1
|
Yin W, Jiang Y, Ma G, Mbituyimana B, Xu J, Shi Z, Yang G, Chen H. A review: Carrier-based hydrogels containing bioactive molecules and stem cells for ischemic stroke therapy. Bioact Mater 2025; 49:39-62. [PMID: 40124600 PMCID: PMC11928985 DOI: 10.1016/j.bioactmat.2025.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/22/2024] [Accepted: 01/13/2025] [Indexed: 03/25/2025] Open
Abstract
Ischemic stroke (IS), a cerebrovascular disease, is the leading cause of physical disability and death worldwide. Tissue plasminogen activator (tPA) and thrombectomy are limited by a narrow therapeutic time window. Although strategies such as drug therapies and cellular therapies have been used in preclinical trials, some important issues in clinical translation have not been addressed: low stem cell survival and drug delivery limited by the blood-brain barrier (BBB). Among the therapeutic options currently sought, carrier-based hydrogels hold great promise for the repair and regeneration of neural tissue in the treatment of ischemic stroke. The advantage lies in the ability to deliver drugs and cells to designated parts of the brain in an injectable manner to enhance therapeutic efficacy. Here, this article provides an overview of the use of carrier-based hydrogels in ischemic stroke therapy and focuses on the use of hydrogel scaffolds containing bioactive molecules and stem cells. In addition to this, we provide a more in-depth summary of the composition, physicochemical properties and physiological functions of the materials themselves. Finally, we also outline the prospects and challenges for clinical translation of hydrogel therapy for IS.
Collapse
Affiliation(s)
- Wenqi Yin
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuchi Jiang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Guangrui Ma
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bricard Mbituyimana
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jia Xu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhijun Shi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hong Chen
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
2
|
El-Husseiny HM, Mady EA, Doghish AS, Zewail MB, Abdelfatah AM, Noshy M, Mohammed OA, El-Dakroury WA. Smart/stimuli-responsive chitosan/gelatin and other polymeric macromolecules natural hydrogels vs. synthetic hydrogels systems for brain tissue engineering: A state-of-the-art review. Int J Biol Macromol 2024; 260:129323. [PMID: 38242393 DOI: 10.1016/j.ijbiomac.2024.129323] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/21/2024]
Abstract
Currently, there are no viable curative treatments that can enhance the central nervous system's (CNS) recovery from trauma or illness. Bioengineered injectable smart/stimuli-responsive hydrogels (SSRHs) that mirror the intricacy of the CNS milieu and architecture have been suggested as a way to get around these restrictions in combination with medication and cell therapy. Additionally, the right biophysical and pharmacological stimuli are required to boost meaningful CNS regeneration. Recent research has focused heavily on developing SSRHs as cutting-edge delivery systems that can direct the regeneration of brain tissue. In the present article, we have discussed the pathology of brain injuries, and the applicable strategies employed to regenerate the brain tissues. Moreover, the most promising SSRHs for neural tissue engineering (TE) including alginate (Alg.), hyaluronic acid (HA), chitosan (CH), gelatin, and collagen are used in natural polymer-based hydrogels and thoroughly discussed in this review. The ability of these hydrogels to distribute bioactive substances or cells in response to internal and external stimuli is highlighted with particular attention. In addition, this article provides a summary of the most cutting-edge techniques for CNS recovery employing SSRHs for several neurodegenerative diseases.
Collapse
Affiliation(s)
- Hussein M El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt.
| | - Eman A Mady
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Animal Hygiene, Behavior and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Department of Biochemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt.
| | - Moataz B Zewail
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Amr M Abdelfatah
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mina Noshy
- Clinical Pharmacy Department, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Ras Sudr 46612, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| |
Collapse
|
3
|
Giorgi Z, Veneruso V, Petillo E, Veglianese P, Perale G, Rossi F. Biomaterials and Cell Therapy Combination in Central Nervous System Treatments. ACS APPLIED BIO MATERIALS 2024; 7:80-98. [PMID: 38158393 PMCID: PMC10792669 DOI: 10.1021/acsabm.3c01058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Current pharmacological and surgical therapies for the central nervous system (CNS) show a limited capacity to reduce the damage progression; that together with the intrinsic limited capability of the CNS to regenerate greatly reduces the hopes of recovery. Among all the therapies proposed, the tissue engineering strategies supplemented with therapeutic stem cells remain the most promising. Neural tissue engineering strategies are based on the development of devices presenting optimal physical, chemical, and mechanical properties which, once inserted in the injured site, can support therapeutic cells, limiting the effect of a hostile environment and supporting regenerative processes. Thus, this review focuses on the employment of hydrogel and nanofibrous scaffolds supplemented with stem cells as promising therapeutic tools for the central and peripheral nervous systems in preclinical and clinical applications.
Collapse
Affiliation(s)
- Zoe Giorgi
- Department
of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Valeria Veneruso
- Istituto
di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
- Faculty
of Biomedical Sciences, University of Southern
Switzerland (USI), Via
Buffi 13, 6900 Lugano, Switzerland
| | - Emilia Petillo
- Department
of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133, Milan, Italy
- Istituto
di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Pietro Veglianese
- Istituto
di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
- Faculty
of Biomedical Sciences, University of Southern
Switzerland (USI), Via
Buffi 13, 6900 Lugano, Switzerland
| | - Giuseppe Perale
- Faculty
of Biomedical Sciences, University of Southern
Switzerland (USI), Via
Buffi 13, 6900 Lugano, Switzerland
- Ludwig
Boltzmann Institute for Experimental and Clinical Traumatology, Donaueschingenstrasse 13, 1200 Vienna, Austria
| | - Filippo Rossi
- Department
of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133, Milan, Italy
- Faculty
of Biomedical Sciences, University of Southern
Switzerland (USI), Via
Buffi 13, 6900 Lugano, Switzerland
| |
Collapse
|
4
|
Bongiovanni Abel S, Busatto CA, Karp F, Estenoz D, Calderón M. Weaving the next generation of (bio)materials: Semi-interpenetrated and interpenetrated polymeric networks for biomedical applications. Adv Colloid Interface Sci 2023; 321:103026. [PMID: 39491440 DOI: 10.1016/j.cis.2023.103026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/01/2023] [Accepted: 10/12/2023] [Indexed: 11/05/2024]
Abstract
Advances in polymer science have led to the development of semi-interpenetrated and interpenetrated networks (SIPN/IPN). The interpenetration procedure allows enhancing several important properties of a polymeric material, including mechanical properties, swelling capability, stimulus-sensitive response, and biological performance, among others. More interestingly, the interpenetration (or semi-interpenetration) can be achieved independent of the material size, that is at the macroscopic, microscopic, or nanometric scale. SIPN/IPN have been used for a wide range of applications, especially in the biomedical field, including tissue engineering, delivery of chemical compounds or biological macromolecules, and multifunctional systems as theragnostic platforms. In the last years, this fascinating field has gained a great interest in the area of polymers for therapeutics; therefore, a comprehensive revision of the topic is timely. In this review, we describe in detail the most relevant synthetic approaches to fabricate polymeric IPN and SIPN, ranging from nanoscale to macroscale. The advantages of typical synthetic methods are analyzed, as well as novel and promising trends in the field of advanced material fabrication. Furthermore, the characterization techniques employed for these materials are summarized from physicochemical, thermal, mechanical, and biological perspectives. The applications of novel (semi-)interpenetrated structures are discussed with a focus on drug delivery, tissue engineering, and regenerative medicine, as well as combinations thereof.
Collapse
Affiliation(s)
- Silvestre Bongiovanni Abel
- Biomedical Polymers Division, INTEMA (National University of Mar del Plata-CONICET), Av. Colón 10850, Mar del Plata 7600, Argentina; POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country, UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Carlos A Busatto
- Group of Polymers and Polymerization Reactors, INTEC (National University of Litoral-CONICET), Güemes 3450, Santa Fe 3000, Argentina
| | - Federico Karp
- Group of Polymeric Nanomaterials, INIFTA (National University of La Plata-CONICET), Diagonal 113, La Plata 1900, Argentina
| | - Diana Estenoz
- Group of Polymers and Polymerization Reactors, INTEC (National University of Litoral-CONICET), Güemes 3450, Santa Fe 3000, Argentina
| | - Marcelo Calderón
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country, UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain.
| |
Collapse
|
5
|
Mozhdehbakhsh Mofrad Y, Shamloo A. The effect of conductive aligned fibers in an injectable hydrogel on nerve tissue regeneration. Int J Pharm 2023; 645:123419. [PMID: 37717716 DOI: 10.1016/j.ijpharm.2023.123419] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Injectable hydrogels are a promising treatment option for nervous system injuries due to the difficulty to replace lost cells and nervous factors but research on injectable conductive hydrogels is limited and these scaffolds have poor electromechanical properties. This study developed a chitosan/beta-glycerophosphate/salt hydrogel and added conductive aligned nanofibers (polycaprolactone/gelatin/single-wall carbon nanotube (SWCNT)) for the first time and inspired by natural nerve tissue to improve their biochemical and biophysical properties. The results showed that the degradation rate of hydrogels is proportional to the regrowth of axons and these hydrogels' mechanical (hydrogels without nanofibers or SWCNTs and hydrogels containing these additions have the same Young's modulus as the brain and spinal cord or peripheral nerves, respectively) and electrical properties, and the interconnective structure of the scaffolds have the ability to support cells.
Collapse
Affiliation(s)
- Yasaman Mozhdehbakhsh Mofrad
- Nano-Bio Engineering Lab, School of Mechanical Engineering, Sharif University of Technology, Tehran 11155-9161, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran
| | - Amir Shamloo
- Nano-Bio Engineering Lab, School of Mechanical Engineering, Sharif University of Technology, Tehran 11155-9161, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran.
| |
Collapse
|
6
|
Zhao W, Tu H, Chen J, Wang J, Liu H, Zhang F, Li J. Functionalized hydrogels in neural injury repairing. Front Neurosci 2023; 17:1199299. [PMID: 37404462 PMCID: PMC10315583 DOI: 10.3389/fnins.2023.1199299] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/27/2023] [Indexed: 07/06/2023] Open
Abstract
Repairing injuries to the nervous system has always been a prominent topic in clinical research. Direct suturing and nerve displacement surgery are the primary treatment options, but they may not be suitable for long nerve injuries and may require sacrificing the functionality of other autologous nerves. With the emergence of tissue engineering, hydrogel materials have been identified as a promising technology with clinical translation potential for repairing nervous system injuries due to their excellent biocompatibility and ability to release or deliver functional ions. By controlling their composition and structure, hydrogels can be Functionalized and almost fully matched with nerve tissue and even simulate nerve conduction function and mechanical properties. Thus, they are suitable for repairing injuries to both the central and peripheral nervous systems. This article provides a review of recent research progress in functionalized hydrogels for nerve injury repair, highlighting the design differences among various materials and future research directions. We strongly believe that the development of functionalized hydrogels has great potential for improving the clinical treatment of nerve injuries.
