1
|
Chen M, Sun D, Yee SP, Yuan Z, Lin L, Cui B, Wang Y, Liu C, Liu P. Mutant Fam20c knock-in mice recapitulate both lethal and non-lethal human Raine Syndrome. BMC Mol Cell Biol 2025; 26:1. [PMID: 39748245 PMCID: PMC11697891 DOI: 10.1186/s12860-024-00526-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Inactivation or mutations of FAM20C causes human Raine Syndrome, which manifests as lethal osteosclerosis bone dysplasia or non-lethal hypophosphatemia rickets. However, it is only hypophosphatemia rickets that was reported in the mice with Fam20c deletion or mutations. To further investigate the local and global impacts of Fam20c mutation, we constructed a knock-in allele carrying Fam20c mutation (D446N) found in the non-lethal Raine Syndrome. The Fam20cD446N allele replaced the WT Fam20c by 3.6Kb Col1a1-Cre to get the conditional knock-in mice, and by Hprt-cre to get conventional knock-in mice, respectively. RESULTS The radiology, serum biochemistry and immunohistochemistry indicated that all conditional and most conventional Fam20cD446N knock-in mice displayed hypophosphatemic rickets with the increased Fgf23 and deceased Dmp1 expression, which survived to adulthood. However, a few conventional Fam20cD446N knock-in mice died before weaning with the osteosclerotic X-ray radiography, though micro-CT assay displayed a reduced mineral density and increased porosity in the osteosclerotic tibia. Our results suggested that hypophosphatemia rickets was the predominant phenotype in both conditional and conventional Fam20c deficient mice, while the lethal osteosclerotic phenotype occasionally took place in the conventional Fam20c mutant mice. CONCLUSION This finding also implicated that the osteosclerotic features resulting from Fam20c deficiency could be a semblance on the basis of rickets, which is most likely triggered by the alterations in the systems other than skeleton.
Collapse
Affiliation(s)
- Mengnan Chen
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Dongmei Sun
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Siu-Pok Yee
- Department of Cell Biology, Health Science Center, University of Connecticut, Farmington, 06030, USA
| | - Zhaoyang Yuan
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Li Lin
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Bing Cui
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Yi Wang
- Department of Prosthodontics, School of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Chao Liu
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, 116044, China.
| | - Peihong Liu
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China.
| |
Collapse
|
2
|
AlSubaihin A, Harrington J. Hereditary Rickets: A Quick Guide for the Pediatrician. Curr Pediatr Rev 2024; 20:380-394. [PMID: 36475338 DOI: 10.2174/1573396319666221205123402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/10/2022] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
With the increased discovery of genes implicated in vitamin D metabolism and the regulation of calcium and phosphate homeostasis, a growing number of genetic forms of rickets are now recognized. These are categorized into calciopenic and phosphopenic rickets. Calciopenic forms of hereditary rickets are caused by genetic mutations that alter the enzymatic activity in the vitamin D activation pathway or impair the vitamin D receptor action. Hereditary forms of phosphopenic rickets, on the other hand, are caused by genetic mutations that lead to increased expression of FGF23 hormone or that impair the absorptive capacity of phosphate at the proximal renal tubule. Due to the clinical overlap between acquired and genetic forms of rickets, identifying children with hereditary rickets can be challenging. A clear understanding of the molecular basis of hereditary forms of rickets and their associated biochemical patterns allow the health care provider to assign the correct diagnosis, avoid non-effective interventions and shorten the duration of the diagnostic journey in these children. In this mini-review, known forms of hereditary rickets listed on the Online Mendelian Inheritance in Man database are discussed. Further, a clinical approach to identify and diagnose children with hereditary forms of rickets is suggested.
Collapse
Affiliation(s)
- Abdulmajeed AlSubaihin
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- King Saud University Medical City, Riyadh, Saudi Arabia
| | - Jennifer Harrington
- Division of Endocrinology, Women's and Children's Health Network, North Adelaide, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
3
|
Liu P, Li J, Tang L, Cong W, Jin H, Zhang H, Cui B, Yang S, Xiao J, Liu C, Saiyin W. Mutations of family with sequence similarity 20-member C gene causing lethal and nonlethal Raine syndrome causes hypophosphatemia rickets. J Cell Physiol 2023; 238:2556-2569. [PMID: 37698039 DOI: 10.1002/jcp.31105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 09/13/2023]
Abstract
Family with sequence similarity 20-member C (FAM20C) is a kinase specific to most of the secreted phosphoproteome. FAM20C has been identified as the causative gene of Raine syndrome, initially characterized by lethal osteosclerosis bone dysplasia. However, since the identification of the cases of nonlethal Raine syndrome characterized by hypophosphatemia rickets, the previous definition of Raine syndrome has become debatable and raised a question about the role of mutations of FAM20C in controversial skeletal manifestation in the two forms of the disease. In this study, we aimed to investigate the influence of FAM20C mutations on skeletogenesis. We developed transgenic mice expressing Fam20c mutations mimicking those associated with human lethal and nonlethal Raine syndrome. The results revealed that transgenic mice expressing the mutant Fam20c found in the lethal (KO;G374R) and nonlethal (KO;D446N) Raine syndrome exhibited osteomalacia without osteosclerotic features. Additionally, both mutants significantly increased the expression of the Fgf23, indicating that Fam20c deficiency in skeletal compartments causes hypophosphatemia rickets. Furthermore, as FAM20C kinase activity catalyzes the phosphorylation of secreted proteomes other than those in the skeletal system, global FAM20C deficiency may trigger alterations in other systems resulting in osteosclerosis secondary to hypophosphatemia rickets. Together, the findings of this study suggest that FAM20C deficiency primarily causes hypophosphatemia rickets or osteomalacia; however, the heterogeneous skeletal manifestation in Raine syndrome was not determined solely by specific mutations of FAM20C. The findings also implicated that rickets or osteomalacia caused by FAM20C deficiency would deteriorate into osteosclerosis by the defects from other systems or environmental impacts.
Collapse
Affiliation(s)
- Peihong Liu
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Laboratory of Longjiang Scholar, The First Affifiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiaxuan Li
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Linghao Tang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wei Cong
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, China
| | - Han Jin
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong Zhang
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bing Cui
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shan Yang
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing Xiao
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, China
| | - Chao Liu
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, China
| | - Wuliji Saiyin
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
4
|
Kato H, Braddock DT, Ito N. Genetics of Diffuse Idiopathic Skeletal Hyperostosis and Ossification of the Spinal Ligaments. Curr Osteoporos Rep 2023; 21:552-566. [PMID: 37530996 PMCID: PMC10543536 DOI: 10.1007/s11914-023-00814-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/03/2023] [Indexed: 08/03/2023]
Abstract
PURPOSE OF REVIEW The study aims to provide updated information on the genetic factors associated with the diagnoses 'Diffuse Idiopathic Skeletal Hyperostosis' (DISH), 'Ossification of the Posterior Longitudinal Ligament' (OPLL), and in patients with spinal ligament ossification. RECENT FINDINGS Recent studies have advanced our knowledge of genetic factors associated with DISH, OPLL, and other spinal ossification (ossification of the anterior longitudinal ligament [OALL] and the yellow ligament [OYL]). Several case studies of individuals afflicted with monogenic disorders, such as X-linked hypophosphatemia (XLH), demonstrate the strong association of fibroblast growth factor 23-related hypophosphatemia with OPLL, suggesting that pathogenic variants in PHEX, ENPP1, and DMP1 are associated with FGF23-phosphate wasting phenotype and strong genetic factors placing patients at risk for OPLL. Moreover, emerging evidence demonstrates that heterozygous and compound heterozygous ENPP1 pathogenic variants inducing 'Autosomal Recessive Hypophosphatemic Rickets Type 2' (ARHR2) also place patients at risk for DISH and OPLL, possibly due to the loss of inhibitory plasma pyrophosphate (PPi) which suppresses ectopic calcification and enthesis mineralization. Our findings emphasize the importance of genetic and plasma biomarker screening in the clinical evaluation of DISH and OPLL patients, with plasma PPi constituting an important new biomarker for the identification of DISH and OPLL patients whose disease course may be responsive to ENPP1 enzyme therapy, now in clinical trials for rare calcification disorders.
Collapse
Affiliation(s)
- Hajime Kato
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
- Osteoporosis Center, The University of Tokyo Hospital, Tokyo, Japan
| | | | - Nobuaki Ito
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
- Osteoporosis Center, The University of Tokyo Hospital, Tokyo, Japan.
| |
Collapse
|
5
|
Rana R, Baker JT, Sorsby M, Jagga S, Venkat S, Almardini S, Liu ES. Impaired 1,25-dihydroxyvitamin D3 action underlies enthesopathy development in the Hyp mouse model of X-linked hypophosphatemia. JCI Insight 2023; 8:e163259. [PMID: 37490334 PMCID: PMC10544216 DOI: 10.1172/jci.insight.163259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/20/2023] [Indexed: 07/27/2023] Open
Abstract
X-linked hypophosphatemia (XLH) is characterized by high serum fibroblast growth factor 23 (FGF23) levels, resulting in impaired 1,25-dihydroxyvitamin D3 (1,25D) production. Adults with XLH develop a painful mineralization of the tendon-bone attachment site (enthesis), called enthesopathy. Treatment of mice with XLH (Hyp) with 1,25D or an anti-FGF23 Ab, both of which increase 1,25D signaling, prevents enthesopathy. Therefore, we undertook studies to determine a role for impaired 1,25D action in enthesopathy development. Entheses from mice lacking vitamin D 1α-hydroxylase (Cyp27b1) (C-/-) had a similar enthesopathy to Hyp mice, whereas deletion of Fgf23 in Hyp mice prevented enthesopathy, and deletion of both Cyp27b1 and Fgf23 in mice resulted in enthesopathy, demonstrating that the impaired 1,25D action due to high FGF23 levels underlies XLH enthesopathy development. Like Hyp mice, enthesopathy in C-/- mice was observed by P14 and was prevented, but not reversed, with 1,25D therapy. Deletion of the vitamin D receptor in scleraxis-expressing cells resulted in enthesopathy, indicating that 1,25D acted directly on enthesis cells to regulate enthesopathy development. These results show that 1,25D signaling was necessary for normal postnatal enthesis maturation and played a role in XLH enthesopathy development. Optimizing 1,25D replacement in pediatric patients with XLH is necessary to prevent enthesopathy.
