1
|
Chiang CC, Anne R, Chawla P, Shaw RM, He S, Rock EC, Zhou M, Cheng J, Gong YN, Chen YC. Deep learning unlocks label-free viability assessment of cancer spheroids in microfluidics. LAB ON A CHIP 2024; 24:3169-3182. [PMID: 38804084 PMCID: PMC11165951 DOI: 10.1039/d4lc00197d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Despite recent advances in cancer treatment, refining therapeutic agents remains a critical task for oncologists. Precise evaluation of drug effectiveness necessitates the use of 3D cell culture instead of traditional 2D monolayers. Microfluidic platforms have enabled high-throughput drug screening with 3D models, but current viability assays for 3D cancer spheroids have limitations in reliability and cytotoxicity. This study introduces a deep learning model for non-destructive, label-free viability estimation based on phase-contrast images, providing a cost-effective, high-throughput solution for continuous spheroid monitoring in microfluidics. Microfluidic technology facilitated the creation of a high-throughput cancer spheroid platform with approximately 12 000 spheroids per chip for drug screening. Validation involved tests with eight conventional chemotherapeutic drugs, revealing a strong correlation between viability assessed via LIVE/DEAD staining and phase-contrast morphology. Extending the model's application to novel compounds and cell lines not in the training dataset yielded promising results, implying the potential for a universal viability estimation model. Experiments with an alternative microscopy setup supported the model's transferability across different laboratories. Using this method, we also tracked the dynamic changes in spheroid viability during the course of drug administration. In summary, this research integrates a robust platform with high-throughput microfluidic cancer spheroid assays and deep learning-based viability estimation, with broad applicability to various cell lines, compounds, and research settings.
Collapse
Affiliation(s)
- Chun-Cheng Chiang
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| | - Rajiv Anne
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
| | - Pooja Chawla
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
| | - Rachel M Shaw
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
| | - Sarah He
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Carnegie Mellon University, Department of Biological Sciences, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Edwin C Rock
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
| | - Mengli Zhou
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
- Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jinxiong Cheng
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
| | - Yi-Nan Gong
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Immunology, University of Pittsburgh School of Medicine, 3420 Forbes Avenue, Pittsburgh, PA, 15260, USA
| | - Yu-Chih Chen
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
- CMU-Pitt Ph.D. Program in Computational Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|
2
|
Fois M, Zengin A, Song K, Giselbrecht S, Habibović P, Truckenmüller RK, van Rijt S, Tahmasebi Birgani ZN. Nanofunctionalized Microparticles for Glucose Delivery in Three-Dimensional Cell Assemblies. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17347-17360. [PMID: 38561903 PMCID: PMC11009907 DOI: 10.1021/acsami.4c02321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
Three-dimensional (3D) cell assemblies, such as multicellular spheroids, can be powerful biological tools to closely mimic the complexity of cell-cell and cell-matrix interactions in a native-like microenvironment. However, potential applications of large spheroids are limited by the insufficient diffusion of oxygen and nutrients through the spheroids and, thus, result in the formation of a necrotic core. To overcome this drawback, we present a new strategy based on nanoparticle-coated microparticles. In this study, microparticles function as synthetic centers to regulate the diffusion of small molecules, such as oxygen and nutrients, within human mesenchymal stem cell (hMSC) spheroids. The nanoparticle coating on the microparticle surface acts as a nutrient reservoir to release glucose locally within the spheroids. We first coated the surface of the poly(lactic-co-glycolic acid) (PLGA) microparticles with mesoporous silica nanoparticles (MSNs) based on electrostatic interactions and then formed cell-nanofunctionalized microparticle spheroids. Next, we investigated the stability of the MSN coating on the microparticles' surface during 14 days of incubation in cell culture medium at 37 °C. Then, we evaluated the influence of MSN-coated PLGA microparticles on spheroid aggregation and cell viability. Our results showed the formation of homogeneous spheroids with good cell viability. As a proof of concept, fluorescently labeled glucose (2-NBD glucose) was loaded into the MSNs at different concentrations, and the release behavior was monitored. For cell culture studies, glucose was loaded into the MSNs coated onto the PLGA microparticles to sustain local nutrient release within the hMSC spheroids. In vitro results demonstrated that the local delivery of glucose from MSNs enhanced the cell viability in spheroids during a short-term hypoxic culture. Taken together, the newly developed nanofunctionalized microparticle-based delivery system may offer a versatile platform for local delivery of small molecules within 3D cellular assemblies and, thus, improve cell viability in spheroids.
Collapse
Affiliation(s)
| | | | - Ke Song
- Department of Instructive
Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Stefan Giselbrecht
- Department of Instructive
Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Pamela Habibović
- Department of Instructive
Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Roman K. Truckenmüller
- Department of Instructive
Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | | | | |
Collapse
|
3
|
Subramanian D, Tjahjono N, Hernandez PA, Varner VD, Petroll WM, Schmidtke DW. Fabrication of Micropatterns of Aligned Collagen Fibrils. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2551-2561. [PMID: 38277615 PMCID: PMC11001481 DOI: 10.1021/acs.langmuir.3c02676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Many tissues in vivo contain aligned structures such as filaments, fibrils, and fibers, which expose cells to anisotropic structural and topographical cues that range from the nanometer to micrometer scales. Understanding how cell behavior is regulated by these cues during physiological and pathological processes (e.g., wound healing, cancer invasion) requires substrates that can expose cells to anisotropic cues over several length scales. In this study, we developed a novel method of fabricating micropatterns of aligned collagen fibrils of different geometry onto PDMS-coated glass coverslips that allowed us to investigate the roles of topography and confinement on corneal cell behavior. When corneal cells were cultured on micropatterns of aligned collagen fibrils in the absence of confinement, the degree of cell alignment increased from 40 ± 14 to 82 ± 5% as the size of the micropattern width decreased from 750 to 50 μm. Although the cell area (∼2500 μm2), cell length (∼160 μm), and projected nuclear area (∼175 μm2) were relatively constant on the different micropattern widths, cells displayed an increased aspect ratio as the width of the aligned collagen fibril micropatterns decreased. We also observed that the morphology of cells adhering to the surrounding uncoated PDMS was dependent upon both the size of the aligned collagen fibril micropattern and the distance from the micropatterns. When corneal cells were confined to the micropatterns of aligned collagen fibrils by a Pluronic coating to passivate the surrounding area, a similar trend in increasing cell alignment was observed (35 ± 10 to 89 ± 2%). However, the projected nuclear area decreased significantly (∼210 to 130 μm2) as the micropattern width decreased from 750 to 50 μm. The development of this method allows for the deposition of aligned collagen fibril micropatterns of different geometries on a transparent and elastic substrate and provides an excellent model system to investigate the role of anisotropic cues in cell behavior.