Collapse
Affiliation(s)
- Wenqian Zhao
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Hui Tu
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Jianxiao Chen
- Department of Nephrology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Jing Wang
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Haoting Liu
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Fengshou Zhang
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Jing Li
- Office of Science and Technology, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
7
|
Tanikawa S, Ebisu Y, Sedlačík T, Semba S, Nonoyama T, Kurokawa T, Hirota A, Takahashi T, Yamaguchi K, Imajo M, Kato H, Nishimura T, Tanei ZI, Tsuda M, Nemoto T, Gong JP, Tanaka S. Engineering of an electrically charged hydrogel implanted into a traumatic brain injury model for stepwise neuronal tissue reconstruction. Sci Rep 2023; 13:2233. [PMID: 36788295 PMCID: PMC9929269 DOI: 10.1038/s41598-023-28870-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 01/25/2023] [Indexed: 02/16/2023] Open
Abstract
Neural regeneration is extremely difficult to achieve. In traumatic brain injuries, the loss of brain parenchyma volume hinders neural regeneration. In this study, neuronal tissue engineering was performed by using electrically charged hydrogels composed of cationic and anionic monomers in a 1:1 ratio (C1A1 hydrogel), which served as an effective scaffold for the attachment of neural stem cells (NSCs). In the 3D environment of porous C1A1 hydrogels engineered by the cryogelation technique, NSCs differentiated into neuroglial cells. The C1A1 porous hydrogel was implanted into brain defects in a mouse traumatic damage model. The VEGF-immersed C1A1 porous hydrogel promoted host-derived vascular network formation together with the infiltration of macrophages/microglia and astrocytes into the gel. Furthermore, the stepwise transplantation of GFP-labeled NSCs supported differentiation towards glial and neuronal cells. Therefore, this two-step method for neural regeneration may become a new approach for therapeutic brain tissue reconstruction after brain damage in the future.
Collapse
Affiliation(s)
- Satoshi Tanikawa
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15, W7, Sapporo, 060-8638, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21, W10, Sapporo, 001-0021, Japan
| | - Yuki Ebisu
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15, W7, Sapporo, 060-8638, Japan
| | - Tomáš Sedlačík
- Faculty of Advanced Life Science, Hokkaido University, N21, W11, Sapporo, 001-0021, Japan
| | - Shingo Semba
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15, W7, Sapporo, 060-8638, Japan
| | - Takayuki Nonoyama
- Faculty of Advanced Life Science, Hokkaido University, N21, W11, Sapporo, 001-0021, Japan
| | - Takayuki Kurokawa
- Faculty of Advanced Life Science, Hokkaido University, N21, W11, Sapporo, 001-0021, Japan
| | - Akira Hirota
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21, W10, Sapporo, 001-0021, Japan
| | - Taiga Takahashi
- Research Institute for Electronic Science, Hokkaido University, N21, W11, Sapporo, 001-0021, Japan.,Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS) and National Institute for Physiological Sciences, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Kazushi Yamaguchi
- Research Institute for Electronic Science, Hokkaido University, N21, W11, Sapporo, 001-0021, Japan.,Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS) and National Institute for Physiological Sciences, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Masamichi Imajo
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21, W10, Sapporo, 001-0021, Japan
| | - Hinako Kato
- Graduate School of Life Science, Hokkaido University, N21, W11, Sapporo, Japan, 001-0021
| | - Takuya Nishimura
- Graduate School of Life Science, Hokkaido University, N21, W11, Sapporo, Japan, 001-0021
| | - Zen-Ichi Tanei
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15, W7, Sapporo, 060-8638, Japan
| | - Masumi Tsuda
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15, W7, Sapporo, 060-8638, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21, W10, Sapporo, 001-0021, Japan.,Research Institute for Electronic Science, Hokkaido University, N21, W11, Sapporo, 001-0021, Japan
| | - Tomomi Nemoto
- Research Institute for Electronic Science, Hokkaido University, N21, W11, Sapporo, 001-0021, Japan.,Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS) and National Institute for Physiological Sciences, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Jian Ping Gong
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21, W10, Sapporo, 001-0021, Japan.,Faculty of Advanced Life Science, Hokkaido University, N21, W11, Sapporo, 001-0021, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, N15, W7, Sapporo, 060-8638, Japan. .,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21, W10, Sapporo, 001-0021, Japan.
| |
Collapse
|
8
|
Dalir Abdolahinia E, Safari Z, Sadat Kachouei SS, Zabeti Jahromi R, Atashkar N, Karbalaeihasanesfahani A, Alipour M, Hashemzadeh N, Sharifi S, Maleki Dizaj S. Cell homing strategy as a promising approach to the vitality of pulp-dentin complexes in endodontic therapy: focus on potential biomaterials. Expert Opin Biol Ther 2022; 22:1405-1416. [PMID: 36345819 DOI: 10.1080/14712598.2022.2142466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Elaheh Dalir Abdolahinia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Safari
- Faculty of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Nastaran Atashkar
- Department of Orthodontics, Faculty of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Mahdieh Alipour
- Center for Craniofacial Regeneration, Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, United States
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nastaran Hashemzadeh
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Dental Biomaterials, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Ahmed YM, Orfali R, Hamad DS, Rateb ME, Farouk HO. Sustainable Release of Propranolol Hydrochloride Laden with Biconjugated-Ufasomes Chitosan Hydrogel Attenuates Cisplatin-Induced Sciatic Nerve Damage in In Vitro/In Vivo Evaluation. Pharmaceutics 2022; 14:1536. [PMID: 35893792 PMCID: PMC9394333 DOI: 10.3390/pharmaceutics14081536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 12/04/2022] Open
Abstract
Peripheral nerve injuries significantly impact patients' quality of life and poor functional recovery. Chitosan-ufasomes (CTS-UFAs) exhibit biomimetic features, making them a viable choice for developing novel transdermal delivery for neural repair. This study aimed to investigate the role of CTS-UFAs loaded with the propranolol HCl (PRO) as a model drug in enhancing sciatica in cisplatin-induced sciatic nerve damage in rats. Hence, PRO-UFAs were primed, embedding either span 20 or 60 together with oleic acid and cholesterol using a thin-film hydration process based on full factorial design (24). The influence of formulation factors on UFAs' physicochemical characteristics and the optimum formulation selection were investigated using Design-Expert® software. Based on the optimal UFA formulation, PRO-CTS-UFAs were constructed and characterized using transmission electron microscopy, stability studies, and ex vivo permeation. In vivo trials on rats with a sciatic nerve injury tested the efficacy of PRO-CTS-UFA and PRO-UFA transdermal hydrogels, PRO solution, compared to normal rats. Additionally, oxidative stress and specific apoptotic biomarkers were assessed, supported by a sciatic nerve histopathological study. PRO-UFAs and PRO-CTS-UFAs disclosed entrapment efficiency of 82.72 ± 2.33% and 85.32 ± 2.65%, a particle size of 317.22 ± 6.43 and 336.12 ± 4.9 nm, ζ potential of -62.06 ± 0.07 and 65.24 ± 0.10 mV, and accumulatively released 70.95 ± 8.14% and 64.03 ± 1.9% PRO within 6 h, respectively. Moreover, PRO-CTS-UFAs significantly restored sciatic nerve structure, inhibited the cisplatin-dependent increase in peripheral myelin 22 gene expression and MDA levels, and further re-established sciatic nerve GSH and CAT content. Furthermore, they elicited MBP re-expression, BCL-2 mild expression, and inhibited TNF-α expression. Briefly, our findings proposed that CTS-UFAs are promising to enhance PRO transdermal delivery to manage sciatic nerve damage.
Collapse
Affiliation(s)
- Yasmin M. Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt;
| | - Raha Orfali
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Doaa S. Hamad
- Department of Pharmaceutics, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt; (D.S.H.); (H.O.F.)
| | - Mostafa E. Rateb
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Hanan O. Farouk
- Department of Pharmaceutics, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt; (D.S.H.); (H.O.F.)
| |
Collapse
|
10
|
Ehtermi A, Rezaei kolarijani N, Nazarnezhad S, Alizadeh M, Masoudi A, Salehi M. Peripheral nerve regeneration by thiolated chitosan hydrogel containing Taurine: In vitro and in vivo study. J BIOACT COMPAT POL 2022. [DOI: 10.1177/08839115221085736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
About 2.8% of trauma sick persons hurt from peripheral nerve damages, thus, numerous approaches are using to improve peripheral nerve regeneration. In the current study, the efficacy of several dosages of Taurine for peripheral nerve regeneration was evaluated. About 0.1%, 1%, and 10% (w/w) of Taurine were added into thiolated chitosan hydrogel and its features including morphology, swelling properties, weight loss, hemo-, and cytocompatibility were assessed. Hydrogels’ functionality was evaluated by injecting them into the crushed sciatic nerve of rats by using walking-foot-print analysis, Hot plate latency test, gastrocnemius muscle wet weight loss, and histopathological evaluation. Results demonstrated that the average pore size is in the area of 30–40 μm with interconnected pores and their weight loss was around 70% after 7 days. Results of blood compatibility and the MTT tests confirmed the biocompatibility of hydrogels. In vivo study illustrate thiolated Chitosan/Taurine hydrogels especially hydrogel includes 1% of Taurine enhanced sciatic nerve regeneration. In conclusion, Taurine can be used as a feasible treatment for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Arian Ehtermi
- Department of Mechanical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nariman Rezaei kolarijani
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Simin Nazarnezhad
- Tissue Engineering Research Group, Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Alireza Masoudi
- Department of Pharmacology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
- Sexual Health and Fertility Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
11
|
Bioactive injectable hydrogels for on demand molecule/cell delivery and for tissue regeneration in the central nervous system. Acta Biomater 2022; 140:88-101. [PMID: 34852302 DOI: 10.1016/j.actbio.2021.11.038] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/21/2022]
Abstract
Currently there are no potential curative therapies that can improve the central nervous system (CNS) regeneration after traumatic injuries or diseases. Indeed, the regeneration of CNS is greatly impaired by limited drug penetration across the blood brain barrier (BBB), poor drug targeting, deficient progenitor neural cells and limited proliferation of mature neural cells. To overcome these limitations, bioengineered injectable hydrogels in combination with drug and cell therapy have been proposed to mimic the complexity of the CNS microenvironment and architecture. Additionally, to enhance relevant CNS regeneration, proper biophysical and biochemical cues are needed. Recently, great efforts have been devoted to tailor stimuli-responsive hydrogels as novel carrier systems which are able to guide neural tissue regeneration. This review provides an extensive overview on the most promising injectable hydrogels for neural tissue engineering. A special emphasis is made to highlight the ability of these hydrogels to deliver bioactive compounds/cells upon the exposure to internal and external stimuli. Bioactive injectable hydrogels have a broad application in central nervous system's (CNS) regeneration. This review gives an overview of the latest pioneering approaches in CNS recovery using stimuli-responsive hydrogels for several neurodegenerative disorders. STATEMENT OF SIGNIFICANCE: This review summarizes the latest innovations on bioactive injectable hydrogels, focusing on tailoring internal/external stimuli-responsive hydrogels for the new injectable systems design, able to guide neural tissue response. The purpose is to highlight the advantages and the limitations of thermo-responsive, photo responsive, magnetic responsive, electric responsive, ultrasound responsive and enzymes-triggered injectable hydrogels in developing customizable neurotherapies. We believe that this comprehensive review will help in identifying the strengths and gaps in the existing literature and to further support the use of injectable hydrogels in stimulating CNS regeneration.
