1
|
Yang W, Xia S, Jia X, Zhu Y, Li L, Jiang C, Ji H, Shi F. Utilizing surface-enhanced Raman spectroscopy for the adjunctive diagnosis of osteoporosis. Eur J Med Res 2024; 29:476. [PMID: 39343945 PMCID: PMC11440806 DOI: 10.1186/s40001-024-02081-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024] Open
Abstract
Osteoporosis (OP) is a chronic disease characterized by diminished bone mass and structural deterioration, ultimately leading to compromised bone strength and an increased risk of fractures. Diagnosis primarily relies on medical imaging findings and clinical symptoms. This study aims to explore an adjunctive diagnostic technique for OP based on surface-enhanced Raman scattering (SERS). Serum SERS spectra from the normal, low bone density, and osteoporosis groups were analyzed to discern OP-related expression profiles. This study utilized partial least squares (PLS) and support vector machine (SVM) algorithms to establish an OP diagnostic model. The combination of Raman peak assignments and spectral difference analysis reflected biochemical changes associated with OP, including amino acids, carbohydrates, and collagen. Using the PLS-SVM approach, sensitivity, specificity, and accuracy for screening OP were determined to be 77.78%, 100%, and 88.24%, respectively. This study demonstrates the substantial potential of SERS as an adjunctive diagnostic technology for OP.
Collapse
Affiliation(s)
- Weihang Yang
- Orthopedics Department, Affiliated Hospital 6 of Nantong University, Yancheng, 224001, China
| | - Shuang Xia
- Orthopedics Department, Affiliated Hospital 6 of Nantong University, Yancheng, 224001, China
| | - Xu Jia
- College of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, China
| | - Yuwei Zhu
- Orthopedics Department, Suzhou BOE Hospital, Suzhou, 215000, China
| | - Liang Li
- Orthopedics Department, Affiliated Hospital 6 of Nantong University, Yancheng, 224001, China
| | - Cheng Jiang
- College of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, China
| | - Hongjian Ji
- College of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, China.
| | - Fengchao Shi
- Orthopedics Department, Affiliated Hospital 6 of Nantong University, Yancheng, 224001, China.
| |
Collapse
|
2
|
Anderson KD, Ko FC, Fullam S, Virdi AS, Wimmer MA, Sumner D, Ross RD. The relative contribution of bone microarchitecture and matrix composition to implant fixation strength in rats. J Orthop Res 2022; 40:862-870. [PMID: 34061392 PMCID: PMC8633073 DOI: 10.1002/jor.25107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/21/2021] [Accepted: 05/25/2021] [Indexed: 02/04/2023]
Abstract
Bone microarchitectural parameters significantly contribute to implant fixation strength but the role of bone matrix composition is not well understood. To determine the relative contribution of microarchitecture and bone matrix composition to implant fixation strength, we placed titanium implants in 12-week-old intact Sprague-Dawley rats, ovariectomized-Sprague-Dawley rats, and Zucker diabetic fatty rats. We assessed bone microarchitecture by microcomputed tomography, bone matrix composition by Raman spectroscopy, and implant fixation strength at 2, 6, and 10 weeks postimplantation. A stepwise linear regression model accounted for 83.3% of the variance in implant fixation strength with osteointegration volume/total volume (50.4%), peri-implant trabecular bone volume fraction (14.2%), cortical thickness (9.3%), peri-implant trabecular crystallinity (6.7%), and cortical area (2.8%) as the independent variables. Group comparisons indicated that osseointegration volume/total volume was significantly reduced in the ovariectomy group at Week 2 (~28%) and Week 10 (~21%) as well as in the diabetic group at Week 10 (~34%) as compared with the age matched Sprague-Dawley group. The crystallinity of the trabecular bone was significantly elevated in the ovariectomy group at Week 2 (~4%) but decreased in the diabetic group at Week 10 (~3%) with respect to the Sprague-Dawley group. Our study is the first to show that bone microarchitecture explains most of the variance in implant fixation strength, but that matrix composition is also a contributing factor. Therefore, treatment strategies aimed at improving bone-implant contact and peri-implant bone volume without compromising matrix quality should be prioritized.
Collapse
Affiliation(s)
- Kyle D. Anderson
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL
| | - Frank C. Ko
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL,Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL
| | - Spencer Fullam
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL
| | - Amarjit S. Virdi
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL,Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL
| | - Markus A. Wimmer
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL,Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL
| | - D.R. Sumner
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL,Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL
| | - Ryan D. Ross
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL,Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL
| |
Collapse
|
3
|
Risedronate complexes with Mg2+, Zn2+, Pb2+, and Cu2+: Species thermodynamics and sequestering ability in NaCl(aq) at different ionic strengths and at T = 298.15 K. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Falgayrac G, Farlay D, Ponçon C, Béhal H, Gardegaront M, Ammann P, Boivin G, Cortet B. Bone matrix quality in paired iliac bone biopsies from postmenopausal women treated for 12 months with strontium ranelate or alendronate. Bone 2021; 153:116107. [PMID: 34260980 DOI: 10.1016/j.bone.2021.116107] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 02/05/2023]
Abstract
Bone quality is altered mainly by osteoporosis, which is treated with modulators of bone quality. Knowledge of their mechanisms of action is crucial to understand their effects on bone quality. The goal of our study was to compare the action of alendronate (ALN) and strontium ranelate (SrRan) on the determinants of bone quality. The investigation was performed on over 60 paired human iliac biopsies. Paired samples correspond to biopsies obtained from the same patient, one before treatment (baseline) and one after 12 months of treatment, in postmenopausal women with osteoporosis. Vibrational spectroscopy (Raman and FTIRM) and nanoindentation were used to evaluate the effect of both drugs on bone quality at the ultrastructural level. Outcomes measured by vibrational spectroscopy and nanoindentation are sensitive to bone age. New bone packets are distinguished from old bone packets. Thus, the effect of bone age is distinguished from the treatment effect. Both drugs modify the mineral and organic composition in new and old bone in different fashions after 12 months of administration. The new bone formed during ALN administration is characterized by an increased mineral content, carbonation and apatite crystal size/perfection compared to baseline. Post-translational modifications of collagen are observed through an increase in the hydroxyproline/proline ratio in new bone. The proteoglycan content is also increased in new bone. SrRan directly modulates bone quality through its physicochemical actions, independent of an effect on bone remodeling. Strontium cations are captured by the hydrated layer of the mineral matrix. The mineral matrix formed during SrRan administration has a lower carbonate content and crystallinity after 12 months than at baseline. Strontium might create bonds (crosslinks) with collagen and noncollagenous proteins in new and old bone. The nanomechanical properties of bone were not modified with either ALN or SrRan, probably due to the short duration of administration. Our results show that ALN and SrRan have differential effects on bone quality in relation to their mechanism of action.
