1
|
Wells GA, Hsieh SC, Peterson J, Zheng C, Kelly SE, Shea B, Tugwell P. Alendronate for the primary and secondary prevention of osteoporotic fractures in postmenopausal women. Cochrane Database Syst Rev 2025; 1:CD001155. [PMID: 39868546 PMCID: PMC11770842 DOI: 10.1002/14651858.cd001155.pub3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
RATIONALE Osteoporosis is an abnormal reduction in bone mass and bone deterioration, leading to increased fracture risk. Alendronate belongs to the bisphosphonate class of drugs, which inhibit bone resorption by interfering with the activity of osteoclasts (bone cells that break down bone tissue). This is an update of a Cochrane review first published in 2008. OBJECTIVES To assess the benefits and harms of alendronate in the primary and secondary prevention of osteoporotic fractures in postmenopausal women at lower and higher risk of fracture, respectively. SEARCH METHODS We searched Evidence-Based Medicine Reviews (which includes CENTRAL), MEDLINE, Embase, two trial registers, drug approval agency websites, and the bibliographies of relevant systematic reviews to identify the studies included in this review. The latest search date was 01 February 2023. We imposed no restrictions on language, date, form of publication, or reported outcomes. ELIGIBILITY CRITERIA We included only randomized controlled trials that assessed the effects of alendronate on postmenopausal women. Targeted participants must have received at least one year of alendronate. We classified a study as secondary prevention if its population met one or more of the following hierarchical criteria: a diagnosis of osteoporosis, a history of vertebral fractures, a low bone mineral density T-score (-2.5 or lower), and 75 years old or older. If a study population met none of those criteria, we classified it as a primary prevention study. OUTCOMES Our major outcomes were clinical vertebral, non-vertebral, hip, and wrist fractures, withdrawals due to adverse events, and serious adverse events. RISK OF BIAS We used the Cochrane risk of bias 1 tool. SYNTHESIS METHODS We used standard methodological procedures expected by Cochrane. Based on the previous review experience, in which the clinical and methodological characteristics in the primary and secondary prevention studies were homogeneous, we used a fixed-effect model for meta-analysis and estimated effects using the risk ratio (RR) for dichotomous outcomes. Our base case analyses included all eligible placebo-controlled studies with usable data. We selected the data available for the longest treatment period. We consider a relative change exceeding 15% as clinically important. INCLUDED STUDIES We included 119 studies, of which 102 studies provided data for quantitative synthesis. Of these, we classified 34 studies (15,188 participants) as primary prevention and 68 studies (29,577 participants) as secondary prevention. We had concerns about risks of bias in most studies. Selection bias was the most frequently overlooked domain, with only 20 studies (19%) describing appropriate methods for both sequence generation and allocation concealment. Eight studies (8%) were at low risk of bias in all seven domains. SYNTHESIS OF RESULTS The base case analyses included 16 primary prevention studies (one to five years in length; 10,057 women) and 20 secondary prevention studies (one to three years in length; 7375 women) which compared alendronate 10 mg/day (or 70 mg/week) to placebo, no treatment, or both. Indirectness, imprecision, and risk of bias emerged as the main factors contributing to the downgrading of the certainty of the evidence. For primary prevention, alendronate may lead to a clinically important reduction in clinical vertebral fractures (16/1190 in the alendronate group versus 24/926 in the placebo group; RR 0.45, 95% confidence interval [CI] 0.25 to 0.84; absolute risk reduction [ARR] 1.4% fewer, 95% CI 1.9% fewer to 0.4% fewer; low-certainty evidence) and non-vertebral fractures (RR 0.83, 95% CI 0.72 to 0.97; ARR 1.6% fewer, 95% CI 2.6% fewer to 0.3% fewer; low-certainty evidence). However, clinically important differences were not observed for the following outcomes: hip fractures (RR 0.76, 95% CI 0.43 to 1.32; ARR 0.2% fewer, 95% CI 0.4% fewer to 0.2% more; low-certainty evidence); wrist fractures (RR 1.12, 95% CI 0.84 to 1.49; ARR 0.3% more, 95% CI 0.4% fewer to 1.1% more; low-certainty evidence); withdrawals due to adverse events (RR 1.03, 95% CI 0.89 to 1.18; ARR 0.2% more, 95% CI 0.9% fewer to 1.5% more; low-certainty evidence); and serious adverse events (RR 1.08, 95% CI 0.82 to 1.43; ARR 0.5% more, 95% CI 1.2% fewer to 2.8% more; low-certainty evidence). For secondary prevention, alendronate probably results in a clinically important reduction in clinical vertebral fractures (24/1114 in the alendronate group versus 51/1055 in the placebo group; RR 0.45, 95% CI 0.28 to 0.73; ARR 2.7% fewer, 95% CI 3.5% fewer to 1.3% fewer; moderate-certainty evidence). It may lead to a clinically important reduction in non-vertebral fractures (RR 0.80, 95% CI 0.64 to 0.99; ARR 2.8% fewer, 95% CI 5.1% fewer to 0.1% fewer; low-certainty evidence); hip fractures (RR 0.49, 95% CI 0.25 to 0.96; ARR 1.0% fewer, 95% CI 1.5% fewer to 0.1% fewer; low-certainty evidence); wrist fractures (RR 0.54, 95% CI 0.33 to 0.90; ARR 1.8% fewer, 95% CI 2.6% fewer to 0.4% fewer; low-certainty evidence); and serious adverse events (RR 0.75, 95% CI 0.59 to 0.96; ARR 3.5% fewer, 95% CI 5.8% fewer to 0.6% fewer; low-certainty evidence). However, the effects of alendronate for withdrawals due to adverse events are uncertain (RR 0.95, 95% CI 0.78 to 1.16; ARR 0.4% fewer, 95% CI 1.7% fewer to 1.3% more; very low-certainty evidence). Furthermore, the updated evidence for the safety risks of alendronate suggests that, irrespective of participants' risk of fracture, alendronate may lead to little or no difference for gastrointestinal adverse events. Zero incidents of osteonecrosis of the jaw and atypical femoral fracture were observed. AUTHORS' CONCLUSIONS For primary prevention, compared to placebo, alendronate 10 mg/day may reduce clinical vertebral and non-vertebral fractures, but it might make little or no difference to hip and wrist fractures, withdrawals due to adverse events, and serious adverse events. For secondary prevention, alendronate probably reduces clinical vertebral fractures, and may reduce non-vertebral, hip, and wrist fractures, and serious adverse events, compared to placebo. The evidence is very uncertain about the effect of alendronate on withdrawals due to adverse events. FUNDING This Cochrane review had no dedicated funding. REGISTRATION This review is an update of the previous review (DOI: 10.1002/14651858.CD001155).
