1
|
Ravera F, Efeoglu E, Byrne HJ. A comparative analysis of stem cell differentiation on 2D and 3D substrates using Raman microspectroscopy. Analyst 2024; 149:4041-4053. [PMID: 38973486 DOI: 10.1039/d4an00315b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Chondrogenesis is a complex cellular process that involves the transformation of mesenchymal stem cells (MSCs) into chondrocytes, the specialised cells that form cartilage. In recent years, three-dimensional (3D) culture systems have emerged as a promising approach to studying cell behaviour and development in a more physiologically relevant environment compared to traditional two-dimensional (2D) cell culture. The use of these systems provided insights into the molecular mechanisms that regulate chondrogenesis and has the potential to revolutionise the development of new therapies for cartilage repair and regeneration. This study demonstrates the successful application of Raman microspectroscopy (RMS) as a label-free, non-destructive, and sensitive method to monitor the chondrogenic differentiation of bone marrow-derived rat mesenchymal stem cells (rMSCs) in a collagen type I hydrogel, and explores the potential benefits of 3D hydrogels compared to conventional 2D cell culture environments. rMSCs were cultured on 3D substrates for 3 weeks and their differentiation was monitored by measuring the spectral signatures of their subcellular compartments. Additionally, the evolution of high-density micromass cultures was investigated to provide a comprehensive understanding of the process and complex interactions between cells and their surrounding extracellular matrix. For comparison, rMSCs were induced into chondrogenesis in identical medium conditions for 21 days in monolayer culture. Raman spectra showed that rMSCs cultured in a collagen type I hydrogel are able to undergo a distinct chondrogenic differentiation pathway at a significantly higher rate than the 2D culture cells. 3D cultures expressed stronger and more homogeneous chondrogenesis-associated peaks such as collagens, glycosaminoglycans (GAGs), and aggrecan while manifesting changes in proteins and lipidic content. These results suggest that 3D type I collagen hydrogel substrates are promising for in vitro chondrogenesis studies, and that RMS is a valuable tool for monitoring chondrogenesis in 3D environments.
Collapse
Affiliation(s)
- F Ravera
- FOCAS Research Institute, Technological University Dublin, City Campus, Dublin 8, Ireland.
| | - E Efeoglu
- NICB (National Institute for Cellular Biotechnology) at Dublin City University, Dublin 9, Ireland
| | - H J Byrne
- FOCAS Research Institute, Technological University Dublin, City Campus, Dublin 8, Ireland.
| |
Collapse
|
2
|
Wang X, Tao J, Zhou J, Shu Y, Xu J. Excessive load promotes temporomandibular joint chondrocyte apoptosis via Piezo1/endoplasmic reticulum stress pathway. J Cell Mol Med 2024; 28:e18472. [PMID: 38842129 PMCID: PMC11154833 DOI: 10.1111/jcmm.18472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
Excessive load on the temporomandibular joint (TMJ) is a significant factor in the development of TMJ osteoarthritis, contributing to cartilage degeneration. The specific mechanism through which excessive load induces TMJ osteoarthritis is not fully understood; however, mechanically-activated (MA) ion channels play a crucial role. Among these channels, Piezo1 has been identified as a mediator of chondrocyte catabolic responses and is markedly increased in osteoarthritis. Our observations indicate that, under excessive load conditions, endoplasmic reticulum stress in chondrocytes results in apoptosis of the TMJ chondrocytes. Importantly, using the Piezo1 inhibitor GsMTx4 demonstrates its potential to alleviate this condition. Furthermore, Piezo1 mediates endoplasmic reticulum stress in chondrocytes by inducing calcium ion influx. Our research substantiates the role of Piezo1 as a pivotal ion channel in mediating chondrocyte overload. It elucidates the link between excessive load, cell apoptosis, and calcium ion influx through Piezo1. The findings underscore Piezo1 as a key player in the pathogenesis of TMJ osteoarthritis, shedding light on potential therapeutic interventions for this condition.
Collapse
Affiliation(s)
- Xiaohui Wang
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesChongqingChina
| | - Junli Tao
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesChongqingChina
| | - Jianping Zhou
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesChongqingChina
| | - Yi Shu
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesChongqingChina
| | - Jie Xu
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
- Chongqing Key Laboratory for Oral Diseases and Biomedical SciencesChongqingChina
- State Key Laboratory of Ultrasound in Medicine and EngineeringChongqing Medical UniversityChongqingChina
| |
Collapse
|
3
|
Roncada T, Blunn G, Roldo M. Collagen and Alginate Hydrogels Support Chondrocytes Redifferentiation In Vitro without Supplementation of Exogenous Growth Factors. ACS OMEGA 2024; 9:21388-21400. [PMID: 38764657 PMCID: PMC11097186 DOI: 10.1021/acsomega.4c01675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/21/2024]
Abstract
Focal cartilage defects are a prevalent knee problem affecting people of all ages. Articular cartilage (AC) possesses limited healing potential, and osteochondral defects can lead to pain and long-term complications such as osteoarthritis. Autologous chondrocyte implantation (ACI) has been a successful surgical approach for repairing osteochondral defects over the past two decades. However, a major drawback of ACI is the dedifferentiation of chondrocytes during their in vitro expansion. In this study, we isolated ovine chondrocytes and cultured them in a two-dimensional environment for ACI procedures. We hypothesized that 3D scaffolds would support the cells' redifferentiation without the need for growth factors so we encapsulated them into soft collagen and alginate (col/alg) hydrogels. Chondrocytes embedded into the hydrogels were viable and proliferated. After 7 days, they regained their original rounded morphology (aspect ratio 1.08) and started to aggregate. Gene expression studies showed an upregulation of COL2A1, FOXO3A, FOXO1, ACAN, and COL6A1 (37, 1.13, 22, 1123, and 1.08-fold change expression, respectively) as early as day one. At 21 days, chondrocytes had extensively colonized the hydrogel, forming large cell clusters. They started to replace the degrading scaffold by depositing collagen II and aggrecan, but with limited collagen type I deposition. This approach allows us to overcome the limitations of current approaches such as the dedifferentiation occurring in 2D in vitro expansion and the necrotic formation in spheroids. Further studies are warranted to assess long-term ECM deposition and integration with native cartilage. Though limitations exist, this study suggests a promising avenue for cartilage repair with col/alg hydrogel scaffolds.
Collapse
Affiliation(s)
- Tosca Roncada
- School
of Pharmacy and Biomedical Sciences, University
of Portsmouth, St Michael’s
Building, White Swan Road, Portsmouth PO1 2DT, U.K.
| | - Gordon Blunn
- School
of Pharmacy and Biomedical Sciences, University
of Portsmouth, St Michael’s
Building, White Swan Road, Portsmouth PO1 2DT, U.K.
| | - Marta Roldo
- School
of Pharmacy and Biomedical Sciences, University
of Portsmouth, St Michael’s
Building, White Swan Road, Portsmouth PO1 2DT, U.K.
| |
Collapse
|
4
|
Tong Q, Zhao W, Guo T, Wang D, Dong X. A Study of the Gelatin Low-Temperature Deposition Manufacturing Forming Process Based on Fluid Numerical Simulation. Foods 2023; 12:2687. [PMID: 37509779 PMCID: PMC10378525 DOI: 10.3390/foods12142687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Low-temperature deposition manufacturing has attracted much attention as a novel printing method, bringing new opportunities and directions for the development of biological 3D printing and complex-shaped food printing. In this article, we investigated the rheological and printing properties of gelatin solution and conducted numerical simulation and experimental research on the low-temperature extrusion process of gelatin solution. The velocity, local shear rate, viscosity, and pressure distribution of the material in the extrusion process were calculated using Comsol software. The effects of the initial temperature, inlet velocity, and print head diameter of the material on the flow field distribution and printing quality were explored. The results show that: (1) the fluidity and mechanical properties of gelatin solution vary with its concentration; (2) the initial temperature of material, inlet velocity, and print head diameter all have varying degrees of influence on the distribution of the flow field; (3) the concentration change of the material mainly affects the pressure distribution in the flow channel; (4) the greater the inlet velocity, the greater the velocity and shear rate in the flow field and the higher the temperature of the material in the outlet section; and (5) the higher the initial temperature of the gel, the lower the viscosity in the flow field. This article is of great reference value for the low-temperature 3D printing of colloidal materials that are difficult to form at room temperature.
Collapse
Affiliation(s)
- Qiang Tong
- College of Mechanical Engineering and Automation, Dalian Polytechnic University, Dalian 116034, China
| | - Wentao Zhao
- College of Mechanical Engineering and Automation, Dalian Polytechnic University, Dalian 116034, China
| | - Tairong Guo
- College of Mechanical Engineering and Automation, Dalian Polytechnic University, Dalian 116034, China
| | - Dequan Wang
- College of Mechanical Engineering and Automation, Dalian Polytechnic University, Dalian 116034, China
| | - Xiuping Dong
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
5
|
Atia GAN, Shalaby HK, Ali NG, Morsy SM, Ghobashy MM, Attia HAN, Barai P, Nady N, Kodous AS, Barai HR. New Challenges and Prospective Applications of Three-Dimensional Bioactive Polymeric Hydrogels in Oral and Craniofacial Tissue Engineering: A Narrative Review. Pharmaceuticals (Basel) 2023; 16:702. [PMID: 37242485 PMCID: PMC10224377 DOI: 10.3390/ph16050702] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Regenerative medicine, and dentistry offers enormous potential for enhancing treatment results and has been fueled by bioengineering breakthroughs over the previous few decades. Bioengineered tissues and constructing functional structures capable of healing, maintaining, and regenerating damaged tissues and organs have had a broad influence on medicine and dentistry. Approaches for combining bioinspired materials, cells, and therapeutic chemicals are critical in stimulating tissue regeneration or as medicinal systems. Because of its capacity to maintain an unique 3D form, offer physical stability for the cells in produced tissues, and replicate the native tissues, hydrogels have been utilized as one of the most frequent tissue engineering scaffolds during the last twenty years. Hydrogels' high water content can provide an excellent conditions for cell viability as well as an architecture that mimics real tissues, bone, and cartilage. Hydrogels have been used to enable cell immobilization and growth factor application. This paper summarizes the features, structure, synthesis and production methods, uses, new challenges, and future prospects of bioactive polymeric hydrogels in dental and osseous tissue engineering of clinical, exploring, systematical and scientific applications.
Collapse
Affiliation(s)
- Gamal Abdel Nasser Atia
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia P.O. Box 41522, Egypt
| | - Hany K. Shalaby
- Department of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Suez University, Suez P.O. Box 43512, Egypt
| | - Naema Goda Ali
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia P.O. Box 41522, Egypt
| | - Shaimaa Mohammed Morsy
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia P.O. Box 41522, Egypt
| | - Mohamed Mohamady Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo P.O. Box 13759, Egypt
| | - Hager Abdel Nasser Attia
- Department of Molecular Biology and Chemistry, Faculty of Science, Alexandria University, Alexandria P.O. Box 21526, Egypt
| | - Paritosh Barai
- Department of Biochemistry and Molecular Biology, Primeasia University, Dhaka 1213, Bangladesh
| | - Norhan Nady
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Elarab, Alexandria P.O. Box 21934, Egypt
| | - Ahmad S. Kodous
- Department of Radiation Biology, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority (EAEA), Cairo P.O. Box 13759, Egypt
| | - Hasi Rani Barai
- Department of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
6
|
Isaeva E, Kisel A, Beketov E, Demyashkin G, Yakovleva N, Lagoda T, Arguchinskaya N, Baranovsky D, Ivanov S, Shegay P, Kaprin A. Effect of Collagen and GelMA on Preservation of the Costal Chondrocytes' Phenotype in a Scaffold in vivo. Sovrem Tekhnologii Med 2023; 15:5-16. [PMID: 37389022 PMCID: PMC10306965 DOI: 10.17691/stm2023.15.2.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Indexed: 07/01/2023] Open
Abstract
The aim of the study was to compare type I collagen-based and methacryloyl gelatin-based (GelMA) hydrogels by their ability to form hyaline cartilage in animals after subcutaneous implantation of scaffolds. Materials and Methods Chondrocytes were isolated from the costal cartilage of newborn rats using 0.15% collagenase solution in DMEM. The cells was characterized by glycosaminoglycan staining with alcian blue. Chondrocyte scaffolds were obtained from 4% type I porcine atelocollagen and 10% GelMA by micromolding and then implanted subcutaneously into the withers of two groups of Wistar rats. Histological and immunohistochemical studies were performed on days 12 and 26 after implantation. Tissue samples were stained with hematoxylin and eosin, alcian blue; type I and type II collagens were identified by the corresponding antibodies. Results The implanted scaffolds induced a moderate inflammatory response in both groups when implanted in animals. By day 26 after implantation, both collagen and GelMA had almost completely resorbed. Cartilage tissue formation was observed in both animal groups. The newly formed tissue was stained intensively with alcian blue, and the cells were positive for both types of collagen. Cartilage tissue was formed among muscle fibers. Conclusion The ability of collagen type I and GelMA hydrogels to form hyaline cartilage in animals after subcutaneous implantation of scaffolds was studied. Both collagen and GelMA contributed to formation of hyaline-like cartilage tissue type in animals, but the chondrocyte phenotype is characterized as mixed. Additional detailed studies of possible mechanisms of chondrogenesis under the influence of each of the hydrogels are needed.