Collapse
|
12
|
Sang S, Cheng R, Cao Y, Yan Y, Shen Z, Zhao Y, Han Y. Biocompatible chitosan/polyethylene glycol/multi-walled carbon nanotube composite scaffolds for neural tissue engineering. J Zhejiang Univ Sci B 2022; 23:58-73. [PMID: 35029088 PMCID: PMC8758934 DOI: 10.1631/jzus.b2100155] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/03/2021] [Indexed: 12/26/2022]
Abstract
Carbon nanotube (CNT) composite materials are very attractive for use in neural tissue engineering and biosensor coatings. CNT scaffolds are excellent mimics of extracellular matrix due to their hydrophilicity, viscosity, and biocompatibility. CNTs can also impart conductivity to other insulating materials, improve mechanical stability, guide neuronal cell behavior, and trigger axon regeneration. The performance of chitosan (CS)/polyethylene glycol (PEG) composite scaffolds could be optimized by introducing multi-walled CNTs (MWCNTs). CS/PEG/CNT composite scaffolds with CNT content of 1%, 3%, and 5% (1%=0.01 g/mL) were prepared by freeze-drying. Their physical and chemical properties and biocompatibility were evaluated. Scanning electron microscopy (SEM) showed that the composite scaffolds had a highly connected porous structure. Transmission electron microscope (TEM) and Raman spectroscopy proved that the CNTs were well dispersed in the CS/PEG matrix and combined with the CS/PEG nanofiber bundles. MWCNTs enhanced the elastic modulus of the scaffold. The porosity of the scaffolds ranged from 83% to 96%. They reached a stable water swelling state within 24 h, and swelling decreased with increasing MWCNT concentration. The electrical conductivity and cell adhesion rate of the scaffolds increased with increasing MWCNT content. Immunofluorescence showed that rat pheochromocytoma (PC12) cells grown in the scaffolds had characteristics similar to nerve cells. We measured changes in the expression of nerve cell markers by quantitative real-time polymerase chain reaction (qRT-PCR), and found that PC12 cells cultured in the scaffolds expressed growth-associated protein 43 (GAP43), nerve growth factor receptor (NGFR), and class III β-tubulin (TUBB3) proteins. Preliminary research showed that the prepared CS/PEG/CNT scaffold has good biocompatibility and can be further applied to neural tissue engineering research.
Collapse
Affiliation(s)
- Shengbo Sang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China.
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Rong Cheng
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yanyan Cao
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
- College of Information Science and Engineering, Hebei North University, Zhangjiakou 075000, China
| | - Yayun Yan
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zhizhong Shen
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi Six-Dimensional Artificial Intelligence Biomedical Research Institute, Taiyuan 030031, China
| | - Yajing Zhao
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yanqing Han
- Department of Neurology, Shanxi Provincial Cardiovascular Hospital, Taiyuan 030024, China
| |
Collapse
|
13
|
Rouleau N, Cairns DM, Rusk W, Levin M, Kaplan DL. Learning and synaptic plasticity in 3D bioengineered neural tissues. Neurosci Lett 2021; 750:135799. [PMID: 33675883 PMCID: PMC7994196 DOI: 10.1016/j.neulet.2021.135799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/20/2021] [Accepted: 02/28/2021] [Indexed: 11/29/2022]
Abstract
Though neuroscientists have historically relied upon measurement of established nervous systems, contemporary advances in bioengineering have made it possible to design and build artificial neural tissues with which to investigate normative and diseased states [1-5] however, their potential to display features of learning and memory remains unexplored. Here, we demonstrate response patterns characteristic of habituation, a form of non-associative learning, in 3D bioengineered neural tissues exposed to repetitive injections of current to elicit evoked-potentials (EPs). A return of the evoked response following rest indicated learning was transient and partially reversible. Applying patterned current as massed or distributed pulse trains induced differential expression of immediate early genes (IEG) that are known to facilitate synaptic plasticity and participate in memory formation [6,7]. Our findings represent the first demonstration of a learning response in a bioengineered neural tissue in vitro.
Collapse
Affiliation(s)
- Nicolas Rouleau
- Department of Biomedical Engineering, Tufts University, United States; The Allen Discovery Center, Tufts University, United States; Initiative for Neural Science, Disease, and Engineering (INSciDE), Tufts University, United States.
| | - Dana M Cairns
- Department of Biomedical Engineering, Tufts University, United States; The Allen Discovery Center, Tufts University, United States; Initiative for Neural Science, Disease, and Engineering (INSciDE), Tufts University, United States.
| | - William Rusk
- Department of Biomedical Engineering, Tufts University, United States.
| | - Michael Levin
- Department of Biomedical Engineering, Tufts University, United States; The Allen Discovery Center, Tufts University, United States; Department of Biology, Tufts University, United States.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, United States; The Allen Discovery Center, Tufts University, United States; Initiative for Neural Science, Disease, and Engineering (INSciDE), Tufts University, United States.
| |
Collapse
|
14
|
Rouleau N, Murugan NJ, Kaplan DL. Toward Studying Cognition in a Dish. Trends Cogn Sci 2021; 25:294-304. [PMID: 33546973 PMCID: PMC7946736 DOI: 10.1016/j.tics.2021.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 12/31/2022]
Abstract
Bioengineered neural tissues help advance our understanding of neurodevelopment, regeneration, and neural disease; however, it remains unclear whether they can replicate higher-order functions including cognition. Building upon technical achievements in the fields of biomaterials, tissue engineering, and cell biology, investigators have generated an assortment of artificial brain structures and cocultured circuits. Though they have displayed basic electrochemical signaling, their capacities to generate minimal patterns of information processing suggestive of high-order cognitive analogues have not yet been explored. Here, we review the current state of neural tissue engineering and consider the possibility of a study of cognition in vitro. We adopt a practical definition of minimal cognition, anticipate problems of measurement, and discuss solutions toward a study of cognition in a dish.
Collapse
Affiliation(s)
- Nicolas Rouleau
- Department of Psychology, Algoma University, 1520 Queen Street East, Sault Ste. Marie, Ontario, Canada, P6A 2G4; Department of Biomedical Engineering, Tufts University, Science and Technology Center, 4 Colby Street, Medford, MA 02155, USA
| | - Nirosha J Murugan
- Department of Biology, Algoma University, 1520 Queen Street East, Sault Ste. Marie, Ontario, Canada, P6A 2G4
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Science and Technology Center, 4 Colby Street, Medford, MA 02155, USA.
| |
Collapse
|
15
|
Li XH, Zhu X, Liu XY, Xu HH, Jiang W, Wang JJ, Chen F, Zhang S, Li RX, Chen XY, Tu Y. The corticospinal tract structure of collagen/silk fibroin scaffold implants using 3D printing promotes functional recovery after complete spinal cord transection in rats. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:31. [PMID: 33751254 PMCID: PMC7985105 DOI: 10.1007/s10856-021-06500-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
No effective treatment has been established for nerve dysfunction caused by spinal cord injury (SCI). Orderly axonal growth at the site of spinal cord transection and creation of an appropriate biological microenvironment are important for functional recovery. To axially guiding axonal growth, designing a collagen/silk fibroin scaffold fabricated with 3D printing technology (3D-C/SF) emulated the corticospinal tract. The normal collagen/silk fibroin scaffold with freeze-drying technology (C/SF) or 3D-C/SF scaffold were implanted into rats with completely transected SCI to evaluate its effect on nerve repair during an 8-week observation period. Electrophysiological analysis and locomotor performance showed that the 3D-C/SF implants contributed to significant improvements in the neurogolical function of rats compared to C/SF group. By magnetic resonance imaging, 3D-C/SF implants promoted a striking degree of axonal regeneration and connection between the proximal and distal SCI sites. Compared with C/SF group, rats with 3D-C/SF scaffold exhibited fewer lesions and disordered structures in histological analysis and more GAP43-positive profiles at the lesion site. The above results indicated that the corticospinal tract structure of 3D printing collagen/silk fibroin scaffold improved axonal regeneration and promoted orderly connections within the neural network, which could provided a promising and innovative approach for tissue repair after SCI.
Collapse
Affiliation(s)
- Xiao-Hong Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Xiang Zhu
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin, 300162, China
- Henan provincial people's hospital of southeast branch, Zhu ma dian, 463500, China
| | - Xiao-Yin Liu
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin, 300162, China
- Tianjin Medical University, Tianjin, 300070, China
| | - Hai-Huan Xu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin, 300162, China
| | - Wei Jiang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Jing-Jing Wang
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin, 300162, China
| | - Feng Chen
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin, 300162, China
| | - Sai Zhang
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin, 300162, China
- Emergency Medical Center, Beijing Chaoyang Integrative medicine, Beijing, 100191, China
| | - Rui-Xin Li
- Central Laboratory, Tianjin Stomatological Hospital, Tianjin, 300041, China.
| | - Xu-Yi Chen
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin, 300162, China.
| | - Yue Tu
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin, 300162, China.
- Emergency Medical Center, Beijing Chaoyang Integrative medicine, Beijing, 100191, China.
| |
Collapse
|
16
|
Jarrin S, Cabré S, Dowd E. The potential of biomaterials for central nervous system cellular repair. Neurochem Int 2021; 144:104971. [PMID: 33515647 DOI: 10.1016/j.neuint.2021.104971] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 01/01/2023]
Abstract
The central nervous system (CNS) can be injured or damaged through a variety of insults including traumatic injury, stroke, and neurodegenerative or demyelinating diseases, including Alzheimer's disease, Parkinson's disease and multiple sclerosis. Existing pharmacological and other therapeutics strategies are limited in their ability to repair or regenerate damaged CNS tissue meaning there are significant unmet clinical needs facing patients suffering CNS damage and/or degeneration. Through a variety of mechanisms including neuronal replacement, secretion of therapeutic factors, and stimulation of host brain plasticity, cell-based repair offers a potential mechanism to repair and heal the damaged CNS. However, over the decades of its evolution as a therapeutic strategy, cell-based CNS repair has faced significant hurdles that have prevented its translation to widespread clinical practice. In recent years, advances in cell technologies combined with advances in biomaterial-based regenerative medicine and tissue engineering have meant there is very real potential for many of these hurdles to be overcome. This review will provide an overview of the main CNS conditions that lend themselves to cellular repair and will then outline the potential of biomaterial-based approaches for improving the outcome of cellular repair in these conditions.
Collapse
Affiliation(s)
- Sarah Jarrin
- Pharmacology & Therapeutics and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Sílvia Cabré
- Pharmacology & Therapeutics and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Eilís Dowd
- Pharmacology & Therapeutics and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland.
| |
Collapse
|
17
|
Rahmati M, Ehterami A, Saberani R, Abbaszadeh-Goudarzi G, Rezaei Kolarijani N, Khastar H, Garmabi B, Salehi M. Improving sciatic nerve regeneration by using alginate/chitosan hydrogel containing berberine. Drug Deliv Transl Res 2020; 11:1983-1993. [PMID: 33034886 DOI: 10.1007/s13346-020-00860-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2020] [Indexed: 01/08/2023]
Abstract
Peripheral nerve injuries are the common results of trauma that lead to pain and handicap in patients. Berberine due to its properties like antibiotic, immunostimulant, antitumor, antimotility, and positive effect on neurological disorders can be used to enhance peripheral nerve injuries. In this study, alginate/chitosan hydrogel containing different concentrations of berberine (0, 0.1, 1, 10% (w/v)) was created, evaluated, and applied as a scaffold for sciatic nerve regeneration. To prepare hydrogel, sodium alginate was dissolved in distilled water and cross-linked with CaCl2, and chitosan was dissolved in acetic acid and cross-linked with β-glycerol phosphate. The structure, release, swelling, weight loss, cytocompatibility, and hemocompatibility of the prepared hydrogels were assessed. The sciatic nerve crush was created in rats and fabricated hydrogels were injected, and functional analysis was used to evaluate their effectiveness. The results of physical characterization of the hydrogel indicated that the initial average pore size was about 39 μm and about 70% of the main weight of hydrogels was lost after incubation for 21 days and hemocompatibility of hydrogels was also confirmed. The MTT assay showed the cytocompatiblity of hydrogels and also indicated that berberine has dose-dependence effect on cell proliferation. The in vivo results showed the positive effect of berberine especially the hydrogel contained 1% of berberine on regeneration of sciatic nerve. Based on this study, Alg/Chit hydrogel can be applied as a treatment to heal peripheral nerve injuries. Graphical abstract.
