1
|
Yang X, Duan X, Zhu L, Zhao X, Zhang S, Ni S, Wu S, Han Z, Deng W, Sun D, Chen Q, Wu W. Carbon-Dot-Zn 2+ Assembly Hybrid Multifunctional Hydrogels for Synergistically Monitoring Local Glucose and Repairing Diabetic Wound. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40561366 DOI: 10.1021/acsami.5c06293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2025]
Abstract
The prolonged healing period and increased rates of amputation and mortality are significant challenges for diabetic patients' wound care in clinical practice. Therefore, there is an urgent need to develop timely and efficient wound management strategies to monitor the local glucose while promoting rapid wound healing. In this study, a multifunctional hydrogel (PF127@Zn/C-G) was constructed by coloading the monitoring and therapeutic carbon dot (CD)-based agents (Zn/C) and glucose oxidase (GOx). For applications, the ″off-on″ characteristic in fluorescence (FL) signal of the Zn/C assemblies enabled the real-time monitoring of the local glucose levels in diabetic wounds. Moreover, the synergistic effect of Zn2+ and CDs was developed to promote wound healing. In vitro and in vivo results showed that the PF127@Zn/C-G hydrogel exhibited a good linear relationship between FL intensity and glucose concentration, and the FL signal intensity in the wound environment in vivo correlated well with the blood glucose, suggesting its function for timely reflection of the blood glucose content. In addition, the PF127@Zn/C-G hydrogel could accurately fit the wound contour to form a protective film, while effectively promoting cell proliferation and migration, and scavenging the accumulated ROS at the local wound, exhibiting an excellent angiogenic capacity and collagen deposition for significantly accelerating the wound healing during tissue remodeling. Therefore, the multifunctional hydrogel lPF127@Zn/C-G provides an effective and feasible candidate for improving the diabetic wound management.
Collapse
Affiliation(s)
- Xu Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Department of Endocrinology, School of Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing 400044, China
| | - Xinmei Duan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Department of Endocrinology, School of Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing 400044, China
| | - Li Zhu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Department of Endocrinology, School of Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing 400044, China
| | - Xiong Zhao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Department of Endocrinology, School of Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing 400044, China
| | - Shirong Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Department of Endocrinology, School of Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing 400044, China
| | - Sheng Ni
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Department of Endocrinology, School of Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing 400044, China
| | - Shuai Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Department of Endocrinology, School of Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing 400044, China
| | - Zhiqiang Han
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Department of Endocrinology, School of Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing 400044, China
| | - Wuquan Deng
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Department of Endocrinology, School of Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing 400044, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Qiao Chen
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Department of Endocrinology, School of Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing 400044, China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Department of Endocrinology, School of Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing 400044, China
- JinFeng Laboratory, Chongqing 401329, China
| |
Collapse
|
2
|
Pan C, Wang X, Xie Y, Wei C, Sun X, Zhang S, Yu X, Chen X, Chen X, Tuo C, Pan J, Fang Z, Chen J. Involvement of UDP-glycosyltransferase of Kalanchoe pinnata (Lam.) Pers in quercitrin biosynthesis and consequent antioxidant defense. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109274. [PMID: 39522388 DOI: 10.1016/j.plaphy.2024.109274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Plants in the Crassulaceae family are rich in flavonoids, which may contribute to their high antioxidant activity and strong tolerance to abiotic stresses. Kalanchoe spp. are known to have high antioxidant activity, but the main components responsible for this activity and the mechanisms that control antioxidant accumulation in these plants are unknown. In this study, we identified the dominant flavonoid and investigated the mechanisms of its accumulation in Kalanchoe leaves. A wide metabolomics analysis showed that flavonoids were the most enriched metabolites in the leaves of Kalanchoe pinnata (Lam.) Pers, Kalanchoe delagoensis (Eckl. et Zeyh.) Druce, and Kalanchoe fedtschenkoi 'Rosy Dawn'. Among these metabolites, levels of quercitrin were significantly higher in K. pinnata (Lam.) Pers than in the other two species. RNA-seq and targeted metabolomics analyses conducted on four different K. pinnata (Lam.) Pers tissues indicated that UDP-glycosyltransferase regulates the synthesis of quercitrin. Using in vitro enzyme assays and overexpression in tobacco we demonstrated that KpUGT74F catalyzes glycosylation of quercetin to produce quercitrin. This study identified the major antioxidant substances and their key regulatory mechanisms in Kalanchoe pinnata (Lam.) Pers to provide an important theoretical basis for understanding the high stress tolerance of these plants.
Collapse
Affiliation(s)
- Chenglang Pan
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China; Fujian Minjiang River Estuary Wetland National Nature Reserve Administrative Office, Fuzhou, 350001, China.
| | - Xianfeng Wang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Yunjie Xie
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
| | - Chonglong Wei
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Xiaohong Sun
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China; College of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shenshen Zhang
- School of Humanity, Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Xiangzhen Yu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
| | - Xiaofeng Chen
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Xi Chen
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Caijin Tuo
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Jiazeng Pan
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Zhizhen Fang
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China.
| | - Jianming Chen
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China.
| |
Collapse
|
3
|
Zivari-Ghader T, Rashidi MR, Mehrali M. Biological macromolecule-based hydrogels with antibacterial and antioxidant activities for wound dressing: A review. Int J Biol Macromol 2024; 279:134578. [PMID: 39122064 DOI: 10.1016/j.ijbiomac.2024.134578] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Because of the complex symptoms resulting from metabolic dysfunction in the wound microenvironment during bacterial infections, along with the necessity to combat free radicals, achieving prompt and thorough wound healing remains a significant medical challenge that has yet to be fully addressed. Moreover, the misuse of common antibiotics has contributed to the emergence of drug-resistant bacteria, underscoring the need for enhancements in the practical and commonly utilized approach to wound treatment. In this context, hydrogel dressings based on biological macromolecules with antibacterial and antioxidant properties present a promising new avenue for skin wound treatment due to their multifunctional characteristics. Despite the considerable potential of this innovative approach to wound care, comprehensive research on these multifunctional dressings is still insufficient. Consequently, the development of advanced biological macromolecule-based hydrogels, such as chitosan, alginate, cellulose, hyaluronic acid, and others, has been the primary focus of this study. These materials have been enriched with various antibacterial and antioxidant agents to confer multifunctional attributes for wound healing purposes. This review article aims to offer a comprehensive overview of the latest progress in this field, providing a critical theoretical basis for future advancements in the utilization of these advanced biological macromolecule-based hydrogels for wound healing.
Collapse
Affiliation(s)
- Tayebeh Zivari-Ghader
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Mohammad-Reza Rashidi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran.
| | - Mehdi Mehrali
- Department of Civil and Mechanical Engineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
| |
Collapse
|
4
|
Bashiri Z, Sharifi AM, Ghafari M, Hosseini SJ, Shahmahmoodi Z, Moeinzadeh A, Parsaei H, Khadivi F, Afzali A, Koruji M. In-vitro and in-vivo evaluation of angiogenic potential of a novel lithium chloride loaded silk fibroin / alginate 3D porous scaffold with antibacterial activity, for promoting diabetic wound healing. Int J Biol Macromol 2024; 277:134362. [PMID: 39089552 DOI: 10.1016/j.ijbiomac.2024.134362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/01/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Healing diabetic ulcers with chronic inflammation is a major challenge for researchers and professionals, necessitating new strategies. To rapidly treat diabetic wounds in rat models, we have fabricated a composite scaffold composed of alginate (Alg) and silk fibroin (SF) as a wound dressing that is laden with molecules of lithium chloride (LC). The physicochemical, bioactivity, and biocompatibility properties of Alg-SF-LC scaffolds were investigated in contrast to those of Alg, SF, and Alg-SF ones. Afterward, full-thickness wounds were ulcerated in diabetic rats in order to evaluate the capacity of LC-laden scaffolds to regenerate skin. The characterization findings demonstrated that the composite scaffolds possessed favorable antibacterial properties, cell compatibility, high swelling, controlled degradability, and good uniformity in the interconnected pore microstructure. Additionally, in terms of wound contraction, re-epithelialization, and angiogenesis improvement, LC-laden scaffolds revealed better performance in diabetic wound healing than the other groups. This research indicates that utilizing lithium chloride molecules loaded in biological materials supports the best diabetic ulcer regeneration in vivo, and produces a skin replacement with a cellular structure comparable to native skin.
Collapse
Affiliation(s)
- Zahra Bashiri
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Omid Fertility & Infertility Clinic, Hamedan, Iran.
| | - Ali Mohammad Sharifi
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran; Tissue Engineering Group (NOCERAL), Department of Orthopedics Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Mozhdeh Ghafari
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran
| | - Seyed Jamal Hosseini
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran; Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Shahmahmoodi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran.; Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alaa Moeinzadeh
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran.; Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Houman Parsaei
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Farnaz Khadivi
- Department of Anatomy, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Azita Afzali
- Hajar hospital, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Morteza Koruji
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Adhikary K, Sarkar R, Maity S, Sadhukhan I, Sarkar R, Ganguly K, Barman S, Maiti R, Chakraborty S, Chakraborty TR, Bagchi D, Banerjee P. Immunomodulation of Macrophages in Diabetic Wound Individuals by Structurally Diverse Bioactive Phytochemicals. Pharmaceuticals (Basel) 2024; 17:1294. [PMID: 39458935 PMCID: PMC11510503 DOI: 10.3390/ph17101294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Diabetes-related ulcers and slow-healing wounds pose a significant health risk to individuals due to their uncertain causes. Mortality rates for diabetes foot ulcers (DFUs) range from 10% after 16 months to 24% after five years. The use of bioactive phytochemicals can play a key role in healing wounds in a predictable time. Recent literature has demonstrated that various natural substances, including flavonoids, saponins, phenolic compounds, and polysaccharides, play key roles at different stages of the wound-healing process through diverse mechanisms. These studies have categorized the compounds according to their characteristics, bioactivities, and modes of action. In this study, we evaluated the role of natural compounds derived from plant sources that have been shown to play a crucial role in immunomodulation. Macrophages are closely involved in immunomodulation within the wound microenvironment and are key players in efferocytosis, inflammation resolution, and tissue regeneration, all of which contribute to successful wound healing. Phytochemicals and their derivatives have shown capabilities in immune regulation, including macrophage migration, nitric oxide synthase inhibition, lymphocyte and T-cell stimulation, cytokine activation, natural killer cell enhancement, and the regulation of NF-κβ, TNF-α, and apoptosis. In this review, we have studied the role of phytochemicals in immunomodulation for the resolution of diabetic wound inflammation.