Collapse
Affiliation(s)
- E.V. Isaeva
- Senior Researcher, Laboratory of Tissue Engineering; A. Tsyb Medical Radiological Research Centre — Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 10 Zhukova St., Obninsk, 249036, Russia
| | - A.A. Kisel
- Researcher, Laboratory of Tissue Engineering; A. Tsyb Medical Radiological Research Centre — Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 10 Zhukova St., Obninsk, 249036, Russia
| | - E.E. Beketov
- Researcher, Laboratory of Medical and Environmental Dosimetry and Radiation Safety; A. Tsyb Medical Radiological Research Centre — Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 10 Zhukova St., Obninsk, 249036, Russia; Associate Professor, Engineering Physics Institute of Biomedicine; Obninsk Institute for Nuclear Power Engineering — Branch of the National Research Nuclear University MEPhI, 1 Studgorodok, Obninsk, 249034, Russia
| | - G.A. Demyashkin
- Head of the Department of Pathomorphology; A. Tsyb Medical Radiological Research Centre — Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 10 Zhukova St., Obninsk, 249036, Russia; Head of Department of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology; I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Malaya Trubetskaya St., Moscow, 119991, Russia
| | - N.D. Yakovleva
- Lecturer; Medical Technical School, 75 A Lenina St., Obninsk, 249037, Russia
| | - T.S. Lagoda
- Research Laboratory Assistant, Laboratory of Tissue Engineering; A. Tsyb Medical Radiological Research Centre — Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 10 Zhukova St., Obninsk, 249036, Russia
| | - N.V. Arguchinskaya
- Junior Researcher, Laboratory of Tissue Engineering; A. Tsyb Medical Radiological Research Centre — Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 10 Zhukova St., Obninsk, 249036, Russia
| | - D.S. Baranovsky
- Head of Laboratory of Tissue Engineering; A. Tsyb Medical Radiological Research Centre — Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 10 Zhukova St., Obninsk, 249036, Russia; Researcher, Research and Educational Resource Center for Cellular Technologies; Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya St., Moscow, 117198, Russia
| | - S.A. Ivanov
- Corresponding Member of the Russian Academy of Sciences, Director; A. Tsyb Medical Radiological Research Centre — Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 10 Zhukova St., Obninsk, 249036, Russia; Professor, Department of Oncology and X-ray Radiology named after V.P. Kharchenko, Medical Institute; Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya St., Moscow, 117198, Russia
| | - P.V. Shegay
- Head of the Center for Innovative Radiological and Regenerative Technologies; National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 4 Koroleva St., Obninsk, 249036, Russia
| | - A.D. Kaprin
- Professor, Academician of the Russian Academy of Sciences, General Director; National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 4 Koroleva St., Obninsk, 249036, Russia Head of the Department of Urology and Operative Nephrology with a Course of Oncourology, Medical Institute; Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya St., Moscow, 117198, Russia
| |
Collapse
|
7
|
Machado I, Marques CF, Martins E, Alves AL, Reis RL, Silva TH. Marine Gelatin-Methacryloyl-Based Hydrogels as Cell Templates for Cartilage Tissue Engineering. Polymers (Basel) 2023; 15:polym15071674. [PMID: 37050288 PMCID: PMC10096504 DOI: 10.3390/polym15071674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023] Open
Abstract
Marine-origin gelatin has been increasingly used as a safe alternative to bovine and porcine ones due to their structural similarity, avoiding the health-related problems and sociocultural concerns associated with using mammalian-origin materials. Another benefit of marine-origin gelatin is that it can be produced from fish processing-products enabling high production at low cost. Recent studies have demonstrated the excellent capacity of gelatin-methacryloyl (GelMA)-based hydrogels in a wide range of biomedical applications due to their suitable biological properties and tunable physical characteristics, such as tissue engineering applications, including the engineering of cartilage. In this study, fish gelatin was obtained from Greenland halibut skins by an acidic extraction method and further functionalized by methacrylation using methacrylic anhydride, developing a photosensitive gelatin-methacryloyl (GelMA) with a degree of functionalization of 58%. The produced marine GelMA allowed the fabrication of photo-crosslinked hydrogels by incorporating a photoinitiator and UV light exposure. To improve the biological performance, GelMA was combined with two glycosaminoglycans (GAGs): hyaluronic acid (HA) and chondroitin sulfate (CS). GAGs methacrylation reaction was necessary, rendering methacrylated HA (HAMA) and methacrylated CS (CSMA). Three different concentrations of GelMA were combined with CSMA and HAMA at different ratios to produce biomechanically stable hydrogels with tunable physicochemical features. The 20% (w/v) GelMA-based hydrogels produced in this work were tested as a matrix for chondrocyte culture for cartilage tissue engineering with formulations containing both HAMA and CSMA showing improved cell viability. The obtained results suggest these hybrid hydrogels be used as promising biomaterials for cartilage tissue engineering applications.
Collapse
Affiliation(s)
- Inês Machado
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Catarina F. Marques
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
- Correspondence:
| | - Eva Martins
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Ana L. Alves
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Tiago H. Silva
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| |
Collapse
|
8
|
Kim YH, Dawson JI, Oreffo ROC, Tabata Y, Kumar D, Aparicio C, Mutreja I. Gelatin Methacryloyl Hydrogels for Musculoskeletal Tissue Regeneration. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9070332. [PMID: 35877383 PMCID: PMC9311920 DOI: 10.3390/bioengineering9070332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 12/30/2022]
Abstract
Musculoskeletal disorders are a significant burden on the global economy and public health. Hydrogels have significant potential for enhancing the repair of damaged and injured musculoskeletal tissues as cell or drug delivery systems. Hydrogels have unique physicochemical properties which make them promising platforms for controlling cell functions. Gelatin methacryloyl (GelMA) hydrogel in particular has been extensively investigated as a promising biomaterial due to its tuneable and beneficial properties and has been widely used in different biomedical applications. In this review, a detailed overview of GelMA synthesis, hydrogel design and applications in regenerative medicine is provided. After summarising recent progress in hydrogels more broadly, we highlight recent advances of GelMA hydrogels in the emerging fields of musculoskeletal drug delivery, involving therapeutic drugs (e.g., growth factors, antimicrobial molecules, immunomodulatory drugs and cells), delivery approaches (e.g., single-, dual-release system), and material design (e.g., addition of organic or inorganic materials, 3D printing). The review concludes with future perspectives and associated challenges for developing local drug delivery for musculoskeletal applications.
Collapse
Affiliation(s)
- Yang-Hee Kim
- Bone and Joint Research Group, Centre for Human Development, Stem Cells & Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton SO16 6YD, UK; (J.I.D.); (R.O.C.O.)
- Correspondence: (Y.-H.K.); (I.M.); Tel.: +44-2381-203293 (Y.-H.K.); +1-(612)7605790 (I.M.)
| | - Jonathan I. Dawson
- Bone and Joint Research Group, Centre for Human Development, Stem Cells & Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton SO16 6YD, UK; (J.I.D.); (R.O.C.O.)
| | - Richard O. C. Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells & Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton SO16 6YD, UK; (J.I.D.); (R.O.C.O.)
| | - Yasuhiko Tabata
- Department of Biomaterials, Field of Tissue Engineering, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8501, Japan;
| | - Dhiraj Kumar
- Division of Pediatric Dentistry, School of Dentistry, University of Minnesota, Minneapolis, MN 55812, USA;
| | - Conrado Aparicio
- Minnesota Dental Research Center for Biomaterials and Biomechanics, Department of Restorative Science, University of Minnesota, Minneapolis, MN 55455, USA;
- Division of Basic Research, Faculty of Odontology UIC Barcelona—Universitat Internacional de Catalunya, 08017 Barcelona, Spain
- BIST—Barcelona Institute for Science and Technology, 08195 Barcelona, Spain
| | - Isha Mutreja
- Minnesota Dental Research Center for Biomaterials and Biomechanics, Department of Restorative Science, University of Minnesota, Minneapolis, MN 55455, USA;
- Correspondence: (Y.-H.K.); (I.M.); Tel.: +44-2381-203293 (Y.-H.K.); +1-(612)7605790 (I.M.)
| |
Collapse
|
9
|
Kahraman E, Ribeiro R, Lamghari M, Neto E. Cutting-Edge Technologies for Inflamed Joints on Chip: How Close Are We? Front Immunol 2022; 13:802440. [PMID: 35359987 PMCID: PMC8960235 DOI: 10.3389/fimmu.2022.802440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/18/2022] [Indexed: 11/17/2022] Open
Abstract
Osteoarthritis (OA) is a painful and disabling musculoskeletal disorder, with a large impact on the global population, resulting in several limitations on daily activities. In OA, inflammation is frequent and mainly controlled through inflammatory cytokines released by immune cells. These outbalanced inflammatory cytokines cause cartilage extracellular matrix (ECM) degradation and possible growth of neuronal fibers into subchondral bone triggering pain. Even though pain is the major symptom of musculoskeletal diseases, there are still no effective treatments to counteract it and the mechanisms behind these pathologies are not fully understood. Thus, there is an urgent need to establish reliable models for assessing the molecular mechanisms and consequently new therapeutic targets. Models have been established to support this research field by providing reliable tools to replicate the joint tissue in vitro. Studies firstly started with simple 2D culture setups, followed by 3D culture focusing mainly on cell-cell interactions to mimic healthy and inflamed cartilage. Cellular approaches were improved by scaffold-based strategies to enhance cell-matrix interactions as well as contribute to developing mechanically more stable in vitro models. The progression of the cartilage tissue engineering would then profit from the integration of 3D bioprinting technologies as these provide 3D constructs with versatile structural arrangements of the 3D constructs. The upgrade of the available tools with dynamic conditions was then achieved using bioreactors and fluid systems. Finally, the organ-on-a-chip encloses all the state of the art on cartilage tissue engineering by incorporation of different microenvironments, cells and stimuli and pave the way to potentially simulate crucial biological, chemical, and mechanical features of arthritic joint. In this review, we describe the several available tools ranging from simple cartilage pellets to complex organ-on-a-chip platforms, including 3D tissue-engineered constructs and bioprinting tools. Moreover, we provide a fruitful discussion on the possible upgrades to enhance the in vitro systems making them more robust regarding the physiological and pathological modeling of the joint tissue/OA.