Collapse
Affiliation(s)
- Guillaume Falgayrac
- Univ. Lille, CHU Lille, Univ. Littoral Côte d'Opale, ULR 4490 - MABLab, F-59000 Lille, France.
| | - Delphine Farlay
- INSERM, UMR1033, Univ Lyon, Université Claude Bernard Lyon1, Lyon, France
| | - Camille Ponçon
- INSERM, UMR1033, Univ Lyon, Université Claude Bernard Lyon1, Lyon, France
| | - Hélène Béhal
- Univ. Lille, CHU Lille, ULR 2694 - METRICS: Évaluation des technologies de santé et des pratiques médicales, F-59000 Lille, France
| | - Marc Gardegaront
- INSERM, UMR1033, Univ Lyon, Université Claude Bernard Lyon1, Lyon, France
| | - Patrick Ammann
- Division of Bone Diseases, Department of Internal Medicine Specialties, Geneva University Hospital, 4, rue Gabrielle-Perret-Gentil, CH-1211 Geneva 14, Switzerland
| | - Georges Boivin
- INSERM, UMR1033, Univ Lyon, Université Claude Bernard Lyon1, Lyon, France
| | - Bernard Cortet
- Univ. Lille, CHU Lille, Univ. Littoral Côte d'Opale, ULR 4490 - MABLab, F-59000 Lille, France
| |
Collapse
|
5
|
Taylor EA, Donnelly E. Raman and Fourier transform infrared imaging for characterization of bone material properties. Bone 2020; 139:115490. [PMID: 32569874 DOI: 10.1016/j.bone.2020.115490] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022]
Abstract
As the application of Raman spectroscopy to study bone has grown over the past decade, making it a peer technology to FTIR spectroscopy, it has become critical to understand their complimentary roles. Recent technological advancements have allowed these techniques to collect grids of spectra in a spatially resolved fashion to generate compositional images. The advantage of imaging with these techniques is that it allows the heterogenous bone tissue composition to be resolved and quantified. In this review we compare, for non-experts in the field of vibrational spectroscopy, the instrumentation and underlying physical principles of FTIR imaging (FTIRI) and Raman imaging. Additionally, we discuss the strengths and limitations of FTIR and Raman spectroscopy, address sample preparation, and discuss outcomes to provide researchers insight into which techniques are best suited for a given research question. We then briefly discuss previous applications of FTIRI and Raman imaging to characterize bone tissue composition and relationships of compositional outcomes with mechanical performance. Finally, we discuss emerging technical developments in FTIRI and Raman imaging which provide new opportunities to identify changes in bone tissue composition with disease, age, and drug treatment.
Collapse
Affiliation(s)
- Erik A Taylor
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States of America
| | - Eve Donnelly
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, United States of America; Research division, Hospital for Special Surgery, New York, NY, United States of America.
| |
Collapse
|
6
|
Abstract
Numerous safe and efficient drug therapies are currently available to decrease risk of low trauma fractures in patients with osteoporosis including postmenopausal, male, and secondary osteoporosis. In this chapter, we give first an overview of the most important outcomes regarding fracture risk reduction, change in bone mineral density (BMD by DXA) and/or bone markers of the phase III clinical studies of well-established therapies (such as Bisphosphonates, Denosumab or Teriparatide) and also novel therapies (such as Romosozumab or Abaloparatide) and highlight their mechanisms of action at bone tissue/material level. The latter understanding is not only essential for the choice of drug, duration and discontinuation of treatment but also for the interpretation of the clinical outcomes (in particular of eventual changes in BMD) after drug administration. In the second part of this chapter, we focus on the management of different forms of osteoporosis and give a review of the respective current guidelines for treatment. Adverse effects of treatment such as atypical femoral fractures, osteonecrosis of the jaw or influence of fracture healing are considered also in this context.
Collapse
|
7
|
Lim KT, Patel DK, Choung HW, Seonwoo H, Kim J, Chung JH. Evaluation of Bone Regeneration Potential of Long-Term Soaked Natural Hydroxyapatite. ACS APPLIED BIO MATERIALS 2019; 2:5535-5543. [DOI: 10.1021/acsabm.9b00345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Dinesh K. Patel
- The Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Han Wool Choung
- Department of Oral and Maxillofacial Surgery and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 151921, Republic of Korea
| | - Hoon Seonwoo
- Department of Industrial Machinery Engineering, Suncheon National University, Suncheon 57922, Republic of Korea
| | - Jangho Kim
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 500757, Republic of Korea
| | - Jong Hoon Chung
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
8
|
Black DM, Abrahamsen B, Bouxsein ML, Einhorn T, Napoli N. Atypical Femur Fractures: Review of Epidemiology, Relationship to Bisphosphonates, Prevention, and Clinical Management. Endocr Rev 2019; 40:333-368. [PMID: 30169557 DOI: 10.1210/er.2018-00001] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/08/2018] [Indexed: 12/18/2022]
Abstract
Bisphosphonates (BPs) are highly effective in treating osteoporosis and reducing hip, vertebral, and other fractures by as much as 50% to 70%. However, since 2006, atypical femur fractures (AFFs) emerged as potential side effects of BPs and other treatments. These fractures have unusual radiologic features and occur with little trauma. Public concern has led to a >50% decrease in BP usage. AFFs are rare: for each AFF, >1200 fractures, including 135 hip fractures, are prevented. Case definition criteria were updated by the American Society of Bone and Mineral Research in 2014. Many epidemiologic studies have been reported, and although methodologically challenging, generally support a BP-AFF association. However, the magnitude of the association between BPs and AFFs is uncertain: estimates of relative risk for AFFs among BP users vs nonusers range from 1 to 65 with a meta-analysis estimate of 1.7. Although mechanistic studies have proposed several hypotheses explaining how BPs might decrease bone strength, AFF pathogenesis remains uncertain and cannot explain the paradox of efficacy of reduction of common fractures while increasing risk for rare fractures at one site. There are several consistent risk factors, including Asian race (in North America), femoral bowing, and glucocorticoid use, whereas others remain unclear. Consensus is emerging about strategies to prevent AFFs in BP users (including drug holidays after 5 years' use in some patients). In conclusion, AFFs can be devastating, but even under the most pessimistic assumptions, the benefit/risk ratio is highly positive for BPs, particularly during 3 to 5 years of use. As understanding of AFFs increases, it is becoming increasingly possible to maximize BP benefits while minimizing AFF risk.