Collapse
Affiliation(s)
- Majid Rahmati
- Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Arian Ehterami
- Department of Mechanical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Reza Saberani
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Ghasem Abbaszadeh-Goudarzi
- Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Nariman Rezaei Kolarijani
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Hossein Khastar
- Department of Physiology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Behzad Garmabi
- Study and Treatment of Circadian Rhythms Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Majid Salehi
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran.
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
- Sexual Health and Fertility Research Center, Shahroud University of Medical Sciences, Shahroud, Iran.
| |
Collapse
|
18
|
Sultan MT, Choi BY, Ajiteru O, Hong DK, Lee SM, Kim HJ, Ryu JS, Lee JS, Hong H, Lee YJ, Lee H, Suh YJ, Lee OJ, Kim SH, Suh SW, Park CH. Reinforced-hydrogel encapsulated hMSCs towards brain injury treatment by trans-septal approach. Biomaterials 2020; 266:120413. [PMID: 33038593 DOI: 10.1016/j.biomaterials.2020.120413] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/11/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022]
Abstract
Encapsulated stem cells in various biomaterials have become a potentially promising cell transplantation strategy in the treatment of various neurologic disorders. However, there is no ideal cell delivery material and method for clinical application in brain diseases. Here we show silk fibroin (SF)-based hydrogel encapsulated engineered human mesenchymal stem cells (hMSCs) to overproduce brain-derived neurotrophic factor (BDNF) (BDNF-hMSC) is an effective approach to treat brain injury through trans-septal cell transplantation in the rat model. In this study, we observed SF induced sustained BDNF production by BDNF-hMSC both in 2D (9.367 ± 1.969 ng/ml) and 3D (7.319 ± 0.1025 ng/ml) culture conditions for 3 days. Through immunohistochemistry using α-tubulin, BDNF-hMSCs showed a significant increased average neurite length of co-cultured neuro 2a (N2a) cells, suggested that BDNF-hMSCs induced neurogenesis in vitro. Encapsulated BDNF-hMSC, pre-labeled with the red fluorescent dye PKH-26, exhibited intense fluorescence up to 14 days trans-septal transplantation, indicated excellent viability of the transplanted cells. Compared to the vehicle-treated, encapsulated BDNF- hMSC demonstrated significantly increased BDNF level both in the sham-operated and injured hippocampus (Hip) through immunoblot analysis after 7 days implantation. Transplantation of the encapsulated BDNF-hMSC promoted neurological functional recovery via significantly reduced neuronal death in the Hip 7 days post-injury. Using magnetic resonance imaging (MRI) analysis, we demonstrated that encapsulated BDNF-hMSC reduced lesion area significantly at 14 and 21 days in the damaged brain following trans-septal implantation. This stem cell transplantation approach represents a critical set up towards brain injury treatment for clinical application.
Collapse
Affiliation(s)
- Md Tipu Sultan
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Bo Young Choi
- Department of Physiology, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Olatunji Ajiteru
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Dae Ki Hong
- Department of Physiology, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Soon Min Lee
- SL BiGen, Inc. SL BIGEN Research Hall, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea
| | - Hyo-Jin Kim
- SL BiGen, Inc. SL BIGEN Research Hall, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea
| | - Jun Sun Ryu
- Department of Otorhinolaryngology-Head and Neck Surgery, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Ji Seung Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Heesun Hong
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Young Jin Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Hanna Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Ye Ji Suh
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Ok Joo Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Soon Hee Kim
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Sang Won Suh
- Department of Physiology, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Chan Hum Park
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea; Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, School of Medicine, Hallym University, Chuncheon, 24253, Republic of Korea.
| |
Collapse
|
19
|
Abstract
The specific microenvironment that cells reside in fundamentally impacts their broader function in tissues and organs. At its core, this microenvironment is composed of precise arrangements of cells that encourage homotypic and heterotypic cell-cell interactions, biochemical signaling through soluble factors like cytokines, hormones, and autocrine, endocrine, or paracrine secretions, and the local extracellular matrix (ECM) that provides physical support and mechanobiological stimuli, and further regulates biochemical signaling through cell-ECM interactions like adhesions and growth factor sequestering. Each cue provided in the microenvironment dictates cellular behavior and, thus, overall potential to perform tissue and organ specific function. It follows that in order to recapitulate physiological cell responses and develop constructs capable of replacing damaged tissue, we must engineer the cellular microenvironment very carefully. Many great strides have been made toward this goal using various three-dimensional (3D) tissue culture scaffolds and specific media conditions. Among the various 3D biomimetic scaffolds, synthetic hydrogels have emerged as a highly tunable and tissue-like biomaterial well-suited for implantable tissue-engineered constructs. Because many synthetic hydrogel materials are inherently bioinert, they minimize unintentional cell responses and thus are good candidates for long-term implantable grafts, patches, and organs. This review will provide an overview of commonly used biomaterials for forming synthetic hydrogels for tissue engineering applications and techniques for modifying them to with bioactive properties to elicit the desired cell responses.
Collapse
Affiliation(s)
- Asli Z Unal
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Campus Box 90281, Durham, North Carolina 27708, United States
| | - Jennifer L West
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Campus Box 90281, Durham, North Carolina 27708, United States
| |
Collapse
|
20
|
Zarrintaj P, Ramsey JD, Samadi A, Atoufi Z, Yazdi MK, Ganjali MR, Amirabad LM, Zangene E, Farokhi M, Formela K, Saeb MR, Mozafari M, Thomas S. Poloxamer: A versatile tri-block copolymer for biomedical applications. Acta Biomater 2020; 110:37-67. [PMID: 32417265 DOI: 10.1016/j.actbio.2020.04.028] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 11/16/2022]
Abstract
Poloxamers, also called Pluronic, belong to a unique class of synthetic tri-block copolymers containing central hydrophobic chains of poly(propylene oxide) sandwiched between two hydrophilic chains of poly(ethylene oxide). Some chemical characteristics of poloxamers such as temperature-dependent self-assembly and thermo-reversible behavior along with biocompatibility and physiochemical properties make poloxamer-based biomaterials promising candidates for biomedical application such as tissue engineering and drug delivery. The microstructure, bioactivity, and mechanical properties of poloxamers can be tailored to mimic the behavior of various types of tissues. Moreover, their amphiphilic nature and the potential to self-assemble into the micelles make them promising drug carriers with the ability to improve the drug availability to make cancer cells more vulnerable to drugs. Poloxamers are also used for the modification of hydrophobic tissue-engineered constructs. This article collects the recent advances in design and application of poloxamer-based biomaterials in tissue engineering, drug/gene delivery, theranostic devices, and bioinks for 3D printing. STATEMENT OF SIGNIFICANCE: Poloxamers, also called Pluronic, belong to a unique class of synthetic tri-block copolymers containing central hydrophobic chains of poly(propylene oxide) sandwiched between two hydrophilic chains of poly(ethylene oxide). The microstructure, bioactivity, and mechanical properties of poloxamers can be tailored to mimic the behavior of various types of tissues. Moreover, their amphiphilic nature and the potential to self-assemble into the micelles make them promising drug carriers with the ability to improve the drug availability to make cancer cells more vulnerable to drugs. However, no reports have systematically reviewed the critical role of poloxamer for biomedical applications. Research on poloxamers is growing today opening new scenarios that expand the potential of these biomaterials from "traditional" treatments to a new era of tissue engineering. To the best of our knowledge, this is the first review article in which such issue is systematically reviewed and critically discussed in the light of the existing literature.
Collapse
Affiliation(s)
- Payam Zarrintaj
- Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, United States
| | - Joshua D Ramsey
- Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, United States
| | - Ali Samadi
- Polymer Engineering Department, Faculty of Engineering, Urmia University, Urmia, Iran
| | - Zhaleh Atoufi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohsen Khodadadi Yazdi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran; Biosensor Research Center, Endocrinology & Metabolism Molecular-Cellular Sciences, University of Tehran, Tehran, Iran
| | | | - Ehsan Zangene
- Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, P.O. Box 1316943551, Tehran, Iran
| | - Krzysztof Formela
- Department of Polymer Technology, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Mohammad Reza Saeb
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran.
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sabu Thomas
- School of Chemical Sciences, M G University, Kottayam 686560, Kerala, India
| |
Collapse
|
21
|
Bock N, Pham TLB, Nguyen TB, Nguyen TB, Tran HA, Tran PA. Polydopamine coating of uncrosslinked chitosan as an acellular scaffold for full thickness skin grafts. Carbohydr Polym 2020; 245:116524. [PMID: 32718628 DOI: 10.1016/j.carbpol.2020.116524] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/18/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023]
Abstract
There is an unmet need for skin grafting materials that are readily available for large area wounds, due to complex, lengthy and costly manufacturing processes that are not compatible with this type of wounds. Here we developed an acellular skin graft material based on surface coating of uncrosslinked porous (UCLP) chitosan. UCLP chitosan membranes had mechanical properties in ranges suitable for skin grafting. Polydopamine (PDA) coating improved hydrophilicity and resulted in a significant increase in attachment and metabolic activity of mammalian cells in vitro. PDA coating also decreased the attachment of pseudomonas aeruginosa - a common bacteria infecting skin wounds. Finally, the PDA-coated membranes were implanted in full thickness surgical wounds in a rodent model and resulted in complete would closure in 5 days. The current study suggests that PDA-coated UCLP chitosan membranes could be a simple and effective strategy for the development of grafting materials for large area wounds.
Collapse
Affiliation(s)
- Nathalie Bock
- School of Biomedical Sciences, Faculty of Health and Australian Prostate Cancer Research Centre (APCRC-Q), Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; Translational Research Institute (TRI), QUT, Brisbane, QLD, Australia; Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove, QLD, Australia
| | | | | | | | - Hien A Tran
- Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove, QLD, Australia; Interface Science and Materials Engineering Group, School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), IHBI, QUT, Brisbane, QLD, Australia
| | - Phong A Tran
- Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove, QLD, Australia; Interface Science and Materials Engineering Group, School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), IHBI, QUT, Brisbane, QLD, Australia.
| |
Collapse
|
22
|
Affiliation(s)
- Matthew L. Bedell
- Department of Bioengineering, Rice University, 6500 South Main Street, Houston, Texas 77030, United States
| | - Adam M. Navara
- Department of Bioengineering, Rice University, 6500 South Main Street, Houston, Texas 77030, United States
| | - Yingying Du
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
- Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shengmin Zhang
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
- Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Antonios G. Mikos
- Department of Bioengineering, Rice University, 6500 South Main Street, Houston, Texas 77030, United States
| |
Collapse
|
23
|
Cembran A, Bruggeman KF, Williams RJ, Parish CL, Nisbet DR. Biomimetic Materials and Their Utility in Modeling the 3-Dimensional Neural Environment. iScience 2020; 23:100788. [PMID: 31954980 PMCID: PMC6970178 DOI: 10.1016/j.isci.2019.100788] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/30/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023] Open
Abstract
The brain is a complex 3-dimensional structure, the organization of which provides a local environment that directly influences the survival, proliferation, differentiation, migration, and plasticity of neurons. To probe the effects of damage and disease on these cells, a synthetic environment is needed. Three-dimensional culturing of stem cells, neural progenitors, and neurons within fabricated biomaterials has demonstrated superior biomimetic properties over conventional 2-dimensional cultureware, offering direct recapitulation of both cell-cell and cell-extracellular matrix interactions. Within this review we address the benefits of deploying biomaterials as advanced cell culture tools capable of influencing neuronal fate and as in vitro models of the native in vivo microenvironment. We highlight recent and promising biomaterials approaches toward understanding neural network and their function relevant to neurodevelopment and provide our perspective on how these materials can be engineered and programmed to study both the healthy and diseased nervous system.