Collapse
Affiliation(s)
- Emine Kahraman
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Faculdade de Engenharia da Universidade do Porto (FEUP), Rua Dr. Roberto Frias, Porto, Portugal
| | - Ricardo Ribeiro
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Meriem Lamghari
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Estrela Neto
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| |
Collapse
|
10
|
Khella CM, Asgarian R, Horvath JM, Rolauffs B, Hart ML. An Evidence-Based Systematic Review of Human Knee Post-Traumatic Osteoarthritis (PTOA): Timeline of Clinical Presentation and Disease Markers, Comparison of Knee Joint PTOA Models and Early Disease Implications. Int J Mol Sci 2021; 22:1996. [PMID: 33671471 PMCID: PMC7922905 DOI: 10.3390/ijms22041996] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
Understanding the causality of the post-traumatic osteoarthritis (PTOA) disease process of the knee joint is important for diagnosing early disease and developing new and effective preventions or treatments. The aim of this review was to provide detailed clinical data on inflammatory and other biomarkers obtained from patients after acute knee trauma in order to (i) present a timeline of events that occur in the acute, subacute, and chronic post-traumatic phases and in PTOA, and (ii) to identify key factors present in the synovial fluid, serum/plasma and urine, leading to PTOA of the knee in 23-50% of individuals who had acute knee trauma. In this context, we additionally discuss methods of simulating knee trauma and inflammation in in vivo, ex vivo articular cartilage explant and in vitro chondrocyte models, and answer whether these models are representative of the clinical inflammatory stages following knee trauma. Moreover, we compare the pro-inflammatory cytokine concentrations used in such models and demonstrate that, compared to concentrations in the synovial fluid after knee trauma, they are exceedingly high. We then used the Bradford Hill Framework to present evidence that TNF-α and IL-6 cytokines are causal factors, while IL-1β and IL-17 are credible factors in inducing knee PTOA disease progresssion. Lastly, we discuss beneficial infrastructure for future studies to dissect the role of local vs. systemic inflammation in PTOA progression with an emphasis on early disease.
Collapse
Affiliation(s)
| | | | | | | | - Melanie L. Hart
- G.E.R.N. Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; (C.M.K.); (R.A.); (J.M.H.); (B.R.)
| |
Collapse
|
11
|
Liau LL, Hassan MNFB, Tang YL, Ng MH, Law JX. Feasibility of Human Platelet Lysate as an Alternative to Foetal Bovine Serum for In Vitro Expansion of Chondrocytes. Int J Mol Sci 2021; 22:ijms22031269. [PMID: 33525349 PMCID: PMC7865277 DOI: 10.3390/ijms22031269] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 01/22/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease that affects a lot of people worldwide. Current treatment for OA mainly focuses on halting or slowing down the disease progress and to improve the patient’s quality of life and functionality. Autologous chondrocyte implantation (ACI) is a new treatment modality with the potential to promote regeneration of worn cartilage. Traditionally, foetal bovine serum (FBS) is used to expand the chondrocytes. However, the use of FBS is not ideal for the expansion of cells mean for clinical applications as it possesses the risk of animal pathogen transmission and animal protein transfer to host. Human platelet lysate (HPL) appears to be a suitable alternative to FBS as it is rich in biological factors that enhance cell proliferation. Thus far, HPL has been found to be superior in promoting chondrocyte proliferation compared to FBS. However, both HPL and FBS cannot prevent chondrocyte dedifferentiation. Discrepant results have been reported for the maintenance of chondrocyte redifferentiation potential by HPL. These differences are likely due to the diversity in the HPL preparation methods. In the future, more studies on HPL need to be performed to develop a standardized technique which is capable of producing HPL that can maintain the chondrocyte redifferentiation potential reproducibly. This review discusses the in vitro expansion of chondrocytes with FBS and HPL, focusing on its capability to promote the proliferation and maintain the chondrogenic characteristics of chondrocytes.
Collapse
Affiliation(s)
- Ling Ling Liau
- Physiology Department, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia;
| | - Muhammad Najib Fathi bin Hassan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (M.N.F.b.H.); (M.H.N.)
| | - Yee Loong Tang
- Pathology Department, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia;
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (M.N.F.b.H.); (M.H.N.)
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (M.N.F.b.H.); (M.H.N.)
- Correspondence: ; Tel.: +603-9145-7677; Fax: +603-9145-7678
| |
Collapse
|
12
|
Vascular bioprinting with enzymatically degradable bioinks via multi-material projection-based stereolithography. Acta Biomater 2020; 117:121-132. [PMID: 32980542 DOI: 10.1016/j.actbio.2020.09.033] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/02/2020] [Accepted: 09/18/2020] [Indexed: 12/20/2022]
Abstract
Introduction of cavities and channels into 3D bioprinted constructs is a prerequisite for recreating physiological tissue architectures and integrating vasculature. Projection-based stereolithography inherently offers high printing speed with high spatial resolution, but so far has been incapable of fabricating complex native tissue architectures with cellular and biomaterial diversity. The use of sacrificial photoinks, i.e. photopolymerisable biomaterials that can be removed after printing, theoretically allows for the creation of any construct geometry via a multi-material printing process. However, the realisation of this strategy has been challenging because of difficult technical implementation and a lack of performant biomaterials. In this work, we use our projection-based, multi-material stereolithographic bioprinter and an enzymatically degradable sacrificial photoink to overcome the current hurdles. Multiple, hyaluronic acid-based photoinks were screened for printability, mechanical properties and digestibility through hyaluronidase. A formulation meeting all major requirements, i.e. desirable printing properties, generation of sufficiently strong hydrogels, as well as fast digestion rate, was identified. Biocompatibility of the material system was confirmed by embedding of human umbilical vein endothelial cells with followed enzymatic release. As a proof-of-concept, we bioprinted vascular models containing perfusable, endothelial cell-lined channels that remained stable for 28 days in culture. Our work establishes digestible sacrificial biomaterials as a new material strategy for 3D bioprinting of complex tissue models.
Collapse
|
13
|
Yao Y, Wang C. Dedifferentiation: inspiration for devising engineering strategies for regenerative medicine. NPJ Regen Med 2020; 5:14. [PMID: 32821434 PMCID: PMC7395755 DOI: 10.1038/s41536-020-00099-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
Cell dedifferentiation is the process by which cells grow reversely from a partially or terminally differentiated stage to a less differentiated stage within their own lineage. This extraordinary phenomenon, observed in many physiological processes, inspires the possibility of developing new therapeutic approaches to regenerate damaged tissue and organs. Meanwhile, studies also indicate that dedifferentiation can cause pathological changes. In this review, we compile the literature describing recent advances in research on dedifferentiation, with an emphasis on tissue-specific findings, cellular mechanisms, and potential therapeutic applications from an engineering perspective. A critical understanding of such knowledge may provide fresh insights for designing new therapeutic strategies for regenerative medicine based on the principle of cell dedifferentiation.
Collapse
Affiliation(s)
- Yongchang Yao
- Department of Joint Surgery, The First Affiliated Hospital of Guangzhou Medical University, 510120 Guangzhou, China.,Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Guangzhou, China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
14
|
Selig M, Lauer JC, Hart ML, Rolauffs B. Mechanotransduction and Stiffness-Sensing: Mechanisms and Opportunities to Control Multiple Molecular Aspects of Cell Phenotype as a Design Cornerstone of Cell-Instructive Biomaterials for Articular Cartilage Repair. Int J Mol Sci 2020; 21:E5399. [PMID: 32751354 PMCID: PMC7432012 DOI: 10.3390/ijms21155399] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/23/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023] Open
Abstract
Since material stiffness controls many cell functions, we reviewed the currently available knowledge on stiffness sensing and elucidated what is known in the context of clinical and experimental articular cartilage (AC) repair. Remarkably, no stiffness information on the various biomaterials for clinical AC repair was accessible. Using mRNA expression profiles and morphology as surrogate markers of stiffness-related effects, we deduced that the various clinically available biomaterials control chondrocyte (CH) phenotype well, but not to equal extents, and only in non-degenerative settings. Ample evidence demonstrates that multiple molecular aspects of CH and mesenchymal stromal cell (MSC) phenotype are susceptible to material stiffness, because proliferation, migration, lineage determination, shape, cytoskeletal properties, expression profiles, cell surface receptor composition, integrin subunit expression, and nuclear shape and composition of CHs and/or MSCs are stiffness-regulated. Moreover, material stiffness modulates MSC immuno-modulatory and angiogenic properties, transforming growth factor beta 1 (TGF-β1)-induced lineage determination, and CH re-differentiation/de-differentiation, collagen type II fragment production, and TGF-β1- and interleukin 1 beta (IL-1β)-induced changes in cell stiffness and traction force. We then integrated the available molecular signaling data into a stiffness-regulated CH phenotype model. Overall, we recommend using material stiffness for controlling cell phenotype, as this would be a promising design cornerstone for novel future-oriented, cell-instructive biomaterials for clinical high-quality AC repair tissue.
Collapse
Affiliation(s)
- Mischa Selig
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; (M.S.); (J.C.L.); (M.L.H.)
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | - Jasmin C. Lauer
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; (M.S.); (J.C.L.); (M.L.H.)
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | - Melanie L. Hart
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; (M.S.); (J.C.L.); (M.L.H.)
| | - Bernd Rolauffs
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; (M.S.); (J.C.L.); (M.L.H.)
| |
Collapse
|
15
|
Samani S, Bonakdar S, Farzin A, Hadjati J, Azami M. A facile way to synthesize a photocrosslinkable methacrylated chitosan hydrogel for biomedical applications. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1760274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Saeed Samani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ali Farzin
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jamshid Hadjati
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Schipani R, Scheurer S, Florentin R, Critchley SE, Kelly DJ. Reinforcing interpenetrating network hydrogels with 3D printed polymer networks to engineer cartilage mimetic composites. Biofabrication 2020; 12:035011. [DOI: 10.1088/1758-5090/ab8708] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Zerobin E, Markovic M, Tomášiková Z, Qin X, Ret D, Steinbauer P, Kitzmüller J, Steiger W, Gruber P, Ovsianikov A, Liska R, Baudis S. Hyaluronic acid vinyl esters: A toolbox toward controlling mechanical properties of hydrogels for 3D microfabrication. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200073] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Elise Zerobin
- Institute of Applied Synthetic ChemistryTU Wien Vienna Austria
- Austrian Cluster for Tissue Regeneration Austria
| | - Marica Markovic
- Institute of Materials Science and Technology TU Wien, Vienna Austria
- Austrian Cluster for Tissue Regeneration Austria
| | - Zuzana Tomášiková
- Institute of Applied Synthetic ChemistryTU Wien Vienna Austria
- Austrian Cluster for Tissue Regeneration Austria
| | - Xiao‐Hua Qin
- Institute of Applied Synthetic ChemistryTU Wien Vienna Austria
- Austrian Cluster for Tissue Regeneration Austria
| | - Davide Ret
- Institute of Applied Synthetic ChemistryTU Wien Vienna Austria
- Austrian Cluster for Tissue Regeneration Austria
| | - Patrick Steinbauer
- Institute of Applied Synthetic ChemistryTU Wien Vienna Austria
- Christian Doppler Laboratory for Advanced Polymers for Biomaterials and 3D Printing TU Wien, Vienna Austria
- Austrian Cluster for Tissue Regeneration Austria
| | - Jakob Kitzmüller
- Institute of Applied Synthetic ChemistryTU Wien Vienna Austria
- Austrian Cluster for Tissue Regeneration Austria
| | - Wolfgang Steiger
- Institute of Materials Science and Technology TU Wien, Vienna Austria
- Austrian Cluster for Tissue Regeneration Austria
| | - Peter Gruber
- Institute of Materials Science and Technology TU Wien, Vienna Austria
- Austrian Cluster for Tissue Regeneration Austria
| | - Aleksandr Ovsianikov
- Institute of Materials Science and Technology TU Wien, Vienna Austria
- Austrian Cluster for Tissue Regeneration Austria
| | - Robert Liska
- Institute of Applied Synthetic ChemistryTU Wien Vienna Austria
- Austrian Cluster for Tissue Regeneration Austria
| | - Stefan Baudis
- Institute of Applied Synthetic ChemistryTU Wien Vienna Austria
- Christian Doppler Laboratory for Advanced Polymers for Biomaterials and 3D Printing TU Wien, Vienna Austria
- Austrian Cluster for Tissue Regeneration Austria
| |
Collapse
|
18
|
Diloksumpan P, de Ruijter M, Castilho M, Gbureck U, Vermonden T, van Weeren PR, Malda J, Levato R. Combining multi-scale 3D printing technologies to engineer reinforced hydrogel-ceramic interfaces. Biofabrication 2020; 12:025014. [PMID: 31918421 PMCID: PMC7116207 DOI: 10.1088/1758-5090/ab69d9] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multi-material 3D printing technologies that resolve features at different lengths down to the microscale open new avenues for regenerative medicine, particularly in the engineering of tissue interfaces. Herein, extrusion printing of a bone-biomimetic ceramic ink and melt electrowriting (MEW) of spatially organized polymeric microfibres are integrated for the biofabrication of an osteochondral plug, with a mechanically reinforced bone-to-cartilage interface. A printable physiological temperature-setting bioceramic, based on α-tricalcium phosphate, nanohydroxyapatite and a custom-synthesized biodegradable and crosslinkable poloxamer, was developed as bone support. The mild setting reaction of the bone ink enabled us to print directly within melt electrowritten polycaprolactone meshes, preserving their micro-architecture. Ceramic-integrated MEW meshes protruded into the cartilage region of the composite plug, and were embedded with mechanically soft gelatin-based hydrogels, laden with articular cartilage chondroprogenitor cells. Such interlocking design enhanced the hydrogel-to-ceramic adhesion strength >6.5-fold, compared with non-interlocking fibre architectures, enabling structural stability during handling and surgical implantation in osteochondral defects ex vivo. Furthermore, the MEW meshes endowed the chondral compartment with compressive properties approaching those of native cartilage (20-fold reinforcement versus pristine hydrogel). The osteal and chondral compartment supported osteogenesis and cartilage matrix deposition in vitro, and the neo-synthesized cartilage matrix further contributed to the mechanical reinforcement at the ceramic-hydrogel interface. This multi-material, multi-scale 3D printing approach provides a promising strategy for engineering advanced composite constructs for the regeneration of musculoskeletal and connective tissue interfaces.