Collapse
Affiliation(s)
- Dennis M Black
- University of California, San Francisco, San Francisco, California
| | | | | | | | - Nicola Napoli
- Università Campus Bio-Medico di Roma, Rome, Italy.,IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
9
|
Fourier Transform Infrared Spectroscopy of Bone Tissue: Bone Quality Assessment in Preclinical and Clinical Applications of Osteoporosis and Fragility Fracture. Clin Rev Bone Miner Metab 2019. [DOI: 10.1007/s12018-018-9255-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Shabestari M, Eriksen EF, Paschalis EP, Roschger P, Gamsjaeger S, Klaushofer K, Berzlanovich A, Nogues X, Puig L, Diez-Perez A. Presence of pyrophosphate in bone from an atypical femoral fracture site: A case report. Bone Rep 2017; 6:81-86. [PMID: 28377987 PMCID: PMC5365312 DOI: 10.1016/j.bonr.2017.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/21/2017] [Accepted: 02/28/2017] [Indexed: 12/28/2022] Open
Abstract
Long-term antiresorptives use has been linked to atypical subtrochanteric and diaphyseal femoral fractures (AFF), the pathogenesis of which is still unknown. In the present case report we present the results of analysis of bone chips from a 74-year old female patient that had been on alendronate, ibandronate and denosumab treatment, and who sustained an atypical femoral fracture, by histology, quantitative backscattered electron imaging, and Raman spectroscopic analysis. The results indicate ongoing osteoclastic resorption, but also several abnormalities: 1) an altered arrangement of osteons; 2) impaired mineralization; 3) the presence of pyrophosphate, which might contribute to the impaired mineralization evident in the present case. Taken together, these changes may contribute to the focally reduced bone strength of this patient.
Collapse
Affiliation(s)
| | - Erik Fink Eriksen
- Dept. of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Eleftherios P Paschalis
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of WGKK, AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Paul Roschger
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of WGKK, AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Sonja Gamsjaeger
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of WGKK, AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Klaus Klaushofer
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of WGKK, AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Andrea Berzlanovich
- Department of Forensic Medicine, Medical University of Vienna, Vienna, Austria
| | - Xavier Nogues
- Dept. of Orthopedics, Institut Hospital del Mar d'Investigació Mèdica, Autonomous University of Barcelona, Spain
| | - Lluis Puig
- Department of Orthopedic Surgery, Hospital del Mar, Barcelona, Spain
| | - Adolfo Diez-Perez
- Dept. of Orthopedics, Institut Hospital del Mar d'Investigació Mèdica, Autonomous University of Barcelona, Spain
| |
Collapse
|
11
|
Paschalis EP, Gamsjaeger S, Hassler N, Fahrleitner-Pammer A, Dobnig H, Stepan JJ, Pavo I, Eriksen EF, Klaushofer K. Vitamin D and calcium supplementation for three years in postmenopausal osteoporosis significantly alters bone mineral and organic matrix quality. Bone 2017; 95:41-46. [PMID: 27826025 DOI: 10.1016/j.bone.2016.11.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/30/2016] [Accepted: 11/02/2016] [Indexed: 12/15/2022]
Abstract
Prospective, controlled clinical trials in postmenopausal osteoporosis typically compare effects of an active drug with placebo in addition to vitamin D and calcium supplementation in both treatment arms. While clinical benefits are documented, the effect of this supplementation in the placebo arm and in clinical practice on bone material composition properties is unknown. The purpose of the present study was to evaluate these bone quality indices (specifically mineral/matrix, nanoporosity, glycosaminoglycan content, mineral maturity/crystallinity, and pyridinoline content) in patients that either received long-term vitamin D (400-1200IU) and calcium (1.0-1.5g) supplementation, or did not. We have analyzed by Raman microspectroscopy the bone forming trabecular surfaces of iliac crest in pre-treatment samples of a teriparatide study and the endpoint biopsies of the control arm obtained from the HORIZON trial. In general, the mineral/matrix ratio and the glycosaminoglycan (GAG) content was higher while nanoporosity, (a surrogate for tissue water content), the mineral maturity/crystallinity (MMC) and the pyridinoline (Pyd) content was lower in patients without long-term supplementation. Moreover, all indices were significantly dependent on tissue age. In conclusion, vitamin D and calcium supplementation is associated with altered mineral and organic matrix properties.
Collapse
Affiliation(s)
- E P Paschalis
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of WGKK, AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140, Vienna, Austria.
| | - S Gamsjaeger
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of WGKK, AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140, Vienna, Austria
| | - N Hassler
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of WGKK, AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140, Vienna, Austria
| | | | - H Dobnig
- Thyroid, Endocrinology, and Osteoporosis Institute, Graz, Austria
| | - J J Stepan
- Institute of Rheumatology, Faculty of Medicine 1, Charles University, Prague, Czech Republic
| | - I Pavo
- Endocrinology Dept., Oslo University Hospital, Norway
| | - E F Eriksen
- Endocrinology Dept., Oslo University Hospital, Norway
| | - K Klaushofer
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of WGKK, AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140, Vienna, Austria
| |
Collapse
|
12
|
|
13
|
Olejnik C, Falgayrac G, During A, Cortet B, Penel G. Doses effects of zoledronic acid on mineral apatite and collagen quality of newly-formed bone in the rat's calvaria defect. Bone 2016; 89:32-39. [PMID: 27168397 DOI: 10.1016/j.bone.2016.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 04/18/2016] [Accepted: 05/05/2016] [Indexed: 01/12/2023]
Abstract
Due to their inhibitory effects on resorption, bisphosphonates are widely used in the treatment of diseases associated to an extensive bone loss. Yet, little is known about bisphosphonates effects on newly-formed bone quality. In the present study, adult male Sprague-Dawley rats (n=80) with a bone defect calvaria area were used and short-term effects of zoledronic acid (ZA) were studied on the healing bone area. Three ZA treatments were tested by using either: 1°) a low single dose (120μgZA/kg, n=10; equivalent to human osteoporosis treatment), 2°) a low fractionated doses (20μgZA/kg daily for 6days either a total of 120μg/kg, n=15), and 3°) a high fractionated doses, (100μgZA/kg weekly for 6weeks, n=15; equivalent to 6months of human bone metastasis treatment). For each treatment, a control "vehicle" treatment was performed (with an identical number of rats). After ZA administration, the intrinsic bone material properties were evaluated by quantitative backscattered electron imaging (qBEI) and Raman microspectroscopy. Neither single nor fractionated low ZA doses modify the intrinsic bone material properties of the newly-formed bone compared to their respective control animals. On the opposite, the high ZA treatment resulted in a significant decrease of the crystallinity (-25%, P< 0.05) and of the hydroxyproline-to-proline ratio (-30%, P<0.05) in newly-formed bones. Moreover, with the high ZA treatment, the crystallinity was positively correlated with the hydroxyproline-to-proline ratio (ρ=0.78, P<0.0001). The present data highlight new properties for ZA on bone formation in a craniofacial defect model. As such, ZA at high doses disrupted the apatite crystal organization. In addition, we report here for the first time that high ZA doses decreased the hydroxyproline-to-proline ratio suggesting that ZA may affect the early collagen organization during the bone healing.