Collapse
Affiliation(s)
- George A Wells
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - Shu-Ching Hsieh
- Cardiovascular Research Methods Center, University of Ottawa Heart Institute, Ottawa, Canada
| | - Joan Peterson
- Clinical Epidemiology Unit, Ottawa Civic Hospital / Loeb Research Institute, Ottawa, Canada
| | - Carine Zheng
- University of Ottawa Heart Institute, Ottawa, Canada
| | - Shannon E Kelly
- Cardiovascular Research Methods Centre, University of Ottawa Heart Institute, Ottawa, Canada
| | - Beverley Shea
- Department of Epidemiology and Community Medicine, University of Ottawa, Ottawa, Canada
| | - Peter Tugwell
- Department of Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
2
|
Moon DO. Review of Cathepsin K Inhibitor Development and the Potential Role of Phytochemicals. Molecules 2024; 30:91. [PMID: 39795149 PMCID: PMC11721202 DOI: 10.3390/molecules30010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025] Open
Abstract
Cathepsin K plays a pivotal role in bone resorption and has emerged as a prominent therapeutic target for treating bone-related diseases such as osteoporosis. Despite significant advances in synthetic inhibitor development, none have achieved FDA approval due to safety and efficacy challenges. This review highlights the potential of phytochemicals as alternative inhibitors, emphasizing their natural origin, structural diversity, and minimal adverse effects. Key phytochemicals, including AC-5-1, Cycloaltilisin 6, Cycloaltilisin 7, Nicolaioidesin C, and Panduratin A, were examined for their inhibitory activities against cathepsin K. While these compounds exhibit varying IC50 values, their docking studies revealed significant interactions within Cathepsin K's active site, particularly involving critical residues such as Cys25 and His162. However, challenges such as lower potency compared to synthetic inhibitors and limited in vivo studies underscore the need for structural optimization and comprehensive preclinical evaluations. This review discusses biological insights, current limitations, and future strategies for advancing phytochemical-based inhibitors toward clinical applications in managing Cathepsin K-associated diseases.
Collapse
Affiliation(s)
- Dong Oh Moon
- Department of Biology Education, Daegu University, 201, Daegudae-ro, Gyeongsan-si 38453, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
3
|
Kimura S, Miyake N, Ozasa S, Ueno H, Ohtani Y, Takaoka Y, Nishino I. Increase in cathepsin K gene expression in Duchenne muscular dystrophy skeletal muscle. Neuropathology 2024; 44:411-421. [PMID: 39014877 DOI: 10.1111/neup.12995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/18/2024]
Abstract
Dystrophinopathy is caused by alterations in the dystrophin gene. The severe phenotype, Duchenne muscular dystrophy (DMD), is caused by a lack of dystrophin in skeletal muscles, resulting in necrosis and regenerating fibers, inflammatory cells, and muscle fibrosis. Progressive muscle weakness is a characteristic finding of this condition. Here, we encountered a rare case of a 10-year-old patient with asymptomatic dystrophinopathy with no dystrophin expression and investigated the reason for the absence of muscle weakness to obtain therapeutic insights for DMD. Using RNA-seq analysis, gene expression in skeletal muscles was compared among patients with asymptomatic dystrophinopathy, three patients with typical DMD, and two patients without dystrophinopathy who were leading normal daily lives. Cathepsin K (CTSK), myosin heavy chain 3 (MYH3), and nodal modulator 3-like genes exhibited a >8-fold change, whereas crystallin mu gene (CRYM) showed a <1/8-fold change in patients with typical DMD compared with their expression in the patient with asymptomatic dystrophinopathy. Additionally, CTSK and MYH3 expression exhibited a >16-fold change (P < 0.01), whereas CRYM expression showed a <1/16-fold change (P < 0.01) in patients with typical DMD compared with their expression in those without dystrophinopathy. CTSK plays an essential role in skeletal muscle loss, fibrosis, and inflammation in response to muscles injected with cardiotoxin, one of the most common reagents that induce muscle injury. Increased CTSK expression is associated with muscle injury or necrosis in patients with DMD. The lack of muscle weakness in the patient with asymptomatic dystrophinopathy might be attributed to the low CTSK expression in the muscles. To the best of our knowledge, this is the first report to demonstrate that CTSK expression was significantly higher in the skeletal muscles of patients with DMD with a typical phenotype than in those without dystrophinopathy.