Collapse
Affiliation(s)
- Paweena Diloksumpan
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Fan D, Staufer U, Accardo A. Engineered 3D Polymer and Hydrogel Microenvironments for Cell Culture Applications. Bioengineering (Basel) 2019; 6:E113. [PMID: 31847117 PMCID: PMC6955903 DOI: 10.3390/bioengineering6040113] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/13/2019] [Accepted: 12/06/2019] [Indexed: 12/28/2022] Open
Abstract
The realization of biomimetic microenvironments for cell biology applications such as organ-on-chip, in vitro drug screening, and tissue engineering is one of the most fascinating research areas in the field of bioengineering. The continuous evolution of additive manufacturing techniques provides the tools to engineer these architectures at different scales. Moreover, it is now possible to tailor their biomechanical and topological properties while taking inspiration from the characteristics of the extracellular matrix, the three-dimensional scaffold in which cells proliferate, migrate, and differentiate. In such context, there is therefore a continuous quest for synthetic and nature-derived composite materials that must hold biocompatible, biodegradable, bioactive features and also be compatible with the envisioned fabrication strategy. The structure of the current review is intended to provide to both micro-engineers and cell biologists a comparative overview of the characteristics, advantages, and drawbacks of the major 3D printing techniques, the most promising biomaterials candidates, and the trade-offs that must be considered in order to replicate the properties of natural microenvironments.
Collapse
Affiliation(s)
| | | | - Angelo Accardo
- Department of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands; (D.F.); (U.S.)
| |
Collapse
|
20
|
Lam T, Dehne T, Krüger JP, Hondke S, Endres M, Thomas A, Lauster R, Sittinger M, Kloke L. Photopolymerizable gelatin and hyaluronic acid for stereolithographic 3D bioprinting of tissue-engineered cartilage. J Biomed Mater Res B Appl Biomater 2019; 107:2649-2657. [PMID: 30860678 PMCID: PMC6790697 DOI: 10.1002/jbm.b.34354] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/22/2019] [Accepted: 02/18/2019] [Indexed: 12/21/2022]
Abstract
To create artificial cartilage in vitro, mimicking the function of native extracellular matrix (ECM) and morphological cartilage-like shape is essential. The interplay of cell patterning and matrix concentration has high impact on the phenotype and viability of the printed cells. To advance the capabilities of cartilage bioprinting, we investigated different ECMs to create an in vitro chondrocyte niche. Therefore, we used methacrylated gelatin (GelMA) and methacrylated hyaluronic acid (HAMA) in a stereolithographic bioprinting approach. Both materials have been shown to support cartilage ECM formation and recovery of chondrocyte phenotype. We used these materials as bioinks to create cartilage models with varying chondrocyte densities. The models maintained shape, viability, and homogenous cell distribution over 14 days in culture. Chondrogenic differentiation was demonstrated by cartilage-typical proteoglycan and type II collagen deposition and gene expression (COL2A1, ACAN) after 14 days of culture. The differentiation pattern was influenced by cell density. A high cell density print (25 × 106 cells/mL) led to enhanced cartilage-typical zonal segmentation compared to cultures with lower cell density (5 × 106 cells/mL). Compared to HAMA, GelMA resulted in a higher expression of COL1A1, typical for a more premature chondrocyte phenotype. Both bioinks are feasible for printing in vitro cartilage with varying differentiation patterns and ECM organization depending on starting cell density and chosen bioink. The presented technique could find application in the creation of cartilage models and in the treatment of articular cartilage defects using autologous material and adjusting the bioprinted constructs size and shape to the patient. © 2019 The Authors. Journal of Biomedical Materials Research Part B: Applied Biomaterials published by Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B:2649-2657, 2019.
Collapse
Affiliation(s)
| | - Tilo Dehne
- Charité ‐ Universitätsmedizin BerlinDepartment of Rheumatology and Clinical Immunology, Laboratory for Tissue Engineering
| | | | | | | | | | - Roland Lauster
- Technische Universität BerlinInstitute of Medical BiotechnologyBerlinGermany
| | - Michael Sittinger
- Charité ‐ Universitätsmedizin BerlinDepartment of Rheumatology and Clinical Immunology, Laboratory for Tissue Engineering
| | | |
Collapse
|
21
|
Bao SY, Bao GJ, Tang YY, Liu L, Kang H. [Effects of staurosporine on the contraction of self-assembled constructs of goat temporomandibular joint disc cells]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2019; 37:275-279. [PMID: 31218861 DOI: 10.7518/hxkq.2019.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVE The effects of the staurosporine on contraction of self-assembled constructs and extracellular matrix syntheses of goat temporomandibular joint discs were investigated. METHODS Goat temporomandibular joint disc cells were isolated and cultured to P3, and 5.5×10⁶ cells were combined with different concentrations of staurosporine (0, 0.1, 1, 10, 100 nmol·L⁻¹) in agarose wells and cultured for one week. The samples were frozen and sectioned. Safranin-O, Picro-sirius red and immunohistochemical staining were performed to observe the distributions of the extracellular matrix and the expression of alpha-smooth muscle actin (α-SMA). Enzyme linked immunosorbent assay (ELISA) and Blyscan kits were utilized to quan--titatively detect the contents of type Ⅰ collagen (ColⅠ) and glycosaminoglycans (GAGs). RESULTS Each group of goat temporo-mandibular joint disc cells in the agarose wells were gathered to self-assemble into a disc-shaped base for 4 hours and then to gradually contract into a round shape. The Picro-sirius red staining was strong and indicated collagen distribution. The Safranin-O staining observed GAGs throughout the entire construct. The expression of ColⅠ was strongly posi-tive in the staurosporine groups; however, the expression of α-SMA was weak. ColⅠ and GAGs contents in the stau-rosporine groups were greater than that of the control group, especially in the 10 nmol·L⁻¹ group (P<0.01). CONCLUSIONS Staurosporine has a certain effect on the shrinkage of self-assembled constructs; however, such effect is not prominent. Staurosporine contributes to the construction synthesis of extracellular matrix.
Collapse
Affiliation(s)
- Shan-Ying Bao
- Institute of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Guang-Jie Bao
- Key Laboratory of Stomatology of State Ethnic Affairs Commission, Northwest Minzu University, Lanzhou 730030, China;Key Laboratory of Oral Diseases of Gansu Province, Northwest Minzu University, Lanzhou 730030, China
| | - Yu-Yao Tang
- Institute of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Lin Liu
- Key Laboratory of Stomatology of State Ethnic Affairs Commission, Northwest Minzu University, Lanzhou 730030, China;Key Laboratory of Oral Diseases of Gansu Province, Northwest Minzu University, Lanzhou 730030, China
| | - Hong Kang
- Institute of Stomatology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
22
|
Pahoff S, Meinert C, Bas O, Nguyen L, Klein TJ, Hutmacher DW. Effect of gelatin source and photoinitiator type on chondrocyte redifferentiation in gelatin methacryloyl-based tissue-engineered cartilage constructs. J Mater Chem B 2019; 7:1761-1772. [DOI: 10.1039/c8tb02607f] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This work investigates neocartilage formation in bovine and porcine gelatin methacryloyl-based hydrogels photocrosslinked using ultraviolet or visible light photoinitiator systems.
Collapse
Affiliation(s)
- Stephen Pahoff
- Institute of Health and Biomedical Innovation
- Queensland University of Technology
- 60 Musk Avenue
- Kelvin Grove
- Brisbane
| | - Christoph Meinert
- Institute of Health and Biomedical Innovation
- Queensland University of Technology
- 60 Musk Avenue
- Kelvin Grove
- Brisbane
| | - Onur Bas
- Institute of Health and Biomedical Innovation
- Queensland University of Technology
- 60 Musk Avenue
- Kelvin Grove
- Brisbane
| | - Long Nguyen
- Institute of Health and Biomedical Innovation
- Queensland University of Technology
- 60 Musk Avenue
- Kelvin Grove
- Brisbane
| | - Travis J. Klein
- Institute of Health and Biomedical Innovation
- Queensland University of Technology
- 60 Musk Avenue
- Kelvin Grove
- Brisbane
| | - Dietmar W. Hutmacher
- Institute of Health and Biomedical Innovation
- Queensland University of Technology
- 60 Musk Avenue
- Kelvin Grove
- Brisbane
| |
Collapse
|
23
|
Mora-Boza A, Lopez-Donaire ML. Preparation of Polymeric and Composite Scaffolds by 3D Bioprinting. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1058:221-245. [PMID: 29691824 DOI: 10.1007/978-3-319-76711-6_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Over the recent years, the advent of 3D bioprinting technology has marked a milestone in osteochondral tissue engineering (TE) research. Nowadays, the traditional used techniques for osteochondral regeneration remain to be inefficient since they cannot mimic the complexity of joint anatomy and tissue heterogeneity of articular cartilage. These limitations seem to be solved with the use of 3D bioprinting which can reproduce the anisotropic extracellular matrix (ECM) and heterogeneity of this tissue. In this chapter, we present the most commonly used 3D bioprinting approaches and then discuss the main criteria that biomaterials must meet to be used as suitable bioinks, in terms of mechanical and biological properties. Finally, we highlight some of the challenges that this technology must overcome related to osteochondral bioprinting before its clinical implementation.
Collapse
Affiliation(s)
- Ana Mora-Boza
- Institute of Polymer Science and Technology-ICTP-CSIC, Madrid, Spain.