Collapse
Affiliation(s)
- Cécile Olejnik
- Université de Lille, EA 4490 PMOI, F-59000 Lille, France; Faculté de Chirurgie Dentaire, Place de Verdun, F-59000 Lille, France; Service d'Odontologie, Centre Abel Caumartin, CHRU de Lille, F-59000 Lille, France.
| | - Guillaume Falgayrac
- Université de Lille, EA 4490 PMOI, F-59000 Lille, France; Faculté de Chirurgie Dentaire, Place de Verdun, F-59000 Lille, France
| | - Alexandrine During
- Université de Lille, EA 4490 PMOI, F-59000 Lille, France; Faculté de Chirurgie Dentaire, Place de Verdun, F-59000 Lille, France
| | - Bernard Cortet
- Université de Lille, EA 4490 PMOI, F-59000 Lille, France; Service de Rhumatologie, Hôpital Roger Salengro, CHRU de Lille, F-59000 Lille, France
| | - Guillaume Penel
- Université de Lille, EA 4490 PMOI, F-59000 Lille, France; Faculté de Chirurgie Dentaire, Place de Verdun, F-59000 Lille, France; Service d'Odontologie, Centre Abel Caumartin, CHRU de Lille, F-59000 Lille, France
| |
Collapse
|
14
|
Paschalis EP, Gamsjaeger S, Fratzl-Zelman N, Roschger P, Masic A, Brozek W, Hassler N, Glorieux FH, Rauch F, Klaushofer K, Fratzl P. Evidence for a Role for Nanoporosity and Pyridinoline Content in Human Mild Osteogenesis Imperfecta. J Bone Miner Res 2016; 31:1050-9. [PMID: 26748579 DOI: 10.1002/jbmr.2780] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 12/21/2015] [Accepted: 01/06/2016] [Indexed: 01/19/2023]
Abstract
Osteogenesis imperfecta (OI) is a clinically and genetically heterogeneous connective tissue disorder characterized by bone fragility that arises from decreased bone mass and abnormalities in bone material quality. OI type I represents the milder form of the disease and according to the original Sillence classification is characterized by minimal skeletal deformities and near-normal stature. Raman microspectroscopy is a vibrational spectroscopic technique that allows the determination of bone material properties in bone biopsy blocks with a spatial resolution of ∼1 µm, as a function of tissue age. In the present study, we used Raman microspectroscopy to evaluate bone material quality in transiliac bone biopsies from children with a mild form of OI, either attributable to collagen haploinsufficiency OI type I (OI-Quant; n = 11) or aberrant collagen structure (OI-Qual; n = 5), as a function of tissue age, and compared it against the previously published values established in a cohort of biopsies from healthy children (n = 54, ages 1 to 23 years). The results indicated significant differences in bone material compositional characteristics between OI-Quant patients and healthy controls, whereas fewer were evident in the OI-Qual patients. Differences in both subgroups of OI compared with healthy children were evident for nanoporosity, mineral maturity/crystallinity as determined by maxima of the v1 PO4 Raman band, and pyridinoline (albeit in different direction) content. These alterations in bone material compositional properties most likely contribute to the bone fragility characterizing this disease. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Eleftherios P Paschalis
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Sonja Gamsjaeger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Nadja Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Paul Roschger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Admir Masic
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Wolfgang Brozek
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Norbert Hassler
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Francis H Glorieux
- Genetics Unit, Shriners Hospital for Children, McGill University, Montreal, Canada
| | - Frank Rauch
- Genetics Unit, Shriners Hospital for Children, McGill University, Montreal, Canada
| | - Klaus Klaushofer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Peter Fratzl
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| |
Collapse
|
15
|
Compston J. Emerging therapeutic concepts for muscle and bone preservation/building. Bone 2015; 80:150-156. [PMID: 26453503 DOI: 10.1016/j.bone.2015.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 03/24/2015] [Accepted: 04/07/2015] [Indexed: 01/16/2023]
Abstract
Loss of muscle or bone mass occurs with ageing, immobility and in association with a variety of systemic diseases. The interaction of these two processes is most evident in the major contribution of falls to the risk of fractures in the elderly population. Exercise and nutrition are key common physiological variables that allow for preservation or formation of greater muscle or bone mass. However, although several pharmacological approaches have the potential to benefit both muscle and bone health, for example vitamin D, selective androgen receptor modulators and ghrelin mimetics, clinical trials with appropriate primary outcomes are lacking. Conventional approaches to address muscle loss are being extended to include stem cell biology and conserved molecular mechanisms of atrophy/hypertrophy. Pharmacological interventions to reduce fracture risk are exploring new mechanisms of action, in particular the uncoupling of bone resorption and formation. Emerging key issues for clinical trial design include adequate phenotyping of patients (personalised medicine), optimisation of the physiological background (multimodal approach) and the use of meaningful and robust outcomes relevant to daily clinical practice. At present, effective treatments that combine beneficial effects on both muscle and bone are lacking, although this is an important target for the future. This review therefore considers current and developing strategies to improve muscle function and bone strength in separate sections.