Collapse
Affiliation(s)
- Krishnendu Adhikary
- Department of Interdisciplinary Science, Centurion University of Technology and Management, Khurda 752050, Odisha, India;
| | - Riya Sarkar
- Department of Medical Lab Technology, Dr. B. C. Roy Academy of Professional Courses, Bidhannagar, Durgapur 713212, West Bengal, India
| | - Sriparna Maity
- Department of Medical Lab Technology, Dr. B. C. Roy Academy of Professional Courses, Bidhannagar, Durgapur 713212, West Bengal, India
| | - Ishani Sadhukhan
- Department of Food Processing, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| | - Riya Sarkar
- Department of Medical Lab Technology & Biotechnology, Paramedical College Durgapur, Durgapur 713212, West Bengal, India
| | - Krishnendu Ganguly
- Department of Medical Lab Technology & Biotechnology, Paramedical College Durgapur, Durgapur 713212, West Bengal, India
| | - Saurav Barman
- Department of Soil Science, Centurion University of Technology and Management, Paralakhemundi 761211, Odisha, India
| | - Rajkumar Maiti
- Department of Physiology, Bankura Christian College, Bankura 722101, West Bengal, India;
| | - Sanjoy Chakraborty
- Department of Biological Sciences, New York City College of Technology, City University of New York (CUNY), Brooklyn, NY 11201, USA
| | - Tandra R. Chakraborty
- Department of Biology, College of Arts and Sciences, Adelphi University, Garden City, NY 11530, USA
| | - Debasis Bagchi
- Department of Biology, College of Arts and Sciences, Adelphi University, Garden City, NY 11530, USA
- Department of Psychology, Gordon F. Derner School of Psychology, Adelphi University, Garden City, NY 11530, USA
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Pradipta Banerjee
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
6
|
Ma C, Du L, Guo Y, Yang X. A review of polysaccharide hydrogels as materials for skin repair and wound dressing: Construction, functionalization and challenges. Int J Biol Macromol 2024; 280:135838. [PMID: 39317293 DOI: 10.1016/j.ijbiomac.2024.135838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Hydrogels can imitate the extracellular matrix, therefore facilitating the creation of an ideal healing environment for wounds. Consequently, they are popular as a material choice for wound dressings. Polysaccharides have been widely used in wound dressings due to their good biocompatibility and degradability. In this study, we first discuss skin and wound physiology before summarizing the methods for producing hydrogels from polysaccharides and their derivatized. These include not just normal polysaccharides like chitosan, cellulose, and alginate, but also Chinese medicinal polysaccharides with therapeutic properties. Then, strategies for causing hydrogel production from polysaccharides or their derivatives are briefly explained. Finally, the functions of hydrogel dressings are reviewed, including antibacterial, antioxidant, and adhesive properties, as well as the methods for achieving these properties. Furthermore, current issues and concerns are discussed, with the goal of providing fresh paths for the development of future wound dressings.
Collapse
Affiliation(s)
- Chao Ma
- College of Sports and Human Sciences, Harbin Sport University, Harbin 150008, China; School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Lianxin Du
- College of Sports and Human Sciences, Harbin Sport University, Harbin 150008, China
| | - Yong Guo
- College of Sports and Human Sciences, Harbin Sport University, Harbin 150008, China.
| | - Xin Yang
- College of Sports and Human Sciences, Harbin Sport University, Harbin 150008, China; School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; Shandong Benefit Mankind Glycobiology Co., Ltd, Weihai 264499, China.
| |
Collapse
|
7
|
Das M, Mondal S, Ghosh R, Darbar S, Roy L, Das AK, Pal D, Bhattacharya SS, Mallick AK, Kundu JK, Pal SK. A study of scarless wound healing through programmed inflammation, proliferation and maturation using a redox balancing nanogel. J Biomed Mater Res A 2024; 112:1594-1611. [PMID: 38545912 DOI: 10.1002/jbm.a.37712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 07/12/2024]
Abstract
In the study, we have shown the efficacy of an indigenously developed redox balancing chitosan gel with impregnated citrate capped Mn3O4 nanoparticles (nanogel). Application of the nanogel on a wound of preclinical mice model shows role of various signaling molecules and growth factors, and involvement of reactive oxygen species (ROS) at every stage, namely hemostasis, inflammation, and proliferation leading to complete maturation for the scarless wound healing. While in vitro characterization of nanogel using SEM, EDAX, and optical spectroscopy reveals pH regulated redox buffering capacity, in vivo preclinical studies on Swiss albino involving IL-12, IFN-γ, and α-SMA signaling molecules and detailed histopathological investigation and angiogenesis on every stage elucidate role of redox buffering for the complete wound healing process.
Collapse
Affiliation(s)
- Monojit Das
- Department of Zoology, Vidyasagar University, Midnapore, India
- Department of Zoology, Uluberia College, University of Calcutta, Howrah, India
| | - Susmita Mondal
- Department of Chemical, and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, India
| | - Ria Ghosh
- Department of Chemical, and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, India
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | - Soumendra Darbar
- Research and Development Division, Dey's Medical Stores (Mfg.) Ltd, Kolkata, India
| | - Lopamudra Roy
- Department of Applied Optics and Photonics, University of Calcutta, Kolkata, West Bengal, India
| | - Anjan Kumar Das
- Department of Pathology, Coochbehar Government Medical College and Hospital, India
| | - Debasish Pal
- Department of Zoology, Uluberia College, University of Calcutta, Howrah, India
| | | | - Asim Kumar Mallick
- Department of Pediatrics, Nil RatanSircar Medical College and Hospital, Kolkata, India
| | | | - Samir Kumar Pal
- Department of Zoology, Uluberia College, University of Calcutta, Howrah, India
- Department of Chemical, and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, India
| |
Collapse
|
8
|
Chelu M, Calderon Moreno JM, Musuc AM, Popa M. Natural Regenerative Hydrogels for Wound Healing. Gels 2024; 10:547. [PMID: 39330149 PMCID: PMC11431064 DOI: 10.3390/gels10090547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 09/28/2024] Open
Abstract
Regenerative hydrogels from natural polymers have come forth as auspicious materials for use in regenerative medicine, with interest attributed to their intrinsic biodegradability, biocompatibility, and ability to reassemble the extracellular matrix. This review covers the latest advances in regenerative hydrogels used for wound healing, focusing on their chemical composition, cross-linking mechanisms, and functional properties. Key carbohydrate polymers, including alginate, chitosan, hyaluronic acid, and polysaccharide gums, including agarose, carrageenan, and xanthan gum, are discussed in terms of their sources, chemical structures and specific properties suitable for regenerative applications. The review further explores the categorization of hydrogels based on ionic charge, response to physiological stimuli (i.e., pH, temperature) and particularized roles in wound tissue self-healing. Various methods of cross-linking used to enhance the mechanical and biological performance of these hydrogels are also examined. By highlighting recent innovations and ongoing challenges, this article intends to give a detailed understanding of natural hydrogels and their potential to revolutionize regenerative medicine and improve patient healing outcomes.
Collapse
Affiliation(s)
| | - Jose M. Calderon Moreno
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania; (M.C.); (A.M.M.)
| | | | - Monica Popa
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania; (M.C.); (A.M.M.)
| |
Collapse
|
9
|
Ghiorghita CA, Platon IV, Lazar MM, Dinu MV, Aprotosoaie AC. Trends in polysaccharide-based hydrogels and their role in enhancing the bioavailability and bioactivity of phytocompounds. Carbohydr Polym 2024; 334:122033. [PMID: 38553232 DOI: 10.1016/j.carbpol.2024.122033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 04/02/2024]
Abstract
Over the years, polysaccharides such as chitosan, alginate, hyaluronic acid, k-carrageenan, xanthan gum, carboxymethyl cellulose, pectin, and starch, alone or in combination with proteins and/or synthetic polymers, have been used to engineer an extensive portfolio of hydrogels with remarkable features. The application of polysaccharide-based hydrogels has the potential to alleviate challenges related to bioavailability, solubility, stability, and targeted delivery of phytocompounds, contributing to the development of innovative and efficient drug delivery systems and functional food formulations. This review highlights the current knowledge acquired on the preparation, features and applications of polysaccharide/phytocompounds hydrogel-based hybrid systems in wound management, drug delivery, functional foods, and food industry. The structural, functional, and biological requirements of polysaccharides and phytocompounds on the overall performance of such hybrid systems, and their impact on the application domains are also discussed.