- CIBER, Health Institute Carlos III, Madrid, Spain.
| | | |
Collapse
|
24
|
Miao Z, Lu Z, Wu H, Liu H, Li M, Lei D, Zheng L, Zhao J. Collagen, agarose, alginate, and Matrigel hydrogels as cell substrates for culture of chondrocytes in vitro: A comparative study. J Cell Biochem 2018; 119:7924-7933. [PMID: 28941304 DOI: 10.1002/jcb.26411] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/20/2017] [Indexed: 12/28/2022]
Abstract
Autologous chondrocyte implantation (ACI) has emerged as a new approach to cartilage repair through the use of harvested chondrocytes. But the expansion of the chondrocytes from the donor tissue in vitro is restricted by limited cell numbers and dedifferentiation of chondrocytes. In this study, we used four types of hydrogels including agarose, alginate, Matrigel, and collagen type I hydrogels to serve as cell substrates and investigated the effect on proliferation and phenotype maintenance of chondrocytes. As a substrate for monolayer culture, collagen facilitated cell expansion and effectively suppressed the dedifferentiation of chondrocytes, as evidenced by fluorescein diacetate/propidium iodide (FDA/PI), hematoxylin-eosin staining (HE), Safranin O, immunofluorescenceassay, biochemistry analysis, and quantitative real-time polymerase chain reaction (qRT-PCR). Compared with that in agarose gels, alginate, and Matrigel, collagen accelerated cell proliferation and enhanced the expression of cartilage specific genes such as ACAN, SOX9, and COLII more markedly. Furthermore, significantly lower expression of COL I (an indicator of dedifferentiation) and COL X (the chondrocyte hypertrophy marker) was present in collagen group than in other groups. This indicated that collagen substrate can better support chondrocyte growth and maintain cell phenotype, due to that it might serve as a cartilage-like ECM to provide adhesive site for chondrocytes. In summary, collagen hydrogel is a promising cell substrate for chondrocytes culture for ACI.
Collapse
Affiliation(s)
- Zhikang Miao
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhenhui Lu
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Huayu Wu
- Department of Cell Biology & Genetics, School of Premedical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Hui Liu
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Muyan Li
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Danqing Lei
- The Medical and Scientific Research Center, Guangxi Medical University, Nanning, China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
25
|
Aurich M, Hofmann GO, Gras F, Rolauffs B. Human osteochondritis dissecans fragment-derived chondrocyte characteristics ex vivo, after monolayer expansion-induced de-differentiation, and after re-differentiation in alginate bead culture. BMC Musculoskelet Disord 2018; 19:168. [PMID: 29793458 PMCID: PMC5968539 DOI: 10.1186/s12891-018-2079-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/07/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Autologous chondrocyte implantation (ACI) is a therapy for articular cartilage and osteochondral lesions that relies on notch- or trochlea-derived primary chondrocytes. An alternative cell source for ACI could be osteochondritis dissecans (OCD) fragment-derived chondrocytes. Assessing the potential of these cells, we investigated their characteristics ex vivo and after monolayer expansion, as monolayer expansion is an integral step of ACI. However, as monolayer expansion can induce de-differentiation, we asked whether monolayer-induced de-differentiation can be reverted through successive alginate bead culture. METHODS Chondrocytes were isolated from the OCD fragments of 15 patient knees with ICRS grades 3-4 lesions for ex vivo analyses, primary alginate bead culture, monolayer expansion, and alginate bead culture following monolayer expansion for attempting re-differentiation. We determined yield, viability, and the mRNA expression of aggrecan and type I, II, and X collagen. RESULTS OCD fragment-derived chondrocyte isolation yielded high numbers of viable cells with a low type I:II collagen expression ratio (< 1) and a relatively high aggrecan and type II and X collagen mRNA expression, indicating chondrogenic and hypertrophic characteristics. As expected, monolayer expansion induced de-differentiation. Alginate bead culture of monolayer-expanded cells significantly improved the expression profile of all genes investigated, being most successful in decreasing the hypertrophy marker type X collagen to 1.5% of its ex vivo value. However, the chondrogenic phenotype was not fully restored, as the collagen type I:II expression ratio decreased significantly but remained > 1. CONCLUSION OCD fragment derived human chondrocytes may hold not yet utilized clinical potential for cartilage repair.
Collapse
Affiliation(s)
- Matthias Aurich
- Center for Orthopaedic and Trauma Surgery, Klinikum Mittleres Erzgebirge, Alte Marienberger, Str. 52, 09405, Zschopau, Germany
- Department of Trauma, Hand and Reconstructive Surgery, Universitätsklinikum Jena, Erlanger Allee 101, 07747, Jena, Germany
- Department of Biochemistry, Rush Medical College, 1735 W. Harrison St, Chicago, IL, 60612, USA
| | - Gunther O Hofmann
- Department of Trauma, Hand and Reconstructive Surgery, Universitätsklinikum Jena, Erlanger Allee 101, 07747, Jena, Germany
| | - Florian Gras
- Department of Trauma, Hand and Reconstructive Surgery, Universitätsklinikum Jena, Erlanger Allee 101, 07747, Jena, Germany
| | - Bernd Rolauffs
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center - Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany.
- Massachusetts Institute of Technology, Center for Biomedical Engineering, 500 Technology Sq, Cambridge, MA, 02139, USA.
| |
Collapse
|
26
|
Heck BE, Park JJ, Makani V, Kim EC, Kim DH. PPAR-δ Agonist With Mesenchymal Stem Cells Induces Type II Collagen-Producing Chondrocytes in Human Arthritic Synovial Fluid. Cell Transplant 2018; 26:1405-1417. [PMID: 28901183 PMCID: PMC5680970 DOI: 10.1177/0963689717720278] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) is an inflammatory joint disease characterized by degeneration of articular cartilage within synovial joints. An estimated 27 million Americans suffer from OA, and the population is expected to reach 67 million in the United States by 2030. Thus, it is urgent to find an effective treatment for OA. Traditional OA treatments have no disease-modifying effect, while regenerative OA therapies such as autologous chondrocyte implantation show some promise. Nonetheless, current regenerative therapies do not overcome synovial inflammation that suppresses the differentiation of mesenchymal stem cells (MSCs) to chondrocytes and the expression of type II collagen, the major constituent of functional cartilage. We discovered a synergistic combination that overcame synovial inflammation to form type II collagen-producing chondrocytes. The combination consists of peroxisome proliferator–activated receptor (PPAR) δ agonist, human bone marrow (hBM)-derived MSCs, and hyaluronic acid (HA) gel. Interestingly, those individual components showed their own strong enhancing effects on chondrogenesis. GW0742, a PPAR-δ agonist, greatly enhanced MSC chondrogenesis and the expression of type II collagen and glycosaminoglycan (GAG) in hBM-MSC-derived chondrocytes. GW0742 also increased the expression of transforming growth factor β that enhances chondrogenesis and suppresses cartilage fibrillation, ossification, and inflammation. HA gel also increased MSC chondrogenesis and GAG production. However, neither GW0742 nor HA gel could enhance the formation of type II collagen-producing chondrocytes from hBM-MSCs within human OA synovial fluid. Our data demonstrated that the combination of hBM-MSCs, PPAR-δ agonist, and HA gel significantly enhanced the formation of type II collagen-producing chondrocytes within OA synovial fluid from 3 different donors. In other words, the novel combination of PPAR-δ agonist, hBM-MSCs, and HA gel can overcome synovial inflammation to form type II collagen cartilage within human OA synovial fluid. This novel articularly injectable formula could improve OA treatment in the future clinical application.
Collapse
Affiliation(s)
- Bruce E Heck
- 1 NWO Stem Cure, LLC, Findlay, OH, USA.,2 Northwest Ohio Orthopedics and Sports Medicine, Findlay, OH, USA
| | - Joshua J Park
- 3 Department of Neurosciences, University of Toledo College of Medicine and Life Science, Toledo, OH, USA
| | - Vishruti Makani
- 3 Department of Neurosciences, University of Toledo College of Medicine and Life Science, Toledo, OH, USA
| | - Eun-Cheol Kim
- 4 Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Dong Hyun Kim
- 1 NWO Stem Cure, LLC, Findlay, OH, USA.,2 Northwest Ohio Orthopedics and Sports Medicine, Findlay, OH, USA.,5 Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
27
|
Sawatjui N, Limpaiboon T, Schrobback K, Klein T. Biomimetic scaffolds and dynamic compression enhance the properties of chondrocyte‐ and
MSC
‐based tissue‐engineered cartilage. J Tissue Eng Regen Med 2018; 12:1220-1229. [DOI: 10.1002/term.2653] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 12/21/2017] [Accepted: 02/17/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Nopporn Sawatjui
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences Khon Kaen University Khon Kaen Thailand
| | - Temduang Limpaiboon
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences Khon Kaen University Khon Kaen Thailand
| | - Karsten Schrobback
- Cartilage Regeneration Laboratory, Institute of Health and Biomedical Innovation Queensland University of Technology Brisbane Queensland Australia
| | - Travis Klein
- Cartilage Regeneration Laboratory, Institute of Health and Biomedical Innovation Queensland University of Technology Brisbane Queensland Australia
| |
Collapse
|
28
|
Cao C, Song S, Wu S, Ai C, Liu H, Lu J, Wen C. Characterization and comparison of acidic polysaccharide populations in Atrina pectinata individuals. J Carbohydr Chem 2018. [DOI: 10.1080/07328303.2018.1438454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Chunyang Cao
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- National Engineering Research Center of Seafood, Dalian, P. R. China
| | - Shuang Song
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- National Engineering Research Center of Seafood, Dalian, P. R. China
- National and Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian, P. R. China
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, U.S.A
| | - Sufeng Wu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Chunqing Ai
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- National Engineering Research Center of Seafood, Dalian, P. R. China
- National and Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian, P. R. China
| | - Haiman Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- National Engineering Research Center of Seafood, Dalian, P. R. China
| | - Jiaojiao Lu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- National Engineering Research Center of Seafood, Dalian, P. R. China
| | - Chengrong Wen
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- National Engineering Research Center of Seafood, Dalian, P. R. China
- National and Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian, P. R. China
| |
Collapse
|
29
|
Focal adhesion signaling affects regeneration by human nucleus pulposus cells in collagen- but not carbohydrate-based hydrogels. Acta Biomater 2018; 66:238-247. [PMID: 29174589 DOI: 10.1016/j.actbio.2017.11.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/26/2017] [Accepted: 11/17/2017] [Indexed: 01/07/2023]
Abstract
Hydrogel-based 3D cell cultures are an emerging strategy for the regeneration of cartilage. In an attempt to regenerate dysfunctional intervertebral discs, nucleus pulposus (NP) cells can be cultured in hydrogels of various kinds and physical properties. Stiffness sensing through focal adhesions is believed to direct chondrogenesis, but the mechanisms by which this works are largely unknown. In this study we compared focal adhesion formation and glycosaminoglycan (GAG) deposition by NP cells in a range of hydrogels. Using a focal adhesion kinase (FAK) inhibitor, we demonstrated that focal adhesion signaling is involved in the response of NP cells in hydrogels that contain integrin binding sites (i.e. methacrylated gelatin (gelMA) and type II collagen), but not in hydrogels deplete from integrin binding sites such as alginate and agarose, or CD44-binding hydrogels based on hyaluronic acid. As a result of FAK inhibition we observedenhanced proteoglycan production in gelMA, but decreased production in type II collagen hydrogels, which could be explained by alteration in cell fate as supported by the increase in the adipogenic marker peroxisome proliferator-activated receptor gamma (PPARy). Furthermore, GAG deposition was inversely proportional to polymer concentration in integrin-binding gelMA, while no direct relationship was found for the non-integrin binding gels alginate and agarose. This corroborates our finding that focal adhesion formation plays an important role in NP cell response to its surrounding matrix. STATEMENT OF SIGNIFICANCE Biomaterials are increasingly being investigated for regenerative medicine applications, including regeneration of the nucleus pulposus. Cells interact with their environment and are influenced by extracellular matrix or polymer properties. Insight in these interactions can improve regeneration and helps to understand degeneration processes. The role of focal adhesion formation in the regenerative response of nucleus pulposus cells is largely unknown. Therefore, the relation between materials, stiffness and focal adhesion formation is studied here.