Collapse
Affiliation(s)
- Juliet Compston
- University of Cambridge School of Clinical Medicine, Department of Medicine, Addenbrooke's Hospital, Hills Road, Cambridge UK CB2 0QQ.
| |
Collapse
|
16
|
Buckley K, Kerns JG, Vinton J, Gikas PD, Smith C, Parker AW, Matousek P, Goodship AE. Towards the in vivo prediction of fragility fractures with Raman spectroscopy. JOURNAL OF RAMAN SPECTROSCOPY : JRS 2015; 46:610-618. [PMID: 27546955 PMCID: PMC4976623 DOI: 10.1002/jrs.4706] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/20/2015] [Accepted: 03/24/2015] [Indexed: 05/05/2023]
Abstract
Fragility fractures, those fractures which result from low level trauma, have a large and growing socio-economic cost in countries with aging populations. Bone-density-based assessment techniques are vital for identifying populations that are at higher risk of fracture, but do not have high sensitivity when it comes to identifying individuals who will go on to have their first fragility fracture. We are developing Spatially Offset Raman Spectroscopy (SORS) as a tool for retrieving chemical information from bone non-invasively in vivo. Unlike X-ray-based techniques SORS can retrieve chemical information from both the mineral and protein phases of the bone. This may enable better discrimination between those who will or will not go on to have a fragility fracture because both phases contribute to bone's mechanical properties. In this study we analyse excised bone with Raman spectroscopy and multivariate analysis, and then attempt to look for similar Raman signals in vivo using SORS. We show in the excised work that on average, bone fragments from the necks of fractured femora are more mineralised (by 5-10%) than (cadaveric) non-fractured controls, but the mineralisation distributions of the two cohorts are largely overlapped. In our in vivo measurements, we observe similar, but as yet statistically underpowered, differences. After the SORS data (the first SORS measurements reported of healthy and diseased human cohorts), we identify methodological developments which will be used to improve the statistical significance of future experiments and may eventually lead to more sensitive prediction of fragility fractures. © 2015 The Authors. Journal of Raman Spectroscopy Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kevin Buckley
- Central Laser Facility, Research Complex at HarwellSTFC Rutherford Appleton LaboratoryHarwell OxfordOX11 0FAUK
- UCL Institute of Orthopaedics and Musculoskeletal ScienceLondonHA7 4LPUK
- Royal National Orthopaedic HospitalStanmoreHA7 4LPUK
| | - Jemma G. Kerns
- UCL Institute of Orthopaedics and Musculoskeletal ScienceLondonHA7 4LPUK
- Royal National Orthopaedic HospitalStanmoreHA7 4LPUK
| | | | - Panagiotis D. Gikas
- UCL Institute of Orthopaedics and Musculoskeletal ScienceLondonHA7 4LPUK
- Royal National Orthopaedic HospitalStanmoreHA7 4LPUK
| | - Christian Smith
- UCL Institute of Orthopaedics and Musculoskeletal ScienceLondonHA7 4LPUK
| | - Anthony W. Parker
- Central Laser Facility, Research Complex at HarwellSTFC Rutherford Appleton LaboratoryHarwell OxfordOX11 0FAUK
- UCL Institute of Orthopaedics and Musculoskeletal ScienceLondonHA7 4LPUK
- Royal National Orthopaedic HospitalStanmoreHA7 4LPUK
| | - Pavel Matousek
- Central Laser Facility, Research Complex at HarwellSTFC Rutherford Appleton LaboratoryHarwell OxfordOX11 0FAUK
- UCL Institute of Orthopaedics and Musculoskeletal ScienceLondonHA7 4LPUK
- Royal National Orthopaedic HospitalStanmoreHA7 4LPUK
| | - Allen E. Goodship
- UCL Institute of Orthopaedics and Musculoskeletal ScienceLondonHA7 4LPUK
| |
Collapse
|
17
|
Long-term safety of antiresorptive treatment: bone material, matrix and mineralization aspects. BONEKEY REPORTS 2015; 4:634. [PMID: 25709811 DOI: 10.1038/bonekey.2015.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/12/2014] [Indexed: 12/13/2022]
Abstract
It is well established that long-term antiresorptive use is effective in the reduction of fracture risk in high bone turnover osteoporosis. Nevertheless, during recent years, concerns emerged that longer bone turnover reduction might favor the occurrence of fatigue fractures. However, the underlying mechanisms for both beneficial and suspected adverse effects are not fully understood yet. There is some evidence that their effects on the bone material characteristics have an important role. In principle, the composition and nanostructure of bone material, for example, collagen cross-links and mineral content and crystallinity, is highly dependent on tissue age. Bone turnover determines the age distribution of the bone structural units (BSUs) present in bone, which in turn is decisive for its intrinsic material properties. It is noteworthy that the effects of bone turnover reduction on bone material were observed to be dependent on the duration of the antiresorptive therapy. During the first 2-3 years, significant decreases in the heterogeneity of material properties such as mineralization of the BSUs have been observed. In the long term (5-10 years), the mineralization pattern reverts towards normal heterogeneity and degree of mineralization, with no signs of hypermineralization in the bone matrix. Nevertheless, it has been hypothesized that the occurrence of fatigue fractures (such as atypical femoral fractures) might be linked to a reduced ability of microdamage repair under antiresorptive therapy. The present article examines results from clinical studies after antiresorptive, in particular long-term, therapy with the aforementioned potentially positive or negative effects on bone material.
Collapse
|
18
|
Hassler N, Gamsjaeger S, Hofstetter B, Brozek W, Klaushofer K, Paschalis EP. Effects of long-term alendronate treatment on postmenopausal osteoporosis bone material properties. Osteoporos Int 2015; 26:339-52. [PMID: 25315260 DOI: 10.1007/s00198-014-2929-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/02/2014] [Indexed: 12/18/2022]
Abstract
UNLABELLED Raman microspectroscopic analysis of iliac crest from patients that were treated with alendronate (ALN) for 10 years revealed minimal, transient alterations in bone material properties confined to actively forming bone surfaces compared to patients that were on ALN for 5 years. These changes were not encountered in the bulk tissue. INTRODUCTION Alendronate (ALN) and other bisphosphonates (BPs) are the most widely prescribed therapy for postmenopausal osteoporosis. Despite their overall excellent safety record and efficacy in reducing fractures, questions have been raised regarding potential detrimental effects that may be related to prolonged bone turnover reduction, although no definite cause-effect relationship has been established to date. The purpose of the present study was to evaluate bone material properties in patients that were receiving ALN for 5 or 10 years. METHODS Raman microspectroscopic analysis was used to analyze iliac crest biopsies from postmenopausal women with osteoporosis who had been treated with ALN for 5 years and were then re-randomized to placebo (PBO, N = 14), 5 mg/day ALN (N = 10), or 10 mg/day ALN (N = 6) for another 5 years. The parameters monitored and expressed as a function of tissue age were (i) the mineral/matrix ratio (MM), (ii) the relative proteoglycan content (PG), (iii) the relative lipid content (LPD), (iv) the mineral maturity/crystallinity (MMC), and (v) the relative pyridinoline content (PYD). RESULTS The obtained data indicate that 10-year ALN use results in minimal, transient bone tissue composition changes compared to use for 5 years, confined to actively forming trabecular surfaces, implying potential differences in bone matrix maturation that nevertheless did not result in differences of these values in bulk tissue. CONCLUSIONS The data suggest that prolonged reduction in bone turnover during 10 years of therapy with ALN by itself is unlikely to be associated with adverse effects on bone material properties.