Collapse
Affiliation(s)
- Claudiu-Augustin Ghiorghita
- Department of Functional Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487, Iasi, Romania
| | - Ioana-Victoria Platon
- Department of Functional Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487, Iasi, Romania
| | - Maria Marinela Lazar
- Department of Functional Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487, Iasi, Romania
| | - Maria Valentina Dinu
- Department of Functional Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487, Iasi, Romania.
| | - Ana Clara Aprotosoaie
- "Grigore T. Popa" University of Medicine and Pharmacy, Universitatii Street 16, Iasi 700115, Romania
| |
Collapse
|
10
|
Pramanik S, Aggarwal A, Kadi A, Alhomrani M, Alamri AS, Alsanie WF, Koul K, Deepak A, Bellucci S. Chitosan alchemy: transforming tissue engineering and wound healing. RSC Adv 2024; 14:19219-19256. [PMID: 38887635 PMCID: PMC11180996 DOI: 10.1039/d4ra01594k] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Chitosan, a biopolymer acquired from chitin, has emerged as a versatile and favorable material in the domain of tissue engineering and wound healing. Its biocompatibility, biodegradability, and antimicrobial characteristics make it a suitable candidate for these applications. In tissue engineering, chitosan-based formulations have garnered substantial attention as they have the ability to mimic the extracellular matrix, furnishing an optimal microenvironment for cell adhesion, proliferation, and differentiation. In the realm of wound healing, chitosan-based dressings have revealed exceptional characteristics. They maintain a moist wound environment, expedite wound closure, and prevent infections. These formulations provide controlled release mechanisms, assuring sustained delivery of bioactive molecules to the wound area. Chitosan's immunomodulatory properties have also been investigated to govern the inflammatory reaction during wound healing, fostering a balanced healing procedure. In summary, recent progress in chitosan-based formulations portrays a substantial stride in tissue engineering and wound healing. These innovative approaches hold great promise for enhancing patient outcomes, diminishing healing times, and minimizing complications in clinical settings. Continued research and development in this field are anticipated to lead to even more sophisticated chitosan-based formulations for tissue repair and wound management. The integration of chitosan with emergent technologies emphasizes its potential as a cornerstone in the future of regenerative medicine and wound care. Initially, this review provides an outline of sources and unique properties of chitosan, followed by recent signs of progress in chitosan-based formulations for tissue engineering and wound healing, underscoring their potential and innovative strategies.
Collapse
Affiliation(s)
- Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras Chennai 600036 Tamil Nadu India
| | - Akanksha Aggarwal
- Department of Biotechnology, Indian Institute of Technology Hyderabad Kandi Sangareddy Telangana 502284 India
- Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University New Delhi 110017 India
| | - Ammar Kadi
- Department of Food and Biotechnology, South Ural State University Chelyabinsk 454080 Russia
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University Taif Saudi Arabia
- Research Centre for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University Taif Saudi Arabia
| | - Abdulhakeem S Alamri
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University Taif Saudi Arabia
- Research Centre for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University Taif Saudi Arabia
| | - Walaa F Alsanie
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University Taif Saudi Arabia
- Research Centre for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University Taif Saudi Arabia
| | - Kanchan Koul
- Department of Physiotherapy, Jain School of Sports Education and Research, Jain University Bangalore Karnataka 560069 India
| | - A Deepak
- Saveetha Institute of Medical and Technical Sciences, Saveetha School of Engineering Chennai Tamil Nadu 600128 India
| | - Stefano Bellucci
- 7INFN-Laboratori Nazionali di Frascati Via E. Fermi 54 00044 Frascati Italy
| |
Collapse
|
11
|
Wu X, Chen HW, Zhao ZY, Li L, Song C, Xiong J, Yang GX, Zhu Q, Hu JF. Carbopol 940-based hydrogels loading synergistic combination of quercetin and luteolin from the herb Euphorbia humifusa to promote Staphylococcus aureus infected wound healing. RSC Med Chem 2024; 15:553-560. [PMID: 38389873 PMCID: PMC10880921 DOI: 10.1039/d3md00611e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/28/2023] [Indexed: 02/24/2024] Open
Abstract
With the increasing prevalence of Staphylococcus aureus infections, rapid emergence of drug resistance and the slow healing of infected wounds, developing an efficient antibiotic-free multifunctional wound dressing for inhibiting S. aureus and simultaneously facilitating wound healing have become a huge challenge. Due to their excellent biocompatibility and biodegradability, some carbopol hydrogels based on plant extracts or purified compounds have already been applied in wound healing treatment. In China, Euphorbia humifusa Willd. (EuH) has been traditionally used as a medicine and food homologous medicine for the treatment of furuncles and carbuncles mainly caused by S. aureus infection. In an earlier study, EuH-originated flavonoids quercetin (QU) and luteolin (LU) could serve as a potential source for anti-S. aureus drug discovery when used in synergy. However, the in vivo effects of QU and LU on S. aureus-infected wound healing are still unknown. In this study, we found a series of Carbopol 940-based hydrogels loading QU and LU in combination could disinfect S. aureus and also could promote wound healing. In the full-thickness skin defect mouse model infected with S. aureus, the wound contraction ratio, bacterial burden, skin hyperplasia and inflammation score, as well as collagen deposition and blood vessels were then investigated. The results indicate that the optimized QL2 [QU (32 μg mL-1)-LU (8 μg mL-1)] hydrogel with biocompatibility significantly promoted S. aureus-infected wound healing through anti-infection, anti-inflammation, collagen deposition, and angiogenesis, revealing it as a promising alternative for infected wound repair.
Collapse
Affiliation(s)
- Xiying Wu
- School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University Zhejiang 318000 China
- Department of Natural Medicine, School of Pharmacy, Fudan University Shanghai 201203 China
- Shanghai Skin Disease Hospital, Tongji University School of Medicine Shanghai 200443 China
| | - Hao-Wei Chen
- School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University Zhejiang 318000 China
- Department of Natural Medicine, School of Pharmacy, Fudan University Shanghai 201203 China
| | - Ze-Yu Zhao
- School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University Zhejiang 318000 China
- Department of Natural Medicine, School of Pharmacy, Fudan University Shanghai 201203 China
| | - Lisha Li
- Shanghai Skin Disease Hospital, Tongji University School of Medicine Shanghai 200443 China
| | - Chi Song
- School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University Zhejiang 318000 China
- Department of Natural Medicine, School of Pharmacy, Fudan University Shanghai 201203 China
| | - Juan Xiong
- Department of Natural Medicine, School of Pharmacy, Fudan University Shanghai 201203 China
| | - Guo-Xun Yang
- Department of Natural Medicine, School of Pharmacy, Fudan University Shanghai 201203 China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine Shanghai 200443 China
| | - Jin-Feng Hu
- School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University Zhejiang 318000 China
- Department of Natural Medicine, School of Pharmacy, Fudan University Shanghai 201203 China
| |
Collapse
|
12
|
Tan Q, He Q, Peng Z, Zeng X, Liu Y, Li D, Wang S, Wang J. Topical rhubarb charcoal-crosslinked chitosan/silk fibroin sponge scaffold for the repair of diabetic ulcers improves hepatic lipid deposition in db/db mice via the AMPK signalling pathway. Lipids Health Dis 2024; 23:52. [PMID: 38378566 PMCID: PMC10877747 DOI: 10.1186/s12944-024-02041-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/04/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is closely linked to metabolic syndrome, characterised by insulin resistance, hyperglycaemia, abnormal lipid metabolism, and chronic inflammation. Diabetic ulcers (DUs) comprise consequential complications that arise as a result of T2DM. To investigate, db/db mice were used for the disease model. The findings demonstrated that a scaffold made from a combination of rhubarb charcoal-crosslinked chitosan and silk fibroin, designated as RCS/SF, was able to improve the healing process of diabetic wounds in db/db mice. However, previous studies have primarily concentrated on investigating the impacts of the RSC/SF scaffold on wound healing only, while its influence on the entire body has not been fully elucidated. MATERIAL AND METHODS The silk fibroin/chitosan sponge scaffold containing rhubarb charcoal was fabricated in the present study using a freeze-drying approach. Subsequently, an incision with a diameter of 8 mm was made on the dorsal skin of the mice, and the RCS/SF scaffold was applied directly to the wound for 14 days. Subsequently, the impact of RCS/SF scaffold therapy on hepatic lipid metabolism was assessed through analysis of serum and liver biochemistry, histopathology, quantitative real-time PCR (qRT-PCR), immunohistochemistry, and Western blotting. RESULTS The use of the RCS/SF scaffold led to an enhancement in the conditions associated with serum glucolipid metabolism in db/db mice. An assessment of hepatic histopathology further confirmed this enhancement. Additionally, the qRT-PCR analysis revealed that treatment with RCS/SF scaffold resulted in the downregulation of genes associated with fatty acid synthesis, fatty acid uptake, triglyceride (TG) synthesis, gluconeogenesis, and inflammatory factors. Moreover, the beneficial effect of the RCS/SF scaffold on oxidative stress was shown by assessing antioxidant enzymes and lipid peroxidation. Additionally, the network pharmacology analysis verified that the adenosine monophosphate-activated protein kinase (AMPK) signalling pathway had a vital function in mitigating non-alcoholic fatty liver disease (NAFLD) by utilizing R. officinale. The measurement of AMPK, sterol regulatory element binding protein 1 (SREBP1), fatty acid synthase (FASN), and acetyl CoA carboxylase (ACC) gene and protein expression provided support for this discovery. Furthermore, the molecular docking investigations revealed a robust affinity between the active components of rhubarb and the downstream targets of AMPK (SREBP1 and FASN). CONCLUSION By regulating the AMPK signalling pathway, the RCS/SF scaffold applied topically effectively mitigated hepatic lipid accumulation, decreased inflammation, and attenuated oxidative stress. The present study, therefore, emphasises the crucial role of the topical RCS/SF scaffold in regulating hepatic lipid metabolism, thereby confirming the concept of "external and internal reshaping".