Collapse
|
30
|
Moulisová V, Poveda-Reyes S, Sanmartín-Masiá E, Quintanilla-Sierra L, Salmerón-Sánchez M, Gallego Ferrer G. Hybrid Protein-Glycosaminoglycan Hydrogels Promote Chondrogenic Stem Cell Differentiation. ACS OMEGA 2017; 2:7609-7620. [PMID: 29214232 PMCID: PMC5709783 DOI: 10.1021/acsomega.7b01303] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/13/2017] [Indexed: 05/14/2023]
Abstract
Gelatin-hyaluronic acid (Gel-HA) hybrid hydrogels have been proposed as matrices for tissue engineering because of their ability to mimic the architecture of the extracellular matrix. Our aim was to explore whether tyramine conjugates of Gel and HA, producing injectable hydrogels, are able to induce a particular phenotype of encapsulated human mesenchymal stem cells without the need for growth factors. While pure Gel allowed good cell adhesion without remarkable differentiation and pure HA triggered chondrogenic differentiation without cell spreading, the hybrids, especially those rich in HA, promoted chondrogenic differentiation as well as cell proliferation and adhesion. Secretion of chondrogenic markers such as aggrecan, SOX-9, collagen type II, and glycosaminoglycans was observed, whereas osteogenic, myogenic, and adipogenic markers (RUNX2, sarcomeric myosin, and lipoproteinlipase, respectively) were not present after 2 weeks in the growth medium. The most promising matrix for chondrogenesis seems to be a mixture containing 70% HA and 30% Gel as it is the material with the best mechanical properties from all compositions tested here, and at the same time, it provides an environment suitable for balanced cell adhesion and chondrogenic differentiation. Thus, it represents a system that has a high potential to be used as the injectable material for cartilage regeneration therapies.
Collapse
Affiliation(s)
- Vladimíra Moulisová
- Division
of Biomedical Engineering, School of Engineering, University of Glasgow, Rankine Bld, Oakfield Avenue G12 8LT, Glasgow, U.K.
| | - Sara Poveda-Reyes
- Centre
for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Camino de Vera s/n. 46022 Valencia, Spain
| | - Esther Sanmartín-Masiá
- Centre
for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Camino de Vera s/n. 46022 Valencia, Spain
| | - Luis Quintanilla-Sierra
- BIOFORGE
Group, Centro de Investigación Científica y Desarrollo
Tecnológico, Universidad de Valladolid, Campus Miguel Delibes 47011 Valladolid, Spain
- Biomedical
Research Networking Center in Bioengineering, Biomaterials and Nanomedicine
(CIBER-BBN), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, pabellón
11, planta 0, 28029 Madrid, Spain
| | - Manuel Salmerón-Sánchez
- Division
of Biomedical Engineering, School of Engineering, University of Glasgow, Rankine Bld, Oakfield Avenue G12 8LT, Glasgow, U.K.
| | - Gloria Gallego Ferrer
- Centre
for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Camino de Vera s/n. 46022 Valencia, Spain
- Biomedical
Research Networking Center in Bioengineering, Biomaterials and Nanomedicine
(CIBER-BBN), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, pabellón
11, planta 0, 28029 Madrid, Spain
| |
Collapse
|
31
|
Sakai S, Ohi H, Hotta T, Kamei H, Taya M. Differentiation potential of human adipose stem cells bioprinted with hyaluronic acid/gelatin-based bioink through microextrusion and visible light-initiated crosslinking. Biopolymers 2017; 109. [PMID: 29139103 DOI: 10.1002/bip.23080] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 10/20/2017] [Indexed: 12/20/2022]
Abstract
Bioprinting has a great potential to fabricate three-dimensional (3D) functional tissues and organs. In particular, the technique enables fabrication of 3D constructs containing stem cells while maintaining cell proliferation and differentiation abilities, which is believed to be promising in the fields of tissue engineering and regenerative medicine. We aimed to demonstrate the utility of the bioprinting technique to create hydrogel constructs consisting of hyaluronic acid (HA) and gelatin derivatives through irradiation by visible light to fabricate 3D constructs containing human adipose stem cells (hADSCs). The hydrogel was obtained from a solution of HA and gelatin derivatives possessing phenolic hydroxyl moieties in the presence of ruthenium(II) tris-bipyridyl dication and sodium ammonium persulfate. hADSCs enclosed in the bioprinted hydrogel construct elongated and proliferated in the hydrogel. In addition, their differentiation potential was confirmed by examining the expression of pluripotency marker genes and cell surface marker proteins, and differentiation to adipocytes in adipogenic differentiation medium. Our results demonstrate the great potential of the bioprinting method and the resultant hADSC-laden HA/gelatin constructs for applications in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Shinji Sakai
- Department of Materials Science and Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Hiromi Ohi
- Department of Materials Science and Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Tomoki Hotta
- Department of Materials Science and Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Hidenori Kamei
- Department of Materials Science and Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Masahito Taya
- Department of Materials Science and Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| |
Collapse
|
32
|
Mora-Boza A, Puertas-Bartolomé M, Vázquez-Lasa B, San Román J, Pérez-Caballer A, Olmeda-Lozano M. Contribution of bioactive hyaluronic acid and gelatin to regenerative medicine. Methodologies of gels preparation and advanced applications. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.07.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
33
|
Aurich M, Hofmann GO, Rolauffs B. Tissue engineering-relevant characteristics of ex vivo and monolayer-expanded chondrocytes from the notch versus trochlea of human knee joints. INTERNATIONAL ORTHOPAEDICS 2017; 41:2327-2335. [PMID: 28828504 DOI: 10.1007/s00264-017-3615-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 08/09/2017] [Indexed: 11/29/2022]
Abstract
PURPOSE The aim was to analyse the biological characteristics of chondrocytes from the two biopsy sites notch vs. trochlea of human knee joints. The question was whether tissue engineering-relevant characteristics such as viability and mRNA expression profile would be comparable ex vivo and after monolayer expansion, as these are parts of routine autologous chondrocyte implantation (ACI). METHODS Biopsies from the intercondylar notch and the lateral aspect of the trochlea from 20 patients with ICRS grades 3 and 4 cartilage defects were harvested during arthroscopy. Collagen types 1, 2, and 10 mRNA were quantified by polymerase chain reaction. RESULTS Compared with notch chondrocytes, ex vivo trochlea chondrocytes had comparable cell numbers, vitality and aggrecan, collagen types 1, -2 and -10 mRNA expression. After monolayer expansion both notch and trochlea chondrocyte characteristics were comparably altered, regardless of their biopsy origin, and no significant differences in viability and mRNA expression were noted. CONCLUSIONS Collectively, these findings suggest that tissue engineering-relevant characteristics of notch and trochlea chondrocytes are comparable ex vivo and after monolayer expansion. Thus, trochlea chondrocytes promise clinical potential and chondrocytes for ACI could potentially be generated from both notch and trochlea biopsy sites.
Collapse
Affiliation(s)
- Matthias Aurich
- Center of Orthopaedic and Trauma Surgery, Klinikum Ingolstadt, Krumenauerstr. 25, 85049, Ingolstadt, Germany. .,Department of Trauma, Hand and Reconstructive Surgery, University Hospital Jena, Erlanger Allee 101, 07747, Jena, Germany. .,Department of Biochemistry, Rush Medical College, 1735 W. Harrison St., Chicago, IL, 60612, USA.
| | - Gunther Olaf Hofmann
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Jena, Erlanger Allee 101, 07747, Jena, Germany
| | - Bernd Rolauffs
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center - Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany.,Massachusetts Institute of Technology, Center for Biomedical Engineering, 500 Technology Sq, Cambridge, MA, 02139, USA
| |
Collapse
|
34
|
Aurich M, Hofmann GO, Best N, Rolauffs B. Induced Redifferentiation of Human Chondrocytes from Articular Cartilage Lesion in Alginate Bead Culture After Monolayer Dedifferentiation: An Alternative Cell Source for Cell-Based Therapies? Tissue Eng Part A 2017; 24:275-286. [PMID: 28610480 DOI: 10.1089/ten.tea.2016.0505] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Human chondrocytes isolated from articular cartilage (AC) lesions as an alternative cell source to the standard nonweight-bearing notch biopsy site may hold clinical potential for cell-based therapies. The aim was to characterize human AC lesion site chondrocytes, compare them to notch chondrocytes, and evaluate their redifferentiation potential after monolayer expansion and subsequent three-dimensional (3D) alginate bead culture. Lesion chondrocytes from knee joints of 20 patients with International Cartilage Repair Society (ICRS) grade 3 and 4 cartilage defects were analyzed ex vivo or cultured in primary alginate bead culture, monolayer expansion, or redifferentiated in alginate culture following monolayer expansion. The mRNA expression of the types I, II, and X collagen, and the proteoglycan aggrecan was compared between the four groups. In addition, notch chondrocytes of nine patients were compared to lesion chondrocytes ex vivo. AC lesion chondrocytes displayed ex vivo a nondegenerative phenotype, characterized by a relatively high mRNA expression of aggrecan and type II and X collagen, but a low type I collagen expression and a low ratio of type I to II collagen mRNA expression. Compared to notch chondrocytes, the mRNA expression of aggrecan and type II collagen was comparable and the ratio of type I to II collagen mRNA expression was below 1 in both groups, indicating a functional chondrocyte phenotype. Dedifferentiation led to a significantly altered degenerative mRNA expression profile. Induced redifferentiation in alginate beads after monolayer expansion significantly improved the mRNA expression of aggrecan, the type I and II collagen, and the type I to II collagen ratio, compared to monolayer expansion only. These data suggested that redifferentiating lesion chondrocytes after monolayer expansion in alginate beads resulted in a pool of cells with greater chondrogenic potential, compared to expanded dedifferentiated chondrocytes. Collectively, these data suggest that ex vivo and redifferentiated lesion chondrocytes may hold nonutilized clinical potential for the tissue engineering of AC.
Collapse
Affiliation(s)
- Matthias Aurich
- 1 Center for Orthopaedic and Trauma Surgery, Ingolstadt Hospital , Ingolstadt, Germany .,2 Department of Trauma, Hand and Reconstructive Surgery, Universitätsklinikum Jena , Jena, Germany .,3 Department of Biochemistry, Rush Medical College , Chicago, Illinois
| | - Gunther O Hofmann
- 2 Department of Trauma, Hand and Reconstructive Surgery, Universitätsklinikum Jena , Jena, Germany
| | - Norman Best
- 4 Institute of Physiotherapy, Universitätsklinikum Jena , Jena, Germany
| | - Bernd Rolauffs
- 5 G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center, Albert-Ludwigs-University of Freiburg , Freiburg, Germany .,6 Faculty of Medicine, Albert-Ludwigs-University of Freiburg , Freiburg, Germany .,7 Massachusetts Institute of Technology , Center for Biomedical Engineering, Cambridge, Massachusetts
| |
Collapse
|
35
|
Li X, Chen Y, Kawazoe N, Chen G. Influence of microporous gelatin hydrogels on chondrocyte functions. J Mater Chem B 2017; 5:5753-5762. [PMID: 32264209 DOI: 10.1039/c7tb01350g] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hydrogels can provide biomimetic three-dimensional microenvironments for transplanted cells and are attractive scaffolds for cartilage tissue engineering. In this study, gelatin hydrogels with microporous structures were prepared and their effects on chondrocyte functions were compared with gelatin hydrogels without microporous structures. Gelatin bulk hydrogels were prepared by photo-initiated crosslinking of gelatin methacrylate macromers. Micropores were formed in the bulk hydrogels by dissolution of gelatin microgels prepared by a cutting method. Chondrocytes cultured in gelatin hydrogels without microporous structures showed high expression and production of cartilaginous matrices and low cell proliferation. Chondrocytes cultured in gelatin hydrogels with microporous structures tended to migrate from bulk hydrogel matrices to the micropores. Chondrocytes in the microporous hydrogels showed higher proliferation and lower expression and production of cartilaginous matrices than did the chondrocytes cultured in hydrogels without microporous structures. Gelatin hydrogels without microporous structures facilitated maintenance of the cartilaginous phenotype of the chondrocytes while microporous gelatin hydrogels were beneficial for cell proliferation.