Collapse
Affiliation(s)
- Divya Subramanian
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX
| | - Nathaniel Tjahjono
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX
| | - Paula A. Hernandez
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center at Dallas, TX, 75390
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center at Dallas, TX, 75390
| | - Victor D. Varner
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX
- Department of Surgery, University of Texas Southwestern Medical Center at Dallas, TX, 75390
| | - W. Matthew Petroll
- Department of Ophthalmology, University of Texas Southwestern Medical Center at Dallas, TX, 75390
| | - David W. Schmidtke
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX
- Department of Surgery, University of Texas Southwestern Medical Center at Dallas, TX, 75390
| |
Collapse
|
4
|
Clark-Corrigall J, Myssina S, Michaelis M, Cinatl J, Ahmed S, Carr-Wilkinson J, Carr-Wilkinson J. Elevated Expression of LGR5 and WNT Signaling Factors in Neuroblastoma Cells With Acquired Drug Resistance. Cancer Invest 2023; 41:173-182. [PMID: 36318235 DOI: 10.1080/07357907.2022.2136682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Neuroblastoma (NB) is a pediatric solid cancer with high fatality, relapses, and acquired resistance to chemotherapy, that requires new therapeutic approaches to improve survival. LGR5 is a receptor that potentiates WNT/signaling pathway and has been reported to promote development and survival in several adult cancers. In this study we investigated LGR5 expression in a panel of NB cell lines with acquired resistance to vincristine or doxorubicin. We show LGR5-LRP6 cooperation with enhanced expression in drug resistant NB cell lines compared to parental cells, suggesting a role for LGR5 in the emergence of drug resistance, warranting further investigation.
Collapse
Affiliation(s)
- John Clark-Corrigall
- School of Nursing and Health Sciences, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland, UK
| | - Svetlana Myssina
- School of Nursing and Health Sciences, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland, UK
| | - Martin Michaelis
- School of Biosciences and Industrial Biotechnology Centre, University of Kent, Canterbury, UK
| | - Jindrich Cinatl
- Institut für Medizinische Virologie, Klinikum der Goethe-Universität, Frankfurt am Main, Germany
| | - Shafiq Ahmed
- School of Medicine, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland, UK
| | - Jane Carr-Wilkinson
- School of Medicine, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland, UK
| | - Jane Carr-Wilkinson
- School of Medicine, Faculty of Health Sciences and Wellbeing, University of Sunderland, United Kingdom
| |
Collapse
|
5
|
Breedy S, Ratnayake W, Lajmi L, Hill R, Acevedo-Duncan M. 14-3-3 and Smad2/3 are crucial mediators of atypical-PKCs: Implications for neuroblastoma progression. Front Oncol 2023; 13:1051516. [PMID: 36776326 PMCID: PMC9910080 DOI: 10.3389/fonc.2023.1051516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/06/2023] [Indexed: 01/28/2023] Open
Abstract
Neuroblastoma (NB) is a cancer that develops in the neuroblasts. It is the most common cancer in children under the age of 1 year, accounting for approximately 6% of all cancers. The prognosis of NB is linked to both age and degree of cell differentiation. This results in a range of survival rates for patients, with outcomes ranging from recurrence and mortality to high survival rates and tumor regression. Our previous work indicated that PKC-ι promotes cell proliferation in NB cells through the PKC-ι/Cdk7/Cdk2 cascade. We report on two atypical protein kinase inhibitors as potential therapeutic candidates against BE(2)-C and BE(2)-M17 cells: a PKC-ι-specific 5-amino-1-2,3-dihydroxy-4-(methylcyclopentyl)-1H-imidazole-4-carboxamide and a PKC-ζ specific 8-hydroxy-1,3,6-naphthalenetrisulfonic acid. Both compounds induced apoptosis and retarded the epithelial-mesenchymal transition (EMT) of NB cells. Proteins 14-3-3 and Smad2/3 acted as central regulators of aPKC-driven progression in BE(2)-C and BE(2)-M17 cells in relation to the Akt1/NF-κB and TGF-β pathways. Data indicates that aPKCs upregulate Akt1/NF-κB and TGF-β pathways in NB cells through an association with 14-3-3 and Smad2/3 that can be diminished by aPKC inhibitors. In summary, both inhibitors appear to be promising potential neuroblastoma therapeutics and merit further research.