Collapse
Affiliation(s)
- N Hassler
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma CentreMeidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
19
|
Gamsjaeger S, Mendelsohn R, Boskey AL, Gourion-Arsiquaud S, Klaushofer K, Paschalis EP. Vibrational spectroscopic imaging for the evaluation of matrix and mineral chemistry. Curr Osteoporos Rep 2014; 12:454-64. [PMID: 25240579 PMCID: PMC4638121 DOI: 10.1007/s11914-014-0238-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Metabolic bone diseases manifesting fragility fractures (such as osteoporosis) are routinely diagnosed based on bone mineral density (BMD) measurements, and the effect of various therapies also evaluated based on the same outcome. Although useful, it is well recognized that this metric does not fully account for either fracture incidence or the effect of various therapies on fracture incidence, thus, the emergence of bone quality as a contributing factor in the determination of bone strength. Infrared and Raman vibrational spectroscopic techniques are particularly well-suited for the determination of bone quality as they provide quantitative and qualitative information of the mineral and organic matrix bone components, simultaneously. Through the use of microspectroscopic techniques, this information is available in a spatially resolved manner, thus, the outcomes may be easily correlated with outcomes from techniques such as histology, histomorphometry, and nanoindentation, linking metabolic status with material properties.
Collapse
Affiliation(s)
- S. Gamsjaeger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital, of WGKK and AUVA Trauma Centre Meidling, 1st Medical, Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| | | | | | | | - K. Klaushofer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital, of WGKK and AUVA Trauma Centre Meidling, 1st Medical, Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| | - E. P. Paschalis
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital, of WGKK and AUVA Trauma Centre Meidling, 1st Medical, Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria,
| |
Collapse
|
20
|
Gamsjaeger S, Hofstetter B, Fratzl-Zelman N, Roschger P, Roschger A, Fratzl P, Brozek W, Masic A, Misof BM, Glorieux FH, Klaushofer K, Rauch F, Paschalis EP. Pediatric reference Raman data for material characteristics of iliac trabecular bone. Bone 2014; 69:89-97. [PMID: 25245203 DOI: 10.1016/j.bone.2014.09.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 09/09/2014] [Accepted: 09/11/2014] [Indexed: 01/07/2023]
Abstract
Bone material characteristics are important contributors in the determination of bone strength. Raman spectroscopic analysis provides information on mineral/matrix ratio, mineral maturity/crystallinity, relative pyridinoline (Pyd) collagen cross-link content, relative proteoglycan content and relative lipid content. However, published reference data are available only for adults. The purpose of the present study was to establish reference data of Raman outcomes pertaining to bone quality in trabecular bone for children and young adults. To this end, tissue age defined Raman microspectroscopic analysis was performed on bone samples from 54 individuals between 1.5 and 23 years with no metabolic bone disease, which have been previously used to establish histomorphometric and bone mineralization density distribution reference values. Four distinct tissue ages, three well defined by the fluorescent double labels representing early stages of bone formation and tissue maturation (days 3, 12, 20 of tissue mineralization) and a fourth representing old mature tissue at the geometrical center of the trabeculae, were analyzed. In general, significant dependencies of the measured parameters on tissue age were found, while at any given tissue age, sex and subject age were not confounders. Specifically, mineral/matrix ratio, mineral maturity/crystallinity index and relative pyridinoline collagen cross-link content index increased by 485%, 20% and 14%, respectively between days 3 and 20. The relative proteoglycan content index was unchanged between days 3 and 20 but was elevated in the old tissue compared to young tissue by 121%. The relative lipid content decreased within days 3 to 20 by -22%. Thus, the method allows not only the monitoring of material characteristics at a specific tissue age but also the kinetics of tissue maturation as well. The established reference Raman database will serve as sensitive tool to diagnose disturbances in material characteristics of pediatric bone biopsy samples.
Collapse
Affiliation(s)
- S Gamsjaeger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| | - B Hofstetter
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| | - N Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| | - P Roschger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| | - A Roschger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria; Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - P Fratzl
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - W Brozek
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| | - A Masic
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - B M Misof
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| | - F H Glorieux
- Genetics Unit, Shriners Hospital for Children and McGill University, Montreal, Quebec H3G 1A6, Canada
| | - K Klaushofer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| | - F Rauch
- Genetics Unit, Shriners Hospital for Children and McGill University, Montreal, Quebec H3G 1A6, Canada
| | - E P Paschalis
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria.
| |
Collapse
|
21
|
Lim KT, Kim JW, Kim J, Chung JH. Development and Evaluation of Natural Hydroxyapatite Ceramics Produced by the Heat Treatment of Pig Bones. ACTA ACUST UNITED AC 2014. [DOI: 10.5307/jbe.2014.39.3.227] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
22
|
Abstract
This review describes new technologies for the diagnosis and treatment, including fracture risk prediction, of postmenopausal osteoporosis. Four promising technologies and their potential for clinical translation and basic science studies are discussed. These include reference point indentation (RPI), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and magnetic resonance imaging (MRI). While each modality exploits different physical principles, the commonality is that none of them require use of ionizing radiation. To provide context for the new developments, brief summaries are provided for the current state of biomarker assays, fracture risk assessment (FRAX), and other fracture risk prediction algorithms and quantitative ultrasound (QUS) measurements.
Collapse
Affiliation(s)
- Bo Gong
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | | | | |
Collapse
|
23
|
Roschger P, Misof B, Paschalis E, Fratzl P, Klaushofer K. Changes in the degree of mineralization with osteoporosis and its treatment. Curr Osteoporos Rep 2014; 12:338-50. [PMID: 24947951 DOI: 10.1007/s11914-014-0218-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The diagnosis of osteoporosis is based on low bone mineral density (BMD) and/or the occurrence of fragility fractures. The majority of patients, however, have also abnormally low bone matrix mineralization. The latter is indicative of alterations in bone turnover rates and/or in kinetics of mineral accumulation within the newly formed bone matrix. Osteoporosis therapies can alter the bone matrix mineralization according to their action on bone turnover and/or mineralization kinetics. Antiresorptives, including the most widely used bisphosphonates, reduce the bone turnover rate resulting in a decrease in heterogeneity and an increase in the degree of mineralization toward to or even beyond normal values. Anabolic agents increase the bone volume and the amount of newly formed bone resulting in a likely transient decrease in mean degree and homogeneity of mineralization. Hence, the measurement of bone matrix mineralization is a sensitive tool to evaluate the response to therapy.