Collapse
Affiliation(s)
- Xiaomeng Li
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | | | | | | |
Collapse
|
36
|
Meinert C, Schrobback K, Levett PA, Lutton C, Sah RL, Klein TJ. Tailoring hydrogel surface properties to modulate cellular response to shear loading. Acta Biomater 2017; 52:105-117. [PMID: 27729233 PMCID: PMC5385162 DOI: 10.1016/j.actbio.2016.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/20/2016] [Accepted: 10/07/2016] [Indexed: 12/17/2022]
Abstract
Biological tissues at articulating surfaces, such as articular cartilage, typically have remarkable low-friction properties that limit tissue shear during movement. However, these frictional properties change with trauma, aging, and disease, resulting in an altered mechanical state within the tissues. Yet, it remains unclear how these surface changes affect the behaviour of embedded cells when the tissue is mechanically loaded. Here, we developed a cytocompatible, bilayered hydrogel system that permits control of surface frictional properties without affecting other bulk physicochemical characteristics such as compressive modulus, mass swelling ratio, and water content. This hydrogel system was applied to investigate the effect of variations in surface friction on the biological response of human articular chondrocytes to shear loading. Shear strain in these hydrogels during dynamic shear loading was significantly higher in high-friction hydrogels than in low-friction hydrogels. Chondrogenesis was promoted following dynamic shear stimulation in chondrocyte-encapsulated low-friction hydrogel constructs, whereas matrix synthesis was impaired in high-friction constructs, which instead exhibited increased catabolism. Our findings demonstrate that the surface friction of tissue-engineered cartilage may act as a potent regulator of cellular homeostasis by governing the magnitude of shear deformation during mechanical loading, suggesting a similar relationship may also exist for native articular cartilage. STATEMENT OF SIGNIFICANCE Excessive mechanical loading is believed to be a major risk factor inducing pathogenesis of articular cartilage and other load-bearing tissues. Yet, the mechanisms leading to increased transmission of mechanical stimuli to cells embedded in the tissue remain largely unexplored. Here, we demonstrate that the tribological properties of loadbearing tissues regulate cellular behaviour by governing the magnitude of mechanical deformation arising from physiological tissue function. Based on these findings, we propose that changes to articular surface friction as they occur with trauma, aging, or disease, may initiate tissue pathology by increasing the magnitude of mechanical stress on embedded cells beyond a physiological level.
Collapse
Affiliation(s)
- Christoph Meinert
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland 4059, Australia.
| | - Karsten Schrobback
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland 4059, Australia.
| | - Peter A Levett
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland 4059, Australia.
| | - Cameron Lutton
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland 4059, Australia.
| | - Robert L Sah
- Department of Bioengineering, University of California-San Diego, La Jolla, CA 92093, United States.
| | - Travis J Klein
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland 4059, Australia.
| |
Collapse
|
37
|
Daly AC, Critchley SE, Rencsok EM, Kelly DJ. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage. Biofabrication 2016; 8:045002. [DOI: 10.1088/1758-5090/8/4/045002] [Citation(s) in RCA: 247] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
38
|
Sanmartín-Masiá E, Poveda-Reyes S, Gallego Ferrer G. Extracellular matrix–inspired gelatin/hyaluronic acid injectable hydrogels. INT J POLYM MATER PO 2016. [DOI: 10.1080/00914037.2016.1201828] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Esther Sanmartín-Masiá
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia, Spain
| | - Sara Poveda-Reyes
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia, Spain
| | - Gloria Gallego Ferrer
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
39
|
Hoch E, Tovar GEM, Borchers K. Biopolymer-based hydrogels for cartilage tissue engineering. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2016. [DOI: 10.1680/jbibn.15.00017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
40
|
Klotz BJ, Gawlitta D, Rosenberg AJWP, Malda J, Melchels FPW. Gelatin-Methacryloyl Hydrogels: Towards Biofabrication-Based Tissue Repair. Trends Biotechnol 2016; 34:394-407. [PMID: 26867787 PMCID: PMC5937681 DOI: 10.1016/j.tibtech.2016.01.002] [Citation(s) in RCA: 539] [Impact Index Per Article: 59.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/22/2015] [Accepted: 01/08/2016] [Indexed: 02/03/2023]
Abstract
Research over the past decade on the cell-biomaterial interface has shifted to the third dimension. Besides mimicking the native extracellular environment by 3D cell culture, hydrogels offer the possibility to generate well-defined 3D biofabricated tissue analogs. In this context, gelatin-methacryloyl (gelMA) hydrogels have recently gained increased attention. This interest is sparked by the combination of the inherent bioactivity of gelatin and the physicochemical tailorability of photo-crosslinkable hydrogels. GelMA is a versatile matrix that can be used to engineer tissue analogs ranging from vasculature to cartilage and bone. Convergence of biological and biofabrication approaches is necessary to progress from merely proving cell functionality or construct shape fidelity towards regenerating tissues. GelMA has a critical pioneering role in this process and could be used to accelerate the development of clinically relevant applications.
Collapse
Affiliation(s)
- Barbara J Klotz
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, PO 85500, Utrecht, GA, 3508, The Netherlands
| | - Debby Gawlitta
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, PO 85500, Utrecht, GA, 3508, The Netherlands
| | - Antoine J W P Rosenberg
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, PO 85500, Utrecht, GA, 3508, The Netherlands
| | - Jos Malda
- Department of Orthopaedics, University Medical Center Utrecht, PO Box 85500, Utrecht, GA, 3508, The Netherlands; Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, Utrecht, CM, 3584, The Netherlands.
| | - Ferry P W Melchels
- Department of Orthopaedics, University Medical Center Utrecht, PO Box 85500, Utrecht, GA, 3508, The Netherlands; Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| |
Collapse
|
41
|
Bartnikowski M, Akkineni AR, Gelinsky M, Woodruff MA, Klein TJ. A Hydrogel Model Incorporating 3D-Plotted Hydroxyapatite for Osteochondral Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2016; 9:E285. [PMID: 28773410 PMCID: PMC5502978 DOI: 10.3390/ma9040285] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/24/2016] [Accepted: 04/06/2016] [Indexed: 12/15/2022]
Abstract
The concept of biphasic or multi-layered compound scaffolds has been explored within numerous studies in the context of cartilage and osteochondral regeneration. To date, no system has been identified that stands out in terms of superior chondrogenesis, osteogenesis or the formation of a zone of calcified cartilage (ZCC). Herein we present a 3D plotted scaffold, comprising an alginate and hydroxyapatite paste, cast within a photocrosslinkable hydrogel made of gelatin methacrylamide (GelMA), or GelMA with hyaluronic acid methacrylate (HAMA). We hypothesized that this combination of 3D plotting and hydrogel crosslinking would form a high fidelity, cell supporting structure that would allow localization of hydroxyapatite to the deepest regions of the structure whilst taking advantage of hydrogel photocrosslinking. We assessed this preliminary design in terms of chondrogenesis in culture with human articular chondrocytes, and verified whether the inclusion of hydroxyapatite in the form presented had any influence on the formation of the ZCC. Whilst the inclusion of HAMA resulted in a better chondrogenic outcome, the effect of HAP was limited. We overall demonstrated that formation of such compound structures is possible, providing a foundation for future work. The development of cohesive biphasic systems is highly relevant for current and future cartilage tissue engineering.
Collapse
Affiliation(s)
- Michal Bartnikowski
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Queensland 4059, Australia.
| | - Ashwini Rahul Akkineni
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, Dresden D-01307, Germany.
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, Dresden D-01307, Germany.
| | - Maria A Woodruff
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Queensland 4059, Australia.
| | - Travis J Klein
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Queensland 4059, Australia.
| |
Collapse
|
42
|
Hayami JWS, Waldman SD, Amsden BG. Chondrocyte Generation of Cartilage-Like Tissue Following Photoencapsulation in Methacrylated Polysaccharide Solution Blends. Macromol Biosci 2016; 16:1083-95. [PMID: 27061241 DOI: 10.1002/mabi.201500465] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/21/2016] [Indexed: 12/20/2022]
Abstract
Chondrocyte-seeded, photo-cross-linked hydrogels prepared from solutions containing 50% mass fractions of methacrylated glycol chitosan or methacrylated hyaluronic acid (MHA) with methacrylated chondroitin sulfate (MCS) are cultured in vitro under static conditions over 35 d to assess their suitability for load-bearing soft tissue repair. The photo-cross-linked hydrogels have initial equilibrium moduli between 100 and 300 kPa, but only the MHAMCS hydrogels retain an approximately constant modulus (264 ± 5 kPa) throughout the culture period. Visually, the seeded chondrocytes in the MHAMCS hydrogels are well distributed with an apparent constant viability in culture. Multicellular aggregates are surrounded by cartilaginous matrix, which contain aggrecan and collagen II. Thus, co-cross-linked MCS and MHA hydrogels may be suited for use in an articular cartilage or nucleus pulposus repair applications.
Collapse
Affiliation(s)
- James W S Hayami
- Department of Chemical Engineering, Queen's University, Kingston, K7L 3N6, Canada
| | - Stephen D Waldman
- Department of Chemical Engineering, Ryerson University, Toronto, M5B 2K3, Canada
| | - Brian G Amsden
- Department of Chemical Engineering, Queen's University, Kingston, K7L 3N6, Canada
| |
Collapse
|
43
|
Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A, Annabi N, Khademhosseini A. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 2015; 73:254-71. [PMID: 26414409 PMCID: PMC4610009 DOI: 10.1016/j.biomaterials.2015.08.045] [Citation(s) in RCA: 1774] [Impact Index Per Article: 177.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/19/2015] [Accepted: 08/25/2015] [Indexed: 12/16/2022]
Abstract
Gelatin methacryloyl (GelMA) hydrogels have been widely used for various biomedical applications due to their suitable biological properties and tunable physical characteristics. GelMA hydrogels closely resemble some essential properties of native extracellular matrix (ECM) due to the presence of cell-attaching and matrix metalloproteinase responsive peptide motifs, which allow cells to proliferate and spread in GelMA-based scaffolds. GelMA is also versatile from a processing perspective. It crosslinks when exposed to light irradiation to form hydrogels with tunable mechanical properties. It can also be microfabricated using different methodologies including micromolding, photomasking, bioprinting, self-assembly, and microfluidic techniques to generate constructs with controlled architectures. Hybrid hydrogel systems can also be formed by mixing GelMA with nanoparticles such as carbon nanotubes and graphene oxide, and other polymers to form networks with desired combined properties and characteristics for specific biological applications. Recent research has demonstrated the proficiency of GelMA-based hydrogels in a wide range of tissue engineering applications including engineering of bone, cartilage, cardiac, and vascular tissues, among others. Other applications of GelMA hydrogels, besides tissue engineering, include fundamental cell research, cell signaling, drug and gene delivery, and bio-sensing.
Collapse
Affiliation(s)
- Kan Yue
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02139, MA, USA; Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA
| | - Grissel Trujillo-de Santiago
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02139, MA, USA; Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA; Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, Ave. Eugenio Garza Sada 2501 Sur Col. Tecnológico, CP 64849 Monterrey, Nuevo León, Mexico
| | - Mario Moisés Alvarez
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02139, MA, USA; Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA; Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, Ave. Eugenio Garza Sada 2501 Sur Col. Tecnológico, CP 64849 Monterrey, Nuevo León, Mexico
| | - Ali Tamayol
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02139, MA, USA; Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA
| | - Nasim Annabi
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02139, MA, USA; Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston 02115, MA, USA; Department of Chemical Engineering, Northeastern University, Boston, MA 02115-5000, USA.