Collapse
Affiliation(s)
- S. Breedy
- Department of Chemistry, University of South Florida, Tampa, FL, United States
| | - W.S. Ratnayake
- Department of Chemistry, University of South Florida, Tampa, FL, United States
| | - L. Lajmi
- Department of Chemistry, University of South Florida, Tampa, FL, United States
| | - R. Hill
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - M. Acevedo-Duncan
- Department of Chemistry, University of South Florida, Tampa, FL, United States
| |
Collapse
|
6
|
Zhan J, He F, Chen S, Poudel AJ, Yang Y, Xiao L, Xiang F, Li S. Preparation and Antibacterial Activity of Thermo-Responsive Nanohydrogels from Qiai Essential Oil and Pluronic F108. Molecules 2021; 26:molecules26195771. [PMID: 34641315 PMCID: PMC8510472 DOI: 10.3390/molecules26195771] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/09/2021] [Accepted: 09/17/2021] [Indexed: 11/16/2022] Open
Abstract
Essential oils (EOs) have been used in cosmetics and food due to their antimicrobial and antiviral effects. However, the applications of EOs are compromised because of their poor aqueous solubility and high volatility. Qiai (Artemisia argyi Levl. et Van. var. argyi cv. Qiai) is a traditional Chinese herb and possesses strong antibacterial activity. Herein, we report an innovative formulation of EO as nanohydrogels, which were prepared through co-assembly of Qiai EO (QEO) and Pluronic F108 (PEG-b-PPG-b-PEG, or PF108) in aqueous solution. QEO was efficiently loaded in the PF108 micelles and formed nanohydrogels by heating the QEO/PF108 mixture solution to 37 °C, by the innate thermo-responsive property of PF108. The encapsulation efficiency and loading capacity of QEO reached 80.2% and 6.8%, respectively. QEO nanohydrogels were more stable than the free QEO with respect to volatilization. Sustained QEO release was achieved at body temperature using the QEO nanohydrogels, with the cumulative release rate reaching 95% in 35 h. In vitro antibacterial test indicated that the QEO nanohydrogels showed stronger antimicrobial activity against S. aureus and E. coli than the free QEO due to the enhanced stability and sustained-release characteristics. It has been attested that thermo-responsive QEO nanohydrogels have good potential as antibacterial cosmetics.
Collapse
Affiliation(s)
- Jianfeng Zhan
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang Normal University, Huanggang 438000, China; (J.Z.); (S.C.)
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang 438000, China
| | - Feng He
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang Normal University, Huanggang 438000, China; (J.Z.); (S.C.)
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang 438000, China
- Correspondence: (F.H.); (F.X.); (S.L.); Tel.: +1-732-932-5730 (S.L.)
| | - Shuxian Chen
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang Normal University, Huanggang 438000, China; (J.Z.); (S.C.)
| | - Abishek Jung Poudel
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (A.J.P.); (L.X.)
| | - Ying Yang
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Lin Xiao
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (A.J.P.); (L.X.)
| | - Fu Xiang
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang Normal University, Huanggang 438000, China; (J.Z.); (S.C.)
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang 438000, China
- Correspondence: (F.H.); (F.X.); (S.L.); Tel.: +1-732-932-5730 (S.L.)
| | - Shiming Li
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang Normal University, Huanggang 438000, China; (J.Z.); (S.C.)
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang 438000, China
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
- Correspondence: (F.H.); (F.X.); (S.L.); Tel.: +1-732-932-5730 (S.L.)
| |
Collapse
|
7
|
Collins T, Pyne E, Christensen M, Iles A, Pamme N, Pires IM. Spheroid-on-chip microfluidic technology for the evaluation of the impact of continuous flow on metastatic potential in cancer models in vitro. BIOMICROFLUIDICS 2021; 15:044103. [PMID: 34504636 PMCID: PMC8403013 DOI: 10.1063/5.0061373] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/10/2021] [Indexed: 05/10/2023]
Abstract
The majority of cancer deaths are linked to tumor spread, or metastasis, but 3D in vitro metastasis models relevant to the tumor microenvironment (including interstitial fluid flow) remain an area of unmet need. Microfluidics allows us to introduce controlled flow to an in vitro cancer model to better understand the relationship between flow and metastasis. Here, we report new hybrid spheroid-on-chip in vitro models for the impact of interstitial fluid flow on cancer spread. We designed a series of reusable glass microfluidic devices to contain one spheroid in a microwell under continuous perfusion culture. Spheroids derived from established cancer cell lines were perfused with complete media at a flow rate relevant to tumor interstitial fluid flow. Spheroid viability and migratory/invasive capabilities were maintained on-chip when compared to off-chip static conditions. Importantly, using flow conditions modeled in vitro, we are the first to report flow-induced secretion of pro-metastatic factors, in this case cytokines vascular endothelial growth factor and interleukin 6. In summary, we have developed a new, streamlined spheroid-on-chip in vitro model that represents a feasible in vitro alternative to conventional murine in vivo metastasis assays, including complex tumor environmental factors, such as interstitial fluid flow, extracellular matrices, and using 3D models to model nutrient and oxygen gradients. Our device, therefore, constitutes a robust alternative to in vivo early-metastasis models for determination of novel metastasis biomarkers as well as evaluation of therapeutically relevant molecular targets not possible in in vivo murine models.
Collapse
Affiliation(s)
- Thomas Collins
- Hypoxia and Tumour Microenvironment Lab, Department of Biomedical Sciences, University of Hull, Cottingham Road, Hull HU6 7RX, United Kingdom
| | - Emily Pyne
- Hypoxia and Tumour Microenvironment Lab, Department of Biomedical Sciences, University of Hull, Cottingham Road, Hull HU6 7RX, United Kingdom
| | - Martin Christensen
- Lab-on-a-Chip Research Group, Department of Chemistry and Biochemistry, University of Hull, Cottingham Road, Hull HU6 7RX, United Kingdom
| | - Alexander Iles
- Lab-on-a-Chip Research Group, Department of Chemistry and Biochemistry, University of Hull, Cottingham Road, Hull HU6 7RX, United Kingdom
| | - Nicole Pamme
- Lab-on-a-Chip Research Group, Department of Chemistry and Biochemistry, University of Hull, Cottingham Road, Hull HU6 7RX, United Kingdom
| | - Isabel M. Pires
- Hypoxia and Tumour Microenvironment Lab, Department of Biomedical Sciences, University of Hull, Cottingham Road, Hull HU6 7RX, United Kingdom
| |
Collapse
|
8
|
Campos Cogo S, Gradowski Farias da Costa do Nascimento T, de Almeida Brehm Pinhatti F, de França Junior N, Santos Rodrigues B, Regina Cavalli L, Elifio-Esposito S. An overview of neuroblastoma cell lineage phenotypes and in vitro models. Exp Biol Med (Maywood) 2020; 245:1637-1647. [PMID: 32787463 PMCID: PMC7802384 DOI: 10.1177/1535370220949237] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
This review was conducted to present the main neuroblastoma (NB) clinical characteristics and the most common genetic alterations present in these pediatric tumors, highlighting their impact in tumor cell aggressiveness behavior, including metastatic development and treatment resistance, and patients' prognosis. The distinct three NB cell lineage phenotypes, S-type, N-type, and I-type, which are characterized by unique cell surface markers and gene expression patterns, are also reviewed. Finally, an overview of the most used NB cell lines currently available for in vitro studies and their unique cellular and molecular characteristics, which should be taken into account for the selection of the most appropriate model for NB pre-clinical studies, is presented. These valuable models can be complemented by the generation of NB reprogrammed tumor cells or organoids, derived directly from patients' tumor specimens, in the direction toward personalized medicine.