Collapse
Affiliation(s)
- Shigemi Kimura
- Department of Pediatrics, Kumamoto Takumadai Rehabilitation Hospital, Kumamoto, Japan
- Data Science Center for Medicine and Hospital Management, Toyama University Hospital, Toyama, Japan
- Department of Medical Systems, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Noriko Miyake
- Department of Human Genetics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Shiro Ozasa
- Department of Pediatrics, Kumamoto University Hospital, Kumamoto, Japan
| | - Hiroe Ueno
- Department of Pediatrics, Kumamoto Takumadai Rehabilitation Hospital, Kumamoto, Japan
| | - Yoshinobu Ohtani
- Department of Pediatrics, Kumamoto Takumadai Rehabilitation Hospital, Kumamoto, Japan
| | - Yutaka Takaoka
- Data Science Center for Medicine and Hospital Management, Toyama University Hospital, Toyama, Japan
- Department of Medical Systems, Kobe University Graduate School of Medicine, Kobe, Japan
- Faculty of Health Sciences, Kobe Tokiwa University, Kobe, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
4
|
Sahota O, Narayanasamy M, Bastounis A, Paskins Z, Bishop S, Langley T, Gittoes N, Davis S, Baily A, Holmes M, Leonardi-Bee J. Bisphosphonate alternative regimens for the prevention of osteoporotic fragility fractures: BLAST-OFF, a mixed-methods study. Health Technol Assess 2024; 28:1-169. [PMID: 38634483 PMCID: PMC11056815 DOI: 10.3310/wypf0472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
Background Bisphosphonates are a class of medication commonly used to treat osteoporosis. Alendronate is recommended as the first-line treatment; however, long-term adherence (both treatment compliance and persistence) is poor. Alternative bisphosphonates are available, which can be given intravenously and have been shown to improve long-term adherence. However, the most clinically effective and cost-effective alternative bisphosphonate regimen remains unclear. What is the most cost-effective bisphosphonate in clinical trials may not be the most cost-effective or acceptable to patients in everyday clinical practice. Objectives 1. Explore patient, clinician and stakeholder views, experiences and preferences of alendronate compared to alternative bisphosphonates. 2. Update and refine the 2016 systematic review and cost-effectiveness analysis of bisphosphonates, and estimate the value of further research into their benefits. 3. Undertake stakeholder/consensus engagement to identify important research questions and further rank research priorities. Methods The study was conducted in two stages, stages 1A and 1B in parallel, followed by stage 2: • Stage 1A - we elicited patient and healthcare experiences to understand their preferences of bisphosphonates for the treatment of osteoporosis. This was undertaken by performing a systematic review and framework synthesis of qualitative studies, followed by semistructured qualitative interviews with participants. • Stage 1B - we updated and expanded the existing Health Technology Assessment systematic review and clinical and cost-effectiveness model, incorporating a more comprehensive review of treatment efficacy, safety, side effects, compliance and long-term persistence. • Stage 2 - we identified and ranked further research questions that need to be answered about the effectiveness and acceptability of bisphosphonates. Results Patients and healthcare professionals identified a number of challenges in adhering to bisphosphonate medication, balancing the potential for long-term risk reduction against the work involved in adhering to oral alendronate. Intravenous zoledronate treatment was generally more acceptable, with such regimens perceived to be more straightforward to engage in, although a portion of patients taking alendronate were satisfied with their current treatment. Intravenous zoledronate was found to be the most effective, with higher adherence rates compared to the other bisphosphonates, for reducing the risk of fragility fracture. However, oral bisphosphonates are more cost-effective than intravenous zoledronate due to the high cost of zoledronate administration in hospital. The importance of including patients and healthcare professionals when setting research priorities is recognised. Important areas for research were related to patient factors influencing treatment selection and effectiveness, how to optimise long-term care and the cost-effectiveness of delivering zoledronate in an alternative, non-hospital setting. Conclusions Intravenous zoledronate treatment was generally more acceptable to patients and found to be the most effective bisphosphonate and with greater adherence; however, the cost-effectiveness relative to oral alendronate is limited by its higher zoledronate hospital administration costs. Future work Further research is needed to support people to make decisions influencing treatment selection, effectiveness and optimal long-term care, together with the clinical and cost-effectiveness of intravenous zoledronate administered in a non-hospital (community) setting. Limitations Lack of clarity and limitations in the many studies included in the systematic review may have under-interpreted some of the findings relating to effects of bisphosphonates. Trial registration This trial is registered as ISRCTN10491361. Funding This award was funded by the National Institute for Health and Care Research (NIHR) Health Technology Assessment programme (NIHR award ref: NIHR127550) and is published in full in Health Technology Assessment; Vol. 28, No. 21. See the NIHR Funding and Awards website for further award information.
Collapse
Affiliation(s)
- Opinder Sahota
- Department of Health Care for Older People, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | | | | | - Zoe Paskins
- School of Medicine, Keele University and Haywood Academic Rheumatology Centre, Stoke-on-Trent, UK
| | - Simon Bishop
- Business School, University of Nottingham, Nottingham, UK
| | - Tessa Langley
- School of Medicine, University of Nottingham, Nottingham, UK
| | - Neil Gittoes
- Centre for Endocrinology Diabetes and Metabolism, University of Birmingham, Birmingham, UK
| | - Sarah Davis
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Ann Baily
- Lay Member, Nottingham Osteoporosis Society Patient Support group, Nottingham, UK
| | - Moira Holmes
- Lay Member, Nottingham Osteoporosis Society Patient Support group, Nottingham, UK
| | - Jo Leonardi-Bee
- School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
5
|
Brown J, Paggiosi MA, Rathbone E, Gregory W, Bertelli G, Din O, McCloskey E, Dodwell D, Cameron D, Eastell R, Coleman R. Prolonged bone health benefits for breast cancer patients following adjuvant bisphosphonate therapy: the BoHFAB study. J Bone Miner Res 2024; 39:8-16. [PMID: 38630878 PMCID: PMC11207765 DOI: 10.1093/jbmr/zjad006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/22/2023] [Accepted: 11/01/2023] [Indexed: 04/19/2024]
Abstract
Adjuvant bisphosphonates are often recommended in postmenopausal women with early breast cancer at intermediate-to-high risk of disease recurrence, but the magnitude and duration of their effects on bone mineral density (BMD) and bone turnover markers (BTMs) are not well described. We evaluated the impact of adjuvant zoledronate on areal BMD and BTMs in a sub-group of patients who had completed the large 5-yr randomized Adjuvant Zoledronic Acid to Reduce Recurrence (AZURE) trial. About 224 women (recurrence free) who had completed the AZURE trial within the previous 3 mo were recruited from 20 UK AZURE trial sites. One hundred twenty had previously been randomized to zoledronate (19 doses of 4 mg over 5 yr) and 104 to the control arm. BMD and BTMs were assessed at sub-study entry, 6 (BTMs only), 12, 24, and 60 mo following the completion of AZURE. As expected, mean BMD, T-scores, and Z-scores at sub-study entry were higher in the zoledronate vs the control arm. At the lumbar spine, the mean (SD) standardized BMD (sBMD) was 1123 (201) and 985 (182) mg/cm2 in the zoledronate and control arms, respectively (P < .0001). The baseline differences in sBMD persisted at all assessed skeletal sites and throughout the 5-yr follow-up period. In patients completing zoledronate treatment, BTMs were significantly lower than those in the control arm (α- and β-urinary C-telopeptide of type-I collagen, both P < .00001; serum intact pro-collagen I N-propeptide, P < .00001 and serum tartrate-resistant acid phosphatase 5b, P = .0001). Some offset of bone turnover inhibition occurred in the 12 mo following the completion of zoledronate treatment. Thereafter, during the 60 mo of follow-up, all BTMs remained suppressed in the zoledronate arm relative to the control arm. In conclusion, in addition to the known anti-cancer benefits of adjuvant zoledronate, there are likely to be positive, lasting benefits in BMD and bone turnover.