Collapse
Affiliation(s)
- Rakshya Rana
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Jiana T. Baker
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Melissa Sorsby
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Supriya Jagga
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Shreya Venkat
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Shaza Almardini
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Eva S. Liu
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Buss DJ, Rechav K, Reznikov N, McKee MD. Mineral tessellation in mouse enthesis fibrocartilage, Achilles tendon, and Hyp calcifying enthesopathy: A shared 3D mineralization pattern. Bone 2023:116818. [PMID: 37295663 DOI: 10.1016/j.bone.2023.116818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/17/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
The hallmark of enthesis architecture is the 3D compositional and structural gradient encompassing four tissue zones - tendon/ligament, uncalcified fibrocartilage, calcified fibrocartilage and bone. This functional gradient accommodates the large stiffness differential between calcified bone and uncalcified tendon/ligament. Here we analyze in 3D the organization of the mouse Achilles enthesis and mineralizing Achilles tendon in comparison to lamellar bone. We use correlative, multiscale high-resolution volume imaging methods including μCT with submicrometer resolution and FIB-SEM tomography (both with deep learning-based image segmentation), and TEM and SEM imaging, to describe ultrastructural features of physiologic, age-related and aberrant mineral patterning. We applied these approaches to murine wildtype (WT) Achilles enthesis tissues to describe in normal calcifying fibrocartilage a crossfibrillar mineral tessellation pattern similar to that observed in lamellar bone, but with greater variance in mineral tesselle morphology and size. We also examined Achilles enthesis structure in Hyp mice, a murine model for the inherited osteomalacic disease X-linked hypophosphatemia (XLH) with calcifying enthesopathy. In Achilles enthesis fibrocartilage of Hyp mice, we show defective crossfibrillar mineral tessellation similar to that which occurs in Hyp lamellar bone. At the cellular level in fibrocartilage, unlike in bone where enlarged osteocyte mineral lacunae are found as peri-osteocytic lesions, mineral lacunar volumes for fibrochondrocytes did not differ between WT and Hyp mice. While both WT and Hyp aged mice demonstrate Achilles tendon midsubstance ectopic mineralization, a consistently defective mineralization pattern was observed in Hyp mice. Strong immunostaining for osteopontin was observed at all mineralization sites examined in both WT and Hyp mice. Taken together, this new 3D ultrastructural information describes details of common mineralization trajectories for enthesis, tendon and bone, which in Hyp/XLH are defective.
Collapse
Affiliation(s)
- Daniel J Buss
- Department of Anatomy and Cell Biology, School of Biomedical Sciences, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Katya Rechav
- Electron Microscopy Unit, Weizmann Institute of Science, Rehovot, Israel
| | - Natalie Reznikov
- Department of Anatomy and Cell Biology, School of Biomedical Sciences, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada; Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, Quebec, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Marc D McKee
- Department of Anatomy and Cell Biology, School of Biomedical Sciences, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
7
|
Wang Y, Lyu J, Qian X, Chen B, Sun H, Luo W, Chi F, Li H, Ren D. Involvement of Dmp1 in the Precise Regulation of Hair Bundle Formation in the Developing Cochlea. BIOLOGY 2023; 12:biology12040625. [PMID: 37106825 PMCID: PMC10135853 DOI: 10.3390/biology12040625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/02/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023]
Abstract
Dentin matrix protein 1 (Dmp1) is a highly phosphorylated, extracellular matrix protein that is extensively expressed in bone and teeth but also found in soft tissues, including brain and muscle. However, the functions of Dmp1 in the mice cochlea are unknown. Our study showed that Dmp1 was expressed in auditory hair cells (HCs), with the role of Dmp1 in those cells identified using Dmp1 cKD mice. Immunostaining and scanning electron microscopy of the cochlea at P1 revealed that Dmp1 deficiency in mice resulted in an abnormal stereociliary bundle morphology and the mispositioning of the kinocilium. The following experiments further demonstrated that the cell-intrinsic polarity of HCs was affected without apparent effect on the tissue planer polarity, based on the observation that the asymmetric distribution of Vangl2 was unchanged whereas the Gαi3 expression domain was enlarged and Par6b expression was slightly altered. Then, the possible molecular mechanisms of Dmp1 involvement in inner ear development were explored via RNA-seq analysis. The study suggested that the Fgf23-Klotho endocrine axis may play a novel role in the inner ear and Dmp1 may regulate the kinocilium-stereocilia interaction via Fgf23-Klotho signaling. Together, our results proved the critical role of Dmp1 in the precise regulation of hair bundle morphogenesis in the early development of HCs.
Collapse
Affiliation(s)
- Yanmei Wang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Jihan Lyu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Xiaoqing Qian
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Binjun Chen
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Haojie Sun
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Wenwei Luo
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
- The Second School of Clinical Medicine, South Medical University, Guangzhou 510080, China
| | - Fanglu Chi
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Hongzhe Li
- Research Service, VA Loma Linda Healthcare System, Loma Linda, CA 92350, USA
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Dongdong Ren
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| |
Collapse
|
8
|
Histological Assessment of Endochondral Ossification and Bone Mineralization. ENDOCRINES 2023. [DOI: 10.3390/endocrines4010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Finely tuned cartilage mineralization, endochondral ossification, and normal bone formation are necessary for normal bone growth. Hypertrophic chondrocytes in the epiphyseal cartilage secrete matrix vesicles, which are small extracellular vesicles initiating mineralization, into the intercolumnar septa but not the transverse partitions of the cartilage columns. Bone-specific blood vessels invade the unmineralized transverse septum, exposing the mineralized cartilage cores. Many osteoblast precursors migrate to the cartilage cores, where they synthesize abundant bone matrices, and mineralize them in a process of matrix vesicle-mediated bone mineralization. Matrix vesicle-mediated mineralization concentrates calcium (Ca) and inorganic phosphates (Pi), which are converted into hydroxyapatite crystals. These crystals grow radially and are eventually get out of the vesicles to form spherical mineralized nodules, leading to collagen mineralization. The influx of Ca and Pi into the matrix vesicle is regulated by several enzymes and transporters such as TNAP, ENPP1, PiT1, PHOSPHO1, annexins, and others. Such matrix vesicle-mediated mineralization is regulated by osteoblastic activities, synchronizing the synthesis of organic bone material. However, osteocytes reportedly regulate peripheral mineralization, e.g., osteocytic osteolysis. The interplay between cartilage mineralization and vascular invasion during endochondral ossification, as well as that of osteoblasts and osteocytes for normal mineralization, appears to be crucial for normal bone growth.
Collapse
|
9
|
Bai X, Levental M, Karaplis AC. Burosumab Treatment for Autosomal Recessive Hypophosphatemic Rickets Type 1 (ARHR1). J Clin Endocrinol Metab 2022; 107:2777-2783. [PMID: 35896139 PMCID: PMC9516063 DOI: 10.1210/clinem/dgac433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Autosomal recessive hypophosphatemic rickets (ARHR) are rare, heritable renal phosphate-wasting disorders that arise from overexpression of the bone-derived phosphaturic hormone fibroblast growth factor 23 (FGF23) leading to impaired bone mineralization (rickets and osteomalacia). Inactivating mutations of Dentin matrix protein 1 (DMP1) give rise to ARHR type 1 (ARHR1). Short stature, prominent bowing of the legs, fractures/pseudofractures, and severe enthesopathy are prominent in this patient population. Traditionally, treatment consists of oral phosphate replacement and the addition of calcitriol but this approach is limited by modest efficacy and potential renal and gastrointestinal side effects. OBJECTIVE The advent of burosumab (Crysvita), a fully humanized monoclonal antibody to FGF23 for the treatment of X-linked hypophosphatemia and tumor-induced osteomalacia, offers a unique opportunity to evaluate its safety and efficacy in patients with ARHR1. RESULTS Monthly administration of burosumab to 2 brothers afflicted with the disorder resulted in normalization of serum phosphate, healing of pseudofracture, diminished fatigue, less bone pain, and reduced incapacity arising from the extensive enthesopathy and soft tissue fibrosis/calcification that characterizes this disorder. No adverse effects were reported following burosumab administration. CONCLUSION The present report highlights the beneficial biochemical and clinical outcomes associated with the use of burosumab in patients with ARHR1.
Collapse
Affiliation(s)
- Xiuying Bai
- Lady Davis Institute for Medical Research, CIUSSS de Centre-Ouest-de-l’île-de-Montréal, Jewish General Hospital, McGill University, Montréal, Quebec, H3T 1E2, Canada
| | - Mark Levental
- Department of Radiology, CIUSSS de Centre-Ouest-de-l’île-de-Montréal, Jewish General Hospital, McGill University, Montréal, Quebec, H3T 1E2, Canada
| | - Andrew C Karaplis
- Correspondence: Andrew C. Karaplis, MD, PhD, Lady Davis Institute for Medical Research, 3755 Cote Steve Catherine, Montreal, QC, H3T 1E2, Canada.
| |
Collapse
|
10
|
Hasegawa T, Hongo H, Yamamoto T, Abe M, Yoshino H, Haraguchi-Kitakamae M, Ishizu H, Shimizu T, Iwasaki N, Amizuka N. Matrix Vesicle-Mediated Mineralization and Osteocytic Regulation of Bone Mineralization. Int J Mol Sci 2022; 23:ijms23179941. [PMID: 36077336 PMCID: PMC9456179 DOI: 10.3390/ijms23179941] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Bone mineralization entails two mineralization phases: primary and secondary mineralization. Primary mineralization is achieved when matrix vesicles are secreted by osteoblasts, and thereafter, bone mineral density gradually increases during secondary mineralization. Nearby extracellular phosphate ions (PO43−) flow into the vesicles via membrane transporters and enzymes located on the vesicles’ membranes, while calcium ions (Ca2+), abundant in the tissue fluid, are also transported into the vesicles. The accumulation of Ca2+ and PO43− in the matrix vesicles induces crystal nucleation and growth. The calcium phosphate crystals grow radially within the vesicle, penetrate the vesicle’s membrane, and continue to grow outside the vesicle, ultimately forming mineralized nodules. The mineralized nodules then attach to collagen fibrils, mineralizing them from the contact sites (i.e., collagen mineralization). Afterward, the bone mineral density gradually increases during the secondary mineralization process. The mechanisms of this phenomenon remain unclear, but osteocytes may play a key role; it is assumed that osteocytes enable the transport of Ca2+ and PO43− through the canaliculi of the osteocyte network, as well as regulate the mineralization of the surrounding bone matrix via the Phex/SIBLINGs axis. Thus, bone mineralization is biologically regulated by osteoblasts and osteocytes.