Collapse
Affiliation(s)
- Sheron Campos Cogo
- Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil
| | | | | | - Nilton de França Junior
- Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil
| | - Bruna Santos Rodrigues
- Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil
| | - Luciane Regina Cavalli
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, Brazil
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA
| | - Selene Elifio-Esposito
- Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil
| |
Collapse
|
9
|
Yang CL, Serra-Roma A, Gualandi M, Bodmer N, Niggli F, Schulte JH, Bode PK, Shakhova O. Lineage-restricted sympathoadrenal progenitors confer neuroblastoma origin and its tumorigenicity. Oncotarget 2020; 11:2357-2371. [PMID: 32595833 PMCID: PMC7299536 DOI: 10.18632/oncotarget.27636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/20/2020] [Indexed: 01/18/2023] Open
Abstract
Neuroblastoma (NB) is the most common cancer in infants and it accounts for six percent of all pediatric malignancies. There are several hypotheses proposed on the origins of NB. While there is little genetic evidence to support this, the prevailing model is that NB originates from neural crest stem cells (NCSCs). Utilizing in vivo mouse models, we demonstrate that targeting MYCN oncogene to NCSCs causes perinatal lethality. During sympathoadrenal (SA) lineage development, SOX transcriptional factors drive the transition from NCSCs to lineage-specific progenitors, characterized by the sequential activation of Sox9/Sox10/Sox4/Sox11 genes. We find the NCSCs factor SOX10 is not expressed in neuroblasts, but rather restricted to the Schwannian stroma and is associated with a good prognosis. On the other hand, SOX9 expression in NB cells was associated with several key biological processes including migration, invasion and differentiation. Moreover, manipulating SOX9 gene predominantly affects lineage-restricted SA progenitors. Our findings highlight a unique molecular SOX signature associated with NB that is highly reminiscent of SA progenitor transcriptional program during embryonic development, providing novel insights into NB pathobiology. In summary, we provide multiple lines of evidence suggesting that multipotent NCSCs do not contribute to NB initiation and maintenance.
Collapse
Affiliation(s)
- Chia-Lung Yang
- Department of Medical Oncology and Hematology, University Hospital Zürich, Zürich, Switzerland
| | - André Serra-Roma
- Department of Medical Oncology and Hematology, University Hospital Zürich, Zürich, Switzerland
| | - Marco Gualandi
- Department of Medical Oncology and Hematology, University Hospital Zürich, Zürich, Switzerland
| | - Nicole Bodmer
- Department of Oncology, Children Hospital of Zürich, Zürich, Switzerland
| | - Felix Niggli
- Department of Oncology, Children Hospital of Zürich, Zürich, Switzerland
| | | | - Peter Karl Bode
- Department of Surgical Pathology, University Hospital Zürich, Zürich, Switzerland
| | - Olga Shakhova
- Department of Medical Oncology and Hematology, University Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
10
|
Di Meo F, Cuciniello R, Margarucci S, Bergamo P, Petillo O, Peluso G, Filosa S, Crispi S. Ginkgo biloba Prevents Oxidative Stress-Induced Apoptosis Blocking p53 Activation in Neuroblastoma Cells. Antioxidants (Basel) 2020; 9:antiox9040279. [PMID: 32224984 PMCID: PMC7222193 DOI: 10.3390/antiox9040279] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/20/2020] [Accepted: 03/25/2020] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress has been associated to neuronal cell loss in neurodegenerative diseases. Neurons are post-mitotic cells that are very sensitive to oxidative stress—especially considering their limited capacity to be replaced. Therefore, reduction of oxidative stress, and inhibiting apoptosis, will potentially prevent neurodegeneration. In this study, we investigated the neuroprotective effect of Ginkgo biloba extract (EGb 761) against H2O2 induced apoptosis in SK-N-BE neuroblastoma cells. We analysed the molecular signalling pathway involved in the apoptotic cell death. H2O2 induced an increased acetylation of p53 lysine 382, a reduction in mitochondrial membrane potential, an increased BAX/Bcl-2 ratio and consequently increased Poly (ADP-ribose) polymerase (PARP) cleavage. All these effects were blocked by EGb 761 treatment. Thus, EGb 761, acting as intracellular antioxidant, protects neuroblastoma cells against activation of p53 mediated pathway and intrinsic mitochondrial apoptosis. Our results suggest that EGb 761, protecting against oxidative-stress induced apoptotic cell death, could potentially be used as nutraceutical for the prevention and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Francesco Di Meo
- Institute of Biosciences and BioResources-UOS Naples CNR, Via P. Castellino 111, 80131 Naples, Italy; (F.D.M.); (R.C.)