Collapse
Affiliation(s)
- Arianna Cembran
- Laboratory of Advanced Biomaterials, Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra, ACT 2600, Australia
| | - Kiara F Bruggeman
- Laboratory of Advanced Biomaterials, Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra, ACT 2600, Australia
| | | | - Clare L Parish
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia.
| | - David R Nisbet
- Laboratory of Advanced Biomaterials, Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra, ACT 2600, Australia.
| |
Collapse
|
24
|
Lu J, Guan F, Cui F, Sun X, Zhao L, Wang Y, Wang X. Enhanced angiogenesis by the hyaluronic acid hydrogels immobilized with a VEGF mimetic peptide in a traumatic brain injury model in rats. Regen Biomater 2019; 6:325-334. [PMID: 31827886 PMCID: PMC6897340 DOI: 10.1093/rb/rbz027] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/20/2019] [Accepted: 07/07/2019] [Indexed: 01/03/2023] Open
Abstract
Angiogenesis plays an important role in brain injury repair, which contributes to the reconstruction of regenerative neurovascular niche for promoting axonal regeneration in the lesion area. As a major component of developing brain extracellular matrix, hyaluronic acid (HA) has attracted more attention as a supporting matrix for brain repair. In the present study, HA-KLT hydrogel was developed via modifying HA with a VEGF mimetic peptide of KLT (KLTWQELYQLKYKGI). The characterization of the hydrogel shows that it could provide a porous, three-dimensional scaffold structure, which has a large specific surface area available for cell adhesion and interaction. Compared with the unmodified HA hydrogel, the HA-KLT hydrogel could effectively promote the attachment, spreading and proliferation of endothelial cells in vitro. Furthermore, the pro-angiogenic ability of hydrogels in vivo was evaluated by implanting them into the lesion cavities in the injured rat brain. Our results showed that the hydrogels could form a permissive interface with the host tissues at 4 weeks after implantation. Moreover, they could efficiently inhibit the formation of glial scars at the injured sites. The HA-KLT hydrogel could significantly increase the expression of endoglin/CD105 and promote the formation of blood vessels, suggesting that HA-KLT hydrogel promoted angiogenesis in vivo. Collectively, the HA-KLT hydrogel has the potential to repair brain defects by promoting angiogenesis and inhibiting the formation of glial-derived scar tissue.
Collapse
Affiliation(s)
- Jiaju Lu
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Fengyi Guan
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Fuzhai Cui
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaodan Sun
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Lingyun Zhao
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Ying Wang
- Beijing Center of Neutral Regeneration and Repair, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Capital Medical University, Beijing 100069, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
25
|
Cidade MT, Ramos DJ, Santos J, Carrelo H, Calero N, Borges JP. Injectable Hydrogels Based on Pluronic/Water Systems Filled with Alginate Microparticles for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1083. [PMID: 30986948 PMCID: PMC6479463 DOI: 10.3390/ma12071083] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 01/03/2023]
Abstract
A (model) composite system for drug delivery was developed based on a thermoresponsive hydrogel loaded with microparticles. We used Pluronic F127 hydrogel as the continuous phase and alginate microparticles as the dispersed phase of this composite system. It is well known that Pluronic F127 forms a gel when added to water in an appropriate concentration and in a certain temperature range. Pluronic F127 hydrogel may be loaded with drug and injected, in its sol state, to act as a drug delivery system in physiological environment. A rheological characterization allowed the most appropriate concentration of Pluronic F127 (15.5 wt%) and appropriate alginate microparticles contents (5 and 10 wt%) to be determined. Methylene blue (MB) was used as model drug to perform drug release studies in MB loaded Pluronic hydrogel and in MB loaded alginate microparticles/Pluronic hydrogel composite system. The latter showed a significantly slower MB release than the former (10 times), suggesting its potential in the development of dual cargo release systems either for drug delivery or tissue engineering.
Collapse
Affiliation(s)
- M T Cidade
- i3N/CENIMAT, Department of Materials Science, Faculty of Sciences and Technology, Universidade, NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
| | - D J Ramos
- i3N/CENIMAT, Department of Materials Science, Faculty of Sciences and Technology, Universidade, NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
| | - J Santos
- Applied Rheology, Colloid Technology, Chemical Engineering Department, University of Sevilla, c/ P. García González, 1, E41012 Sevilla, Spain.
| | - H Carrelo
- i3N/CENIMAT, Department of Materials Science, Faculty of Sciences and Technology, Universidade, NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
| | - N Calero
- Applied Rheology, Colloid Technology, Chemical Engineering Department, University of Sevilla, c/ P. García González, 1, E41012 Sevilla, Spain.
| | - J P Borges
- i3N/CENIMAT, Department of Materials Science, Faculty of Sciences and Technology, Universidade, NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
| |
Collapse
|
26
|
Tsui C, Koss K, Churchward MA, Todd KG. Biomaterials and glia: Progress on designs to modulate neuroinflammation. Acta Biomater 2019; 83:13-28. [PMID: 30414483 DOI: 10.1016/j.actbio.2018.11.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/05/2018] [Accepted: 11/06/2018] [Indexed: 02/06/2023]
Abstract
Microglia are multi-functional cells that play a vital role in establishing and maintaining the function of the nervous system and determining the fate of neurons following injury or neuropathology. The roles of microglia are diverse and essential to the capacity of the nervous system to recover from injury, however sustained inflammation can limit recovery and drive chronic disease processes such as neurodegenerative disorders. When assessing implantable therapeutic devices in the central nervous system, an improved lifetime of the implant is considered achievable through the attenuation of microglial inflammation. Consequently, there is a tremendous underexplored potential in biomaterial and engineered design to modulate neuroinflammation for therapeutic benefit. Several strategies for improving device compatibility reviewed here include: biocompatible coatings, improved designs in finer and flexible shapes to reduce tissue shear-related scarring, and loading of anti-inflammatory drugs. Studies about microglial cell cultures in 3D hydrogels and nanoscaffolds to assess various injuries and disorders are also discussed. A variety of other microglia-targeting treatments are also reviewed, including nanoparticulate systems, cellular backpacks, and gold plinths, with the intention of delivering anti-inflammatory drugs by targeting the phagocytic nature of microglia. Overall, this review highlights recent advances in biomaterials targeting microglia and inflammatory function with the potential for improving implant rejection and biocompatibility studies. STATEMENT OF SIGNIFICANCE: Microglia are the resident immune cells of the central nervous system, and thus play a central role in the neuroinflammatory response against conditions than span acute injuries, neuropsychiatric disorders, and neurodegenerative disorders. This review article presents a summary of biomaterials research that target microglia and other glial cells in order to attenuate neuroinflammation, including but not limited to: design of mechanically compliant and biocompatible stimulation electrodes, hydrogels for high-throughput 3D modelling of nervous tissue, and uptake of nanoparticle drug delivery systems. The goal of this paper is to identify strengths and gaps in the relevant literature, and to promote further consideration of microglia behaviour and neuroinflammation in biomaterial design.
Collapse
Affiliation(s)
- C Tsui
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada; Department of Biomedical Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - K Koss
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2R3, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - M A Churchward
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2R3, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - K G Todd
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2R3, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada; Department of Biomedical Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| |
Collapse
|
27
|
Maclean FL, Ims GM, Horne MK, Williams RJ, Nisbet DR. A Programmed Anti-Inflammatory Nanoscaffold (PAIN) as a 3D Tool to Understand the Brain Injury Response. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1805209. [PMID: 30285286 DOI: 10.1002/adma.201805209] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/09/2018] [Indexed: 06/08/2023]
Abstract
Immunology is the next frontier of nano/biomaterial science research, with the immune system determining the degree of tissue repair. However, the complexity of the inflammatory response represents a significant challenge that is essential to understand for the development of future therapies. Cell-instructive 3D culture environments are critical to improve our understanding of the link between the behavior and morphology of inflammatory cells and to remodel their response to injury. This study has taken two recent high-profile innovations-functional peptide-based hydrogels, and the inclusion of anti-inflammatory agents via coassembly-to make a programmed anti-inflammatory nanoscaffold (PAIN) with unusual and valuable properties that allows tissue-independent switching of the inflammatory cascade. Here, extraordinary durability of the anti-inflammatory agent allows, for the first time, the development of a 3D culture system that maintains the growth and cytoskeletal reorganization of brain tissue, while also facilitating the trophic behavior of brain cells for 22 d in vitro. Notably, this behavior was confirmed within an active scar site due to the unprecedented resilience to the presence of inflammatory cells and enzymes in the brain. Efficacy of the culture system is demonstrated via novel insights about inflammatory cell behavior, which would be impossible to obtain via in vivo experimentation.
Collapse
Affiliation(s)
- Francesca L Maclean
- Laboratory of Advanced Biomaterials, Research School of Engineering, The Australian National University, Canberra, 2601, Australia
| | - Georgina M Ims
- Laboratory of Advanced Biomaterials, Research School of Engineering, The Australian National University, Canberra, 2601, Australia
| | - Malcolm K Horne
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, 3052, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital, Fitzroy, 3065, Australia
| | - Richard J Williams
- School of Engineering, RMIT University, Melbourne, 3000, Australia
- BioFab3D, St Vincent's Hospital, Fitzroy, 3065, Australia
| | - David R Nisbet
- Laboratory of Advanced Biomaterials, Research School of Engineering, The Australian National University, Canberra, 2601, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, 3052, Australia
- BioFab3D, St Vincent's Hospital, Fitzroy, 3065, Australia
| |
Collapse
|
28
|
Kornev VA, Grebenik EA, Solovieva AB, Dmitriev RI, Timashev PS. Hydrogel-assisted neuroregeneration approaches towards brain injury therapy: A state-of-the-art review. Comput Struct Biotechnol J 2018; 16:488-502. [PMID: 30455858 PMCID: PMC6232648 DOI: 10.1016/j.csbj.2018.10.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 12/16/2022] Open
Abstract
Recent years have witnessed the development of an enormous variety of hydrogel-based systems for neuroregeneration. Formed from hydrophilic polymers and comprised of up to 90% of water, these three-dimensional networks are promising tools for brain tissue regeneration. They can assist structural and functional restoration of damaged tissues by providing mechanical support and navigating cell fate. Hydrogels also show the potential for brain injury therapy due to their broadly tunable physical, chemical, and biological properties. Hydrogel polymers, which have been extensively implemented in recent brain injury repair studies, include hyaluronic acid, collagen type I, alginate, chitosan, methylcellulose, Matrigel, fibrin, gellan gum, self-assembling peptides and proteins, poly(ethylene glycol), methacrylates, and methacrylamides. When viewed as tools for neuroregeneration, hydrogels can be divided into: (1) hydrogels suitable for brain injury therapy, (2) hydrogels that do not meet basic therapeutic requirements and (3) promising hydrogels which meet the criteria for further investigations. Our analysis shows that fibrin, collagen I and self-assembling peptide-based hydrogels display very attractive properties for neuroregeneration.