Collapse
Affiliation(s)
- Tomoka Hasegawa
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
- Correspondence: (T.H.); (N.A.); Tel.: +81-11-706-4226 (T.H.); +81-11-706-4223 (N.A.)
| | - Hiromi Hongo
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
| | - Tomomaya Yamamoto
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
- Northern Army Medical Unit, Camp Makomanai, Japan Ground Self-Defense Forces, Sapporo 005-8543, Japan
| | - Miki Abe
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
| | - Hirona Yoshino
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
| | - Mai Haraguchi-Kitakamae
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
- Division of Craniofacial Development and Tissue Biology, Graduate School of Dentistry, Tohoku University, Sendai 980-8577, Japan
| | - Hotaka Ishizu
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
- Orthopedic Surgery, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Tomohiro Shimizu
- Orthopedic Surgery, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Norimasa Iwasaki
- Orthopedic Surgery, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Norio Amizuka
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
- Correspondence: (T.H.); (N.A.); Tel.: +81-11-706-4226 (T.H.); +81-11-706-4223 (N.A.)
| |
Collapse
|
11
|
Barton AR, Hujoel MLA, Mukamel RE, Sherman MA, Loh PR. A spectrum of recessiveness among Mendelian disease variants in UK Biobank. Am J Hum Genet 2022; 109:1298-1307. [PMID: 35649421 PMCID: PMC9300759 DOI: 10.1016/j.ajhg.2022.05.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/12/2022] [Indexed: 01/09/2023] Open
Abstract
Recent work has found increasing evidence of mitigated, incompletely penetrant phenotypes in heterozygous carriers of recessive Mendelian disease variants. We leveraged whole-exome imputation within the full UK Biobank cohort (n ∼ 500K) to extend such analyses to 3,475 rare variants curated from ClinVar and OMIM. Testing these variants for association with 58 quantitative traits yielded 102 significant associations involving variants previously implicated in 34 different diseases. Notable examples included a POR missense variant implicated in Antley-Bixler syndrome that associated with a 1.76 (SE 0.27) cm increase in height and an ABCA3 missense variant implicated in interstitial lung disease that associated with reduced FEV1/FVC ratio. Association analyses with 1,134 disease traits yielded five additional variant-disease associations. We also observed contrasting levels of recessiveness between two more-common, classical Mendelian diseases. Carriers of cystic fibrosis variants exhibited increased risk of several mitigated disease phenotypes, whereas carriers of spinal muscular atrophy alleles showed no evidence of altered phenotypes. Incomplete penetrance of cystic fibrosis carrier phenotypes did not appear to be mediated by common allelic variation on the functional haplotype. Our results show that many disease-associated recessive variants can produce mitigated phenotypes in heterozygous carriers and motivate further work exploring penetrance mechanisms.
Collapse
Affiliation(s)
- Alison R Barton
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Bioinformatics and Integrative Genomics Program, Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA.
| | - Margaux L A Hujoel
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ronen E Mukamel
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Maxwell A Sherman
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Po-Ru Loh
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Chronic kidney disease-mineral and bone disorder (CKD-MBD) has become a global health crisis with very limited therapeutic options. Dentin matrix protein 1 (DMP1) is a matrix extracellular protein secreted by osteocytes that has generated recent interest for its possible involvement in CKD-MBD pathogenesis. This is a review of DMP1 established regulation and function, and early studies implicating DMP1 in CKD-MBD. RECENT FINDINGS Patients and mice with CKD show perturbations of DMP1 expression in bone, associated with impaired osteocyte maturation, mineralization, and increased fibroblast growth factor 23 (FGF23) production. In humans with CKD, low circulating DMP1 levels are independently associated with increased cardiovascular events. We recently showed that DMP1 supplementation lowers circulating FGF23 levels and improves bone mineralization and cardiac outcomes in mice with CKD. Mortality rates are extremely high among patients with CKD and have only marginally improved over decades. Bone disease and FGF23 excess contribute to mortality in CKD by increasing the risk of bone fractures and cardiovascular disease, respectively. Previous studies focused on DMP1 loss-of-function mutations have established its role in the regulation of FGF23 and bone mineralization. Recent studies show that DMP1 supplementation may fill a crucial therapeutic gap by improving bone and cardiac health in CKD.
Collapse
Affiliation(s)
- Aline Martin
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL, 60611, USA.
| | - Dominik Kentrup
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
13
|
Nikoloudaki G. Functions of Matricellular Proteins in Dental Tissues and Their Emerging Roles in Orofacial Tissue Development, Maintenance, and Disease. Int J Mol Sci 2021; 22:ijms22126626. [PMID: 34205668 PMCID: PMC8235165 DOI: 10.3390/ijms22126626] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 01/04/2023] Open
Abstract
Matricellular proteins (MCPs) are defined as extracellular matrix (ECM) associated proteins that are important regulators and integrators of microenvironmental signals, contributing to the dynamic nature of ECM signalling. There is a growing understanding of the role of matricellular proteins in cellular processes governing tissue development as well as in disease pathogenesis. In this review, the expression and functions of different MP family members (periostin, CCNs, TSPs, SIBLINGs and others) are presented, specifically in relation to craniofacial development and the maintenance of orofacial tissues, including bone, gingiva, oral mucosa, palate and the dental pulp. As will be discussed, each MP family member has been shown to have non-redundant roles in development, tissue homeostasis, wound healing, pathology and tumorigenesis of orofacial and dental tissues.
Collapse
Affiliation(s)
- Georgia Nikoloudaki
- Schulich Dentistry Department, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada; ; Tel.: +1-519-661-2111 (ext. 81102)
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| |
Collapse
|
14
|
Silvent J, Robin M, Bussola Tovani C, Wang Y, Soncin F, Delgado S, Azaïs T, Sassoye C, Giraud-Guille MM, Sire JY, Nassif N. Collagen Suprafibrillar Confinement Drives the Activity of Acidic Calcium-Binding Polymers on Apatite Mineralization. Biomacromolecules 2021; 22:2802-2814. [PMID: 34101426 DOI: 10.1021/acs.biomac.1c00206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bone collagenous extracellular matrix provides a confined environment into which apatite crystals form. This biomineralization process is related to a cascade of events partly controlled by noncollagenous proteins. Although overlooked in bone models, concentration and physical environment influence their activities. Here, we show that collagen suprafibrillar confinement in bone comprising intra- and interfibrillar spaces drives the activity of biomimetic acidic calcium-binding polymers on apatite mineralization. The difference in mineralization between an entrapping dentin matrix protein-1 (DMP1) recombinant peptide (rpDMP1) and the synthetic polyaspartate validates the specificity of the 57-KD fragment of DMP1 in the regulation of mineralization, but strikingly without phosphorylation. We show that all the identified functions of rpDMP1 are dedicated to preclude pathological mineralization. Interestingly, transient apatite phases are only found using a high nonphysiological concentration of additives. The possibility to combine biomimetic concentration of both collagen and additives ensures specific chemical interactions and offers perspectives for understanding the role of bone components in mineralization.
Collapse
Affiliation(s)
- Jérémie Silvent
- Laboratoire Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, Collège de France, F-75005 Paris, France.,MNHN, CNRS, EPHE, Institut Systématique Évolution Biodiversité, ISYEB, Equipe Homologies, Sorbonne Université, 75005 Paris, France
| | - Marc Robin
- Laboratoire Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, Collège de France, F-75005 Paris, France
| | - Camila Bussola Tovani
- Laboratoire Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, Collège de France, F-75005 Paris, France
| | - Yan Wang
- Laboratoire Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, Collège de France, F-75005 Paris, France
| | - Fabrice Soncin
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T - Mechanisms of Tumorigenesis and Target Therapies, F-59000 Lille, France
| | - Sidney Delgado
- MNHN, CNRS, EPHE, Institut Systématique Évolution Biodiversité, ISYEB, Equipe Homologies, Sorbonne Université, 75005 Paris, France
| | - Thierry Azaïs
- Laboratoire Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, Collège de France, F-75005 Paris, France
| | - Capucine Sassoye
- Laboratoire Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, Collège de France, F-75005 Paris, France
| | - Marie-Madeleine Giraud-Guille
- Laboratoire Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, Collège de France, F-75005 Paris, France
| | - Jean-Yves Sire
- MNHN, CNRS, EPHE, Institut Systématique Évolution Biodiversité, ISYEB, Equipe Homologies, Sorbonne Université, 75005 Paris, France
| | - Nadine Nassif
- Laboratoire Chimie de la Matière Condensée de Paris, Sorbonne Université, CNRS, Collège de France, F-75005 Paris, France
| |
Collapse
|
15
|
Abstract
Great strides over the past few decades have increased our understanding of the pathophysiology of hypophosphatemic disorders. Phosphate is critically important to a variety of physiologic processes, including skeletal growth, development and mineralization, as well as DNA, RNA, phospholipids, and signaling pathways. Consequently, hypophosphatemic disorders have effects on multiple systems, and may cause a variety of nonspecific signs and symptoms. The acute effects of hypophosphatemia include neuromuscular symptoms and compromise. However, the dominant effects of chronic hypophosphatemia are the effects on musculoskeletal function including rickets, osteomalacia and impaired growth during childhood. While the most common causes of chronic hypophosphatemia in children are congenital, some acquired conditions also result in hypophosphatemia during childhood through a variety of mechanisms. Improved understanding of the pathophysiology of these congenital conditions has led to novel therapeutic approaches. This article will review the pathophysiologic causes of congenital hypophosphatemia, their clinical consequences and medical therapy.