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant’Angelo Via Cinthia, 80126 Naples, Italy
| | - Rossana Cuciniello
- Institute of Biosciences and BioResources-UOS Naples CNR, Via P. Castellino 111, 80131 Naples, Italy; (F.D.M.); (R.C.)
| | - Sabrina Margarucci
- Institute on Terrestrial Ecosystems (IRET) CNR, Via P. Castellino 111, 80131 Naples, Italy; (S.M.); (O.P.); (G.P.)
| | - Paolo Bergamo
- Institute of Food Science CNR, Via Roma, 64, 83100 Avellino, Italy;
| | - Orsolina Petillo
- Institute on Terrestrial Ecosystems (IRET) CNR, Via P. Castellino 111, 80131 Naples, Italy; (S.M.); (O.P.); (G.P.)
| | - Gianfranco Peluso
- Institute on Terrestrial Ecosystems (IRET) CNR, Via P. Castellino 111, 80131 Naples, Italy; (S.M.); (O.P.); (G.P.)
| | - Stefania Filosa
- Institute of Biosciences and BioResources-UOS Naples CNR, Via P. Castellino 111, 80131 Naples, Italy; (F.D.M.); (R.C.)
- IRCCS Neuromed, Localitá Camerelle, 86077 Pozzilli (IS), Italy
- Correspondence: (S.F.); (S.C.)
| | - Stefania Crispi
- Institute of Biosciences and BioResources-UOS Naples CNR, Via P. Castellino 111, 80131 Naples, Italy; (F.D.M.); (R.C.)
- Correspondence: (S.F.); (S.C.)
| |
Collapse
|
11
|
Zhang Z, Chen L, Wang Y, Zhang T, Chen YC, Yoon E. Label-Free Estimation of Therapeutic Efficacy on 3D Cancer Spheres Using Convolutional Neural Network Image Analysis. Anal Chem 2019; 91:14093-14100. [DOI: 10.1021/acs.analchem.9b03896] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zhixiong Zhang
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109-2122, United States
| | - Lili Chen
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109-2122, United States
| | - Yimin Wang
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109-2122, United States
| | - Tiantian Zhang
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109-2122, United States
| | - Yu-Chih Chen
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109-2122, United States
- Forbes Institute for Cancer Discovery, University of Michigan, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
| | - Euisik Yoon
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109-2122, United States
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, Michigan 48109-2099, United States
- Center for Nanomedicine, Institute for Basic Science (IBS) and Graduate Program of Nano Biomedical Engineering (Nano BME), Yonsei University, Seoul 03722, Korea
| |
Collapse
|
12
|
Pardo-Figuerez M, Martin NRW, Player DJ, Roach P, Christie SDR, Capel AJ, Lewis MP. Controlled Arrangement of Neuronal Cells on Surfaces Functionalized with Micropatterned Polymer Brushes. ACS OMEGA 2018; 3:12383-12391. [PMID: 30411006 PMCID: PMC6217525 DOI: 10.1021/acsomega.8b01698] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/17/2018] [Indexed: 05/03/2023]
Abstract
Conventional in vitro cultures are useful to represent simplistic neuronal behavior; however, the lack of organization results in random neurite spreading. To overcome this problem, control over the directionality of SH-SY5Y cells was attained, utilizing photolithography to pattern the cell-repulsive anionic brush poly(potassium 3-sulfopropyl methacrylate) (PKSPMA) into tracks of 20, 40, 80, and 100 μm width. These data validate the use of PKSPMA brush coatings for a long-term culture of the SH-SY5Y cells, as well as providing a methodology by which the precise deposition of PKSPMA can be utilized to achieve a targeted control over the SH-SY5Y cells. Specifically, the PKSPMA brush patterns prevented cell attachment, allowing the SH-SY5Y cells to grow only on noncoated glass (gaps of 20, 50, 75, and 100 μm width) at different cell densities (5000, 10 000, and 15 000 cells/cm2). This research demonstrates the importance of achieving cell directionality in vitro, while these simplistic models could provide new platforms to study complex neuron-neuron interactions.
Collapse
Affiliation(s)
- Maria Pardo-Figuerez
- National
Centre for Sport and Exercise Medicine (NCSEM), School of
Sport, Exercise and Health Sciences, and Department of Chemistry, School
of Science, Loughborough University, Loughborough LE11 3TU, U.K.
| | - Neil R. W. Martin
- National
Centre for Sport and Exercise Medicine (NCSEM), School of
Sport, Exercise and Health Sciences, and Department of Chemistry, School
of Science, Loughborough University, Loughborough LE11 3TU, U.K.
| | - Darren J. Player
- National
Centre for Sport and Exercise Medicine (NCSEM), School of
Sport, Exercise and Health Sciences, and Department of Chemistry, School
of Science, Loughborough University, Loughborough LE11 3TU, U.K.
- Institute
of Orthopaedics and Musculoskeletal Science, University College London, Stanmore HA7 4LP, U.K.
| | - Paul Roach
- National
Centre for Sport and Exercise Medicine (NCSEM), School of
Sport, Exercise and Health Sciences, and Department of Chemistry, School
of Science, Loughborough University, Loughborough LE11 3TU, U.K.
| | - Steven D. R. Christie
- National
Centre for Sport and Exercise Medicine (NCSEM), School of
Sport, Exercise and Health Sciences, and Department of Chemistry, School
of Science, Loughborough University, Loughborough LE11 3TU, U.K.
| | - Andrew J. Capel
- National
Centre for Sport and Exercise Medicine (NCSEM), School of
Sport, Exercise and Health Sciences, and Department of Chemistry, School
of Science, Loughborough University, Loughborough LE11 3TU, U.K.
| | - Mark P. Lewis
- National
Centre for Sport and Exercise Medicine (NCSEM), School of
Sport, Exercise and Health Sciences, and Department of Chemistry, School
of Science, Loughborough University, Loughborough LE11 3TU, U.K.