Collapse
Affiliation(s)
- Qi Tan
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Qifeng He
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Ze Peng
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xin Zeng
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
- Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China
| | - Yuzhe Liu
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Dong Li
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Shang Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China.
| | - Jianwei Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China.
- Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China.
| |
Collapse
|
13
|
Yadav JP, Singh AK, Grishina M, Pathak P, Verma A, Kumar V, Kumar P, Patel DK. Insights into the mechanisms of diabetic wounds: pathophysiology, molecular targets, and treatment strategies through conventional and alternative therapies. Inflammopharmacology 2024; 32:149-228. [PMID: 38212535 DOI: 10.1007/s10787-023-01407-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/27/2023] [Indexed: 01/13/2024]
Abstract
Diabetes mellitus is a prevalent cause of mortality worldwide and can lead to several secondary issues, including DWs, which are caused by hyperglycemia, diabetic neuropathy, anemia, and ischemia. Roughly 15% of diabetic patient's experience complications related to DWs, with 25% at risk of lower limb amputations. A conventional management protocol is currently used for treating diabetic foot syndrome, which involves therapy using various substances, such as bFGF, pDGF, VEGF, EGF, IGF-I, TGF-β, skin substitutes, cytokine stimulators, cytokine inhibitors, MMPs inhibitors, gene and stem cell therapies, ECM, and angiogenesis stimulators. The protocol also includes wound cleaning, laser therapy, antibiotics, skin substitutes, HOTC therapy, and removing dead tissue. It has been observed that treatment with numerous plants and their active constituents, including Globularia Arabica, Rhus coriaria L., Neolamarckia cadamba, Olea europaea, Salvia kronenburgii, Moringa oleifera, Syzygium aromaticum, Combretum molle, and Myrtus communis, has been found to promote wound healing, reduce inflammation, stimulate angiogenesis, and cytokines production, increase growth factors production, promote keratinocyte production, and encourage fibroblast proliferation. These therapies may also reduce the need for amputations. However, there is still limited information on how to prevent and manage DWs, and further research is needed to fully understand the role of alternative treatments in managing complications of DWs. The conventional management protocol for treating diabetic foot syndrome can be expensive and may cause adverse side effects. Alternative therapies, such as medicinal plants and green synthesis of nano-formulations, may provide efficient and affordable treatments for DWs.
Collapse
Affiliation(s)
- Jagat Pal Yadav
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India.
- Pharmacology Research Laboratory, Faculty of Pharmaceutical Sciences, Rama University, Kanpur, 209217, India.
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India.
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Maria Grishina
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk, 454008, Russia
| | - Prateek Pathak
- Department of Pharmaceutical Analysis, Quality Assurance, and Pharmaceutical Chemistry, School of Pharmacy, GITAM (Deemed to Be University), Hyderabad, 502329, India
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| | - Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Dinesh Kumar Patel
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India.
| |
Collapse
|
14
|
Xiang T, Guo Q, Jia L, Yin T, Huang W, Zhang X, Zhou S. Multifunctional Hydrogels for the Healing of Diabetic Wounds. Adv Healthc Mater 2024; 13:e2301885. [PMID: 37702116 DOI: 10.1002/adhm.202301885] [Citation(s) in RCA: 63] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/10/2023] [Indexed: 09/14/2023]
Abstract
The healing of diabetic wounds is hindered by various factors, including bacterial infection, macrophage dysfunction, excess proinflammatory cytokines, high levels of reactive oxygen species, and sustained hypoxia. These factors collectively impede cellular behaviors and the healing process. Consequently, this review presents intelligent hydrogels equipped with multifunctional capacities, which enable them to dynamically respond to the microenvironment and accelerate wound healing in various ways, including stimuli -responsiveness, injectable self-healing, shape -memory, and conductive and real-time monitoring properties. The relationship between the multiple functions and wound healing is also discussed. Based on the microenvironment of diabetic wounds, antibacterial, anti-inflammatory, immunomodulatory, antioxidant, and pro-angiogenic strategies are combined with multifunctional hydrogels. The application of multifunctional hydrogels in the repair of diabetic wounds is systematically discussed, aiming to provide guidelines for fabricating hydrogels for diabetic wound healing and exploring the role of intelligent hydrogels in the therapeutic processes.
Collapse
Affiliation(s)
- Tao Xiang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Qianru Guo
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Lianghao Jia
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Tianyu Yin
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Wei Huang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Xinyu Zhang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Shaobing Zhou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| |
Collapse
|
15
|
Cao J, Wu B, Yuan P, Liu Y, Hu C. Rational Design of Multifunctional Hydrogels for Wound Repair. J Funct Biomater 2023; 14:553. [PMID: 37998122 PMCID: PMC10672203 DOI: 10.3390/jfb14110553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023] Open
Abstract
The intricate microenvironment at the wound site, coupled with the multi-phase nature of the healing process, pose significant challenges to the development of wound repair treatments. In recent years, applying the distinctive benefits of hydrogels to the development of wound repair strategies has yielded some promising results. Multifunctional hydrogels, by meeting the different requirements of wound healing stages, have greatly improved the healing effectiveness of chronic wounds, offering immense potential in wound repair applications. This review summarized the recent research and applications of multifunctional hydrogels in wound repair. The focus was placed on the research progress of diverse multifunctional hydrogels, and their mechanisms of action at different stages of wound repair were discussed in detail. Through a comprehensive analysis, we found that multifunctional hydrogels play an indispensable role in the process of wound repair by providing a moist environment, controlling inflammation, promoting angiogenesis, and effectively preventing infection. However, further implementation of multifunctional hydrogel-based therapeutic strategies also faces various challenges, such as the contradiction between the complexity of multifunctionality and the simplicity required for clinical translation and application. In the future, we should work to address these challenges, further optimize the design and preparation of multifunctional hydrogels, enhance their effectiveness in wound repair, and promote their widespread application in clinical practice.
Collapse
Affiliation(s)
- Juan Cao
- School of Fashion and Design Art, Sichuan Normal University, Chengdu 610066, China;
| | - Bo Wu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China; (B.W.); (Y.L.)
| | - Ping Yuan
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China;
| | - Yeqi Liu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China; (B.W.); (Y.L.)
| | - Cheng Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| |
Collapse
|
16
|
Oprita EI, Iosageanu A, Craciunescu O. Natural Polymeric Hydrogels Encapsulating Small Molecules for Diabetic Wound Healing. Gels 2023; 9:867. [PMID: 37998956 PMCID: PMC10671021 DOI: 10.3390/gels9110867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
Diabetes is a condition correlated with a high number of diagnosed chronic wounds as a result of a complex pathophysiological mechanism. Diabetic chronic wounds are characterized by disorganized and longer stages, compared to normal wound healing. Natural polymer hydrogels can act as good wound dressings due to their versatile physicochemical properties, represented mainly by high water content and good biocompatibility. Natural bioactive hydrogels are polymers loaded with bioactive compounds providing antibacterial and antioxidant properties, modulation of inflammation and adherence to wounded tissue, compared to traditional dressings, which enables promising future applications for diabetic wound healing. Natural bioactive compounds, such as polyphenols, polysaccharides and proteins have great advantages in promoting chronic wound healing in diabetes due to their antioxidant, anti-inflammatory, antimicrobial, anti-allergic and wound healing properties. The present paper aims to review the wound healing mechanisms underlining the main issues of chronic wounds and those specifically occurring in diabetes. Also, the review highlights the recent state of the art related to the effect of hydrogels enriched with natural bioactive compounds developed as biocompatible functional materials for improving diabetic-related chronic wound healing and providing novel therapeutic strategies that could prevent limb amputation and increase the quality of life in diabetic patients.
Collapse
Grants
- Program Nucleu, project no. 23020101/2023 Ministry of Research, Innovation and Digitalization, Romania
- Program 1, Development of the National R&D System, Subprogram 1.2, Institutional Performance, Projects for Excellence Financing in RDI, contract no. 2PFE/2021. Ministry of Research, Innovation and Digitalization, Romania
Collapse
Affiliation(s)
- Elena Iulia Oprita
- National Institute of R&D for Biological Sciences, 296, Splaiul Independentei, 060031 Bucharest, Romania; (A.I.); (O.C.)
| | | | | |
Collapse
|
17
|
Li M, Xia W, Khoong YM, Huang L, Huang X, Liang H, Zhao Y, Mao J, Yu H, Zan T. Smart and versatile biomaterials for cutaneous wound healing. Biomater Res 2023; 27:87. [PMID: 37717028 PMCID: PMC10504797 DOI: 10.1186/s40824-023-00426-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/30/2023] [Indexed: 09/18/2023] Open
Abstract
The global increase of cutaneous wounds imposes huge health and financial burdens on patients and society. Despite improved wound healing outcomes, conventional wound dressings are far from ideal, owing to the complex healing process. Smart wound dressings, which are sensitive to or interact with changes in wound condition or environment, have been proposed as appealing therapeutic platforms to effectively facilitate wound healing. In this review, the wound healing processes and features of existing biomaterials are firstly introduced, followed by summarizing the mechanisms of smart responsive materials. Afterwards, recent advances and designs in smart and versatile materials of extensive applications for cutaneous wound healing were submarined. Finally, clinical progresses, challenges and future perspectives of the smart wound dressing are discussed. Overall, by mapping the composition and intrinsic structure of smart responsive materials to their individual needs of cutaneous wounds, with particular attention to the responsive mechanisms, this review is promising to advance further progress in designing smart responsive materials for wounds and drive clinical translation.