Collapse
Affiliation(s)
- Erik Allen Imel
- Division of Endocrinology, Departments of Medicine and Pediatrics, Indiana University School of Medicine, 1120 West Michigan Street, Gatch Building Room 365, Indianapolis, IN, 46112, USA.
| |
Collapse
|
16
|
Ni X, Li X, Zhang Q, Liu C, Gong Y, Wang O, Li M, Xing X, Jiang Y, Xia W. Clinical Characteristics and Bone Features of Autosomal Recessive Hypophosphatemic Rickets Type 1 in Three Chinese Families: Report of Five Chinese Cases and Review of the Literature. Calcif Tissue Int 2020; 107:636-648. [PMID: 32920683 DOI: 10.1007/s00223-020-00755-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022]
Abstract
Autosomal recessive hypophosphatemic rickets type 1 (ARHR1) was reported to be caused by homozygous mutation of dentin matrix protein 1 (DMP1). To date, very few cases have been reported. Here, we summarized clinical, laboratory and imaging findings of ARHR1 patients in our hospital. Literature review was performed to analyze genotype-phenotype correlation. Five Chinese patients from three unrelated pedigrees presented with lower extremity deformity and short stature. Hypophosphatemia, elevated alkaline phosphatase, high intact fibroblast growth factor 23 and sclerostin were found. X-ray uncovered coexistence of osteomalacia and osteosclerosis. Although areal bone mineral density (aBMD) of axial bone measured by dual-energy X-ray absorptiometry was relatively high in all patients, volumetric BMD (vBMD) and microstructure of one adult patient's peripheral bone detected by HR-pQCT were damaged. Mutation analyses of DMP1 revealed three homozygous mutations including two novel mutations, c.54 + 1G > C and c.94C > A (p.E32X), and a reported mutation c.184-1G > A. Genotype-phenotype correlation analysis including 30 cases (25 from literature review and 5 from our study) revealed that patients harboring mutations affecting C-terminal fragment of DMP1 presented with shorter stature (Z score of height = - 3.4 ± 1.6 vs - 1.0 ± 1.6, p = 0.001) and lower serum phosphate level (0.70 ± 0.15 vs 0.84 ± 0.16, p = 0.03) than those harboring mutations only affecting N-terminal fragment. In summary, we reported five Chinese ARHR1 patients and identified two novel DMP1 mutations. High aBMD and local osteosclerosis in axial bone with low vBMD and damaged microstructure in peripheral bone were featured. Genotype-phenotype correlation analysis confirmed the important role of C-terminal fragment of DMP1.
Collapse
Affiliation(s)
- Xiaolin Ni
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiang Li
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Qi Zhang
- Laboratory Department, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Chang Liu
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yiyi Gong
- Central Research Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Ou Wang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Mei Li
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiaoping Xing
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yan Jiang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Weibo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
17
|
Whyte MP, Amalnath SD, McAlister WH, McKee MD, Veis DJ, Huskey M, Duan S, Bijanki VN, Alur S, Mumm S. Hypophosphatemic osteosclerosis, hyperostosis, and enthesopathy associated with novel homozygous mutations of DMP1 encoding dentin matrix protein 1 and SPP1 encoding osteopontin: The first digenic SIBLING protein osteopathy? Bone 2020; 132:115190. [PMID: 31843680 PMCID: PMC7271119 DOI: 10.1016/j.bone.2019.115190] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 01/20/2023]
Abstract
The SIBLINGs are a subfamily of the secreted calcium-binding phosphoproteins and comprise five small integrin-binding ligand N-linked glycoproteins [dentin matrix protein-1 (DMP1), secreted phosphoprotein-1 (SPP1) also called osteopontin (OPN), integrin-binding sialoprotein (IBSP) also called bone sialoprotein (BSP), matrix extracellular phosphoglycoprotein (MEPE), and dentin sialophosphoprotein (DSPP)]. Each SIBLING has at least one "acidic, serine- and aspartic acid-rich motif" (ASARM) and multiple Ser-x-Glu/pSer sequences that when phosphorylated promote binding of the protein to hydroxyapatite for regulation of biomineralization. Mendelian disorders from loss-of-function mutation(s) of the genes that encode the SIBLINGs thus far involve DSPP causing various autosomal dominant dysplasias of dentin but without skeletal disease, and DMP1 causing autosomal recessive hypophosphatemic rickets, type 1 (ARHR1). No diseases have been reported from gain-of-function mutation(s) of DSPP or DMP1 or from alterations of SPP1, IBSP, or MEPE. Herein, we describe severe hypophosphatemic osteosclerosis and hyperostosis associated with skeletal deformity, short stature, enthesopathy, tooth loss, and high circulating FGF23 levels in a middle-aged man and young woman from an endogamous family living in southern India. Both shared novel homozygous mutations within two genes that encode a SIBLING protein: stop-gain ("nonsense") DMP1 (c.556G>T,p.Glu186Ter) and missense SPP1 (c.769C>T,p.Leu266Phe). The man alone also carried novel heterozygous missense variants within two additional genes that condition mineral homeostasis and are the basis for autosomal recessive disorders: CYP27B1 underlying vitamin D dependent rickets, type 1, and ABCC6 underlying both generalized arterial calcification of infancy, type 2 and pseudoxanthoma elasticum (PXE). By immunochemistry, his bone contained high amounts of OPN, particularly striking surrounding osteocytes. We review how our patients' disorder may represent the first digenic SIBLING protein osteopathy.
Collapse
Affiliation(s)
- Michael P Whyte
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110, USA.
| | - S Deepak Amalnath
- Department of Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry 605006, India
| | - William H McAlister
- Mallinckrodt Institute of Radiology, Washington University School of Medicine at St. Louis Children's Hospital, St. Louis, MO 63110, USA.
| | - Marc D McKee
- Faculty of Dentistry and Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada.
| | - Deborah J Veis
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110, USA.
| | - Margaret Huskey
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110, USA.
| | - Shenghui Duan
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110, USA.
| | - Vinieth N Bijanki
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA.
| | - Suhas Alur
- Department of Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry 605006, India
| | - Steven Mumm
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110, USA.
| |
Collapse
|
18
|
García Martín A, Varsavsky M, Cortés Berdonces M, Ávila Rubio V, Alhambra Expósito MR, Novo Rodríguez C, Rozas Moreno P, Romero Muñoz M, Jódar Gimeno E, Rodríguez Ortega P, Muñoz Torres M. Phosphate disorders and clinical management of hypophosphatemia and hyperphosphatemia. ACTA ACUST UNITED AC 2019; 67:205-215. [PMID: 31501071 DOI: 10.1016/j.endinu.2019.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/20/2019] [Accepted: 06/03/2019] [Indexed: 12/13/2022]
Abstract
Serum phosphorus levels range from 2.5 and 4.5mg/dL (0.81-1.45 mmol/L) in adults, with higher levels in childhood, adolescence, and pregnancy. Intracellular phosphate is involved in intermediary metabolism and other essential cell functions, while extracellular phosphate is essential for bone matrix mineralization. Plasma phosphorus levels are maintained within a narrow range by regulation of intestinal absorption, redistribution, and renal tubular absorption of the mineral. Hypophosphatemia and hyperphosphatemia are common clinical situations, although changes are most often mild and oligosymptomatic. However, acute and severe conditions that require specific treatment may occur. In this document, members of the Mineral and Bone Metabolism Working Group of the Spanish Society of Endocrinology and Nutrition review phosphate disorders and provide algorithms for adequate clinical management of hypophosphatemia and hyperphosphatemia.
Collapse
Affiliation(s)
- Antonia García Martín
- Unidad de Gestión Clínica (UGC) de Endocrinología y Nutrición, Hospital Universitario San Cecilio, Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Granada, España.
| | - Mariela Varsavsky
- Servició de Endocrinología, Metabolismo y Medicina Nuclear, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - María Cortés Berdonces
- Servicio de Endocrinología y Nutrición, Complejo Hospitalario Ruber Juan Bravo, Madrid, España
| | - Verónica Ávila Rubio
- Unidad de Gestión Clínica (UGC) de Endocrinología y Nutrición, Hospital Universitario San Cecilio, Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Granada, España
| | - María Rosa Alhambra Expósito
- Unidad de Gestión Clínica (UGC) de Endocrinología y Nutrición, Hospital Universitario Reina Sofía, Córdoba, España
| | | | - Pedro Rozas Moreno
- Sección de Endocrinología y Nutrición, Hospital General Universitario de Ciudad Real, Ciudad Real, España
| | - Manuel Romero Muñoz
- Unidad de Endocrinología y Nutrición, Hospital General Universitario Rafael Méndez, Lorca, Murcia, España
| | - Esteban Jódar Gimeno
- Departamento de Endocrinología y Nutrición Clínica, Hospital Universitario Quirón Salud Madrid y Hospital Ruber Juan Bravo, Universidad Europea de Madrid, Madrid, España
| | | | - Manuel Muñoz Torres
- Unidad de Gestión Clínica (UGC) de Endocrinología y Nutrición, Hospital Universitario San Cecilio, Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Granada, España; Departamento de Medicina, Universidad de Granada, Granada, España
| |
Collapse
|
19
|
Abstract
Fibroblast growth factor 23 (FGF23), one of the endocrine fibroblast growth factors, is a principal regulator in the maintenance of serum phosphorus concentration. Binding to its cofactor αKlotho and a fibroblast growth factor receptor is essential for its activity. Its regulation and interaction with other factors in the bone-parathyroid-kidney axis is complex. FGF23 reduces serum phosphorus concentration through decreased reabsorption of phosphorus in the kidney and by decreasing 1,25 dihydroxyvitamin D (1,25(OH)2D) concentrations. Various FGF23-mediated disorders of renal phosphate wasting share similar clinical and biochemical features. The most common of these is X-linked hypophosphatemia (XLH). Additional disorders of FGF23 excess include autosomal dominant hypophosphatemic rickets, autosomal recessive hypophosphatemic rickets, fibrous dysplasia, and tumor-induced osteomalacia. Treatment is challenging, requiring careful monitoring and titration of dosages to optimize effectiveness and to balance side effects. Conventional therapy for XLH and other disorders of FGF23-mediated hypophosphatemia involves multiple daily doses of oral phosphate salts and active vitamin D analogs, such as calcitriol or alfacalcidol. Additional treatments may be used to help address side effects of conventional therapy such as thiazides to address hypercalciuria or nephrocalcinosis, and calcimimetics to manage hyperparathyroidism. The recent development and approval of an anti-FGF23 antibody, burosumab, for use in XLH provides a novel treatment option.