| |
Collapse
|
13
|
Harasym E, McAndrew N, Gomez G. Sub-micromolar concentrations of retinoic acid induce morphological and functional neuronal phenotypes in SK-N-SH neuroblastoma cells. In Vitro Cell Dev Biol Anim 2017; 53:798-809. [PMID: 28840512 DOI: 10.1007/s11626-017-0190-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 07/24/2017] [Indexed: 12/30/2022]
Abstract
Neuroblastoma cells are neural crest derivatives that can differentiate into neuron-like cells in response to exogenous agents, and are known to be particularly sensitive to retinoic acid. The spectrum of neuroblastoma responses, ranging from proliferation, migration, differentiation, or apoptosis, is difficult to predict due to the heterogeneity of these tumors and to the broad effective range of retinoic acid. Our study focused on the effects of nanomolar concentrations of retinoic acid on neuroblastoma differentiation in two cell lines cells: SK-N-SH (HTB-11) and IMR-32. Each cell line was treated with retinoic acid from 1 to 100 nM for up to 6 d. Morphological changes were quantified; immunocytochemistry was used to observe changes in neuronal protein expression and localization, while live-cell calcium imaging utilizing pharmacological agents was conducted to identify neuron-like activity. Retinoic acid-treated HTB-11 but not IMR-32 cells developed specific neuronal phenotypes: acquisition of long neurite-like processes, expression of neurofilament-200, increased responsiveness to acetylcholine, and decreased responsiveness to nicotine and epinephrine. In addition, nanomolar levels of retinoic acid elicited increased nuclear trafficking of the CRABP2, which is traditionally associated with gene expression of cellular pathways related to neuronal differentiation. Collectively, these results show that nanomolar concentrations of retinoic acid are capable of inducing both structural and functional neuron-like features in HTB-11 cells using CRABP2, suggesting differentiation in neuroblastoma cells into neuronal phenotypes. These have important implications for both chemotherapeutic design and for the use of neuroblastomas as in vitro models for neuron differentiation.
Collapse
Affiliation(s)
- Emily Harasym
- Biology Department, University of Scranton, LSC 395, 204 Monroe Ave., 800 Linden Street, Scranton, PA, 18510, USA
| | - Nicole McAndrew
- Biology Department, University of Scranton, LSC 395, 204 Monroe Ave., 800 Linden Street, Scranton, PA, 18510, USA
| | - George Gomez
- Biology Department, University of Scranton, LSC 395, 204 Monroe Ave., 800 Linden Street, Scranton, PA, 18510, USA.
| |
Collapse
|
14
|
Miao T, Fenn SL, Charron PN, Oldinski RA. Self-Healing and Thermoresponsive Dual-Cross-Linked Alginate Hydrogels Based on Supramolecular Inclusion Complexes. Biomacromolecules 2015; 16:3740-50. [PMID: 26509214 PMCID: PMC4679680 DOI: 10.1021/acs.biomac.5b00940] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
β-Cyclodextrin (β-CD), with a lipophilic inner cavity and hydrophilic outer surface, interacts with a large variety of nonpolar guest molecules to form noncovalent inclusion complexes. Conjugation of β-CD onto biomacromolecules can form physically cross-linked hydrogel networks upon mixing with a guest molecule. Herein, the development and characterization of self-healing, thermoresponsive hydrogels, based on host-guest inclusion complexes between alginate-graft-β-CD and Pluronic F108 (poly(ethylene glycol)-b-poly(propylene glycol)-b-poly(ethylene glycol)), are described. The mechanics, flow characteristics, and thermal response were contingent on the polymer concentration and the host-guest molar ratio. Transient and reversible physical cross-linking between host and guest polymers governed self-assembly, allowing flow to occur under shear stress and facilitating complete recovery of the material's properties within a few seconds of unloading. The mechanical properties of the dual-cross-linked, multi-stimuli-responsive hydrogels were tuned as high as 30 kPa at body temperature and are advantageous for biomedical applications such as drug delivery and cell transplantation.
Collapse
Affiliation(s)
- Tianxin Miao
- Bioengineering Program, College of Engineering and Mathematical Science, College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Spencer L. Fenn
- Bioengineering Program, College of Engineering and Mathematical Science, College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Patrick N. Charron
- Mechanical Engineering Program, College of Engineering and Mathematical Science, University of Vermont, Burlington, VT 05405, USA
| | - Rachael A. Oldinski
- Bioengineering Program, College of Engineering and Mathematical Science, College of Medicine, University of Vermont, Burlington, VT 05405, USA
- Mechanical Engineering Program, College of Engineering and Mathematical Science, University of Vermont, Burlington, VT 05405, USA
- Materials Science Program, College of Arts and Sciences, Department of Orthopaedics and Rehabilitation, College of Medicine, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
15
|
Lemmo S, Atefi E, Luker GD, Tavana H. Optimization of Aqueous Biphasic Tumor Spheroid Microtechnology for Anti-Cancer Drug Testing in 3D Culture. Cell Mol Bioeng 2014; 7:344-354. [PMID: 25221631 DOI: 10.1007/s12195-014-0349-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Tumor spheroids are three-dimensional clusters of cancer cells that exhibit characteristics of poorly perfused tumors and hence present a relevant model for testing the efficacy of anti-cancer compounds. The use of spheroids for drug screening is hindered by technological complexities for high throughput generation of consistent size spheroids individually addressable by drug compounds. Here we present and optimize a simple spheroid technology based on the use of an aqueous two-phase system. Cancer cells confined in a drop of the denser aqueous dextran phase are robotically dispensed into a microwell containing the immersion aqueous polyethylene glycol phase. Cells remain within the drop and form a viable spheroid, without a need for any external stimuli. The size of resulting spheroids is sensitive to volume variations of dispensed drops from the air displacement pipetting head of a commercial liquid handling robot. Therefore, we parametrically optimize the process of dispensing of dextran phase drops. For a given cell density, this optimization reproducibly generates consistent size spheroids in standard 96-well plates. In addition, we evaluate the use of a commercial biochemical assay to examine cellular viability of cancer cell spheroids. Spheroids show a dose-dependent response to cisplatin similar to a monolayer culture. However unlike their two-dimensional counterpart, spheroids exhibit resistance to paclitaxel treatment. This technology, which uses only commercially-available reagents and equipment, can potentially expedite anti-cancer drug discovery. Although the use of robotics makes the ATPS spheroid technology particularly useful for drug screening applications, this approach is compatible with simpler liquid handling techniques such as manual micropipetting and offers a straightforward method of 3D cell culture in research laboratories.