Collapse
Affiliation(s)
- Janet Brown
- Division of Clinical Medicine, University of Sheffield, Sheffield, S10 2SJ, United Kingdom
- Sheffield Teaching Hospitals NHS Foundation Trust, Glossop Rd, Sheffield, S10 2JF, United Kingdom
| | - Margaret A Paggiosi
- Division of Clinical Medicine, University of Sheffield, Sheffield, S10 2SJ, United Kingdom
| | - Emma Rathbone
- Huddersfield Royal Infirmary, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield, HD3 3EA, United Kingdom
| | - Walter Gregory
- Leeds Cancer Research UK Clinical Trials Unit, Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Gian Bertelli
- Sussex Cancer Centre, University Hospitals Sussex NHS Trust, Bristol Gate, Brighton, BN2 5BD, United Kingdom
| | - Omar Din
- Sheffield Teaching Hospitals NHS Foundation Trust, Glossop Rd, Sheffield, S10 2JF, United Kingdom
| | - Eugene McCloskey
- Division of Clinical Medicine, University of Sheffield, Sheffield, S10 2SJ, United Kingdom
- Sheffield Teaching Hospitals NHS Foundation Trust, Glossop Rd, Sheffield, S10 2JF, United Kingdom
| | - David Dodwell
- Leeds General Infirmary, LeedsTeaching Hospitals NHS Trust, Leeds, LS1 3EX, United Kingdom
| | - David Cameron
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, Crewe Road South, University of Edinburgh, Edinburgh, Edinburgh EH4 2XR, United Kingdom
| | - Richard Eastell
- Division of Clinical Medicine, University of Sheffield, Sheffield, S10 2SJ, United Kingdom
- Sheffield Teaching Hospitals NHS Foundation Trust, Glossop Rd, Sheffield, S10 2JF, United Kingdom
| | - Robert Coleman
- Division of Clinical Medicine, University of Sheffield, Sheffield, S10 2SJ, United Kingdom
- Sheffield Teaching Hospitals NHS Foundation Trust, Glossop Rd, Sheffield, S10 2JF, United Kingdom
| |
Collapse
|
6
|
Peng Z, Liu L, Sheng X, Liu H, Ding C, Wang B, Hong Y, Pan X, Meng Y. Risk Factors of Nonfusion after Anterior Cervical Decompression and Fusion in the Early Postoperative Period: A Retrospective Study. Orthop Surg 2023; 15:2574-2581. [PMID: 37538029 PMCID: PMC10549804 DOI: 10.1111/os.13835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/16/2023] [Accepted: 06/24/2023] [Indexed: 08/05/2023] Open
Abstract
OBJECTIVE Although high fusion rates have been reported for anterior cervical decompression and fusion (ACDF) in the medium and long term, the risk of nonfusion in the early period after ACDF remains substantial. This study investigates early risk factors for cage nonfusion in patients undergoing single- or multi-level ACDF. METHODS This was a retrospective study. From August 2020 to December 2021, 107 patients with ACDF, including 197 segments, were enrolled, with a follow-up of 3 months. Among the 197 segments, 155 were diagnosed with nonfusion (Nonfusion group), and 42 were diagnosed with fusion (Fusion group) in the early period after ACDF. We assessed the significance of the patient-specific factors, radiographic indicators, serum factors, and clinical outcomes. The Wilcoxon rank sum test, t-tests, analysis of variance, and stepwise multivariate logistic regression were used for statistical analysis. RESULTS Univariate analysis showed that smoking, insufficient improvement in the C2-7 Cobb angle (p = 0.024) and the functional spinal unit Cobb angle (p = 0.022) between preoperative and postoperative stages and lower serum calcium (fusion: 2.34 ± 0.12 mmol/L; nonfusion: 2.28 ± 0.17 mmol/L, p = 0.003) β-carboxyterminal telopeptide end of type 1 collagen (β-CTX) (fusion: 0.51 [0.38, 0.71]; nonfusion: 0.43 [0.31, 0.57], p = 0.008), and N-terminal fragment of osteocalcin (N-MID-BGP) (fusion: 18.30 [12.15, 22.60]; nonfusion: 14.45 [11.65, 18.60], p = 0.023) are risk factors for nonfusion in the early period after ACDF. Stepwise logistic regression analysis revealed that poor C2-7 Cobb angle improvement (odds ratio [OR], 1.107 [1.019-1.204], p = 0.017) and lower serum calcium (OR, 3.700 [1.138-12.032], p = 0.030) are risk factors. CONCLUSIONS Patients with successful fusion after ACDF had higher preoperative serum calcium and improved C2-7 Cobb angle than nonfusion patients at 3 months. These findings suggest that serum calcium could be used to identify patients at risk of nonfusion following ACDF and that correcting the C2-7 Cobb angle during surgery could potentially increase fusion in the early period after ACDF.