Collapse
Affiliation(s)
- Vladimir A. Kornev
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya st., Moscow 119991, Russian Federation
| | - Ekaterina A. Grebenik
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya st., Moscow 119991, Russian Federation
| | - Anna B. Solovieva
- N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygina st., Moscow 117977, Russian Federation
| | - Ruslan I. Dmitriev
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya st., Moscow 119991, Russian Federation
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Peter S. Timashev
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya st., Moscow 119991, Russian Federation
- N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygina st., Moscow 117977, Russian Federation
- Institute of Photonic Technologies, Research Center “Crystallography and Photonics” Russian Academy of Sciences, 2 Pionerskaya st., Troitsk, Moscow 108840, Russian Federation
| |
Collapse
|
29
|
The use of hydrogels for cell-based treatment of chronic kidney disease. Clin Sci (Lond) 2018; 132:1977-1994. [PMID: 30220651 DOI: 10.1042/cs20180434] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/01/2018] [Accepted: 08/17/2018] [Indexed: 12/13/2022]
Abstract
Chronic kidney disease (CKD) is a major and growing public health concern with increasing incidence and prevalence worldwide. The therapeutic potential of stem cell therapy, including mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs) holds great promise for treatment of CKD. However, there are significant bottlenecks in the clinical translation due to the reduced number of transplanted cells and the duration of their presence at the site of tissue damage. Bioengineered hydrogels may provide a route of cell delivery to enhance treatment efficacy and optimise the targeting effectiveness while minimising any loss of cell function. In this review, we highlight the advances in stem cell therapy targeting kidney disease and discuss the emerging role of hydrogel delivery systems to fully realise the potential of adult stem cells as a regenerative therapy for CKD in humans. MSCs and EPCs mediate kidney repair through distinct paracrine effects. As a delivery system, hydrogels can prolong these paracrine effects by improving retention at the site of injury and protecting the transplanted cells from the harsh inflammatory microenvironment. We also discuss the features of a hydrogel, which may be tuned to optimise the therapeutic potential of encapsulated stem cells, including cell-adhesive epitopes, material stiffness, nanotopography, modes of gelation and degradation and the inclusion of bioactive molecules. This review concludes with a discussion of the challenges to be met for the widespread clinical use of hydrogel delivery system of stem cell therapy for CKD.
Collapse
|
30
|
Uz M, Das SR, Ding S, Sakaguchi DS, Claussen JC, Mallapragada SK. Advances in Controlling Differentiation of Adult Stem Cells for Peripheral Nerve Regeneration. Adv Healthc Mater 2018; 7:e1701046. [PMID: 29656561 DOI: 10.1002/adhm.201701046] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 01/08/2018] [Indexed: 01/01/2023]
Abstract
Adult stems cells, possessing the ability to grow, migrate, proliferate, and transdifferentiate into various specific phenotypes, constitute a great asset for peripheral nerve regeneration. Adult stem cells' ability to undergo transdifferentiation is sensitive to various cell-to-cell interactions and external stimuli involving interactions with physical, mechanical, and chemical cues within their microenvironment. Various studies have employed different techniques for transdifferentiating adult stem cells from distinct sources into specific lineages (e.g., glial cells and neurons). These techniques include chemical and/or electrical induction as well as cell-to-cell interactions via co-culture along with the use of various 3D conduit/scaffold designs. Such scaffolds consist of unique materials that possess controllable physical/mechanical properties mimicking cells' natural extracellular matrix. However, current limitations regarding non-scalable transdifferentiation protocols, fate commitment of transdifferentiated stem cells, and conduit/scaffold design have required new strategies for effective stem cells transdifferentiation and implantation. In this progress report, a comprehensive review of recent advances in the transdifferentiation of adult stem cells via different approaches along with multifunctional conduit/scaffolds designs is presented for peripheral nerve regeneration. Potential cellular mechanisms and signaling pathways associated with differentiation are also included. The discussion with current challenges in the field and an outlook toward future research directions is concluded.
Collapse
Affiliation(s)
- Metin Uz
- Department of Chemical and Biological Engineering Iowa State University Ames IA 50011 USA
| | - Suprem R. Das
- Department of Mechanical Engineering Iowa State University Ames IA 50011 USA
- Division of Materials Science and Engineering Ames Laboratory Ames IA 50011 USA
| | - Shaowei Ding
- Department of Mechanical Engineering Iowa State University Ames IA 50011 USA
| | - Donald S. Sakaguchi
- Neuroscience Program Iowa State University Ames IA 50011 USA
- Department of Genetics Development and Cell Biology Iowa State University Ames IA 50011 USA
| | - Jonathan C. Claussen
- Department of Mechanical Engineering Iowa State University Ames IA 50011 USA
- Division of Materials Science and Engineering Ames Laboratory Ames IA 50011 USA
| | - Surya K. Mallapragada
- Department of Chemical and Biological Engineering Iowa State University Ames IA 50011 USA
- Department of Genetics Development and Cell Biology Iowa State University Ames IA 50011 USA
| |
Collapse
|
31
|
Maclean FL, Horne MK, Williams RJ, Nisbet DR. Review: Biomaterial systems to resolve brain inflammation after traumatic injury. APL Bioeng 2018; 2:021502. [PMID: 31069296 PMCID: PMC6481708 DOI: 10.1063/1.5023709] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 04/20/2018] [Indexed: 12/20/2022] Open
Abstract
The inflammatory response within the central nervous system (CNS) is a tightly regulated cascade of events which is a balance of both cytotoxic and cytotrophic effects which determine the outcome of an injury. The two effects are inextricably linked, particularly in traumatic brain injury or stroke, where permanent dysfunction is often observed. Chronic brain inflammation is a key barrier to regeneration. This is considered a toxic, growth inhibitory mechanism; yet, the inflammatory response must also be considered as a mechanism that can be exploited as protective and reparative. Repurposing this complex response is the challenge for tissue engineers: to design treatments to repair and regenerate damaged tissue after brain insult. Astrocytes are important cells within the CNS which play a key role after traumatic brain injury. A comprehensive understanding of their functions-both cytotrophic and cytotoxic-will enable designed materials and drug delivery approaches for improved treatment options post traumatic injury. Understanding, evaluating, and designing biomaterials that match the healthy neural environment to temporally alter the inflammatory cascade represent a promise neural tissue engineering strategy to optimise repair and regeneration after injury.
Collapse
Affiliation(s)
- Francesca L. Maclean
- Laboratory of Advanced Biomaterials, Research School of Engineering, The Australian National University, Canberra, ACT 2601, Australia
| | | | - Richard J. Williams
- R. J. Williams and D. R. Nisbet contributed equally to this work. Electronic addresses: and
| | - David R. Nisbet
- R. J. Williams and D. R. Nisbet contributed equally to this work. Electronic addresses: and
| |
Collapse
|
32
|
Centeno EGZ, Cimarosti H, Bithell A. 2D versus 3D human induced pluripotent stem cell-derived cultures for neurodegenerative disease modelling. Mol Neurodegener 2018; 13:27. [PMID: 29788997 PMCID: PMC5964712 DOI: 10.1186/s13024-018-0258-4] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/08/2018] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS), affect millions of people every year and so far, there are no therapeutic cures available. Even though animal and histological models have been of great aid in understanding disease mechanisms and identifying possible therapeutic strategies, in order to find disease-modifying solutions there is still a critical need for systems that can provide more predictive and physiologically relevant results. One possible avenue is the development of patient-derived models, e.g. by reprogramming patient somatic cells into human induced pluripotent stem cells (hiPSCs), which can then be differentiated into any cell type for modelling. These systems contain key genetic information from the donors, and therefore have enormous potential as tools in the investigation of pathological mechanisms underlying disease phenotype, and progression, as well as in drug testing platforms. hiPSCs have been widely cultured in 2D systems, but in order to mimic human brain complexity, 3D models have been proposed as a more advanced alternative. This review will focus on the use of patient-derived hiPSCs to model AD, PD, HD and ALS. In brief, we will cover the available stem cells, types of 2D and 3D culture systems, existing models for neurodegenerative diseases, obstacles to model these diseases in vitro, and current perspectives in the field.
Collapse
Affiliation(s)
- Eduarda G Z Centeno
- Department of Biotechnology, Federal University of Pelotas, Campus Capão do Leão, Pelotas, RS, 96160-000, Brazil.,Department of Pharmacology, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Helena Cimarosti
- Department of Pharmacology, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-900, Brazil.
| | - Angela Bithell
- School of Pharmacy, University of Reading, Whiteknights Campus, Reading, RG6 6UB, UK.
| |
Collapse
|
33
|
Li H, Zheng J, Wang H, Becker ML, Leipzig ND. Neural stem cell encapsulation and differentiation in strain promoted crosslinked polyethylene glycol-based hydrogels. J Biomater Appl 2018; 32:1222-1230. [PMID: 29392959 PMCID: PMC5898193 DOI: 10.1177/0885328218755711] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Encapsulated cell viability within crosslinked hydrogels is a critical factor to consider in regenerative medicine/cell delivery applications. Herein, a "click" hydrogel system is presented encompassing 4-dibenzocyclooctynol functionalized polyethylene glycol, a four arm polyethylene glycol tetraazide crosslinker, tethered native protein attachment ligands (laminin), and a tethered potent neurogenic differentiation factor (interferon-γ). With this approach, hydrogel formation occurs via strain-promoted, metal-free, azide-alkyne cycloaddition in an aqueous buffer. This system demonstrated safe encapsulation of neural stem cells in biological conditions without chemical initiators/ultraviolet light, achieving high cell viability. Cell viability in click gels was nearly double that of ultraviolet exposed gels after 1 d as well as 14 d of subsequent culture; demonstrating the sensitivity of neural stem cells to ultraviolet light damage, as well as the need to develop safer encapsulation strategies. Finally, protein immobilized click hydrogel neural stem cell in vitro differentiation over 2 weeks demonstrated that the click gels specified primarily neurons without the need for additional protein differentiation factor media supplementation.