Collapse
Affiliation(s)
- Stephanie Lemmo
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Ehsan Atefi
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Gary D Luker
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109 ; Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109 ; Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Hossein Tavana
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
16
|
Tu TY, Wang Z, Bai J, Sun W, Peng WK, Huang RYJ, Thiery JP, Kamm RD. Rapid prototyping of concave microwells for the formation of 3D multicellular cancer aggregates for drug screening. Adv Healthc Mater 2014; 3:609-16. [PMID: 23983140 PMCID: PMC4038742 DOI: 10.1002/adhm.201300151] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/04/2013] [Indexed: 01/27/2023]
Abstract
Microwell technology has revolutionized many aspects of in vitro cellular studies from 2D traditional cultures to 3D in vivo-like functional assays. However, existing lithography-based approaches are often costly and time-consuming. This study presents a rapid, low-cost prototyping method of CO2 laser ablation of a conventional untreated culture dish to create concave microwells used for generating multicellular aggregates, which can be readily available for general laboratories. Polymethylmethacrylate (PMMA), polydimethylsiloxane (PDMS), and polystyrene (PS) microwells are investigated, and each produces distinctive microwell features. Among these three materials, PS cell culture dishes produce the optimal surface smoothness and roundness. A549 lung cancer cells are grown to form cancer aggregates of controllable size from ≈40 to ≈80 μm in PS microwells. Functional assays of spheroids are performed to study migration on 2D substrates and in 3D hydrogel conditions as a step towards recapitulating the dissemination of cancer cells. Preclinical anti-cancer drug screening is investigated and reveals considerable differences between 2D and 3D conditions, indicating the importance of assay type as well as the utility of the present approach.
Collapse
Affiliation(s)
- Ting-Yuan Tu
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology (SMART) Center 1 CREATE Way, #04-13/14 Enterprise Wing, Singapore 138602, Singapore
| | - Zhe Wang
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology (SMART) Center 1 CREATE Way, #04-13/14 Enterprise Wing, Singapore 138602, Singapore
| | - Jing Bai
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology (SMART) Center 1 CREATE Way, #04-13/14 Enterprise Wing, Singapore 138602, Singapore
| | - Wei Sun
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology (SMART) Center 1 CREATE Way, #04-13/14 Enterprise Wing, Singapore 138602, Singapore
| | - Weng Kung Peng
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology (SMART) Center 1 CREATE Way, #04-13/14 Enterprise Wing, Singapore 138602, Singapore
| | - Ruby Yun-Ju Huang
- Cancer Science Institute of Singapore, National University of Singapore MD6, Medical Drive, Singapore 117456, Singapore
| | - Jean-Paul Thiery
- Institute of Molecular Cell Biology (IMCB), A-STAR Departement of Biochemistry School of Medicine, National University of Singapore Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Roger D. Kamm
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology (SMART) Center 1 CREATE Way, #04-13/14 Enterprise Wing, Singapore 138602, Singapore
| |
Collapse
|
17
|
Aravindan S, Natarajan M, Herman TS, Aravindan N. Radiation-induced TNFα cross signaling-dependent nuclear import of NFκB favors metastasis in neuroblastoma. Clin Exp Metastasis 2013; 30:807-17. [PMID: 23584794 DOI: 10.1007/s10585-013-9580-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 03/30/2013] [Indexed: 01/30/2023]
Abstract
Ascertaining function-specific orchestration of NFκB in response to radiation may reveal a molecular blue-print that dictates induced relapse and metastasis of the neuroblastoma. We recently demonstrated that sustained activation of NFκB caused by ionizing radiation (IR)-initiated TNFα-NFκB feedback signaling leads to radioresistance and recurrence of neuroblastoma. We investigated whether muting IR-triggered or TNFα-dependent second-signaling feedback-dependent NFκB nuclear import results in limiting IR-altered invasion and metastasis. Neuroblastoma cells were exposed to 2 Gy and incubated for 1 h or 24 h. The cells were then treated with an NFκB-targeting peptide blocker, SN50. Upon confirming the blockade in DNA-binding activity, transcription driven transactivation of NFκB and secretion of soluble TNFα, transcriptional alterations of 93 tumor invasion/metastasis genes were assessed by using QPCR profiling and then were selectively validated at the protein level. Exposure to 2 Gy induced 63, 42 and 71 genes in surviving SH-SY5Y, IMR-32 and SK-N-MC cells, respectively. Blocking post-translational nuclear import of NFκB comprehensively inhibited both initial activation of genes (62/63, 34/42 and 65/71) triggered by IR and also TNFα-mediated second signaling-dependent sustained (59/63, 32/42 and 71/71) activation of tumor invasion and metastasis signaling molecules. Furthermore, alterations in the proteins MMP9, MMP2, PYK-2, SPA-1, Dnmt3b, Ask-1, CTGF, MMP10, MTA-2, NF-2, E-Cadherin, TIMP-2 and ADAMTS1 and the results of our scratch-wound assay validate the role of post-translational NFκB in IR-regulated invasion/metastasis. These data demonstrate that IR-induced second-phase (post-translational) NFκB activation mediates TNFα-dependent second signaling and further implies that IR induced NFκB in cells that survive after treatment regulates tumor invasion/metastasis signaling.