Collapse
Affiliation(s)
- Zihan Peng
- Department of Orthopedics, Orthopedic Research Institute, West China HospitalSichuan UniversityChengduChina
| | - Li Liu
- Department of Orthopedics, West China Hospital/West China School of NursingSichuan UniversityChengduChina
| | - Xiaqing Sheng
- Department of Orthopedics, Orthopedic Research Institute, West China HospitalSichuan UniversityChengduChina
| | - Hao Liu
- Department of Orthopedics, Orthopedic Research Institute, West China HospitalSichuan UniversityChengduChina
| | - Chen Ding
- Department of Orthopedics, Orthopedic Research Institute, West China HospitalSichuan UniversityChengduChina
| | - Beiyu Wang
- Department of Orthopedics, Orthopedic Research Institute, West China HospitalSichuan UniversityChengduChina
| | - Ying Hong
- Department of Operating Room, West China Hospital/West China School of NursingSichuan UniversityChengduChina
| | - Xiaoli Pan
- Department of Orthopedics, Orthopedic Research Institute, West China HospitalSichuan UniversityChengduChina
| | - Yang Meng
- Department of Orthopedics, Orthopedic Research Institute, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
7
|
Ferrari S, Langdahl B. Mechanisms underlying the long-term and withdrawal effects of denosumab therapy on bone. Nat Rev Rheumatol 2023; 19:307-317. [PMID: 37024711 DOI: 10.1038/s41584-023-00935-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 04/08/2023]
Abstract
Denosumab, a human monoclonal antibody against receptor activator of nuclear factor-κB ligand (RANKL), is a potent inhibitor of osteoclast differentiation and activity. As the first biologic drug used to treat osteoporosis, denosumab has shown potent anti-resorptive properties and anti-fracture efficacy. The effects of this drug are also unique compared with the effects of bisphosphonates: namely, long-term treatment with this drug results in a continuous gain of bone mineral density, whereas withdrawal of the drug results in a transient overshoot in bone turnover and rapid bone loss. Although the mechanisms for these specific effects remain incompletely understood, emerging experimental and clinical data have started to highlight potential biological and pharmacological mechanisms by which denosumab might affect osteoclasts, as well as osteoblasts, and cause both sustained bone gain and bone loss upon treatment cessation. This Perspective discusses those potential mechanisms and the future studies and clinical implications that might ensue from these findings.
Collapse
Affiliation(s)
- Serge Ferrari
- Service of Bone Diseases, Department of Medicine, Geneva University Hospital and Faculty of Medicine, Geneva, Switzerland.
| | - Bente Langdahl
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
8
|
Jia Y, Wang K, Wang H, Zhang B, Yang K, Zhang Z, Dong H, Wang J. Discovery of selective covalent cathepsin K inhibitors containing novel 4-cyanopyrimidine warhead based on quantum chemical calculations and binding mode analysis. Bioorg Med Chem 2022; 74:117053. [PMID: 36270112 DOI: 10.1016/j.bmc.2022.117053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/02/2022]
Abstract
Cathepsin K (Cat K), mainly expressed by osteoclasts, plays an important role in bone resorption. Covalent Cat K inhibitors will show great potential in the future treatment of osteoporosis. It has been reported that the selectivity of covalent cathepsin K inhibitors was related to the drug's safety. The type of warhead has a crucial influence on the enzyme bioactivity and selectivity of covalent inhibitors. In order to develop novel covalent inhibitors with the selective new warhead, quantum chemical calculations were performed to estimate the reactivity of the nitrile warheads. Moreover, binding mode analysis between ligands and high homology Cat K, S and B revealed differences in non-covalent interactions. Novel covalent Cat K inhibitors containing 4-cyanopyrimidine warhead (11) were determined for the first time. Among them, compound 34 significantly inhibited Cat K (IC50 = 61.9 nM) with excellent selectivity compared to Cat S (>810-fold) and Cat B (>1620-fold), respectively. Binding mode analysis of Cat K-34 complex provided the basis for further optimization. Compound 34 could be a valuable lead compound for further research on safe and effective Cat K inhibitors.
Collapse
Affiliation(s)
- Yihe Jia
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Ke Wang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Huifang Wang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Botao Zhang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Kan Yang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Zhilan Zhang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Haijuan Dong
- The Public Laboratory Platform, China Pharmaceutical University, Nanjing 210009, China
| | - Jinxin Wang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
9
|
Bastounis A, Langley T, Davis S, Paskins Z, Gittoes N, Leonardi‐Bee J, Sahota O. Assessing the Effectiveness of Bisphosphonates for the Prevention of Fragility Fractures: An Updated Systematic Review and Network Meta-Analyses. JBMR Plus 2022; 6:e10620. [PMID: 35509636 PMCID: PMC9059468 DOI: 10.1002/jbm4.10620] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/10/2022] [Accepted: 02/25/2022] [Indexed: 11/11/2022] Open
Abstract
Bisphosphonates have been found to be effective in preventing fragility fractures. However, their comparative effectiveness in populations at risk has yet to be defined. In light of recent clinical trials, we aimed to compare four bisphosphonates (alendronate, ibandronate, risedronate, and zoledronate) and to identify which are the most effective for the prevention of fragility fractures. This is an update of a systematic review previously published as part of a NICE HTA report. We conducted a systematic review and network meta-analysis, updating the estimates regarding the comparative effectiveness of the aforementioned bisphosphonates. Studies identified from published and unpublished sources between 2014 and 2021 were added to the studies identified in the previous review. Screening, data extraction and risk of bias assessment were independently undertaken by two reviewers. Outcomes were fractures, femoral neck bone mineral density (BMD), mortality, and adverse events. We identified 25 additional trials, resulting in a total population of 47,007 participants. All treatments had beneficial effects on fractures versus placebo with zoledronate being the most effective treatment in preventing vertebral fractures (hazard ratio [HR] 0.38; 95% credibility interval [CrI], 0.28-0.49). Zoledronate (HR 0.71; 95% CrI, 0.61-0.81) and risedronate (HR 0.70; 95% CrI, 0.53-0.84) were found to be the most effective treatments in preventing nonvertebral fractures. All treatments were associated with increases in femoral neck BMD versus placebo with zoledronate being the most effective treatment mean difference (MD 4.02; 95% CrI, 3.2-4.84). There was a paucity of data regarding hip and wrist fractures. Depending on its cost-effectiveness, zoledronate could be considered a first-line option for people at increased risk of fragility fractures. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Anastasios Bastounis