Collapse
Affiliation(s)
- Minxiong Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Wenzheng Xia
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yi Min Khoong
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Lujia Huang
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Hsin Liang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yun Zhao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jiayi Mao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Haijun Yu
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
18
|
Zhao K, Pu S, Sun L, Zhou D. Gentiopicroside-Loaded Chitosan Nanoparticles Inhibit TNF-α-Induced Proliferation and Inflammatory Response in HaCaT Keratinocytes and Ameliorate Imiquimod-Induced Dermatitis Lesions in Mice. Int J Nanomedicine 2023; 18:3781-3800. [PMID: 37457802 PMCID: PMC10348341 DOI: 10.2147/ijn.s406649] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/15/2023] [Indexed: 07/18/2023] Open
Abstract
Purpose In this study, we aimed to report the biological characteristics of the first successful synthesis of gentiopicroside-loaded chitosan nanoparticles and to evaluate the therapeutic effects and preliminary mechanisms of gentiopicrin-loaded chitosan on psoriasis-like cell and mouse models. Methods Gentiopicroside-loaded chitosan nanoparticles (CHI-GEN) were prepared, and their biological characteristics were evaluated. HaCaT keratinocytes were stimulated with TNF-α to establish a psoriatic keratinocyte model. MTT assay and flow cytometry were used to measure cell viability and apoptosis, respectively. mRNA levels of K17, VEGF A, and IL-6 and IL-23A were detected using qRT-PCR. These tests were used to preliminarily assess the effects of CHI-GEN on keratinocyte proliferation and inflammation. Imiquimod was used to construct a psoriasis-like mice model. The severity of psoriasis was scored based on the psoriasis area severity index (PASI), H&E staining was used to observe the histological changes and the level of inflammation and cell proliferation of skin lesions was evaluated by measuring the mRNA levels of K17, IL-23A, and IL-17A using qRT-PCR. Results The average particle size of CHI-GEN nanoparticles was approximately 100 nm, and the zeta potential was 2.69 ± 0.87 mV. The cumulative release was 67.2% in solutions of pH 5.5 at 24 h. GEN reduced TNF-α-induced excessive proliferation of HaCaT keratinocytes and downregulated mRNA levels of K17, VEGF A, and inflammatory cytokines IL-6 and IL-23A, which was more obvious in the CHI-GEN treatment group. Additionally, CHI-GEN significantly improved the severity of skin lesions in psoriasis-like mice and downregulated the mRNA expressions of IL-6, IL-23A, and IL-17A in mice skin lesions. Conclusion In conclusion, we successfully prepared gentiopicrin-chitosan nanoparticles. Our results show that these nanoparticles have anti-psoriasis activity, inhibits keratinocyte proliferation and improves symptoms in psoriasis model mice and can be used to develop an effective strategy for the treatment of psoriasis.
Collapse
Affiliation(s)
- Kaixuan Zhao
- Dermatology Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 10010, People’s Republic of China
| | - Siqi Pu
- School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Liyun Sun
- Dermatology Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 10010, People’s Republic of China
| | - Dongmei Zhou
- Dermatology Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 10010, People’s Republic of China
| |
Collapse
|
19
|
Xu Y, Hu Q, Wei Z, Ou Y, Cao Y, Zhou H, Wang M, Yu K, Liang B. Advanced polymer hydrogels that promote diabetic ulcer healing: mechanisms, classifications, and medical applications. Biomater Res 2023; 27:36. [PMID: 37101201 PMCID: PMC10134570 DOI: 10.1186/s40824-023-00379-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023] Open
Abstract
Diabetic ulcers (DUs) are one of the most serious complications of diabetes mellitus. The application of a functional dressing is a crucial step in DU treatment and is associated with the patient's recovery and prognosis. However, traditional dressings with a simple structure and a single function cannot meet clinical requirements. Therefore, researchers have turned their attention to advanced polymer dressings and hydrogels to solve the therapeutic bottleneck of DU treatment. Hydrogels are a class of gels with a three-dimensional network structure that have good moisturizing properties and permeability and promote autolytic debridement and material exchange. Moreover, hydrogels mimic the natural environment of the extracellular matrix, providing suitable surroundings for cell proliferation. Thus, hydrogels with different mechanical strengths and biological properties have been extensively explored as DU dressing platforms. In this review, we define different types of hydrogels and elaborate the mechanisms by which they repair DUs. Moreover, we summarize the pathological process of DUs and review various additives used for their treatment. Finally, we examine the limitations and obstacles that exist in the development of the clinically relevant applications of these appealing technologies. This review defines different types of hydrogels and carefully elaborate the mechanisms by which they repair diabetic ulcers (DUs), summarizes the pathological process of DUs, and reviews various bioactivators used for their treatment.
Collapse
Affiliation(s)
- Yamei Xu
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
| | - Qiyuan Hu
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
| | - Zongyun Wei
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
| | - Yi Ou
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
| | - Youde Cao
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
- Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong Distinct, Chongqing, 400042, P.R. China
| | - Hang Zhou
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
| | - Mengna Wang
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
| | - Kexiao Yu
- Department of Orthopedics, Chongqing Traditional Chinese Medicine Hospital, No. 6 Panxi Seventh Branch Road, Jiangbei District, Chongqing, 400021, P.R. China.
- Institute of Ultrasound Imaging of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China.
| | - Bing Liang
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China.
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China.
- Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong Distinct, Chongqing, 400042, P.R. China.
| |
Collapse
|
20
|
Zhou G, Zhu J, Jin L, Chen J, Xu R, Zhao Y, Yan T, Wan H. Salvianolic-Acid-B-Loaded HA Self-Healing Hydrogel Promotes Diabetic Wound Healing through Promotion of Anti-Inflammation and Angiogenesis. Int J Mol Sci 2023; 24:ijms24076844. [PMID: 37047818 PMCID: PMC10095058 DOI: 10.3390/ijms24076844] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 04/14/2023] Open
Abstract
Inflammatory dysfunction and angiogenesis inhibition are two main factors leading to the delayed healing of diabetic wounds. Hydrogels with anti-inflammatory and angiogenesis-promoting effects have been considered as promising wound care materials. Herein, a salvianolic acid B (SAB)-loaded hyaluronic acid (HA) self-healing hydrogel (HA/SAB) with anti-inflammatory and pro-angiogenesis capacities for diabetic wound healing is reported. The HA hydrogel was prepared via the covalent cross-linking of aldehyde groups in oxidized HA (OHA) and hydrazide groups in adipic dihydrazide (ADH)-modified HA (HA-ADH) with the formation of reversible acylhydrazone bonds. The obtained HA hydrogel exhibited multiple favorable properties such as porous structures, excellent self-healing properties, a sustainable release capacity of SAB, as well as excellent cytocompatibility. In addition, the effects of the SAB-loaded HA self-healing hydrogel were investigated via a full-thickness skin defect model using diabetic rats. The HA/SAB hydrogel showed enhanced skin regeneration effects with accelerated wound closure, shorter remaining dermal space length, thicker granulation tissue formation, and more collagen deposition. Furthermore, reduced inflammatory response and enhanced vascularization were found with HA/SAB2.5 hydrogel-treated wounds, indicating that the hydrogel promotes diabetic wound healing through the promotion of anti-inflammation and angiogenesis. Our results suggest that the fabricated SAB-loaded HA self-healing hydrogel is promising as a wound dressing for the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Guoying Zhou
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiayan Zhu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Liang Jin
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jing Chen
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ruojiao Xu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yali Zhao
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Tingzi Yan
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Haitong Wan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
21
|
Cytotoxicity and Biomineralization Potential of Flavonoids Incorporated into PNVCL Hydrogels. J Funct Biomater 2023; 14:jfb14030139. [PMID: 36976063 PMCID: PMC10058549 DOI: 10.3390/jfb14030139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
This study aimed to evaluate the effects of flavonoids incorporated into poly(N-vinylcaprolactam) (PNVCL) hydrogel on cell viability and mineralization markers of odontoblast-like cells. MDPC-23 cells were exposed to ampelopsin (AMP), isoquercitrin (ISO), rutin (RUT) and control calcium hydroxide (CH) for evaluation of cell viability, total protein (TP) production, alkaline phosphatase (ALP) activity and mineralized nodule deposition by colorimetric assays. Based on an initial screening, AMP and CH were loaded into PNVCL hydrogels and had their cytotoxicity and effect on mineralization markers determined. Cell viability was above 70% when MDPC-23 cells were treated with AMP, ISO and RUT. AMP showed the highest ALP activity and mineralized nodule deposition. Extracts of PNVCL+AMP and PNVCL+CH in culture medium (at the dilutions of 1/16 and 1/32) did not affect cell viability and stimulated ALP activity and mineralized nodules’ deposition, which were statistically higher than the control in osteogenic medium. In conclusion, AMP and AMP-loaded PNVCL hydrogels were cytocompatible and able to induce bio-mineralization markers in odontoblast-cells.
Collapse
|
22
|
Zulkefli N, Che Zahari CNM, Sayuti NH, Kamarudin AA, Saad N, Hamezah HS, Bunawan H, Baharum SN, Mediani A, Ahmed QU, Ismail AFH, Sarian MN. Flavonoids as Potential Wound-Healing Molecules: Emphasis on Pathways Perspective. Int J Mol Sci 2023; 24:ijms24054607. [PMID: 36902038 PMCID: PMC10003005 DOI: 10.3390/ijms24054607] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 03/02/2023] Open
Abstract
Wounds are considered to be a serious problem that affects the healthcare sector in many countries, primarily due to diabetes and obesity. Wounds become worse because of unhealthy lifestyles and habits. Wound healing is a complicated physiological process that is essential for restoring the epithelial barrier after an injury. Numerous studies have reported that flavonoids possess wound-healing properties due to their well-acclaimed anti-inflammatory, angiogenesis, re-epithelialization, and antioxidant effects. They have been shown to be able to act on the wound-healing process via expression of biomarkers respective to the pathways that mainly include Wnt/β-catenin, Hippo, Transforming Growth Factor-beta (TGF-β), Hedgehog, c-Jun N-Terminal Kinase (JNK), NF-E2-related factor 2/antioxidant responsive element (Nrf2/ARE), Nuclear Factor Kappa B (NF-κB), MAPK/ERK, Ras/Raf/MEK/ERK, phosphatidylinositol 3-kinase (PI3K)/Akt, Nitric oxide (NO) pathways, etc. Hence, we have compiled existing evidence on the manipulation of flavonoids towards achieving skin wound healing, together with current limitations and future perspectives in support of these polyphenolic compounds as safe wound-healing agents, in this review.