Collapse
Affiliation(s)
- Paul Roschger
- 1st Medical Department, Hanusch Hospital, Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, Heinrich Collin Str. 30, A-1140, Vienna, Austria,
| | | | | | | | | |
Collapse
|
24
|
Roschger A, Gamsjaeger S, Hofstetter B, Masic A, Blouin S, Messmer P, Berzlanovich A, Paschalis EP, Roschger P, Klaushofer K, Fratzl P. Relationship between the v₂PO₄/amide III ratio assessed by Raman spectroscopy and the calcium content measured by quantitative backscattered electron microscopy in healthy human osteonal bone. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:065002. [PMID: 24919447 DOI: 10.1117/1.jbo.19.6.065002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 05/14/2014] [Indexed: 06/03/2023]
Abstract
Raman microspectroscopy and quantitative backscattered electron imaging (qBEI) of bone are powerful tools to investigate bone material properties. Both methods provide information on the degree of bone matrix mineralization. However, a head-to-head comparison of these outcomes from identical bone areas has not been performed to date. In femoral midshaft cross sections of three women, 99 regions (20×20 μm²) were selected inside osteons and interstitial bone covering a wide range of matrix mineralization. As the focus of this study was only on regions undergoing secondary mineralization, zones exhibiting a distinct gradient in mineral content close to the mineralization front were excluded. The same regions were measured by both methods. We found a linear correlation (R²=0.75) between mineral/matrix as measured by Raman spectroscopy and the wt. %Mineral/(100-wt. %Mineral) as obtained by qBEI, in good agreement with theoretical estimations. The observed deviations of single values from the linear regression line were determined to reflect biological heterogeneities. The data of this study demonstrate the good correspondence between Raman and qBEI outcomes in describing tissue mineralization. The obtained correlation is likely sensitive to changes in bone tissue composition, providing an approach to detect potential deviations from normal bone.
Collapse
Affiliation(s)
- Andreas Roschger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Straße 30, A-1140 Vienna, AustriabMax Planck Institute of Colloids and Interfaces, 14424 Pot
| | - Sonja Gamsjaeger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Straße 30, A-1140 Vienna, Austria
| | - Birgit Hofstetter
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Straße 30, A-1140 Vienna, Austria
| | - Admir Masic
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Stéphane Blouin
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Straße 30, A-1140 Vienna, Austria
| | - Phaedra Messmer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Straße 30, A-1140 Vienna, Austria
| | - Andrea Berzlanovich
- Medical University of Vienna, Department of Forensic Medicine, A-1090 Vienna, Austria
| | - Eleftherios P Paschalis
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Straße 30, A-1140 Vienna, Austria
| | - Paul Roschger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Straße 30, A-1140 Vienna, Austria
| | - Klaus Klaushofer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Straße 30, A-1140 Vienna, Austria
| | - Peter Fratzl
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| |
Collapse
|
25
|
Olejnik C, Falgayrac G, During A, Vieillard MH, Maes JM, Cortet B, Penel G. Molecular alterations of bone quality in sequesters of bisphosphonates-related osteonecrosis of the jaws. Osteoporos Int 2014; 25:747-56. [PMID: 24081510 DOI: 10.1007/s00198-013-2514-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 09/13/2013] [Indexed: 01/09/2023]
Abstract
UNLABELLED Compared to healthy bone, the intrinsic bone materials properties in the pre-existing lamellar bone are altered in jaw bone sequesters of bisphosphonates (BP)-related osteonecrosis. INTRODUCTION The aim of this study was to evaluate the human jaw bone quality, especially intrinsic bone material properties among sequesters of osteonecrosis of the jaw (ONJ) induced by BP. METHODS Bone sequesters were obtained from 24 patients suffering from ONJ following a BP treatment. Within BP-exposed bone samples, benign-BP and malignant-BP groups were distinguished in relation to the underlying disease: osteoporosis and bone metastases or multiple myeloma, respectively. Healthy cadaveric cortical jaw bone samples were used as controls. The physicochemical parameters of bone samples - mineral/organic ratio, relative proteoglycan content, crystallinity, monohydrogen phosphate content, and type-B carbonate substitution - were evaluated by Raman microspectroscopy. Representative Raman spectral features of bones control and BP-exposed bone sequesters were identified with the Partial-Least-Square Discriminant Analysis (PLS-DA). RESULTS BP-exposed bone sequesters are characterized by a significant increase of mineral to organic ratio (+12 %) and a significant decrease of relative proteoglycan content (-35 %), thus regulating initial collagen matrix mineral deposition. Structural changes on mineral components are revealed by a significant decrease of both crystallinity (-2 %) and mineral maturation (-41 %) in the BP-exposed bone sequesters compared to healthy bones. These modifications were also observed distinctly in both benign-BP and malignant-BP groups. In addition, a shift of the phosphate ν1 band was highlighted by PLS-DA between bones control and BP-exposed bone sequesters, revealing a disruption of the apatitic phosphate environment in the jaw bone sequesters. CONCLUSIONS The present data show that jaw bone quality can be altered with an overmineralization and ultrastructural modifications of apatitic mineral in bone sequesters of BP-related ONJ.