Collapse
Affiliation(s)
- Sheeja Aravindan
- Radiation Biology Research Laboratory, Department of Radiation Oncology, University of Oklahoma Health Sciences Center, BMSB 737, 940 Stanton L. Young Boulevard, Oklahoma City, OK, USA
| | | | | | | |
Collapse
|
18
|
Das T, Meunier L, Barbe L, Provencher D, Guenat O, Gervais T, Mes-Masson AM. Empirical chemosensitivity testing in a spheroid model of ovarian cancer using a microfluidics-based multiplex platform. BIOMICROFLUIDICS 2013; 7:11805. [PMID: 24403987 PMCID: PMC3555942 DOI: 10.1063/1.4774309] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 10/18/2012] [Indexed: 05/11/2023]
Abstract
The use of biomarkers to infer drug response in patients is being actively pursued, yet significant challenges with this approach, including the complicated interconnection of pathways, have limited its application. Direct empirical testing of tumor sensitivity would arguably provide a more reliable predictive value, although it has garnered little attention largely due to the technical difficulties associated with this approach. We hypothesize that the application of recently developed microtechnologies, coupled to more complex 3-dimensional cell cultures, could provide a model to address some of these issues. As a proof of concept, we developed a microfluidic device where spheroids of the serous epithelial ovarian cancer cell line TOV112D are entrapped and assayed for their chemoresponse to carboplatin and paclitaxel, two therapeutic agents routinely used for the treatment of ovarian cancer. In order to index the chemoresponse, we analyzed the spatiotemporal evolution of the mortality fraction, as judged by vital dyes and confocal microscopy, within spheroids subjected to different drug concentrations and treatment durations inside the microfluidic device. To reflect microenvironment effects, we tested the effect of exogenous extracellular matrix and serum supplementation during spheroid formation on their chemotherapeutic response. Spheroids displayed augmented chemoresistance in comparison to monolayer culturing. This resistance was further increased by the simultaneous presence of both extracellular matrix and high serum concentration during spheroid formation. Following exposure to chemotherapeutics, cell death profiles were not uniform throughout the spheroid. The highest cell death fraction was found at the center of the spheroid and the lowest at the periphery. Collectively, the results demonstrate the validity of the approach, and provide the basis for further investigation of chemotherapeutic responses in ovarian cancer using microfluidics technology. In the future, such microdevices could provide the framework to assay drug sensitivity in a timeframe suitable for clinical decision making.
Collapse
Affiliation(s)
- Tamal Das
- Centre de recherche du Centre hospitalier de l'Université de Montréal and Institut du cancer de Montréal, Montréal, Québec H2L 4M1, Canada
| | - Liliane Meunier
- Centre de recherche du Centre hospitalier de l'Université de Montréal and Institut du cancer de Montréal, Montréal, Québec H2L 4M1, Canada
| | - Laurent Barbe
- Centre Suisse d' Electronique et de Microtechnique, CH-7302 Landquart, Switzerland
| | - Diane Provencher
- Centre de recherche du Centre hospitalier de l'Université de Montréal and Institut du cancer de Montréal, Montréal, Québec H2L 4M1, Canada ; Division of Gynecologic Oncology, Université de Montréal, Montréal, Québec H2L 4M1, Canada
| | - Olivier Guenat
- ARTORG Center, University of Bern, CH-3010 Bern, Switzerland
| | - Thomas Gervais
- Department of Engineering Physics, École Polytechnique de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Anne-Marie Mes-Masson
- Centre de recherche du Centre hospitalier de l'Université de Montréal and Institut du cancer de Montréal, Montréal, Québec H2L 4M1, Canada ; Département de médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| |
Collapse
|
19
|
Tran LA, Krishnamurthy R, Muthupillai R, da Graça Cabreira-Hansen M, Willerson JT, Perin EC, Wilson LJ. Gadonanotubes as magnetic nanolabels for stem cell detection. Biomaterials 2010; 31:9482-91. [PMID: 20965562 PMCID: PMC2976808 DOI: 10.1016/j.biomaterials.2010.08.034] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 08/18/2010] [Indexed: 12/14/2022]
Abstract
Stem cell-based therapies have emerged as a promising approach in regenerative medicine. In the development of such therapies, the demand for imaging technologies that permit the noninvasive monitoring of transplanted stem cells in vivo is growing. Here, we report the performance of gadolinium-containing carbon nanocapsules, or gadonanotubes (GNTs), as a new T₁-weighted magnetic resonance imaging (MRI) intracellular labeling agent for pig bone marrow-derived mesenchymal stem cells (MSCs). Without the use of a transfection agent, micromolar concentrations of GNTs can deliver up to 10⁹ Gd(3+) ions per cell without compromising cell viability, differentiation potential, proliferation pattern, and phenotype. Imaging 10 × 10⁶ GNT-labeled MSCs demonstrates a nearly two-fold reduction in T₁ relaxation time when compared to unlabeled MSCs at 1.5 T in a clinical MRI scanner, which easily permits the discrimination of GNT-labeled MSCs in a T₁-weighted MR image. It is anticipated that GNTs will allow in vivo tracking of GNT-labeled MSCs, as well as other mammalian cell types, by T₁-weighted imaging with greater efficacy than other current technologies now allow.
Collapse
Affiliation(s)
- Lesa A. Tran
- Department of Chemistry, Smalley Institute for Nanoscale Science and Technology, and the Center for Biological and Environmental Nanotechnology, MS-60, P.O. Box 1892, Rice University, Houston, Texas 77251-1892, USA
| | - Ramkumar Krishnamurthy
- Department of Bioengineering, MS-142, P.O. Box 1892, Rice University, Houston, Texas 77251-1892, USA
| | - Raja Muthupillai
- Department of Radiology, Texas Heart Institute at St. Luke’s Episcopal Hospital, P.O. Box 20345, Houston, Texas 77225-0345, USA
| | - Maria da Graça Cabreira-Hansen
- Stem Cell Center, Texas Heart Institute at St. Luke’s Episcopal Hospital, MC 2-255, P.O. Box 20345, Houston, Texas 77225-0345, USA
| | - James T. Willerson
- Stem Cell Center, Texas Heart Institute at St. Luke’s Episcopal Hospital, MC 2-255, P.O. Box 20345, Houston, Texas 77225-0345, USA
| | - Emerson C. Perin
- Stem Cell Center, Texas Heart Institute at St. Luke’s Episcopal Hospital, MC 2-255, P.O. Box 20345, Houston, Texas 77225-0345, USA
| | - Lon J. Wilson
- Department of Chemistry, Smalley Institute for Nanoscale Science and Technology, and the Center for Biological and Environmental Nanotechnology, MS-60, P.O. Box 1892, Rice University, Houston, Texas 77251-1892, USA
| |
Collapse
|