Collapse
Affiliation(s)
- Nabilah Zulkefli
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | | | - Nor Hafiza Sayuti
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Ammar Akram Kamarudin
- UKM Molecular Biology Institute (UMBI), UKM Medical Center, Kuala Lumpur 56000, Selangor, Malaysia
| | - Norazalina Saad
- Laboratory of Cancer Research UPM-MAKNA (CANRES), Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Hamizah Shahirah Hamezah
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Hamidun Bunawan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Syarul Nataqain Baharum
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Ahmed Mediani
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Qamar Uddin Ahmed
- Drug Discovery and Synthetic Chemistry Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia
| | - Ahmad Fahmi Harun Ismail
- Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia
- Correspondence: (A.F.H.I.); (M.N.S.)
| | - Murni Nazira Sarian
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Correspondence: (A.F.H.I.); (M.N.S.)
| |
Collapse
|
23
|
Firoozbahr M, Kingshott P, Palombo EA, Zaferanloo B. Recent Advances in Using Natural Antibacterial Additives in Bioactive Wound Dressings. Pharmaceutics 2023; 15:644. [PMID: 36839966 PMCID: PMC10004169 DOI: 10.3390/pharmaceutics15020644] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Wound care is a global health issue with a financial burden of up to US $96.8 billion annually in the USA alone. Chronic non-healing wounds which show delayed and incomplete healing are especially problematic. Although there are more than 3000 dressing types in the wound management market, new developments in more efficient wound dressings will require innovative approaches such as embedding antibacterial additives into wound-dressing materials. The lack of novel antibacterial agents and the misuse of current antibiotics have caused an increase in antimicrobial resistance (AMR) which is estimated to cause 10 million deaths by 2050 worldwide. These ongoing challenges clearly indicate an urgent need for developing new antibacterial additives in wound dressings targeting microbial pathogens. Natural products and their derivatives have long been a significant source of pharmaceuticals against AMR. Scrutinising the data of newly approved drugs has identified plants as one of the biggest and most important sources in the development of novel antibacterial drugs. Some of the plant-based antibacterial additives, such as essential oils and plant extracts, have been previously used in wound dressings; however, there is another source of plant-derived antibacterial additives, i.e., those produced by symbiotic endophytic fungi, that show great potential in wound dressing applications. Endophytes represent a novel, natural, and sustainable source of bioactive compounds for therapeutic applications, including as efficient antibacterial additives for chronic wound dressings. This review examines and appraises recent developments in bioactive wound dressings that incorporate natural products as antibacterial agents as well as advances in endophyte research that show great potential in treating chronic wounds.
Collapse
Affiliation(s)
- Meysam Firoozbahr
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Peter Kingshott
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- ARC Training Centre Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Engineering, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Enzo A. Palombo
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Bita Zaferanloo
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| |
Collapse
|
24
|
Mengie Ayele T, Chekol Abebe E, Tilahun Muche Z, Mekonnen Agidew M, Shumet Yimer Y, Tesfaw Addis G, Dagnaw Baye N, Bogale Kassie A, Adela Alemu M, Gobezie Yiblet T, Ayalew Tiruneh G, Berihun Dagnew S. Evaluation of In Vivo Wound-Healing and Anti-Inflammatory Activities of Solvent Fractions of Fruits of Argemone mexicana L. (Papaveraceae). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:6154560. [PMID: 36457593 PMCID: PMC9708338 DOI: 10.1155/2022/6154560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/01/2022] [Accepted: 11/16/2022] [Indexed: 09/08/2023]
Abstract
INTRODUCTION The solvent fractions of the fruits of Argemone mexicana L. (Papaveraceae) have not yet been explored scientifically for in vivo wound healing and anti-inflammatory activities. The objective of this study was, therefore, to evaluate in vivo wound healing and anti-inflammatory activities of the solvent fractions of the fruit of Argemone mexicana L. (Papaveraceae) in rats. METHOD The crude extract of Argemone mexicana was fractionated with n-hexane, ethyl acetate, and distilled water. Wound healing activity was evaluated using excision and incision wound models while anti-inflammatory activity was evaluated using carrageenan-induced rat paw and cotton pellet-induced granuloma models. The fractions were evaluated at 5 and 10% ointments using moist-exposed burn ointment as the standard drug, and 100, 200, and 400 mg/kg test doses using aspirin, and dexamethasone as standard drugs for wound healing and anti-inflammatory activities, respectively. All treatment administrations were made orally for anti-inflammatory activity and applied topically for wound healing activity. RESULT The 10% w/w ethyl acetate fraction ointment showed a significant percentage of wound contraction, reduced period of epithelialization, increased amount of fibrosis, neovascularization, and collagen tissue formation (p < 0.01). The ethyl acetate fraction also showed a significant increase in tensile strength (55%; p < 0.01) and (81.10%; p < 0.01) at the tested doses of 5 and 10% w/w ointments, which was comparable to moist-exposed burn ointment. The ethyl acetate fraction also revealed a significant percent edema inhibition (61.41%; p < 0.01), suppression of the exudate (38.09% p < 0.01), and granuloma mass formations (53.47% p < 0.01) at the tested dose of 400 mg/kg. CONCLUSION The results of this study showed that the Ethyl acetate fraction of Argemone mexicana fruit has significant wound healing and anti-inflammatory activities which support the traditional claims of the experimental plant.
Collapse
Affiliation(s)
- Teklie Mengie Ayele
- Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Endeshaw Chekol Abebe
- Department of Medical Biochemistry, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Zelalem Tilahun Muche
- Department of Medical Physiology, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Melaku Mekonnen Agidew
- Department of Medical Biochemistry, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Yohannes Shumet Yimer
- Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Getu Tesfaw Addis
- Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Nega Dagnaw Baye
- Department of Human Anatomy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Achenef Bogale Kassie
- Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Muluken Adela Alemu
- Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Tesfagegn Gobezie Yiblet
- Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | | | - Samuel Berihun Dagnew
- Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| |
Collapse
|
25
|
Abazari M, Akbari T, Hasani M, Sharifikoloue E, Raoufi M, Foroumadi A, Sharifzadeh M, Firoozpour L, Khoobi M. Polysaccharide-based hydrogels containing herbal extracts for wound healing applications. Carbohydr Polym 2022; 294:119808. [DOI: 10.1016/j.carbpol.2022.119808] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 11/02/2022]
|
26
|
Salazar-Gómez A, Alonso-Castro AJ. Medicinal Plants from Latin America with Wound Healing Activity: Ethnomedicine, Phytochemistry, Preclinical and Clinical Studies—A Review. Pharmaceuticals (Basel) 2022; 15:ph15091095. [PMID: 36145316 PMCID: PMC9505834 DOI: 10.3390/ph15091095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Latin America is a multicultural region with ancient traditional medicine. There is extensive knowledge of the use of medicinal plants for wound healing in this region. Nevertheless, many of these medicinal plants lack pharmacological, toxicological, and chemical studies. This review focuses on the ethnomedicinal, phytochemical, and pharmacological (preclinical and clinical) studies of medicinal plants with wound healing activity, from Latin America. An electronic database search was conducted by consulting scientific articles and books. A total of 305 plant species with wound healing activity were recorded, based on traditional medicine. Most medicinal plants used in wound healing in Latin America are topically administered; their methods of preparation are mainly by water infusion from aerial parts. Only thirty-five percent of medicinal plants used in traditional medicine for wound healing have been experimentally validated for their pharmacological effects, and the wound healing activity of five medicinal plants has been studied in clinical trials. In all, 25 compounds (mostly terpenes and flavonoids) have been isolated from medicinal plants with wound healing activity; therefore, extensive work is necessary for a multidisciplinary approach to evaluate the wound healing effects of medicinal plants in Latin America. The mechanism of action of medicinal plants, their toxicological actions on the skin, and their bioactive compounds, have yet to be investigated. This review on the ethnomedicinal, phytochemical, and pharmacological studies, of medicinal plants from Latin America with wound healing activity, offers promising data for further studies, as well as providing new insights into their possible role in wound care.
Collapse
Affiliation(s)
- Anuar Salazar-Gómez
- Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES-León UNAM), Blvd. UNAM 2011, Guanajuato 37684, Mexico
| | - Angel Josabad Alonso-Castro
- Departamento de Farmacia, Universidad de Guanajuato, Noria Alta, Colonia Noria Alta Guanajuato, Guanajuato 36250, Mexico
- Correspondence: ; Tel.: +52-473-732-0006
| |
Collapse
|
27
|
Ali F, Khan I, Chen J, Akhtar K, Bakhsh EM, Khan SB. Emerging Fabrication Strategies of Hydrogels and Its Applications. Gels 2022; 8:gels8040205. [PMID: 35448106 PMCID: PMC9024659 DOI: 10.3390/gels8040205] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/04/2022] [Accepted: 03/15/2022] [Indexed: 12/19/2022] Open
Abstract
Recently, hydrogels have been investigated for the controlled release of bioactive molecules, such as for living cell encapsulation and matrices. Due to their remote controllability and quick response, hydrogels are widely used for various applications, including drug delivery. The rate and extent to which the drugs reach their targets are highly dependent on the carriers used in drug delivery systems; therefore the demand for biodegradable and intelligent carriers is progressively increasing. The biodegradable nature of hydrogel has created much interest for its use in drug delivery systems. The first part of this review focuses on emerging fabrication strategies of hydrogel, including physical and chemical cross-linking, as well as radiation cross-linking. The second part describes the applications of hydrogels in various fields, including drug delivery systems. In the end, an overview of the application of hydrogels prepared from several natural polymers in drug delivery is presented.