Collapse
Affiliation(s)
- Anisha Gohil
- Indiana University School of Medicine, Riley Hospital for Children, Fellow, Endocrinology and Diabetes, 705 Riley Hospital Drive, Room 5960, Indianapolis, IN 46202, USA, E-mail:
| | - Erik A Imel
- Indiana University School of Medicine, Riley Hospital for Children, Associate Professor of Medicine and Pediatrics, 1120 West Michigan Street, CL 459, Indianapolis, IN 46202, USA
| |
Collapse
|
20
|
Beck-Nielsen SS, Mughal Z, Haffner D, Nilsson O, Levtchenko E, Ariceta G, de Lucas Collantes C, Schnabel D, Jandhyala R, Mäkitie O. FGF23 and its role in X-linked hypophosphatemia-related morbidity. Orphanet J Rare Dis 2019; 14:58. [PMID: 30808384 PMCID: PMC6390548 DOI: 10.1186/s13023-019-1014-8] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/30/2019] [Indexed: 12/29/2022] Open
Abstract
Background X-linked hypophosphatemia (XLH) is an inherited disease of phosphate metabolism in which inactivating mutations of the Phosphate Regulating Endopeptidase Homolog, X-Linked (PHEX) gene lead to local and systemic effects including impaired growth, rickets, osteomalacia, bone abnormalities, bone pain, spontaneous dental abscesses, hearing difficulties, enthesopathy, osteoarthritis, and muscular dysfunction. Patients with XLH present with elevated levels of fibroblast growth factor 23 (FGF23), which is thought to mediate many of the aforementioned manifestations of the disease. Elevated FGF23 has also been observed in many other diseases of hypophosphatemia, and a range of animal models have been developed to study these diseases, yet the role of FGF23 in the pathophysiology of XLH is incompletely understood. Methods The role of FGF23 in the pathophysiology of XLH is here reviewed by describing what is known about phenotypes associated with various PHEX mutations, animal models of XLH, and non-nutritional diseases of hypophosphatemia, and by presenting molecular pathways that have been proposed to contribute to manifestations of XLH. Results The pathophysiology of XLH is complex, involving a range of molecular pathways that variously contribute to different manifestations of the disease. Hypophosphatemia due to elevated FGF23 is the most obvious contributor, however localised fluctuations in tissue non-specific alkaline phosphatase (TNAP), pyrophosphate, calcitriol and direct effects of FGF23 have been observed to be associated with certain manifestations. Conclusions By describing what is known about these pathways, this review highlights key areas for future research that would contribute to the understanding and clinical treatment of non-nutritional diseases of hypophosphatemia, particularly XLH.
Collapse
Affiliation(s)
| | - Zulf Mughal
- Royal Manchester Children's Hospital, Manchester, UK
| | | | - Ola Nilsson
- Karolinska Institutet, Stockholm, Sweden and Örebro University, Örebro, Sweden
| | | | - Gema Ariceta
- Hospital Universitario Materno-Infantil Vall d'Hebron, Universitat Autonoma de Barcelona, Barcelona, Spain
| | | | - Dirk Schnabel
- University Children's Hospital of Berlin, Berlin, Germany
| | | | - Outi Mäkitie
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
21
|
Liu ES, Martins JS, Zhang W, Demay MB. Molecular analysis of enthesopathy in a mouse model of hypophosphatemic rickets. Development 2018; 145:dev.163519. [PMID: 30002128 DOI: 10.1242/dev.163519] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 07/04/2018] [Indexed: 12/21/2022]
Abstract
The bone tendon attachment site known as the enthesis comprises a transitional zone between bone and tendon, and plays an important role in enabling movement at this site. X-linked hypophosphatemia (XLH) is characterized by impaired activation of vitamin D, elevated serum FGF23 levels and low serum phosphate levels, which impair bone mineralization. Paradoxically, an important complication of XLH is mineralization of the enthesis (enthesopathy). Studies were undertaken to identify the cellular and molecular pathways important for normal post-natal enthesis maturation and to examine their role during the development of enthesopathy in mice with XLH (Hyp). The Achilles tendon entheses of Hyp mice demonstrate an expansion of hypertrophic-appearing chondrogenic cells by P14. Post-natally, cells in wild-type and Hyp entheses similarly descend from scleraxis- and Sox9-expressing progenitors; however, Hyp entheses exhibit an expansion of Sox9-expressing cells, and enhanced BMP and IHH signaling. These results support a role for enhanced BMP and IHH signaling in the development of enthesopathy in XLH.
Collapse
Affiliation(s)
- Eva S Liu
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Boston, MA 02115, USA.,Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Janaina S Martins
- Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Wanlin Zhang
- Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Marie B Demay
- Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA .,Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
22
|
Abstract
Rickets refers to deficient mineralization at the growth plate and is usually associated with abnormal serum calcium and/or phosphate. There are several subtypes of rickets, including hypophosphatemic rickets (vitamin-D-resistant rickets secondary to renal phosphate wasting), vitamin D-dependent rickets (defects of vitamin D metabolism) and nutritional rickets (caused by dietary deficiency of vitamin D, and/or calcium, and/or phosphate). Most rickets manifest as bone deformities, bone pain, and impaired growth velocity. Diagnosis of rickets is established through the medical history, physical examination, biochemical tests and radiographs. It is of crucial importance to determine the cause of rickets, including the molecular characterization in case of vitamin D resistant rickets, and initiate rapidly the appropriate therapy. In this review, we describe the different causes and therapies of genetic and nutritional rickets, supported by the recent progress in genetics and development of novel molecules such as anti-FGF23 antibody.
Collapse
Affiliation(s)
- A S Lambert
- APHP, Department of Pediatric Endocrinology and Diabetology for Children, Bicêtre Paris-Sud, Le Kremlin-Bicêtre, France; APHP, Reference Center for Rare Disorders of Calcium and Phosphate Metabolism, Filière OSCAR and Plateforme D'Expertise Maladies Rares Paris-Sud, Bicêtre Paris-Sud, Le Kremlin Bicêtre, France.
| | - A Linglart
- APHP, Department of Pediatric Endocrinology and Diabetology for Children, Bicêtre Paris-Sud, Le Kremlin-Bicêtre, France; APHP, Reference Center for Rare Disorders of Calcium and Phosphate Metabolism, Filière OSCAR and Plateforme D'Expertise Maladies Rares Paris-Sud, Bicêtre Paris-Sud, Le Kremlin Bicêtre, France
| |
Collapse
|
23
|
Marik B, Bagga A, Sinha A, Hari P, Sharma A. Genetics of Refractory Rickets: Identification of Novel PHEX Mutations in Indian Patients and a Literature Update. J Pediatr Genet 2018; 7:47-59. [PMID: 29707405 PMCID: PMC5916800 DOI: 10.1055/s-0038-1624577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 12/25/2017] [Indexed: 10/18/2022]
Abstract
Refractory rickets is a genetic disorder that cannot be treated by vitamin D supplementation and adequate dietary calcium and phosphorus. Hereditary hypophosphatemic rickets is one of the major forms of refractory rickets in Indian children and caused due to mutations in the PHEX , FGF23 , DMP1 , ENPP1 , and SLC34A3 genes. This is the first study in India on a large number of patients reporting on mutational screening of the PHEX gene. Direct sequencing in 37 patients with refractory rickets revealed eight mutations in 13 patients of which 1 was nonsense, 2 were deletions, 1 was a deletion-insertion, and 4 were missense mutations. Of these mutations, four (c.566_567 delAG, c.651_654delACAT, c.1337delinsAATAA, and c.2048T > A) were novel mutations. This article discusses the mutations in Indian patients, collates information on the genetic causes of refractory rickets, and emphasizes the significance of genetic testing for precise diagnosis, timely treatment, and management of the condition, especially in developing countries.
Collapse
Affiliation(s)
- Binata Marik
- Division of Genetics, Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Arvind Bagga
- Department of Paediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Aditi Sinha
- Department of Paediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Pankaj Hari
- Department of Paediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Arundhati Sharma
- Division of Genetics, Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
24
|
Abstract
Rickets is a metabolic bone disease that develops as a result of inadequate mineralization of growing bone due to disruption of calcium, phosphorus and/or vitamin D metabolism. Nutritional rickets remains a significant child health problem in developing countries. In addition, several rare genetic causes of rickets have also been described, which can be divided into two groups. The first group consists of genetic disorders of vitamin D biosynthesis and action, such as vitamin D-dependent rickets type 1A (VDDR1A), vitamin D-dependent rickets type 1B (VDDR1B), vitamin D-dependent rickets type 2A (VDDR2A), and vitamin D-dependent rickets type 2B (VDDR2B). The second group involves genetic disorders of excessive renal phosphate loss (hereditary hypophosphatemic rickets) due to impairment in renal tubular phosphate reabsorption as a result of FGF23-related or FGF23-independent causes. In this review, we focus on clinical, laboratory and genetic characteristics of various types of hereditary rickets as well as differential diagnosis and treatment approaches.
Collapse
Affiliation(s)
- Sezer Acar
- Dokuz Eylül University Faculty of Medicine, Department of Pediatric Endocrinology, İzmir, Turkey
| | - Korcan Demir
- Dokuz Eylül University Faculty of Medicine, Department of Pediatric Endocrinology, İzmir, Turkey
| | - Yufei Shi
- King Faisal Specialist Hospital & Research Centre, Department of Genetics, Riyadh, Saudi Arabia
| |
Collapse
|
25
|
Lv K, Huang H, Yi X, Chertoff ME, Li C, Yuan B, Hinton RJ, Feng JQ. A novel auditory ossicles membrane and the development of conductive hearing loss in Dmp1-null mice. Bone 2017; 103:39-46. [PMID: 28603080 PMCID: PMC5568469 DOI: 10.1016/j.bone.2017.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 06/07/2017] [Accepted: 06/07/2017] [Indexed: 10/19/2022]
Abstract
Genetic mouse models are widely used for understanding human diseases but we know much less about the anatomical structure of the auditory ossicles in the mouse than we do about human ossicles. Furthermore, current studies have mainly focused on disease conditions such as osteomalacia and rickets in patients with hypophosphatemia rickets, although the reason that these patients develop late-onset hearing loss is unknown. In this study, we first analyzed Dmp1 lac Z knock-in auditory ossicles (in which the blue reporter is used to trace DMP1 expression in osteocytes) using X-gal staining and discovered a novel bony membrane surrounding the mouse malleus. This finding was further confirmed by 3-D micro-CT, X-ray, and alizarin red stained images. We speculate that this unique structure amplifies and facilitates sound wave transmissions in two ways: increasing the contact surface between the eardrum and malleus and accelerating the sound transmission due to its mineral content. Next, we documented a progressive deterioration in the Dmp1-null auditory ossicle structures using multiple imaging techniques. The auditory brainstem response test demonstrated a conductive hearing loss in the adult Dmp1-null mice. This finding may help to explain in part why patients with DMP1 mutations develop late-onset hearing loss, and supports the critical role of DMP1 in maintaining the integrity of the auditory ossicles and its bony membrane.