Collapse
Affiliation(s)
- C Olejnik
- Université Lille Nord de France, 59000, Lille, France,
| | | | | | | | | | | | | |
Collapse
|
26
|
Wegrzyn J, Roux JP, Farlay D, Follet H, Chapurlat R. The role of bone intrinsic properties measured by infrared spectroscopy in whole lumbar vertebra mechanics: organic rather than inorganic bone matrix? Bone 2013; 56:229-33. [PMID: 23777959 DOI: 10.1016/j.bone.2013.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/24/2013] [Accepted: 06/10/2013] [Indexed: 12/17/2022]
Abstract
Whole bone strength is determined by bone mass, microarchitecture and intrinsic properties of the bone matrix. However, few studies have directly investigated the contribution of bone tissue material properties to whole bone strength in humans. This study assessed the role of bone matrix composition on whole lumbar vertebra mechanics. We obtained 17 fresh frozen human lumbar spines (8 W, 9 M, aged 76±11years). L3 bone mass was measured by DXA and microarchitecture by μ-CT with a 35 μm-isotropic resolution. Microarchitectural parameters were directly measured: Tb.BV/TV, SMI, Tb.Th, DA, Ct.Th, Ct.Po and radius of anterior cortical curvature. Failure load (N), stiffness (N/mm) and work to failure (N.mm) were extracted from quasi-static uniaxial compressive testing performed on L3 vertebral bodies. FTIRM analysis was performed on 2 μm-thick sections from L2 trabecular cores, with a Perkin-Elmer GXII Auto-image Microscope equipped with a wide band detector. Twenty measurements per sample were performed at 30∗100 μm of spatial resolution. Each spectrum was collected at 4 cm(-1) resolution and 50 scans in transmission mode. Mineral and collagen maturity, and mineralization and crystallinity index were measured. There was no association between the bone matrix characteristics and bone mass or microarchitecture. Mineral maturity, mineralization and crystallinity index were not related to whole vertebra mechanics. However, collagen maturity was positively correlated with whole vertebra failure load and stiffness (r=0.64, p=0.005 and r=0.54, p=0.025, respectively). The collagen maturity (3rd step) in combination with bone mass (i.e., BMC, 1st step) and microarchitecture (i.e., Tb.Th, 2nd step) improved the prediction of whole vertebra mechanical properties in forward stepwise multiple regression models, together explaining 71% of the variability in whole vertebra stiffness (p=0.001). In conclusion, we demonstrated a substantial contribution of collagen maturity, but not mineralization parameters, to whole bone strength of human lumbar vertebrae that was independent of bone mass and microarchitecture.
Collapse
|
27
|
Gamsjaeger S, Hofstetter B, Zwettler E, Recker R, Gasser JA, Eriksen EF, Klaushofer K, Paschalis EP. Effects of 3 years treatment with once-yearly zoledronic acid on the kinetics of bone matrix maturation in osteoporotic patients. Osteoporos Int 2013; 24:339-47. [PMID: 23229465 DOI: 10.1007/s00198-012-2202-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 09/26/2012] [Indexed: 11/29/2022]
Abstract
UNLABELLED Once-yearly administration of intravenous zoledronic acid for 3 years in humans affects the kinetics of matrix filling in by mineral, independent of bone turnover. INTRODUCTION Yearly 5-mg infusions of zoledronic acid (ZOL) for 3 years have shown pronounced antifracture efficacy. The purpose of the present study was to test whether ZOL affects the kinetics of forming bone material properties maturation. METHODS Iliac crest biopsies from the HORIZON-PFT clinical trial were analyzed by Raman microspectroscopy in actively bone-forming surfaces as a function of tissue age in trabecular and osteonal bone, to determine ZOL's effect on bone material quality indices maturation kinetics. RESULTS Mineral/matrix ratio increased in both groups as a function of tissue age, at both osteonal- and trabecular-forming surfaces; ZOL exhibiting the greatest increase in the trabecular surfaces only. The proteoglycan content showed a dependency on tissue age in both trabecular and osteonal surfaces, with ZOL exhibiting lower values in the tissue age 8-22 days in the trabecular surfaces. Mineral crystallinity (crystallite length and thickness) showed a dependence on tissue age, with ZOL exhibiting lower crystallite length compared with placebo only in the 8- to 22-day-old tissue at trabecular surfaces, while crystal thickness was lower in the 1- to 5-day-old tissue at both osteonal and trabecular surfaces. CONCLUSIONS The results of the present study suggest that once-yearly administration of intravenous ZOL for 3 years in humans does not exert any adverse effects on the evolution of bone material properties at actively forming osteonal and trabecular surfaces, while it may have a beneficial effect on the progression of the mineral-to-matrix ratio and mineral maturity bone quality indices.
Collapse
Affiliation(s)
- S Gamsjaeger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, 1140, Vienna, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Misof BM, Gamsjaeger S, Cohen A, Hofstetter B, Roschger P, Stein E, Nickolas TL, Rogers HF, Dempster D, Zhou H, Recker R, Lappe J, McMahon D, Paschalis EP, Fratzl P, Shane E, Klaushofer K. Bone material properties in premenopausal women with idiopathic osteoporosis. J Bone Miner Res 2012; 27:2551-61. [PMID: 22777919 PMCID: PMC3502637 DOI: 10.1002/jbmr.1699] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 06/19/2012] [Accepted: 06/26/2012] [Indexed: 12/19/2022]
Abstract
Idiopathic osteoporosis (IOP) in premenopausal women is characterized by fragility fractures at low or normal bone mineral density (BMD) in otherwise healthy women with normal gonadal function. Histomorphometric analysis of transiliac bone biopsy samples has revealed microarchitectural deterioration of cancellous bone and thinner cortices. To examine bone material quality, we measured the bone mineralization density distribution (BMDD) in biopsy samples by quantitative backscattered electron imaging (qBEI), and mineral/matrix ratio, mineral crystallinity/maturity, relative proteoglycan content, and collagen cross-link ratio at actively bone forming trabecular surfaces by Raman microspectroscopy and Fourier transform infrared microspectroscopy (FTIRM) techniques. The study groups included: premenopausal women with idiopathic fractures (IOP, n = 45), or idiopathic low BMD (Z-score ≤ -2.0 at spine and/or hip) but no fractures (ILBMD, n = 19), and healthy controls (CONTROL, n = 38). BMDD of cancellous bone showed slightly lower mineral content in IOP (both the average degree of mineralization of cancellous bone [Cn.Ca(Mean) ] and mode calcium concentration [Cn.Ca(Peak) ] are 1.4% lower) and in ILBMD (both are 1.6% lower, p < 0.05) versus CONTROL, but no difference between IOP and ILBMD. Similar differences were found when affected groups were combined versus CONTROL. The differences remained significant after adjustment for cancellous mineralizing surface (MS/BS), suggesting that the reduced mineralization of bone matrix cannot be completely accounted for by differences in bone turnover. Raman microspectroscopy and FTIRM analysis at forming bone surfaces showed no differences between combined IOP/ILBMD groups versus CONTROL, with the exceptions of increased proteoglycan content per mineral content and increased collagen cross-link ratio. When the two affected subgroups were considered individually, mineral/matrix ratio and collagen cross-link ratio were higher in IOP than ILBMD. In conclusion, our findings suggest that bone material properties differ between premenopausal women with IOP/ILBMD and normal controls. In particular, the altered collagen properties at sites of active bone formation support the hypothesis that affected women have osteoblast dysfunction that may play a role in bone fragility.
Collapse
Affiliation(s)
- Barbara M Misof
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of Social Health Insurance Vienna (WGKK) and Austrian Social Insurance for Occupational Risk (AUVA) Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|