Collapse
Affiliation(s)
- Fayaz Ali
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (F.A.); (K.A.); (E.M.B.)
- Centre of Excellence for Advance Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Imran Khan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science & Technology Avenida Wai Long, Taipa, Macau 999078, China;
| | - Jianmin Chen
- School of Pharmacy and Medical Technology, Putian University, No. 1133 Xueyuan Zhong Jie, Putian 351100, China
- Correspondence: (J.C.); (S.B.K.)
| | - Kalsoom Akhtar
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (F.A.); (K.A.); (E.M.B.)
| | - Esraa M. Bakhsh
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (F.A.); (K.A.); (E.M.B.)
| | - Sher Bahadar Khan
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (F.A.); (K.A.); (E.M.B.)
- Centre of Excellence for Advance Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Correspondence: (J.C.); (S.B.K.)
| |
Collapse
|
28
|
Rao SS, Prabhu A, Kudkuli J, Surya S, Rekha P. Hyaluronic acid sustains platelet stability with prolonged growth factor release and accelerates wound healing by enhancing proliferation and collagen deposition in diabetic mice. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
29
|
Zverev YF, Rykunova AY. Modern Nanocarriers as a Factor in Increasing the Bioavailability and Pharmacological Activity of Flavonoids. APPL BIOCHEM MICRO+ 2022; 58:1002-1020. [PMID: 36540406 PMCID: PMC9756931 DOI: 10.1134/s0003683822090149] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/20/2021] [Accepted: 11/09/2021] [Indexed: 12/23/2022]
Abstract
This review is devoted to modern systems of nanocarriers that ensure the targeted delivery of flavonoids to various organs and systems. Flavonoids have wide range of effects on the human body due to their antioxidant, anti-inflammatory, antitumor, antimicrobial, antiplatelet and other types of activity. However, the low bioavailability of flavonoids significantly limits their practical application. To overcome this disadvantage, serious efforts have been made in recent years to develop nanoscale carriers for flavonoids. This is particularly important in view of the known antitumor effect of these compounds, which allows them to target tumor cells without affecting surrounding healthy tissues. Nanocarriers provide increased penetration of biologicals into specific organs in combination with controlled and prolonged release, which markedly improves their effectiveness. This review summarizes data on the use of phytosomes, lipid-based nanoparticles, as well as polymeric and inorganic nanoparticles; their advantages and drawbacks are analyzed; the prospect of their use is discussed that opens new possibilities for the clinical application of flavonoids.
Collapse
Affiliation(s)
- Ya. F. Zverev
- Altai State Medical University, 656038 Barnaul, Russia
| | - A. Ya. Rykunova
- Barnaul Law Institute, Ministry of Internal Affairs of Russia, 656038 Barnaul, Russia
| |
Collapse
|
30
|
Kawakami S, Morinaga M, Tsukamoto-Sen S, Mori S, Matsui Y, Kawama T. Constituent Characteristics and Functional Properties of Passion Fruit Seed Extract. Life (Basel) 2021; 12:38. [PMID: 35054431 PMCID: PMC8781723 DOI: 10.3390/life12010038] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/16/2021] [Accepted: 12/24/2021] [Indexed: 12/13/2022] Open
Abstract
The genus Passiflora L. is widely cultivated in tropical and subtropical regions. The major species, Passiflora edulis Sims, is known as 'passion fruit' and is widely used in processed foods as well as eaten raw. P. edulis fruits are eaten for their pulp together with the seeds; however, the seeds are often discarded when used in processed foods. P. edulis seeds contain a variety of nutrients and functional components, and their industrial use is desirable from the perspective of waste reduction. Previous studies have analyzed the constituents of P. edulis and their physiological functions. P. edulis seeds contain various types of polyphenols, especially those rich in stilbenes (e.g., piceatannol). P. edulis seed extracts and isolated compounds from seeds have been reported to exhibit various physiological functions, such as antioxidant effects, improvement of skin condition, fat-burning promotion effects, and hypoglycemic effects. This review summarizes the nutritional characteristics, polyphenol content, and physiological functions of P. edulis seeds.
Collapse
Affiliation(s)
- Shinpei Kawakami
- Health Science Research Center, R & D Institute, Morinaga & Co., Ltd., 2-1-1 Shimosueyoshi, Tsurumi-ku, Yokohama 230-8504, Japan; (M.M.); (S.T.-S.); (S.M.); (Y.M.); (T.K.)
| | | | | | | | | | | |
Collapse
|
31
|
Leite CDS, Pires OC, Tenis DG, Ziegler JVN, Priolli DG, Rocha T. Effects of dipotassium glycyrrhizinate on wound healing. Acta Cir Bras 2021; 36:e360801. [PMID: 34644769 PMCID: PMC8516426 DOI: 10.1590/acb360801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/08/2021] [Indexed: 01/13/2023] Open
Abstract
PURPOSE Dipotassium glycyrrhizinate (DPG) has anti-inflammatory properties, besides promoting the regeneration of skeletal muscle. However, it has not been reported on skin wound healing/regeneration. This research aimed to characterize the effects of DPG in the treatment of excisional wounds by second intention. METHODS Male adults (n=10) and elderly (n=10) Wistar rats were used. Two circular wounds were excised on the dorsal skin. The excised normal skins were considered adult (GAN) and elderly (GIN) naïve. For seven days, 2% DPG was applied on the proximal excision: treated adult (GADPG) and elderly (GIDPG), whereas distal excisions were untreated adult (GANT) and elderly (GINT). Wound healing areas were daily measured and removed for morphological analyses after the 14th and the 21st postoperative day. Slides were stained with hematoxylin-eosin, Masson's trichrome, and picrosirius red. RESULTS Histological analysis revealed intact (GAN/GIN) and regenerated(GANT/GINT/GADPG/GIDPG) skins. No differences of wounds' size were found among treated groups. Epidermis was thicker after 14 days and thinner after 21 days of DPG administration. Higher collagen I density was found in GIDPG (14th day) and GADPG (21st day). CONCLUSIONS DPG induced woundhealing/skin regeneration, with collagen I, being more effective in the first 14 days after injury.
Collapse
|
32
|
Abstract
Hydrogels, due to their excellent biochemical and mechnical property, have shown attractive advantages in the field of wound dressings. However, a comprehensive review of the functional hydrogel as a wound dressing is still lacking. This work first summarizes the skin wound healing process and relates evaluation parameters and then reviews the advanced functions of hydrogel dressings such as antimicrobial property, adhesion and hemostasis, anti-inflammatory and anti-oxidation, substance delivery, self-healing, stimulus response, conductivity, and the recently emerged wound monitoring feature, and the strategies adopted to achieve these functions are all classified and discussed. Furthermore, applications of hydrogel wound dressing for the treatment of different types of wounds such as incisional wound and the excisional wound are summarized. Chronic wounds are also mentioned, and the focus of attention on infected wounds, burn wounds, and diabetic wounds is discussed. Finally, the future directions of hydrogel wound dressings for wound healing are further proposed.
Collapse
Affiliation(s)
- Yongping Liang
- Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiahui He
- Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Baolin Guo
- Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
33
|
Aryunisari CG, Putra IB, Jusuf NK. Effect of Purple Passion Fruit Extract Cream (Passiflora edulis Sims var. Edulis) 6% against Striae Distensae. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
ABSTRACT
Background: Striae distensae is a skin disorder that causes cosmetic and psychological problems. Purple passion fruit (Passiflora edulis Sims var. Edulis) is widely cultivated, especially in North Sumatra. The seeds are abundant and unused industrial waste. Purple passion fruit seeds contain piceatannol, ascorbic acid, flavonoids, resveratrol, hydroalcohols and sterols which play a role in the repair of striae distensae through anti-inflammatory mechanisms, increase fibroblast proliferation and collagen production, increase crosslinking between collagen fibers and moisturizers.
Objective: To determine the effect of 6% purple passion fruit (Passiflora edulis Sims var. Edulis) seed extract cream on striae distensae.
Subjects and Methods: This study is a pre-experimental clinical trial with a pretest-posttest research design on 40 subjects with striae distensae. Diagnosis was confirmed by history and clinical evaluation using the Manchester scar scale before and after administration of 6% purple passion fruit extract cream at weeks 0, 2, 4, 6, 8. Adverse effects were recorded during the study and satisfaction levels were assessed at the end.
Results: The majority of subjects' ages ranged from 29 to 39 years (72.5%). There was a significant reduction in Manchester scar scale in striae distensae, both after being given a 6% purple passion fruit extract cream or a combination of 1% tretinoin cream for 8 weeks, with a mean reduction of 25% (p = 0.000). Striae distensae after being given 6% purple passion fruit extract cream compared to 6% purple passion fruit extract cream combined with 1% tretinoin cream, there was no significant difference (p = 0.791). From a total of 40 subjects, none experienced side effects (0%). As many as 57.5% of the subjects showed a good level of satisfaction.
Conclusion: The use of 6% purple passion fruit seed extract cream can improve the appearance of striae distensae without side effects and the level of satisfaction is good.
