impact the stability and longevity of alginate microcapsules and their contents.
Collapse
Affiliation(s)
- C G Thanos
- LCT BioPharma, Incorporated, Providence, Rhode Island 02906, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
de Vos P, Faas MM, Strand B, Calafiore R. Alginate-based microcapsules for immunoisolation of pancreatic islets. Biomaterials 2006; 27:5603-17. [PMID: 16879864 DOI: 10.1016/j.biomaterials.2006.07.010] [Citation(s) in RCA: 361] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Accepted: 07/11/2006] [Indexed: 01/12/2023]
Abstract
Transplantation of microencapsulated cells is proposed as a therapy for the treatment of a wide variety of diseases since it allows for transplantation of endocrine cells in the absence of undesired immunosuppression. The technology is based on the principle that foreign cells are protected from the host immune system by an artificial membrane. In spite of the simplicity of the concept, progress in the field of immunoisolation has been hampered for many years due to biocompatibility issues. During the last years important advances have been made in the knowledge of the characteristics and requirements capsules have to meet in order to provide optimal biocompatibility and survival of the enveloped tissue. Novel insight shows that not only the capsules material but also the enveloped cells should be hold responsible for loss of a significant portion of the immunoisolated cells and, thus, failure of the grafts on the long term. Microcapsules without cells can be produced as such that they remain free of any significant foreign body response for prolonged periods of time in both experimental animals and humans. New approaches in which newly discovered inflammatory responses are silenced bring the technology of transplantation of immunoisolated cells close to clinical application.
Collapse
Affiliation(s)
- Paul de Vos
- Department of Pathology and Laboratory Medicine, Division of Medical Biology, University Hospital of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands.
| | | | | | | |
Collapse
|
41
|
Lacík I. Polymer Chemistry in Diabetes Treatment by Encapsulated Islets of Langerhans: Review to 2006. Aust J Chem 2006. [DOI: 10.1071/ch06197] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Polymeric materials have been successfully used in numerous medical applications because of their diverse properties. For example, development of a bioartificial pancreas remains a challenge for polymer chemistry. Polymers, as a form of various encapsulation device, have been proposed for designing the semipermeable membrane capable of long-term immunoprotection of transplanted islets of Langerhans, which regulate the blood glucose level in a diabetic patient. This review describes the current situation in the field, discussing aspects of material selection, encapsulation devices, and encapsulation protocols. Problems and unanswered questions are emphasized to illustrate why clinical therapies with encapsulated islets have not been realized, despite intense activity over the past 15 years. The review was prepared with the goal to address professionals in the field as well as the broad polymer community to help in overcoming final barriers to the clinical phase for transplantation of islets of Langerhans encapsulated in a polymeric membrane.
Collapse
|
42
|
Bünger CM, Tiefenbach B, Jahnke A, Gerlach C, Freier T, Schmitz KP, Hopt UT, Schareck W, Klar E, de Vos P. Deletion of the tissue response against alginate-pll capsules by temporary release of co-encapsulated steroids. Biomaterials 2005; 26:2353-60. [PMID: 15585238 DOI: 10.1016/j.biomaterials.2004.07.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Accepted: 07/07/2004] [Indexed: 01/01/2023]
Abstract
Transplantation of encapsulated living cells is a promising approach for the treatment of a wide variety of diseases. Large-scale application of the technique, however, is hampered by inflammatory responses against the capsules. In the present study, we investigate whether tissue responses against alginate-PLL-alginate capsules can be modulated by co-encapsulation and temporary release of immunomodulating factors such as dexamethasone. Such an approach may be mandatory in order to increase the function and survival of encapsulated tissue since it has been shown that the tissue response can be caused by many, insurmountable factors. In an in vitro assay, we demonstrated an antiproliferative effect of dexamethasone-containing capsules on L929-mouse-fibroblasts. Subsequently, capsules prepared of purified alginate with or without solved dexamethasone were implanted in the peritoneal cavity of rats and retrieved one month later for histological evaluation. Most of the capsules without dexamethasone proved to be overgrown and adherent to the abdominal organs whereas with co-encapsulated dexamethasone the majority of the capsules were found freely floating in the peritoneal cavity without overgrowth. We conclude that co-encapsulation of dexamethasone has a profound effect on fibroblasts and macrophages adherence to immunoisolating capsules.
Collapse
Affiliation(s)
- C M Bünger
- Department of Surgery, University of Rostock, Schillingallee 35, D-18055 Rostock, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Korbutt GS, Mallett AG, Ao Z, Flashner M, Rajotte RV. Improved survival of microencapsulated islets during in vitro culture and enhanced metabolic function following transplantation. Diabetologia 2004; 47:1810-8. [PMID: 15517151 DOI: 10.1007/s00125-004-1531-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Accepted: 07/13/2004] [Indexed: 11/26/2022]
Abstract
AIMS/HYPOTHESIS The aim of this study was to determine whether a simple alginate capsule can prolong islet survival and function during long-term tissue culture. We also wanted to observe the ability of these encapsulated islets to restore glucose responsiveness to diabetic recipients, along with the quantity of islets required to do so. METHODS We compared the recovery and metabolic function of encapsulated canine islets with that of non-encapsulated canine islets following 1, 2 or 3 weeks of tissue culture. These culture preparations were also transplanted into diabetic nude mice and compared for their ability to reverse diabetes. Furthermore, short-term cultured encapsulated and non-encapsulated islets were transplanted in varying numbers to determine the minimum dose required to normalise blood glucose and prolong recipient survival. RESULTS Islet recovery following 1, 2 and 3 weeks of tissue culture was significantly higher when islets were encapsulated. When these islets were recovered at 1, 2 and 3 weeks and transplanted into diabetic nude mice, survival at 100 days was 100% for all encapsulated groups, versus 66%, 33% and 33% respectively for the non-encapsulated islets. Additionally, substantially fewer short-term cultured islets were required to normalise blood glucose when the islets were encapsulated. Recipients of encapsulated islets also had significantly longer survival times than recipients of non-encapsulated preparations. CONCLUSIONS/INTERPRETATION This study demonstrates that encapsulation of islets with purified alginate improves islet survival and function in vitro and in vivo.
Collapse
Affiliation(s)
- G S Korbutt
- Surgical-Medical Research Institute, Dentistry/Pharmacy Building, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|