- Division of Epidemiology & Public Health, School of MedicineUniversity of Nottingham, City HospitalNottinghamUK
| | - Tessa Langley
- Division of Epidemiology & Public Health, School of MedicineUniversity of Nottingham, City HospitalNottinghamUK
| | - Sarah Davis
- School of Health and Related Research, Regent Court (ScHARR)University of SheffieldSheffieldUK
| | - Zoe Paskins
- School of MedicineKeele UniversityKeeleUK
- Haywood Academic Rheumatology CentreMidlands Partnership NHS Foundation TrustStoke‐on‐TrentUK
| | - Neil Gittoes
- Centre for Endocrinology, Diabetes and Metabolism (CEDAM)University of BirminghamBirminghamUK
- Queen Elizabeth HospitalUniversity Hospitals Birmingham NHS Foundation TrustBirminghamUK
| | - Jo Leonardi‐Bee
- Division of Epidemiology & Public Health, School of MedicineUniversity of Nottingham, City HospitalNottinghamUK
| | - Opinder Sahota
- Queens Medical Centre (QMC), University of NottinghamNottingham University Hospitals NHS TrustNottinghamUK
| |
Collapse
|
10
|
Rocho FR, Bonatto V, Lameiro RF, Lameira J, Leitão A, Montanari CA. A patent review on cathepsin K inhibitors to treat osteoporosis (2011 - 2021). Expert Opin Ther Pat 2022; 32:561-573. [PMID: 35137661 DOI: 10.1080/13543776.2022.2040480] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Cathepsin K (CatK) is a lysosomal cysteine protease and the predominant cathepsin expressed in osteoclasts, where it degrades the bone matrix. Hence, CatK is an attractive therapeutic target related to diseases characterized by bone resorption, like osteoporosis. AREAS COVERED This review summarizes the patent literature from 2011 to 2021 on CatK inhibitors and their potential use as new treatments for osteoporosis. The inhibitors were classified by their warheads, with the most explored nitrile-based inhibitors. Promising in vivo results have also been disclosed. EXPERT OPINION As one of the most potent lysosomal proteins whose primary function is to mediate bone resorption, cathepsin K remains an excellent target for therapeutic intervention. Nevertheless, there is no record of any approved drug that targets CatK. The most notable cases of drug candidates targeting CatK were balicatib and odanacatib, which reached Phase II and III clinical trials, respectively, but did not enter the market. Further developments include exploring new chemical entities beyond the nitrile-based chemical space, with improved ADME and safety profiles. In addition, CatK's role in cancer immunoexpression and its involvement in the pathophysiology of osteo- and rheumatoid arthritis have raised the race to develop activity-based probes with excellent potency and selectivity.
Collapse
Affiliation(s)
- Fernanda R Rocho
- Medicinal and Biological Chemistry Group, São Carlos Institute of Chemistry, University of São Paulo, Avenue Trabalhador Sancarlense, 400, 13566-590, São Carlos/SP, Brazil
| | - Vinícius Bonatto
- Medicinal and Biological Chemistry Group, São Carlos Institute of Chemistry, University of São Paulo, Avenue Trabalhador Sancarlense, 400, 13566-590, São Carlos/SP, Brazil
| | - Rafael F Lameiro
- Medicinal and Biological Chemistry Group, São Carlos Institute of Chemistry, University of São Paulo, Avenue Trabalhador Sancarlense, 400, 13566-590, São Carlos/SP, Brazil
| | - Jerônimo Lameira
- Medicinal and Biological Chemistry Group, São Carlos Institute of Chemistry, University of São Paulo, Avenue Trabalhador Sancarlense, 400, 13566-590, São Carlos/SP, Brazil.,On leave from Drug Designing and Development Laboratory. Federal University of Pará, Rua Augusto Correa S/N, Belém, PA, Brazil
| | - Andrei Leitão
- Medicinal and Biological Chemistry Group, São Carlos Institute of Chemistry, University of São Paulo, Avenue Trabalhador Sancarlense, 400, 13566-590, São Carlos/SP, Brazil
| | - Carlos A Montanari
- Medicinal and Biological Chemistry Group, São Carlos Institute of Chemistry, University of São Paulo, Avenue Trabalhador Sancarlense, 400, 13566-590, São Carlos/SP, Brazil
| |
Collapse
|
11
|
Gao M, Zhang Z, Sun J, Li B, Li Y. The roles of circRNA-miRNA-mRNA networks in the development and treatment of osteoporosis. Front Endocrinol (Lausanne) 2022; 13:945310. [PMID: 35992137 PMCID: PMC9388761 DOI: 10.3389/fendo.2022.945310] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoporosis is a systemic metabolic disease, mainly characterized by reduced bone mineral density and destruction of bone tissue microstructure. However, the molecular mechanisms of osteoporosis need further investigation and exploration. Increasing studies have reported that circular RNAs (circRNAs), a novel type of RNA molecule, play crucial roles in various physiological and pathological processes and bone-related diseases. Based on an in-depth understanding of their roles in bone development, we summarized the multiple regulatory roles and underlying mechanisms of circRNA-miRNA-mRNA networks in the treatment of osteoporosis, associated with bone marrow mesenchymal stem cells (BMSCs), osteoblasts, and osteoclasts. Deeper insights into the vital roles of circRNA-miRNA-mRNA networks can provide new directions and insights for developing novel diagnostic biomarkers and therapeutic targets in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Manqi Gao
- Department of Pharmacy, Deqing People’s Hospital, Huzhou, China
| | - Zhongkai Zhang
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jiabin Sun
- Department of Pharmacy, Deqing People’s Hospital, Huzhou, China
| | - Bo Li
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Yuan Li, ; Bo Li,
| | - Yuan Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Suzhou Research Institute, Shandong University, Suzhou, China
- *Correspondence: Yuan Li, ; Bo Li,
| |
Collapse
|
12
|
Li SS, He SH, Xie PY, Li W, Zhang XX, Li TF, Li DF. Recent Progresses in the Treatment of Osteoporosis. Front Pharmacol 2021; 12:717065. [PMID: 34366868 PMCID: PMC8339209 DOI: 10.3389/fphar.2021.717065] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/12/2021] [Indexed: 12/23/2022] Open
Abstract
Osteoporosis (OP) is a chronic bone disease characterized by aberrant microstructure and macrostructure of bone, leading to reduced bone mass and increased risk of fragile fractures. Anti-resorptive drugs, especially, bisphosphonates, are currently the treatment of choice in most developing countries. However, they do have limitations and adverse effects, which, to some extent, helped the development of anabolic drugs such as teriparatide and romosozumab. In patients with high or very high risk for fracture, sequential or combined therapies may be considered with the initial drugs being anabolic agents. Great endeavors have been made to find next generation drugs with maximal efficacy and minimal toxicity, and improved understanding of the role of different signaling pathways and their crosstalk in the pathogenesis of OP may help achieve this goal. Our review focused on recent progress with regards to the drug development by modification of Wnt pathway, while other pathways/molecules were also discussed briefly. In addition, new observations made in recent years in bone biology were summarized and discussed for the treatment of OP.