Collapse
Affiliation(s)
- Hang Li
- Department of Chemical and Biomolecular Engineering, University of Akron, Akron, OH, USA
| | - Jukuan Zheng
- Department of Polymer Science, University of Akron, Akron, OH, USA
| | - Huifeng Wang
- Department of Polymer Science, University of Akron, Akron, OH, USA
| | | | - Nic D. Leipzig
- Department of Chemical and Biomolecular Engineering, University of Akron, Akron, OH, USA
| |
Collapse
|
34
|
Gong L, Cao L, Shen Z, Shao L, Gao S, Zhang C, Lu J, Li W. Materials for Neural Differentiation, Trans-Differentiation, and Modeling of Neurological Disease. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705684. [PMID: 29573284 DOI: 10.1002/adma.201705684] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/04/2017] [Indexed: 05/02/2023]
Abstract
Neuron regeneration from pluripotent stem cells (PSCs) differentiation or somatic cells trans-differentiation is a promising approach for cell replacement in neurodegenerative diseases and provides a powerful tool for investigating neural development, modeling neurological diseases, and uncovering the mechanisms that underlie diseases. Advancing the materials that are applied in neural differentiation and trans-differentiation promotes the safety, efficiency, and efficacy of neuron regeneration. In the neural differentiation process, matrix materials, either natural or synthetic, not only provide a structural and biochemical support for the monolayer or three-dimensional (3D) cultured cells but also assist in cell adhesion and cell-to-cell communication. They play important roles in directing the differentiation of PSCs into neural cells and modeling neurological diseases. For the trans-differentiation of neural cells, several materials have been used to make the conversion feasible for future therapy. Here, the most current applications of materials for neural differentiation for PSCs, neuronal trans-differentiation, and neurological disease modeling is summarized and discussed.
Collapse
Affiliation(s)
- Lulu Gong
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Lining Cao
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Zhenmin Shen
- The VIP Department, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Li Shao
- The VIP Department, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Shaorong Gao
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Chao Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jianfeng Lu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Weida Li
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| |
Collapse
|
35
|
Karvinen J, Joki T, Ylä-Outinen L, Koivisto JT, Narkilahti S, Kellomäki M. Soft hydrazone crosslinked hyaluronan- and alginate-based hydrogels as 3D supportive matrices for human pluripotent stem cell-derived neuronal cells. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2017.12.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
36
|
Soft chitosan microbeads scaffold for 3D functional neuronal networks. Biomaterials 2018; 156:159-171. [DOI: 10.1016/j.biomaterials.2017.11.043] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/15/2017] [Accepted: 11/27/2017] [Indexed: 12/27/2022]
|
37
|
Flégeau K, Pace R, Gautier H, Rethore G, Guicheux J, Le Visage C, Weiss P. Toward the development of biomimetic injectable and macroporous biohydrogels for regenerative medicine. Adv Colloid Interface Sci 2017; 247:589-609. [PMID: 28754381 DOI: 10.1016/j.cis.2017.07.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/13/2017] [Accepted: 07/13/2017] [Indexed: 01/21/2023]
Abstract
Repairing or replacing damaged human tissues has been the ambitious goal of regenerative medicine for over 25years. One promising approach is the use of hydrated three-dimensional scaffolds, known as hydrogels, which have had good results repairing tissues in pre-clinical trials. Benefiting from breakthrough advances in the field of biology, and more particularly regarding cell/matrix interactions, these hydrogels are now designed to recapitulate some of the fundamental cues of native environments to drive the local tissue regeneration. We highlight the key parameters that are required for the development of smart and biomimetic hydrogels. We also review the wide variety of polymers, crosslinking methods, and manufacturing processes that have been developed over the years. Of particular interest is the emergence of supramolecular chemistries, allowing for the development of highly functional and reversible biohydrogels. Moreover, advances in computer assisted design and three-dimensional printing have revolutionized the production of macroporous hydrogels and allowed for more complex designs than ever before with the opportunity to develop fully reconstituted organs. Today, the field of biohydrogels for regenerative medicine is a prolific area of research with applications for most bodily tissues. On top of these applications, injectable hydrogels and macroporous hydrogels (foams) were found to be the most successful. While commonly associated with cells or biologics as drug delivery systems to increase therapeutic outcomes, they are steadily being used in the emerging fields of organs-on-chip and hydrogel-assisted cell therapy. To highlight these advances, we review some of the recent developments that have been achieved for the regeneration of tissues, focusing on the articular cartilage, bone, cardiac, and neural tissues. These biohydrogels are associated with improved cartilage and bone defects regeneration, reduced left ventricular dilation upon myocardial infarction and display promising results repairing neural lesions. Combining the benefits from each of these areas reviewed above, we envision that an injectable biohydrogel foam loaded with either stem cells or their secretome is the most promising hydrogel solution to trigger tissue regeneration. A paradigm shift is occurring where the combined efforts of fundamental and applied sciences head toward the development of hydrogels restoring tissue functions, serving as drug screening platforms or recreating complex organs.
Collapse
|
38
|
Manjula B, Reddy AB, Jayaramudu T, Sadiku E, Owonubi S, Owonubi S, Agboola O, Agboola O, Agboola O, Mokrani T. Hydrogels and its Nanocomposites from Renewable Resources: Biotechnological and Biomedical Applications. HANDBOOK OF COMPOSITES FROM RENEWABLE MATERIALS 2017:67-95. [DOI: 10.1002/9781119441632.ch127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
39
|
Antman-Passig M, Levy S, Gartenberg C, Schori H, Shefi O. Mechanically Oriented 3D Collagen Hydrogel for Directing Neurite Growth. Tissue Eng Part A 2017; 23:403-414. [PMID: 28437179 DOI: 10.1089/ten.tea.2016.0185] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recent studies in the field of neuro-tissue engineering have demonstrated the promising effects of aligned contact guidance cue to scaffolds of enhancement and direction of neuronal growth. In vivo, neurons grow and develop neurites in a complex three-dimensional (3D) extracellular matrix (ECM) surrounding. Studies have utilized hydrogel scaffolds derived from ECM molecules to better simulate natural growth. While many efforts have been made to control neuronal growth on 2D surfaces, the development of 3D scaffolds with an elaborate oriented topography to direct neuronal growth still remains a challenge. In this study, we designed a method for growing neurons in an aligned and oriented 3D collagen hydrogel. We aligned collagen fibers by inducing controlled uniaxial strain on gels. To examine the collagen hydrogel as a suitable scaffold for neuronal growth, we evaluated the physical properties of the hydrogel and measured collagen fiber properties. By combining the neuronal culture in 3D collagen hydrogels with strain-induced alignment, we were able to direct neuronal growth in the direction of the aligned collagen matrix. Quantitative evaluation of neurite extension and directionality within aligned gels was performed. The analysis showed neurite growth aligned with collagen matrix orientation, while maintaining the advantageous 3D growth.
Collapse
Affiliation(s)
- Merav Antman-Passig
- Faculty of Engineering, Bar Ilan Institute of Nanotechnologies and Advanced Materials, Bar Ilan University , Ramat Gan, Israel
| | - Shahar Levy
- Faculty of Engineering, Bar Ilan Institute of Nanotechnologies and Advanced Materials, Bar Ilan University , Ramat Gan, Israel
| | - Chaim Gartenberg
- Faculty of Engineering, Bar Ilan Institute of Nanotechnologies and Advanced Materials, Bar Ilan University , Ramat Gan, Israel
| | - Hadas Schori
- Faculty of Engineering, Bar Ilan Institute of Nanotechnologies and Advanced Materials, Bar Ilan University , Ramat Gan, Israel
| | - Orit Shefi
- Faculty of Engineering, Bar Ilan Institute of Nanotechnologies and Advanced Materials, Bar Ilan University , Ramat Gan, Israel
| |
Collapse
|
40
|
Nawrotek K, Marqueste T, Modrzejewska Z, Zarzycki R, Rusak A, Decherchi P. Thermogelling chitosan lactate hydrogel improves functional recovery after a C2 spinal cord hemisection in rat. J Biomed Mater Res A 2017; 105:2004-2019. [PMID: 28324618 DOI: 10.1002/jbm.a.36067] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/23/2017] [Accepted: 03/15/2017] [Indexed: 11/06/2022]
Abstract
The present study was designed to provide an appropriate micro-environment for regenerating axotomized neurons and proliferating/migrating cells. Because of its intrinsic permissive properties, biocompatibility and biodegradability, we chose to evaluate the therapeutic effectiveness of a chitosan-based biopolymer. The biomaterial toxicity was measured through in vitro test based on fibroblast cell survival on thermogelling chitosan lactate hydrogel substrate and then polymer was implanted into a C2 hemisection of the rat spinal cord. Animals were randomized into three experimental groups (Control, Lesion and Lesion + Hydrogel) and functional tests (ladder walking and forelimb grip strength tests, respiratory assessment by whole-body plethysmography measurements) were used, once a week during 10 weeks, to evaluate post-traumatic recoveries. Then, electrophysiological examinations (reflexivity of the sub-lesional region, ventilatory adjustments to muscle fatigue known to elicit the muscle metaboreflex and phrenic nerve recordings during normoxia and temporary hypoxia) were performed. In vitro results indicated that the chitosan matrix is a non-toxic biomaterial that allowed fibroblast survival. Furthermore, implanted animals showed improvements of their ladder walking scores from the 4th week post-implantation. Finally, electrophysiological recordings indicated that animals receiving the chitosan matrix exhibited recovery of the H-reflex rate sensitive depression, the ventilatory response to repetitive muscle stimulation and an increase of the phrenic nerve activity to asphyxia compared to lesioned and nonimplanted animals. This study indicates that hydrogel based on chitosan constitute a promising therapeutic approach to repair damaged spinal cord or may be used as an adjuvant with other treatments to enhance functional recovery after a central nervous system damage. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2004-2019, 2017.
Collapse
Affiliation(s)
- Katarzyna Nawrotek
- Faculty of Process and Environmental Engineering, Department of Chemical Engineering, Lodz University of Technology, Wolczanska 175 Street, Lodz, 90-924, Poland
| | - Tanguy Marqueste
- Aix-Marseille Université (AMU) and Centre National de la Recherche Scientifique (CNRS), Institut des Sciences du Mouvement (UMR 7287), Equipe « Plasticité des Systèmes Nerveux et Musculaire », Parc Scientifique et Technologique de Luminy, CC910-163, Avenue de Luminy, F-13288, Marseille Cedex 09, France
| | - Zofia Modrzejewska
- Faculty of Process and Environmental Engineering, Department of Chemical Engineering, Lodz University of Technology, Wolczanska 175 Street, Lodz, 90-924, Poland
| | - Roman Zarzycki
- Faculty of Process and Environmental Engineering, Department of Chemical Engineering, Lodz University of Technology, Wolczanska 175 Street, Lodz, 90-924, Poland
| | - Agnieszka Rusak
- Department of Experimental Surgery and Biomaterials Research, Wroclaw Medical University, Medico-Dental Faculty, Krakowska 26 Street, Wroclaw, Poland, 50-425
| | - Patrick Decherchi
- Aix-Marseille Université (AMU) and Centre National de la Recherche Scientifique (CNRS), Institut des Sciences du Mouvement (UMR 7287), Equipe « Plasticité des Systèmes Nerveux et Musculaire », Parc Scientifique et Technologique de Luminy, CC910-163, Avenue de Luminy, F-13288, Marseille Cedex 09, France
| |
Collapse
|
41
|
Koivisto JT, Joki T, Parraga JE, Pääkkönen R, Ylä-Outinen L, Salonen L, Jönkkäri I, Peltola M, Ihalainen TO, Narkilahti S, Kellomäki M. Bioamine-crosslinked gellan gum hydrogel for neural tissue engineering. Biomed Mater 2017; 12:025014. [DOI: 10.1088/1748-605x/aa62b0] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
42
|
Neuronal production from induced pluripotent stem cells in self-assembled collagen-hyaluronic acid-alginate microgel scaffolds with grafted GRGDSP/Ln5-P4. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:760-774. [PMID: 28482588 DOI: 10.1016/j.msec.2017.03.133] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/09/2017] [Accepted: 03/13/2017] [Indexed: 01/22/2023]
Abstract
Self-assembled microgel functionalized with peptides was developed and applied to regenerate neurons from induced pluripotent stem cells (iPSCs). Collagen (COL), hyaluronic acid (HA), and alginate (ALG) were modified with methacrylic anhydride (MA), photocrosslinked for patterned particles, grafted with GRGDSP and Ln5-P4, and self-assembled to integrate the microgel into three-dimensional scaffolds. Physicochemical assessments revealed that the ternary microgel scaffolds had an optimal chemical composition at COLMA:HAMA:ALGMA=1:2:1. In fabricating cell-laden constructs, modified GRGDSP/Ln5-P4 in linear self-assembled scaffolds could significantly improve the entrapment efficiency and viability of iPSCs. In addition, GRGDSP/Ln5-P4 in the microgel constructs triggered the differentiation of iPSCs toward neurons, since the percentage of neurite-like cells could be higher than 98% after induction of nerve growth factor. Self-assembled microgel comprising COLMA, HAMA, ALGMA, and GRGDSP/Ln5-P4 may be promising in producing mature neural lineage from iPSCs, to provide better treatment for damaged nervous tissue.