Collapse
|
34
|
Mokgehle TM, Madala N, Gitari WM, Tavengwa NT. Advances in the development of biopolymeric adsorbents for the extraction of metabolites from nutraceuticals with emphasis on Solanaceae and subsequent pharmacological applications. Carbohydr Polym 2021; 264:118049. [PMID: 33910751 DOI: 10.1016/j.carbpol.2021.118049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 12/17/2022]
Abstract
Biopolymers are renowned for their sustainable, biodegradable, biocompatible and most of them have antitoxic characteristics. These versatile naturally derived compounds include proteins, polynucleotides (RNA and DNA) and polysaccharides. Cellulose and chitosan are the most abundant polysaccharides. Proteins and polysaccharides have been applied as emulsifiers. Additional applications of proteins and polysaccharides include cosmetics, food and wastewater treatment for adsorption of dyes and pesticides. However, more interesting applications of biopolymers are emerging, such as use in transport systems for delivery of plant derived nutraceuticals to sites of inflammation, due to its inherent ability to immobilize different biological and chemical systems. This review aims to give a summary on new trends and complement what is already known in the development of polysaccharides and proteins as adsorbents of nutraceutical compounds. The application of polysaccharides/protein containing the adsorbed Solanum derived nutraceutical compounds for drug deliveryis also reviewed.
Collapse
Affiliation(s)
- Tebogo Mphatlalala Mokgehle
- Department of Chemistry, School of Mathematical and Natural Sciences, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
| | - Ntakadzeni Madala
- Department of Biochemistry, School of Mathematical and Natural Sciences, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
| | - Wilson Mugera Gitari
- Department of Ecology and Resource Management, School of Environmental Sciences, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
| | - Nikita Tawanda Tavengwa
- Department of Chemistry, School of Mathematical and Natural Sciences, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa.
| |
Collapse
|
35
|
Qian B, Li J, Guo K, Guo N, Zhong A, Yang J, Wang J, Xiao P, Sun J, Xiong L. Antioxidant biocompatible composite collagen dressing for diabetic wound healing in rat model. Regen Biomater 2021; 8:rbab003. [PMID: 33738117 PMCID: PMC7955720 DOI: 10.1093/rb/rbab003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022] Open
Abstract
Associated with persistent oxidative stress, altered inflammatory responses, poor angiogenesis and epithelization, wound healing in diabetic patients is impaired. N-acetylcysteine (NAC) is reported to resist excess reactive oxygen species (ROS) production, prompt angiogenesis and maturation of the epidermis. Studies have revealed that graphene oxide (GO) can regulate cellular behavior and form cross-links with naturally biodegradable polymers such as collagen (COL) to construct composite scaffolds. Here, we reported a COL-based implantable scaffold containing a mixture of GO capable of the sustained delivery of NAC to evaluate the wound healing in diabetic rats. The morphological, physical characteristics, biocompatibility and NAC release profile of the GO-COL-NAC (GCN) scaffold were evaluated in vitro. Wound healing studies were performed on a 20 mm dorsal full-skin defect of streptozotocin (STZ)-induced diabetic rats. The injured skin tissue was removed at the 18th day post-surgery for histological analysis and determination of glutathione peroxidase (GPx), catalase (CAT) and superoxide dismutase (SOD) activity. In diabetic rats, we confirmed that the GCN scaffold presented a beneficial effect in enhancing the wound healing process. Additionally, due to the sustained release of NAC, the scaffold may potentially induce the antioxidant defense system, upregulating the expression levels of the antioxidant enzymes in the wound tissue. The findings revealed that the antioxidant biocompatible composite collagen dressing could not only deliver NAC in situ for ROS inhibition but also promote the wound healing process. This scaffold with valuable therapy potential might enrich the approaches for surgeon in diabetic wound treatment in the future.
Collapse
Affiliation(s)
- Bei Qian
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan 430022, China
| | - Jialun Li
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan 430022, China
| | - Ke Guo
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan 430022, China
| | - Nengqiang Guo
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan 430022, China
| | - Aimei Zhong
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan 430022, China
| | - Jie Yang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan 430022, China
| | - Jiecong Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan 430022, China
| | - Peng Xiao
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan 430022, China
| | - Jiaming Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan 430022, China
| | - Lingyun Xiong
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan 430022, China
| |
Collapse
|
36
|
Versatile Use of Chitosan and Hyaluronan in Medicine. Molecules 2021; 26:molecules26041195. [PMID: 33672365 PMCID: PMC7926841 DOI: 10.3390/molecules26041195] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 12/22/2022] Open
Abstract
Chitosan is industrially acquired by the alkaline N-deacetylation of chitin. Chitin belongs to the β-N-acetyl-glucosamine polymers, providing structure, contrary to α-polymers, which provide food and energy. Another β-polymer providing structure is hyaluronan. A lot of studies have been performed on chitosan to explore its industrial use. Since chitosan is biodegradable, non-toxic, bacteriostatic, and fungistatic, it has numerous applications in medicine. Hyaluronan, one of the major structural components of the extracellular matrix in vertebrate tissues, is broadly exploited in medicine as well. This review summarizes the main areas where these two biopolymers have an impact. The reviewed areas mostly cover most medical applications, along with non-medical applications, such as cosmetics.
Collapse
|
37
|
Alven S, Aderibigbe BA. Chitosan and Cellulose-Based Hydrogels for Wound Management. Int J Mol Sci 2020; 21:E9656. [PMID: 33352826 PMCID: PMC7767230 DOI: 10.3390/ijms21249656] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/23/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023] Open
Abstract
Wound management remains a challenge worldwide, although there are several developed wound dressing materials for the management of acute and chronic wounds. The wound dressings that are currently used include hydrogels, films, wafers, nanofibers, foams, topical formulations, transdermal patches, sponges, and bandages. Hydrogels exhibit unique features which make them suitable wound dressings such as providing a moist environment for wound healing, exhibiting high moisture content, or creating a barrier against bacterial infections, and are suitable for the management of exuding and granulating wounds. Biopolymers have been utilized for their development due to their non-toxic, biodegradable, and biocompatible properties. Hydrogels have been prepared from biopolymers such as cellulose and chitosan by crosslinking with selected synthetic polymers resulting in improved mechanical, biological, and physicochemical properties. They were useful by accelerating wound re-epithelialization and also mimic skin structure, inducing skin regeneration. Loading antibacterial agents into them prevented bacterial invasion of wounds. This review article is focused on hydrogels formulated from two biopolymers-chitosan and cellulose-for improved wound management.
Collapse
Affiliation(s)
| | - Blessing Atim Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Eastern Cape 5700, South Africa;
| |
Collapse
|
38
|
Micale N, Citarella A, Molonia MS, Speciale A, Cimino F, Saija A, Cristani M. Hydrogels for the Delivery of Plant-Derived (Poly)Phenols. Molecules 2020; 25:E3254. [PMID: 32708833 PMCID: PMC7397257 DOI: 10.3390/molecules25143254] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Abstract
This review deals with hydrogels as soft and biocompatible vehicles for the delivery of plant-derived (poly)phenols, compounds with low general toxicity and an extraordinary and partially unexplored wide range of biological properties, whose use presents some major issues due to their poor bioavailability and water solubility. Hydrogels are composed of polymeric networks which are able to absorb large amounts of water or biological fluids while retaining their three-dimensional structure. Apart from this primary swelling capacity, hydrogels may be easily tailored in their properties according to the chemical structure of the polymeric component in order to obtain smart delivery systems that can be responsive to various internal/external stimuli. The functionalization of the polymeric component of hydrogels may also be widely exploited to facilitate the incorporation of bioactive compounds with different physicochemical properties into the system. Several prototype hydrogel systems have been designed for effective polyphenol delivery and potential employment in the treatment of human diseases. Therefore, the inherent features of hydrogels have been the focus of considerable research efforts over the past few decades. Herein, we review the most recent advances in (poly)phenol-loaded hydrogels by analyzing them primarily from the therapeutic perspective and highlighting the innovative aspects in terms of design and chemistry.
Collapse
Affiliation(s)
| | | | | | | | | | - Antonella Saija
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy; (N.M.); (A.C.); (M.S.M.); (A.S.); (F.C.); (M.C.)
| | | |
Collapse
|
39
|
He X, Luan F, Yang Y, Wang Z, Zhao Z, Fang J, Wang M, Zuo M, Li Y. Passiflora edulis: An Insight Into Current Researches on Phytochemistry and Pharmacology. Front Pharmacol 2020; 11:617. [PMID: 32508631 PMCID: PMC7251050 DOI: 10.3389/fphar.2020.00617] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022] Open
Abstract
Passiflora edulis, also known as passion fruit, is widely distributed in tropical and subtropical areas of the world and becomes popular because of balanced nutrition and health benefits. Currently, more than 110 phytochemical constituents have been found and identified from the different plant parts of P. edulis in which flavonoids and triterpenoids held the biggest share. Various extracts, fruit juice and isolated compounds showed a wide range of health effects and biological activities such as antioxidant, anti-hypertensive, anti-tumor, antidiabetic, hypolipidemic activities, and so forth. Daily consumption of passion fruit at common doses is non-toxic and safe. P. edulis has great potential development and the vast future application for this economically important crop worldwide, and it is in great demand as a fresh product or a formula for food, health care products or medicines. This mini-review aims to provide systematically reorganized information on physiochemical features, nutritional benefits, biological activities, toxicity, and potential applications of leaves, stems, fruits, and peels of P. edulis.
Collapse
Affiliation(s)
- Xirui He
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Fei Luan
- Department of Pharmacology, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Yang
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Ze Wang
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Zefeng Zhao
- College of Life Sciences, Northwest University, Xi’an, China
| | - Jiacheng Fang
- College of Life Sciences, Northwest University, Xi’an, China
| | - Min Wang
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Manhua Zuo
- Department of Nursing, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Yongsheng Li
- Department of Pharmacy, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|