Collapse
Affiliation(s)
- Kun Lv
- Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX 75246, USA; The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Haiyang Huang
- Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX 75246, USA
| | - Xing Yi
- Department of Hearing and Speech, KU Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 6616, USA
| | - Mark E Chertoff
- Department of Hearing and Speech, KU Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 6616, USA
| | - Chaoyuan Li
- Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX 75246, USA
| | - Baozhi Yuan
- Department of Medicine, School of Medicine and Public Health, Univ. Wisconsin, Madison, WI 53726, USA
| | - Robert J Hinton
- Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX 75246, USA
| | - Jian Q Feng
- Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX 75246, USA.
| |
Collapse
|
26
|
Zhang Q, Lin S, Liu Y, Yuan B, Harris SE, Feng JQ. Dmp1 Null Mice Develop a Unique Osteoarthritis-like Phenotype. Int J Biol Sci 2016; 12:1203-1212. [PMID: 27766035 PMCID: PMC5069442 DOI: 10.7150/ijbs.15833] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/04/2016] [Indexed: 12/21/2022] Open
Abstract
Patients with hypophosphatemia rickets (including DMP1 mutations) develop severe osteoarthritis (OA), although the mechanism is largely unknown. In this study, we first identified the expression of DMP1 in hypertrophic chondrocytes using immunohistochemistry (IHC) and X-gal analysis of Dmp1-knockout-lacZ-knockin heterozygous mice. Next, we characterized the OA-like phenotype in Dmp1 null mice from 7-week-old to one-year-old using multiple techniques, including X-ray, micro-CT, H&E staining, Goldner staining, scanning electronic microscopy, IHC assays, etc. We found a classical OA-like phenotype in Dmp1 null mice such as articular cartilage degradation, osteophyte formation, and subchondral osteosclerosis. These Dmp1 null mice also developed unique pathological changes, including a biphasic change in their articular cartilage from the initial expansion of hypertrophic chondrocytes at the age of 1-month to a quick diminished articular cartilage layer at the age of 3-months. Further, these null mice displayed severe enlarged knees and poorly formed bone with an expanded osteoid area. To address whether DMP1 plays a direct role in the articular cartilage, we deleted Dmp1 specifically in hypertrophic chondrocytes by crossing the Dmp1-loxP mice with Col X Cre mice. Interestingly, these conditional knockout mice didn't display notable defects in either the articular cartilage or the growth plate. Because of the hypophosphatemia remained in the entire life span of the Dmp1 null mice, we also investigated whether a high phosphate diet would improve the OA-like phenotype. A 8-week treatment of a high phosphate diet significantly rescued the OA-like defect in Dmp1 null mice, supporting the critical role of phosphate homeostasis in maintaining the healthy joint morphology and function. Taken together, this study demonstrates a unique OA-like phenotype in Dmp1 null mice, but a lack of the direct impact of DMP1 on chondrogenesis. Instead, the regulation of phosphate homeostasis by DMP1 via the axis of “FGF23-renal phosphorus reabsorption” is vital for maintaining a healthy joint.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Endondontics, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, China;; Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX, USA
| | - Shuxian Lin
- Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX, USA;; Department of Prosthodontics, Ninth People's Hospital affiliated with Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Ying Liu
- Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX, USA
| | - Baozhi Yuan
- School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Steph E Harris
- Department of Periodontics, UT Health Science Center, San Antonio, TX, USA
| | - Jian Q Feng
- Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX, USA
| |
Collapse
|
27
|
Wacker MJ, Touchberry CD, Silswal N, Brotto L, Elmore CJ, Bonewald LF, Andresen J, Brotto M. Skeletal Muscle, but not Cardiovascular Function, Is Altered in a Mouse Model of Autosomal Recessive Hypophosphatemic Rickets. Front Physiol 2016; 7:173. [PMID: 27242547 PMCID: PMC4866514 DOI: 10.3389/fphys.2016.00173] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/28/2016] [Indexed: 01/29/2023] Open
Abstract
Autosomal recessive hypophosphatemic rickets (ARHR) is a heritable disorder characterized by hypophosphatemia, osteomalacia, and poor bone development. ARHR results from inactivating mutations in the DMP1 gene with the human phenotype being recapitulated in the Dmp1 null mouse model which displays elevated plasma fibroblast growth factor 23. While the bone phenotype has been well-characterized, it is not known what effects ARHR may also have on skeletal, cardiac, or vascular smooth muscle function, which is critical to understand in order to treat patients suffering from this condition. In this study, the extensor digitorum longus (EDL-fast-twitch muscle), soleus (SOL–slow-twitch muscle), heart, and aorta were removed from Dmp1 null mice and ex-vivo functional tests were simultaneously performed in collaboration by three different laboratories. Dmp1 null EDL and SOL muscles produced less force than wildtype muscles after normalization for physiological cross sectional area of the muscles. Both EDL and SOL muscles from Dmp1 null mice also produced less force after the addition of caffeine (which releases calcium from the sarcoplasmic reticulum) which may indicate problems in excitation contraction coupling in these mice. While the body weights of the Dmp1 null were smaller than wildtype, the heart weight to body weight ratio was higher. However, there were no differences in pathological hypertrophic gene expression compared to wildtype and maximal force of contraction was not different indicating that there may not be cardiac pathology under the tested conditions. We did observe a decrease in the rate of force development generated by cardiac muscle in the Dmp1 null which may be related to some of the deficits observed in skeletal muscle. There were no differences observed in aortic contractions induced by PGF2α or 5-HT or in endothelium-mediated acetylcholine-induced relaxations or endothelium-independent sodium nitroprusside-induced relaxations. In summary, these results indicate that there are deficiencies in both fast twitch and slow twitch muscle fiber type contractions in this model of ARHR, while there was less of a phenotype observed in cardiac muscle, and no differences observed in aortic function. These results may help explain skeletal muscle weakness reported by some patients with osteomalacia and need to be further investigated.
Collapse
Affiliation(s)
- Michael J Wacker
- Muscle Biology Research Group, School of Medicine, University of Missouri-Kansas City Kansas City, MO, USA
| | | | - Neerupma Silswal
- Muscle Biology Research Group, School of Medicine, University of Missouri-Kansas City Kansas City, MO, USA
| | - Leticia Brotto
- Bone-Muscle Collaborative Science, College of Nursing and Health Innovation, University of Texas at Arlington Arlington, TX, USA
| | - Chris J Elmore
- Muscle Biology Research Group, School of Medicine, University of Missouri-Kansas City Kansas City, MO, USA
| | - Lynda F Bonewald
- Bone Biology Research Group, School of Dentistry, University of Missouri-Kansas City Kansas City, MO, USA
| | - Jon Andresen
- Muscle Biology Research Group, School of Medicine, University of Missouri-Kansas City Kansas City, MO, USA
| | - Marco Brotto
- Bone-Muscle Collaborative Science, College of Nursing and Health Innovation, University of Texas at Arlington Arlington, TX, USA
| |
Collapse
|
28
|
Ren Y, Han X, Jing Y, Yuan B, Ke H, Liu M, Feng JQ. Sclerostin antibody (Scl-Ab) improves osteomalacia phenotype in dentin matrix protein 1(Dmp1) knockout mice with little impact on serum levels of phosphorus and FGF23. Matrix Biol 2015; 52-54:151-161. [PMID: 26721590 DOI: 10.1016/j.matbio.2015.12.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 02/05/2023]
Abstract
Unlike treatments for most rickets, the treatment using 1,25-(OH)2 vitamin D3 has little efficacy on patients with hypophosphatemic rickets, a set of rare genetic diseases. Thus, understanding the local cause for osteomalacia in hypophosphatemic rickets and developing an effective treatment to restore mineralization in this rare disease has been a longstanding goal in medicine. Here, we used Dmp1 knockout (KO) mice (whose mutations led to the same type of autosomal recessive hypophosphatemic rickets in humans) as the model in which the monoclonal antibody of sclerostin (Scl-Ab) was tested in two age groups for 8weeks: the prevention group (starting at age 4weeks) and the treatment group (starting at age 12weeks). Applications of Scl-Ab greatly improved the osteomalacia phenotype (>15%) and the biomechanical properties (3-point bending, ~60%) in the treated long-bone group. Our studies not only showed improvement of the osteomalacia in the alveolar bone, which has the highest bone metabolism rate, as well as the long bone phenotypes in treated mice. All these improvements attributed to the use of Scl-Ab are independent of the change in serum levels of phosphorus and FGF23, since Scl-Ab had little efficacy on those parameters. Finally, we propose a model to explain how Scl-Ab can improve the Dmp1 KO osteomalacia phenotype, in which the sclerostin level is already low.
Collapse
Affiliation(s)
- Yinshi Ren
- Department of Biomedical Sciences, Texas A&M University Baylor College of Dentistry, Dallas, TX, USA
| | - Xianglong Han
- Department of Biomedical Sciences, Texas A&M University Baylor College of Dentistry, Dallas, TX, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, China
| | - Yan Jing
- Department of Biomedical Sciences, Texas A&M University Baylor College of Dentistry, Dallas, TX, USA
| | - Baozhi Yuan
- Department of Medicine, University of Wisconsin-Madison and Geriatric Research and Education Center, Madison, WI, USA
| | - Huazhu Ke
- Department of Metabolic Disorders, Amgen Inc., Thousand Oaks, CA, USA
| | - Min Liu
- Department of Metabolic Disorders, Amgen Inc., Thousand Oaks, CA, USA
| | - Jian Q Feng
- Department of Biomedical Sciences, Texas A&M University Baylor College of Dentistry, Dallas, TX, USA.
| |
Collapse
|
29
|
Razali NN, Hwu TT, Thilakavathy K. Phosphate homeostasis and genetic mutations of familial hypophosphatemic rickets. J Pediatr Endocrinol Metab 2015; 28:1009-17. [PMID: 25894638 DOI: 10.1515/jpem-2014-0366] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 02/26/2015] [Indexed: 01/17/2023]
Abstract
Hypophosphatemic rickets (HR) is a syndrome of hypophosphatemia and rickets that resembles vitamin D deficiency, which is caused by malfunction of renal tubules in phosphate reabsorption. Phosphate is an essential mineral, which is important for bone and tooth structure. It is regulated by parathyroid hormone, 1,25-dihydroxyvitamin D and fibroblast-growth-factor 23 (FGF23). X-linked hypophosphatemia (XLH), autosomal dominant HR (ADHR), and autosomal recessive HR (ARHR) are examples of hereditary forms of HR, which are mainly caused by mutations in the phosphate regulating endopeptidase homolog, X-linked (PHEX), FGF23, and, dentin matrix protein-1 (DMP1) and ecto-nucleotide pyro phosphatase/phosphodiesterase 1 (ENPP1) genes, respectively. Mutations in these genes are believed to cause elevation of circulating FGF23 protein. Increase in FGF23 disrupts phosphate homeostasis, leading to HR. This review aims to summarize phosphate homeostasis and focuses on the genes and mutations related to XLH, ADHR, and ARHR. A compilation of XLH mutation hotspots based on the PHEX gene database and mutations found in the FGF23, DMP1, and ENPP1 genes are also made available in this review.