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02139, MA, USA; Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston 02115, MA, USA; Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia.
| |
Collapse
|
44
|
Protective effects of reactive functional groups on chondrocytes in photocrosslinkable hydrogel systems. Acta Biomater 2015; 27:66-76. [PMID: 26318806 DOI: 10.1016/j.actbio.2015.08.038] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 08/04/2015] [Accepted: 08/25/2015] [Indexed: 01/08/2023]
Abstract
Photocrosslinkable hydrogels are frequently used in cartilage tissue engineering, with crosslinking systems relying on cytotoxic photoinitiators and ultraviolet (UV) light to form permanent hydrogels. These systems are rarely assessed in terms of optimization of photoinitiator or UV dosage, with non-cytotoxic concentrations from literature deemed sufficient. We hypothesized that the number of reactive functional groups present within a hydrogel polymer is highly relevant when crosslinking, affording cytoprotection to chondrocytes by preferentially interacting with the highly reactive radicals that are formed during UV-mediated activation of a photoinitiator. This was tested using two photocrosslinkable hydrogel systems: gelatin methacrylamide (GelMA) and gellan gum methacrylate (GGMA). We further assessed the effects of two different UV dosages on chondrocyte differentiation while subject to a single photoinitiator dosage in the GGMA system. Most notably, we found that a higher ratio of reactive groups to photoinitiator molecules offers cytoprotective effects, and future developments in photocrosslinkable hydrogel technology may involve assessment of such ratios. In contrast, we found there to be no effect of UV on chondrocyte differentiation at the two chosen dosages. Overall the optimization of photocrosslinkable systems is of great value in cartilage tissue engineering and these data provide a groundwork for such concepts to be developed further. STATEMENT OF SIGNIFICANCE Photocrosslinkable hydrogels, which use photoinitiators and predominantly ultraviolet light to form stable matrices for cell encapsulation and tissue development, are promising for cartilage tissue engineering. While both photoinitiators and ultraviolet light can damage cells, these systems have generally not been optimized. We propose that the ratio of reactive functional groups within a polymer to photoinitiator molecules is a critical parameter for optimization of photocrosslinkable hydrogels. Using photocrosslinkable gelatin and gellan gum, we found that a higher ratio of reactive groups to photoinitiator molecules protected chondrocytes, but did not affect chondrocyte differentiation. The principle of cytoprotection by functional groups developed in this work will be of great value in optimizing photocrosslinkable hydrogel systems for cartilage and other tissue engineering applications.
Collapse
|
45
|
Fenn SL, Oldinski RA. Visible light crosslinking of methacrylated hyaluronan hydrogels for injectable tissue repair. J Biomed Mater Res B Appl Biomater 2015; 104:1229-36. [PMID: 26097172 DOI: 10.1002/jbm.b.33476] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 05/22/2015] [Accepted: 06/05/2015] [Indexed: 12/26/2022]
Abstract
Tissue engineering hydrogels are primarily cured in situ using ultraviolet (UV) radiation which limits the use of hydrogels as drug or cell carriers. Visible green light activated crosslinking systems are presented as a safe alternative to UV photocrosslinked hydrogels, without compromising material properties such as viscosity and stiffness. The objective of this study was to fabricate and characterize photocrosslinked hydrogels with well-regulated gelation kinetics and mechanical properties for the repair or replacement of soft tissue. An anhydrous methacrylation of hyaluronan (HA) was performed to control the degree of modification (DOM) of HA, verified by (1) H-NMR spectroscopy. UV-activated crosslinking was compared to visible green light activated crosslinking. While the different photocrosslinking techniques resulted in varied crosslinking times, comparable mechanical properties of UV and green light activated crosslinked hydrogels were achieved using each photocrosslinking method by adjusting time of light exposure. Methacrylated HA (HA-MA) hydrogels of varying molecular weight, DOM, and concentration exhibited compressive moduli ranging from 1 kPa to 116 kPa, for UV crosslinking, and 3 kPa to 146 kPa, for green light crosslinking. HA-MA molecular weight and concentration were found to significantly influence moduli values. HA-MA hydrogels did not exhibit any significant cytotoxic effects toward human mesenchymal stem cells. Green light activated crosslinking systems are presented as a viable method to form natural-based hydrogels in situ. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1229-1236, 2016.
Collapse
Affiliation(s)
- Spencer L Fenn
- Bioengineering Program, School of Engineering and College of Medicine, University of Vermont, Burlington, Vermont
| | - Rachael A Oldinski
- Bioengineering Program, School of Engineering and College of Medicine, University of Vermont, Burlington, Vermont.,Mechanical Engineering Program, School of Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, Vermont
| |
Collapse
|
46
|
Saraiva SM, Miguel SP, Ribeiro MP, Coutinho P, Correia IJ. Synthesis and characterization of a photocrosslinkable chitosan–gelatin hydrogel aimed for tissue regeneration. RSC Adv 2015. [DOI: 10.1039/c5ra10638a] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the area of regenerative medicine different approaches have been studied to restore the native structure of damaged tissues. Herein, the suitability of a photocrosslinkable hydrogel for tissue engineering applications was studied.
Collapse
Affiliation(s)
- Sofia M. Saraiva
- CICS-UBI – Health Sciences Research Centre
- University of Beira Interior
- 6200-506 Covilhã
- Portugal
| | - Sónia P. Miguel
- CICS-UBI – Health Sciences Research Centre
- University of Beira Interior
- 6200-506 Covilhã
- Portugal
| | - Maximiano P. Ribeiro
- CICS-UBI – Health Sciences Research Centre
- University of Beira Interior
- 6200-506 Covilhã
- Portugal
- UDI-IPG
| | - Paula Coutinho
- CICS-UBI – Health Sciences Research Centre
- University of Beira Interior
- 6200-506 Covilhã
- Portugal
- UDI-IPG
| | - Ilídio J. Correia
- CICS-UBI – Health Sciences Research Centre
- University of Beira Interior
- 6200-506 Covilhã
- Portugal
| |
Collapse
|
47
|
Hyaluronic acid enhances the mechanical properties of tissue-engineered cartilage constructs. PLoS One 2014; 9:e113216. [PMID: 25438040 PMCID: PMC4249877 DOI: 10.1371/journal.pone.0113216] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 10/20/2014] [Indexed: 11/26/2022] Open
Abstract
There is a need for materials that are well suited for cartilage tissue engineering. Hydrogels have emerged as promising biomaterials for cartilage repair, since, like cartilage, they have high water content, and they allow cells to be encapsulated within the material in a genuinely three-dimensional microenvironment. In this study, we investigated the mechanical properties of tissue-engineered cartilage constructs using in vitro culture models incorporating human chondrocytes from osteoarthritis patients. We evaluated hydrogels formed from mixtures of photocrosslinkable gelatin-methacrylamide (Gel-MA) and varying concentrations (0–2%) of hyaluronic acid methacrylate (HA-MA). Initially, only small differences in the stiffness of each hydrogel existed. After 4 weeks of culture, and to a greater extent 8 weeks of culture, HA-MA had striking and concentration dependent impact on the changes in mechanical properties. For example, the initial compressive moduli of cell-laden constructs with 0 and 1% HA-MA were 29 and 41 kPa, respectively. After 8 weeks of culture, the moduli of these constructs had increased to 66 and 147 kPa respectively, representing a net improvement of 69 kPa for gels with 1% HA-MA. Similarly the equilibrium modulus, dynamic modulus, failure strength and failure strain were all improved in constructs containing HA-MA. Differences in mechanical properties did not correlate with glycosaminoglycan content, which did not vary greatly between groups, yet there were clear differences in aggrecan intensity and distribution as assessed using immunostaining. Based on the functional development with time in culture using human chondrocytes, mixtures of Gel-MA and HA-MA are promising candidates for cartilage tissue-engineering applications.
Collapse
|
48
|
Hubka KM, Dahlin RL, Meretoja VV, Kasper FK, Mikos AG. Enhancing chondrogenic phenotype for cartilage tissue engineering: monoculture and coculture of articular chondrocytes and mesenchymal stem cells. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:641-54. [PMID: 24834484 DOI: 10.1089/ten.teb.2014.0034] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Articular cartilage exhibits an inherently low rate of regeneration. Consequently, damage to articular cartilage often requires surgical intervention. However, existing treatments generally result in the formation of fibrocartilage tissue, which is inferior to native articular cartilage. As a result, cartilage engineering strategies seek to repair or replace damaged cartilage with an engineered tissue that restores full functionality to the impaired joint. These strategies often involve the use of chondrocytes, yet in vitro expansion and culture can lead to undesirable changes in chondrocyte phenotype. This review focuses on the use of articular chondrocytes and mesenchymal stem cells (MSCs) in either monoculture or coculture for the enhancement of chondrogenesis. Coculture strategies increasingly outperform their monoculture counterparts with regard to chondrogenesis and present unique opportunities to attain chondrocyte phenotype stability in vitro. Methods to prevent chondrocyte dedifferentiation and promote chondrocyte redifferentiation as well as to promote the chondrogenic differentiation of MSCs while preventing MSC hypertrophy are discussed.
Collapse
Affiliation(s)
- Kelsea M Hubka
- Department of Bioengineering, Rice University , Houston, Texas
| | | | | | | | | |
Collapse
|
49
|
Shimomura K, Moriguchi Y, Murawski CD, Yoshikawa H, Nakamura N. Osteochondral tissue engineering with biphasic scaffold: current strategies and techniques. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:468-76. [PMID: 24417741 DOI: 10.1089/ten.teb.2013.0543] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The management of osteoarthritis (OA) remains challenging and controversial. Although several clinical options exist for the treatment of OA, regeneration of the damaged articular cartilage has proved difficult due to the limited healing capacity. With the advancements in tissue engineering and cell-based technologies over the past decade, new therapeutic options for patients with osteochondral lesions potentially exist. This review will focus on the feasibility of tissue-engineered biphasic scaffolds, which can mimic the native osteochondral complex, for osteochondral repair and highlight the recent development of these techniques toward tissue regeneration. Moreover, basic anatomy, strategy for osteochondral repair, the design and fabrication methods of scaffolds, as well as the choice of cells, growth factor, and materials will be discussed. Specifically, we focus on the latest preclinical animal studies using large animals and clinical trials with high clinical relevance. In turn, this will facilitate an understanding of the latest trends in osteochondral repair and contribute to the future application of such clinical therapies in patients with OA.
Collapse
Affiliation(s)
- Kazunori Shimomura
- 1 Department of Orthopaedics, Osaka University Graduate School of Medicine , Osaka, Japan
| | | | | | | | | |
Collapse
|
50
|
Additive manufacturing of photosensitive hydrogels for tissue engineering applications. ACTA ACUST UNITED AC 2014. [DOI: 10.1515/bnm-2014-0008] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AbstractHydrogels are extensively explored as scaffolding materials for 2D/3D cell culture and tissue engineering. Owing to the substantial complexity of tissues, it is increasingly important to develop 3D biomimetic hydrogels with user-defined architectures and controllable biological functions. To this end, one promising approach is to utilize photolithography-based additive manufacturing technologies (AMTs) in combination with photosensitive hydrogels. We here review recent advances in photolithography-based additive manufacturing of 3D hydrogels for tissue engineering applications. Given the importance of materials selection, we firstly give an overview of water-soluble photoinitiators for single- and two-photon polymerization, photopolymerizable hydrogel precursors and light-triggered chemistries for hydrogel formation. Through the text we discuss the design considerations of hydrogel precursors and synthetic approaches to polymerizable hydrogel precursors of synthetic and natural origins. Next, we shift to how photopolymerizable hydrogels could integrate with photolithography-based AMTs for creating well-defined hydrogel structures. We illustrate the working-principles of both single- and two-photon lithography and case studies of their applications in tissue engineering. In particular, two-photon lithography is highlighted as a powerful tool for 3D functionalization/construction of hydrogel constructs with μm-scale resolution. Within the text we also explain the chemical reactions involved in two-photon-induced biofunctionalization and polymerization. In the end, we summarize the limitations of available hydrogel systems and photolithography-based AMTs as well as a future outlook on potential optimizations.
Collapse
|