Collapse
|
43
|
Xing D, Ma L, Gao C. A bioactive hyaluronic acid–based hydrogel cross-linked by Diels–Alder reaction for promoting neurite outgrowth of PC12 cells. J BIOACT COMPAT POL 2017. [DOI: 10.1177/0883911516684654] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In order to improve neurite outgrowth on the in situ formed hyaluronic acid–based hydrogel, furan and methacrylate groups were grafted on hyaluronic acid successively. Furthermore, a laminin-derived peptide CQAASIKVAV was covalently immobilized via the Michael addition. The furan- and peptide-modified hyaluronic acid was then cross-linked in situ by mixing with bismaleimide poly(ethylene glycol) at 37 °C to obtain a bioactive hyaluronic acid–based hydrogel. The hyaluronic acid derivatives were characterized by 1H NMR and Fourier transform infrared spectroscopy. The gelation, swelling, and mechanical property of the hydrogels were analyzed. The modulus of the hydrogel could be tuned by changing furan substitution degree, while the peptide concentration could be changed by the ratio of furan- and peptide-modified hyaluronic acid with hyaluronic acid–furan. In vitro culture of PC12 cells showed that the longest neurite outgrowth appeared on the hyaluronic acid–poly(ethylene glycol) hydrogel with the highest peptide content (the substitution degree of peptide in furan- and peptide-modified hyaluronic acid was 23 %) and a lower threshold modulus of 4.5 kPa. The furan and methacrylate-functionalized hyaluronic acid provides a versatile platform for diverse functionalization and can be used for modulation of other cell behaviors as well.
Collapse
Affiliation(s)
- Dongming Xing
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Lie Ma
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
44
|
Sharma K, Kumar V, Kaith BS, Kalia S, Swart HC. Conducting Polymer Hydrogels and Their Applications. SPRINGER SERIES ON POLYMER AND COMPOSITE MATERIALS 2017. [DOI: 10.1007/978-3-319-46458-9_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
45
|
Russell LN, Lampe KJ. Engineering Biomaterials to Influence Oligodendroglial Growth, Maturation, and Myelin Production. Cells Tissues Organs 2016; 202:85-101. [PMID: 27701172 DOI: 10.1159/000446645] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2016] [Indexed: 11/19/2022] Open
Abstract
Millions of people suffer from damage or disease to the nervous system that results in a loss of myelin, such as through a spinal cord injury or multiple sclerosis. Diminished myelin levels lead to further cell death in which unmyelinated neurons die. In the central nervous system, a loss of myelin is especially detrimental because of its poor ability to regenerate. Cell therapies such as stem or precursor cell injection have been investigated as stem cells are able to grow and differentiate into the damaged cells; however, stem cell injection alone has been unsuccessful in many areas of neural regeneration. Therefore, researchers have begun exploring combined therapies with biomaterials that promote cell growth and differentiation while localizing cells in the injured area. The regrowth of myelinating oligodendrocytes from neural stem cells through a biomaterials approach may prove to be a beneficial strategy following the onset of demyelination. This article reviews recent advancements in biomaterial strategies for the differentiation of neural stem cells into oligodendrocytes, and presents new data indicating appropriate properties for oligodendrocyte precursor cell growth. In some cases, an increase in oligodendrocyte differentiation alongside neurons is further highlighted for functional improvements where the biomaterial was then tested for increased myelination both in vitro and in vivo.
Collapse
|
46
|
Pospišil T, Ferhatović Hamzić L, Brkić Ahmed L, Lovrić M, Gajović S, Frkanec L. Synthesis, characterization and in vitro biocompatibility assessment of a novel tripeptide hydrogelator, as a promising scaffold for tissue engineering applications. Biomater Sci 2016; 4:1412-6. [PMID: 27508285 DOI: 10.1039/c6bm00287k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have synthesized and characterized a self-assembling tripeptide hydrogelator Ac-l-Phe-l-Phe-l-Ala-NH2. A series of experiments showed that the hydrogel material could serve as a stabile and biocompatible physical support as it improves the survival of HEK293T cells in vitro, thus being a promising biomaterial for use in tissue engineering applications.
Collapse
Affiliation(s)
- Tihomir Pospišil
- Laboratory for Supramolecular Chemistry, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia.
| | | | | | | | | | | |
Collapse
|
47
|
Takahashi H, Itoga K, Shimizu T, Yamato M, Okano T. Human Neural Tissue Construct Fabrication Based on Scaffold-Free Tissue Engineering. Adv Healthc Mater 2016; 5:1931-8. [PMID: 27331769 DOI: 10.1002/adhm.201600197] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/21/2016] [Indexed: 11/06/2022]
Abstract
Current neural tissue engineering strategies involve the development and application of neural tissue constructs produced by using an anisotropic polymeric scaffold. This study reports a scaffold-free method of tissue engineering to create a tubular neural tissue construct containing unidirectional neuron bundles. The surface patterning of a thermoresponsive culture substrate and a coculture system of neurons with patterned astrocytes can provide an anisotropic structure and easy handling of the neural tissue construct without the use of a scaffold. Furthermore, using a gelatin gel-coated plunger, the neuron bundles can be laid out in the same direction at regulated intervals within multilayered astrocyte sheets. Since the 3D tissue construct is composed only by neurons and astrocytes, they can communicate physiologically without obstruction of a scaffold. The medical benefits of scaffold-free tissue generation provide new opportunities for the development of human cell-based tissue models required to better understand the mechanisms of neurodegenerative diseases. Therefore, this new tissue engineering approach may be useful to establish a technology for regenerative medicine and drug discovery using the patient's own neurons.
Collapse
Affiliation(s)
- Hironobu Takahashi
- Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University; 8-1 Kawada-cho Shinjuku-ku Tokyo 162-8666 Japan
| | - Kazuyoshi Itoga
- Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University; 8-1 Kawada-cho Shinjuku-ku Tokyo 162-8666 Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University; 8-1 Kawada-cho Shinjuku-ku Tokyo 162-8666 Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University; 8-1 Kawada-cho Shinjuku-ku Tokyo 162-8666 Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University; 8-1 Kawada-cho Shinjuku-ku Tokyo 162-8666 Japan
| |
Collapse
|
48
|
Biomaterial Applications in Cell-Based Therapy in Experimental Stroke. Stem Cells Int 2016; 2016:6810562. [PMID: 27274738 PMCID: PMC4870368 DOI: 10.1155/2016/6810562] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/11/2016] [Accepted: 04/04/2016] [Indexed: 01/08/2023] Open
Abstract
Stroke is an important health issue corresponding to the second cause of mortality and first cause of severe disability with no effective treatments after the first hours of onset. Regenerative approaches such as cell therapy provide an increase in endogenous brain structural plasticity but they are not enough to promote a complete recovery. Tissue engineering has recently aroused a major interesting development of biomaterials for use into the central nervous system. Many biomaterials have been engineered based on natural compounds, synthetic compounds, or a mix of both with the aim of providing polymers with specific properties. The mechanical properties of biomaterials can be exquisitely regulated forming polymers with different stiffness, modifiable physical state that polymerizes in situ, or small particles encapsulating cells or growth factors. The choice of biomaterial compounds should be adapted for the different applications, structure target, and delay of administration. Biocompatibilities with embedded cells and with the host tissue and biodegradation rate must be considerate. In this paper, we review the different applications of biomaterials combined with cell therapy in ischemic stroke and we explore specific features such as choice of biomaterial compounds and physical and mechanical properties concerning the recent studies in experimental stroke.
Collapse
|
49
|
Antman-Passig M, Shefi O. Remote Magnetic Orientation of 3D Collagen Hydrogels for Directed Neuronal Regeneration. NANO LETTERS 2016; 16:2567-2573. [PMID: 26943183 DOI: 10.1021/acs.nanolett.6b00131] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Hydrogel matrices are valuable platforms for neuronal tissue engineering. Orienting gel fibers to achieve a directed scaffold is important for effective functional neuronal regeneration. However, current methods are limited and require treatment of gels prior to implantation, ex-vivo, without taking into consideration the pathology in the injured site. We have developed a method to control gel orientation dynamically and remotely in situ. We have mixed into collagen hydrogels magnetic nanoparticles then applied an external magnetic field. During the gelation period the magnetic particles aggregated into magnetic particle strings, leading to the alignment of the collagen fibers. We have shown that neurons within the 3D magnetically induced gels exhibited normal electrical activity and viability. Importantly, neurons formed elongated cooriented morphology, relying on the particle strings and fibers as supportive cues for growth. The ability to inject the mixed gel directly into the injured site as a solution then to control scaffold orientation remotely opens future possibilities for therapeutic engineered scaffolds.
Collapse
Affiliation(s)
- Merav Antman-Passig
- Faculty of Engineering and Bar Ilan Institute of Nanotechnologies and Advanced Materials, Bar Ilan University , Ramat Gan 5290002, Israel
| | - Orit Shefi
- Faculty of Engineering and Bar Ilan Institute of Nanotechnologies and Advanced Materials, Bar Ilan University , Ramat Gan 5290002, Israel
| |
Collapse
|
50
|
Interpenetration of Natural Polymer Aerogels by Supercritical Drying. Polymers (Basel) 2016; 8:polym8040106. [PMID: 30979196 PMCID: PMC6432302 DOI: 10.3390/polym8040106] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/15/2016] [Accepted: 03/18/2016] [Indexed: 12/11/2022] Open
Abstract
Natural polymers, such as alginate and gelatin, can be used to produce scaffolds for tissue engineering applications; but, their mechanical and biochemical performance should be improved. A possible solution to obtain this result, is the generation of multi-component scaffolds, by blending two or more polymers. One way to realize it, is the formation of an interpenetrating polymer network (IPN). In this work, the interpenetration of alginate and gelatin hydrogels has been successfully obtained and preserved by supercritical CO2 (SC-CO2) drying performed at 200 bar and 35 °C, using different blend compositions: from alginate/gelatin = 20:80 v/v to alginate/gelatin = 80:20 v/v. The process allowed modulation of morphology and mechanical properties of these blends. The overall result was made possible by the supercritical drying process that, working at zero surface tension, allows preserving the hydrogels nanostructure in the corresponding aerogels.
Collapse
|