Collapse
|
30
|
Gannagé-Yared MH, Makrythanasis P, Chouery E, Sobacchi C, Mehawej C, Santoni FA, Guipponi M, Antonarakis SE, Hamamy H, Mégarbané A. Exome sequencing reveals a mutation in DMP1 in a family with familial sclerosing bone dysplasia. Bone 2014; 68:142-5. [PMID: 25180662 DOI: 10.1016/j.bone.2014.08.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 08/18/2014] [Accepted: 08/23/2014] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Hypophosphatemic rickets (HR) comprises a rare group of inherited diseases. Very recently, mutations in the dentin matrix protein 1 (DMP1) gene were identified in patients with an extremely rare autosomal recessive form of HR (ARHR). To date, very few cases of these mutations were reported. MATERIALS AND METHODS A Lebanese consanguineous family with 2 affected sisters was studied. Patients aged 45 and 47years old presented with short stature, severe genu varum, cranial hyperostosis and a very high bone density that led to a diagnosis of a familial sclerosing bone dysplasia. Molecular analysis of known genes involved in osteopetrosis showed normal results. A combination of genotyping and exome sequencing was performed in order to elucidate the genetic basis of this pathology. RESULTS Biochemical analysis was consistent with normal serum calcium and 1-25(OH)2D levels, low to normal serum phosphorus and elevated PTH values. Serum c-terminal FGF-23 was elevated in one of the two patients. A homozygous mutation disrupting the initiation codon of the DMP1 gene (OMIM 600980), NM_001079911.2: c.1A>G, p.Met1Val, was identified by exome sequencing and confirmed by Sanger sequencing. CONCLUSION We report here a family of ARHR secondary to a DMP1 mutation located in the first coding exon of the gene. Our cases show that some ARHR cases may develop with age an unaccountable increase in bone density and bone overgrowth.
Collapse
Affiliation(s)
| | - Periklis Makrythanasis
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland; Service of Genetic Medicine, University Hospitals of Geneva, Geneva, Switzerland.
| | - Eliane Chouery
- Unité de Génétique Médicale, Faculté de Médecine, Université Saint-Joseph, Beirut, Lebanon.
| | - Cristina Sobacchi
- CNR/IRGB, UOS Milan Unit, Milan, Italy; Humanitas Clinical and Research Center, Rozzano, Milano, Italy.
| | - Cybel Mehawej
- Unité de Génétique Médicale, Faculté de Médecine, Université Saint-Joseph, Beirut, Lebanon.
| | - Federico A Santoni
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.
| | - Michel Guipponi
- Service of Genetic Medicine, University Hospitals of Geneva, Geneva, Switzerland.
| | - Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland; Service of Genetic Medicine, University Hospitals of Geneva, Geneva, Switzerland; iGE3 Institute of Genetics and Genomics of Geneva, Geneva, Switzerland.
| | - Hanan Hamamy
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.
| | - André Mégarbané
- Département d'Endocrinologie, Faculté de Médecine, Université Saint-Joseph, Beirut, Lebanon; Institut Jérôme Lejeune, Paris, France.
| |
Collapse
|
31
|
Lin S, Zhang Q, Cao Z, Lu Y, Zhang H, Yan K, Liu Y, McKee MD, Qin C, Chen Z, Feng JQ. Constitutive nuclear expression of dentin matrix protein 1 fails to rescue the Dmp1-null phenotype. J Biol Chem 2014; 289:21533-43. [PMID: 24917674 PMCID: PMC4118114 DOI: 10.1074/jbc.m113.543330] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 06/02/2014] [Indexed: 12/12/2022] Open
Abstract
Dentin matrix protein 1 (DMP1) plays multiple roles in bone, tooth, phosphate homeostasis, kidney, salivary gland, reproductive cycles, and the development of cancer. In vitro studies have indicated two different biological mechanisms: 1) as a matrix protein, DMP1 interacts with αvβ3 integrin and activates MAP kinase signaling; and 2) DMP1 serves as a transcription co-factor. In vivo studies have demonstrated its key role in osteocytes. This study attempted to determine whether DMP1 functions as a transcription co-factor and regulates osteoblast functions. For gene expression comparisons using adenovirus constructs, we targeted the expression of DMP1 either to the nucleus only by replacing the endogenous signal peptide with a nuclear localization signal (NLS) sequence (referred to as (NLS)DMP1) or to the extracellular matrix as the WT type (referred to as (SP)DMP1) in MC3T3 osteoblasts. High levels of DMP1 in either form greatly increased osteogenic gene expression in an identical manner. However, the targeted (NLS)DMP1 transgene driven by a 3.6-kb rat Col 1α1 promoter in the nucleus of osteoblasts and osteocytes failed to rescue the phenotyope of Dmp1-null mice, whereas the (SP)DMP1 transgene rescued the rickets defect. These studies support the notion that DMP1 functions as an extracellular matrix protein, rather than as a transcription co-factor in vivo. We also show that DMP1 continues its expression in osteoblasts during postnatal development and that the deletion of Dmp1 leads to an increase in osteoblast proliferation. However, poor mineralization in the metaphysis indicates a critical role for DMP1 in both osteoblasts and osteocytes.
Collapse
Affiliation(s)
- Shuxian Lin
- From the Department of Biomedical Sciences, Texas A&M University, Baylor College of Dentistry, Dallas, Texas 75246, The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430072, Hubei, China
| | - Qi Zhang
- Laboratory of Oral Biomedical Science and Translational Medicine, Department of Endodontics, School of Stomatology, Tongji University, Shanghai 200092, China
| | - Zhengguo Cao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430072, Hubei, China
| | - Yongbo Lu
- From the Department of Biomedical Sciences, Texas A&M University, Baylor College of Dentistry, Dallas, Texas 75246
| | - Hua Zhang
- From the Department of Biomedical Sciences, Texas A&M University, Baylor College of Dentistry, Dallas, Texas 75246
| | - Kevin Yan
- the Department of Biological Sciences, Columbia University, New York, New York 10027, and
| | - Ying Liu
- From the Department of Biomedical Sciences, Texas A&M University, Baylor College of Dentistry, Dallas, Texas 75246
| | - Marc D McKee
- the Faculty of Dentistry, and Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Chunlin Qin
- From the Department of Biomedical Sciences, Texas A&M University, Baylor College of Dentistry, Dallas, Texas 75246
| | - Zhi Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430072, Hubei, China,
| | - Jian Q Feng
- From the Department of Biomedical Sciences, Texas A&M University, Baylor College of Dentistry, Dallas, Texas 75246,
| |
Collapse
|
32
|
Abstract
Teeth are mineralized organs composed of three unique hard tissues, enamel, dentin, and cementum, and supported by the surrounding alveolar bone. Although odontogenesis differs from osteogenesis in several respects, tooth mineralization is susceptible to similar developmental failures as bone. Here we discuss conditions fitting under the umbrella of rickets, which traditionally referred to skeletal disease associated with vitamin D deficiency but has been more recently expanded to include newly identified factors involved in endocrine regulation of vitamin D, phosphate, and calcium, including phosphate-regulating endopeptidase homolog, X-linked, fibroblast growth factor 23, and dentin matrix protein 1. Systemic mineral metabolism intersects with local regulation of mineralization, and factors including tissue nonspecific alkaline phosphatase are necessary for proper mineralization, where rickets can result from loss of activity of tissue nonspecific alkaline phosphatase. Individuals suffering from rickets often bear the additional burden of a defective dentition, and transgenic mouse models have aided in understanding the nature and mechanisms involved in tooth defects, which may or may not parallel rachitic bone defects. This report reviews dental effects of the range of rachitic disorders, including discussion of etiologies of hereditary forms of rickets, a survey of resulting bone and tooth mineralization disorders, and a discussion of mechanisms, known and hypothesized, involved in the observed dental pathologies. Descriptions of human pathology are augmented by analysis of transgenic mouse models, and new interpretations are brought to bear on questions of how teeth are affected under conditions of rickets. In short, the rachitic tooth will be revealed.
Collapse
Affiliation(s)
- Brian L Foster
- National Institute for Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | | | | |
Collapse
|
33
|
Berthelot JM, Le Goff B, Maugars Y. Pathogenesis of hyperostosis: A key role for mesenchymatous cells? Joint Bone Spine 2013; 80:592-6. [PMID: 23731645 DOI: 10.1016/j.jbspin.2013.03.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2013] [Indexed: 01/07/2023]
|
34
|
Rafaelsen SH, Raeder H, Fagerheim AK, Knappskog P, Carpenter TO, Johansson S, Bjerknes R. Exome sequencing reveals FAM20c mutations associated with fibroblast growth factor 23-related hypophosphatemia, dental anomalies, and ectopic calcification. J Bone Miner Res 2013; 28:1378-85. [PMID: 23325605 DOI: 10.1002/jbmr.1850] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 11/27/2012] [Accepted: 12/05/2012] [Indexed: 01/06/2023]
Abstract
Fibroblast growth factor 23 (FGF23) plays a crucial role in renal phosphate regulation, exemplified by the causal role of PHEX and DMP1 mutations in X-linked hypophosphatemic rickets and autosomal recessive rickets type 1, respectively. Using whole exome sequencing we identified compound heterozygous mutations in family with sequence similarity 20, member C (FAM20C) in two siblings referred for hypophosphatemia and severe dental demineralization disease. FAM20C mutations were not found in other undiagnosed probands of a national Norwegian population of familial hypophosphatemia. Our results demonstrate that mutations in FAM20C provide a putative new mechanism in human subjects leading to dysregulated FGF23 levels, hypophosphatemia, hyperphosphaturia, dental anomalies, intracerebral calcifications and osteosclerosis of the long bones in the absence of rickets.