Collapse
Affiliation(s)
- Shan-Shan Li
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shi-Hao He
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peng-Yu Xie
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Li
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin-Xin Zhang
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tian-Fang Li
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dai-Feng Li
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Magnetic Resonance Imaging, Henan Key Laboratory of Functional Magnetic Resonance Imaging and Molecular Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
13
|
Riva L, Yuan S, Yin X, Martin-Sancho L, Matsunaga N, Pache L, Burgstaller-Muehlbacher S, De Jesus PD, Teriete P, Hull MV, Chang MW, Chan JFW, Cao J, Poon VKM, Herbert KM, Cheng K, Nguyen TTH, Rubanov A, Pu Y, Nguyen C, Choi A, Rathnasinghe R, Schotsaert M, Miorin L, Dejosez M, Zwaka TP, Sit KY, Martinez-Sobrido L, Liu WC, White KM, Chapman ME, Lendy EK, Glynne RJ, Albrecht R, Ruppin E, Mesecar AD, Johnson JR, Benner C, Sun R, Schultz PG, Su AI, García-Sastre A, Chatterjee AK, Yuen KY, Chanda SK. Discovery of SARS-CoV-2 antiviral drugs through large-scale compound repurposing. Nature 2020; 586:113-119. [PMID: 32707573 PMCID: PMC7603405 DOI: 10.1038/s41586-020-2577-1] [Citation(s) in RCA: 621] [Impact Index Per Article: 124.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/17/2020] [Indexed: 02/08/2023]
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019 has triggered an ongoing global pandemic of the severe pneumonia-like disease coronavirus disease 2019 (COVID-19)1. The development of a vaccine is likely to take at least 12-18 months, and the typical timeline for approval of a new antiviral therapeutic agent can exceed 10 years. Thus, repurposing of known drugs could substantially accelerate the deployment of new therapies for COVID-19. Here we profiled a library of drugs encompassing approximately 12,000 clinical-stage or Food and Drug Administration (FDA)-approved small molecules to identify candidate therapeutic drugs for COVID-19. We report the identification of 100 molecules that inhibit viral replication of SARS-CoV-2, including 21 drugs that exhibit dose-response relationships. Of these, thirteen were found to harbour effective concentrations commensurate with probable achievable therapeutic doses in patients, including the PIKfyve kinase inhibitor apilimod2-4 and the cysteine protease inhibitors MDL-28170, Z LVG CHN2, VBY-825 and ONO 5334. Notably, MDL-28170, ONO 5334 and apilimod were found to antagonize viral replication in human pneumocyte-like cells derived from induced pluripotent stem cells, and apilimod also demonstrated antiviral efficacy in a primary human lung explant model. Since most of the molecules identified in this study have already advanced into the clinic, their known pharmacological and human safety profiles will enable accelerated preclinical and clinical evaluation of these drugs for the treatment of COVID-19.
Collapse
Affiliation(s)
- Laura Riva
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Xin Yin
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Laura Martin-Sancho
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Naoko Matsunaga
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Lars Pache
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Sebastian Burgstaller-Muehlbacher
- Center for Integrative Bioinformatics Vienna, Max Perutz Laboratories, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Paul D De Jesus
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Peter Teriete
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | | | - Max W Chang
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Jianli Cao
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Vincent Kwok-Man Poon
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Kristina M Herbert
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Kuoyuan Cheng
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
- Biological Sciences Graduate Program, University of Maryland, College Park, MD, USA
| | | | - Andrey Rubanov
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Yuan Pu
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Courtney Nguyen
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Angela Choi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Raveen Rathnasinghe
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marion Dejosez
- Huffington Foundation Center for Cell-based Research in Parkinson's Disease, Department for Cell, Regenerative and Developmental Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas P Zwaka
- Huffington Foundation Center for Cell-based Research in Parkinson's Disease, Department for Cell, Regenerative and Developmental Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ko-Yung Sit
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | | | - Wen-Chun Liu
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kris M White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mackenzie E Chapman
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Emma K Lendy
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | | | - Randy Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Andrew D Mesecar
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Jeffrey R Johnson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christopher Benner
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ren Sun
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | | | - Andrew I Su
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China.
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China.