Collapse
|
35
|
Feng JQ, Clinkenbeard EL, Yuan B, White KE, Drezner MK. Osteocyte regulation of phosphate homeostasis and bone mineralization underlies the pathophysiology of the heritable disorders of rickets and osteomalacia. Bone 2013; 54:213-21. [PMID: 23403405 PMCID: PMC3672228 DOI: 10.1016/j.bone.2013.01.046] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 01/30/2013] [Accepted: 01/31/2013] [Indexed: 12/13/2022]
Abstract
Although recent studies have established that osteocytes function as secretory cells that regulate phosphate metabolism, the biomolecular mechanism(s) underlying these effects remain incompletely defined. However, investigations focusing on the pathogenesis of X-linked hypophosphatemia (XLH), autosomal dominant hypophosphatemic rickets (ADHR), and autosomal recessive hypophosphatemic rickets (ARHR), heritable disorders characterized by abnormal renal phosphate wasting and bone mineralization, have clearly implicated FGF23 as a central factor in osteocytes underlying renal phosphate wasting, documented new molecular pathways regulating FGF23 production, and revealed complementary abnormalities in osteocytes that regulate bone mineralization. The seminal observations leading to these discoveries were the following: 1) mutations in FGF23 cause ADHR by limiting cleavage of the bioactive intact molecule, at a subtilisin-like protein convertase (SPC) site, resulting in increased circulating FGF23 levels and hypophosphatemia; 2) mutations in DMP1 cause ARHR, not only by increasing serum FGF23, albeit by enhanced production and not limited cleavage, but also by limiting production of the active DMP1 component, the C-terminal fragment, resulting in dysregulated production of DKK1 and β-catenin, which contributes to impaired bone mineralization; and 3) mutations in PHEX cause XLH both by altering FGF23 proteolysis and production and causing dysregulated production of DKK1 and β-catenin, similar to abnormalities in ADHR and ARHR, but secondary to different central pathophysiological events. These discoveries indicate that ADHR, XLH, and ARHR represent three related heritable hypophosphatemic diseases that arise from mutations in, or dysregulation of, a single common gene product, FGF23 and, in ARHR and XLH, complimentary DMP1 and PHEX directed events that contribute to abnormal bone mineralization.
Collapse
Affiliation(s)
- Jian Q Feng
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, TX 75246, USA
| | | | | | | | | |
Collapse
|
36
|
Plasma FGF23 levels increase rapidly after acute kidney injury. Kidney Int 2013; 84:776-85. [PMID: 23657144 PMCID: PMC3766419 DOI: 10.1038/ki.2013.150] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 01/22/2013] [Accepted: 02/22/2013] [Indexed: 12/19/2022]
Abstract
Emerging evidence suggests that fibroblast growth factor 23 (FGF23) levels are elevated in patients with acute kidney injury (AKI). In order to determine how early this increase occurs we used a murine folic acid nephropathy model and found that plasma FGF23 levels increased significantly from baseline already after 1 hour of AKI, with an 18-fold increase at 24 hours. Similar elevations of FGF23 levels were found when AKI was induced in mice with osteocyte-specific parathyroid hormone receptor ablation or the global deletion of parathyroid hormone or vitamin D receptor, indicating that the increase in FGF23 was independent of parathyroid hormone and vitamin D signaling. Furthermore, FGF23 levels increased to a similar extent in wild-type mice maintained on normal or phosphate-depleted diets prior to induction of AKI, indicating that the marked FGF23 elevation is at least partially independent of dietary phosphate. Bone production of FGF23 was significantly increased in AKI. The half-life of intravenously administered recombinant FGF23 was only modestly increased. Consistent with the mouse data, plasma FGF23 levels rose 15.9-fold by 24 hours following cardiac surgery in patients who developed AKI. The levels were significantly higher than in those without postoperative AKI. Thus, circulating FGF23 levels rise rapidly during AKI in rodents and humans. In mice this increase is independent of established modulators of FGF23 secretion.
Collapse
|
37
|
Silvent J, Sire JY, Delgado S. The dentin matrix acidic phosphoprotein 1 (DMP1) in the light of mammalian evolution. J Mol Evol 2013; 76:59-70. [PMID: 23361408 DOI: 10.1007/s00239-013-9539-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 01/06/2013] [Indexed: 12/17/2022]
Abstract
Dentin matrix acidic phosphoprotein 1 (DMP1) is an acidic, highly phosphorylated, noncollagenous protein secreted during dentin and bone formation. Previous functional studies of DMP1 have revealed various motifs playing a role in either mineralization or cell differentiation. We performed an evolutionary analysis of DMP1 to identify residues and motifs that were conserved during 220 millions years (Ma) of mammalian evolution, and hence have an important function. In silico search provided us with 41 sequences that were aligned and analyzed using the Hyphy program. We showed that DMP1 contains 55 positions that were kept unchanged for 220 Ma. We also defined in a more precise manner some motifs that were already known (i.e., cleavage sites, RGD motif, ASARM peptide, glycosaminoglycan chain attachment site, nuclear localization signal sites, and dentin sialophosphoprotein-binding site), and we found five, highly conserved, new functional motifs. In the near future, functional studies could be performed to understand the role played by them.
Collapse
|
38
|
Karaplis AC, Bai X, Falet JP, Macica CM. Mineralizing enthesopathy is a common feature of renal phosphate-wasting disorders attributed to FGF23 and is exacerbated by standard therapy in hyp mice. Endocrinology 2012; 153:5906-17. [PMID: 23038738 PMCID: PMC3512070 DOI: 10.1210/en.2012-1551] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 09/07/2012] [Indexed: 11/19/2022]
Abstract
We have previously confirmed a paradoxical mineralizing enthesopathy as a hallmark of X-linked hypophosphatemia. X-linked hypophosphatemia is the most common of the phosphate-wasting disorders mediated by elevated fibroblast growth factor 23 (FGF23) and occurs as a consequence of inactivating mutations of the PHEX gene product. Despite childhood management of the disease, these complications of tendon and ligament insertion sites account for a great deal of the disease's morbidity into adulthood. It is unclear whether the enthesopathy occurs in other forms of renal phosphate-wasting disorders attributable to high FGF23 levels. Here we describe two patients with autosomal recessive hypophosphatemic rickets due to the Met1Val mutation in dentin matrix acidic phosphoprotein 1 (DMP1). In addition to the biochemical and skeletal features of long-standing rickets with elevated FGF23 levels, these individuals exhibited severe, debilitating, generalized mineralized enthesopathy. These data suggest that enthesophytes are a feature common to FGF23-mediated phosphate-wasting disorders. To address this possibility, we examined a murine model of FGF23 overexpression using a transgene encoding the secreted form of human FGF23 (R176Q) cDNA (FGF23-TG mice). We report that FGF23-TG mice display a similar mineralizing enthesopathy of the Achilles and plantar facial insertions. In addition, we examined the impact of standard therapy for phosphate-wasting disorders on enthesophyte progression. We report that fibrochondrocyte hyperplasia persisted in Hyp mice treated with oral phosphate and calcitriol. In addition, treatment had the untoward effect of further exacerbating the mineralization of fibrochondrocytes that define the bone spur of the Achilles insertion. These studies support the need for newer interventions targeted at limiting the actions of FGF23 and minimizing both the toxicities and potential morbidities associated with standard therapy.
Collapse
|
39
|
Abstract
Surprising new discoveries in the field of skeletal biology show that bone cells produce endocrine hormones that regulate phosphate and glucose homeostasis. In this Review, we examine the features of these new endocrine pathways and discuss their physiological importance in the context of our current understanding of energy metabolism and mineral homeostasis. Consideration of evolutionary and comparative biology provides clues that a key driving force for the emergence of these hormonal pathways was the development of a large, energy-expensive musculoskeletal system. Specialized bone cells also evolved and produced endocrine hormones to integrate the skeleton in global mineral and nutrient homeostasis. The recognition of bone as a true endocrine organ represents a fertile area for further research and should improve the diagnosis and treatment of metabolic diseases such as osteoporosis and diabetes mellitus.
Collapse
|
40
|
Mutational analysis of PHEX, FGF23, DMP1, SLC34A3 and CLCN5 in patients with hypophosphatemic rickets. J Hum Genet 2012; 57:453-8. [PMID: 22695891 DOI: 10.1038/jhg.2012.56] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This study aimed to identify the underlying genetic mutation in patients with hypophosphatemic rickets (HR). Genomic DNA was analysed for mutations in PHEX, FGF23 and CLCN5 by polymerase chain reaction (PCR) followed by denaturing high-performance liquid chromatography (dHPLC). Bi-directional sequencing was performed in samples with deviating chromatographic profiles. DMP1 and SLC34A3 were sequenced, only. In addition, a multiplex ligation-dependent probe amplification (MLPA) analysis was performed to detect larger deletions/duplications in PHEX or FGF23. Familial cases accounted for 12 probands while 12 cases were sporadic. In 20 probands, mutations were detected in PHEX of which 12 were novel, and one novel frameshift mutation was found in DMP1. Three PHEX mutations were identified by the MLPA analysis only; that is, two large deletions and one duplication. No mutations were identified in FGF23, SLC34A3 or CLCN5. By the methods used, a disease causing mutation was identified in 83% of the familial and 92% of the sporadic cases, thereby in 88% of the tested probands. Genetic analysis performed in HR patients by PCR, dHPLC, sequencing and in addition by MLPA analysis revealed a high identification rate of gene mutations causing HR, including 12 novel PHEX and one novel DMP1 mutation.
Collapse
|
41
|
|
42
|
Abstract
Fibroblast growth factor 23 (FGF23), a hormone primarily produced in bone cells, targets the kidney to accelerate phosphate excretion into the urine and suppresses vitamin D synthesis, thereby inducing a negative phosphate balance. Excessive serum FGF23 due to hereditary disorders such as hypophosphatemic rickets leads to phosphate wasting and impaired bone mineralization. In contrast, deficiencies in FGF23 are associated with hyperphosphatemia, elevated 1,25(OH)(2)D(3), ectopic ossification in soft tissues, and defects in skeletal mineralization. Recent studies of human genetic disorders and genetically engineered mice, as well as the in vitro approaches, have clarified some mysteries in FGF23 regulation and its potential roles in bone modeling and remodeling, which are summarized in this review article.
Collapse
Affiliation(s)
- Yongbo Lu
- Department of Biomedical Sciences, Baylor College of Dentistry Texas A & M University Health Science Center, 3302 Gaston Avenue, Dallas, TX 75246, USA
| | | |
Collapse
|