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China.
| | - Sumit K Chanda
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
14
|
Wu J, Wang C, Li GF, Tang ET, Zheng Q. Quantitative prediction of bone mineral density by using bone turnover markers in response to antiresorptive agents in postmenopausal osteoporosis: A model-based meta-analysis. Br J Clin Pharmacol 2020; 87:1175-1186. [PMID: 32692857 DOI: 10.1111/bcp.14487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/26/2020] [Accepted: 07/06/2020] [Indexed: 01/12/2023] Open
Abstract
AIMS This study aimed to predict time course of bone mineral density (BMD) by using corresponding response of bone turnover markers (BTMs) in women with postmenopausal osteoporosis under antiresorptive treatments. METHODS Data were extracted from literature searches in accessible public database. Time courses of percent change from baseline in serum C-telopeptide of type 1 collagen (sCTX) and N-telopeptide of type 1 collagen were described by complex exponential onset models. The relationship between BTM changes and BMD changes at lumbar spine and total hip was described using a multiscale indirect response model. RESULTS The dataset included 41 eligible published trials of 5 US-approved antiresorptive agents (alendronate, ibandronate, risedronate, zoledronic acid and denosumab), containing over 28 800 women with postmenopausal osteoporosis. The time courses of BTM changes for different drugs were differentiated by maximal effect and onset rate in developed model, while sCTX responses to zoledronic acid and denosumab were captured by another model formation. Furthermore, asynchronous relationship between BTMs and BMD was described by a bone remodelling-based semimechanistic model, including zero-order production and first-order elimination induced by N-telopeptide of type 1 collagen and sCTX, separately. After external and informative validations, the developed models were able to predict BMD increase using 1-year data. CONCLUSION This exploratory analysis built a quantitative framework linking BTMs and BMD among antiresorptive agents, as well as a modelling approach to enhance comprehension of dynamic relationship between early and later endpoints among agents in a certain mechanism of action. Moreover, the developed models can offer predictions of BMD from BTMs supporting early drug development.
Collapse
Affiliation(s)
- Junyi Wu
- Center for Drug Clinical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Clinical Pharmacology, Amgen Asia R&D Center, Shanghai, China
| | - Chen Wang
- Center for Drug Clinical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Clinical Pharmacology, Amgen Asia R&D Center, Shanghai, China.,Clinical Pharmacology, China R&D and Medical Affairs, Janssen Research & Development, Shanghai, China
| | - Guo-Fu Li
- Center for Drug Clinical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Subei People's Hospital, Yangzhou University, Yangzhou, Jiangsu, China
| | - En-Tzu Tang
- Biostatistics, Amgen Asia R&D Center, Shanghai, China
| | - Qingshan Zheng
- Center for Drug Clinical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
15
|
Riva L, Yuan S, Yin X, Martin-Sancho L, Matsunaga N, Burgstaller-Muehlbacher S, Pache L, De Jesus PP, Hull MV, Chang M, Chan JFW, Cao J, Poon VKM, Herbert K, Nguyen TT, Pu Y, Nguyen C, Rubanov A, Martinez-Sobrido L, Liu WC, Miorin L, White KM, Johnson JR, Benner C, Sun R, Schultz PG, Su A, Garcia-Sastre A, Chatterjee AK, Yuen KY, Chanda SK. A Large-scale Drug Repositioning Survey for SARS-CoV-2 Antivirals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.04.16.044016. [PMID: 32511357 PMCID: PMC7263415 DOI: 10.1101/2020.04.16.044016] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The emergence of novel SARS coronavirus 2 (SARS-CoV-2) in 2019 has triggered an ongoing global pandemic of severe pneumonia-like disease designated as coronavirus disease 2019 (COVID-19). To date, more than 2.1 million confirmed cases and 139,500 deaths have been reported worldwide, and there are currently no medical countermeasures available to prevent or treat the disease. As the development of a vaccine could require at least 12-18 months, and the typical timeline from hit finding to drug registration of an antiviral is >10 years, repositioning of known drugs can significantly accelerate the development and deployment of therapies for COVID-19. To identify therapeutics that can be repurposed as SARS-CoV-2 antivirals, we profiled a library of known drugs encompassing approximately 12,000 clinical-stage or FDA-approved small molecules. Here, we report the identification of 30 known drugs that inhibit viral replication. Of these, six were characterized for cellular dose-activity relationships, and showed effective concentrations likely to be commensurate with therapeutic doses in patients. These include the PIKfyve kinase inhibitor Apilimod, cysteine protease inhibitors MDL-28170, Z LVG CHN2, VBY-825, and ONO 5334, and the CCR1 antagonist MLN-3897. Since many of these molecules have advanced into the clinic, the known pharmacological and human safety profiles of these compounds will accelerate their preclinical and clinical evaluation for COVID-19 treatment.
Collapse
|
16
|
Vizovišek M, Vidak E, Javoršek U, Mikhaylov G, Bratovš A, Turk B. Cysteine cathepsins as therapeutic targets in inflammatory diseases. Expert Opin Ther Targets 2020; 24:573-588. [PMID: 32228244 DOI: 10.1080/14728222.2020.1746765] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Cysteine cathepsins are involved in the development and progression of numerous inflammation-associated diseases such as cancer, arthritis, bone and immune disorders. Consequently, there is a drive to progress research efforts focused on cathepsin use in diagnostics and as therapeutic targets in disease.Areas covered: This review discusses the potential of cysteine cathepsins as therapeutic targets in inflammation-associated diseases and recent advances in preclinical and clinical research. We describe direct targeting of cathepsins for treatment purposes and their indirect use in diagnostics.Expert opinion: The targeting of cysteine cathepsins has not translated into the clinic; this failure is attributed to off- and on-target side effects and/or the lack of companion biomarkers. This field now embraces developments in diagnostic imaging, the activation of prodrugs and antibody-drug conjugates for targeted drug delivery. The future lies in improved molecular tools and therapeutic concepts that will find a wide spectrum of uses in diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Matej Vizovišek
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Eva Vidak
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Urban Javoršek
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Georgy Mikhaylov
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Andreja Bratovš
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
17
|
Reassessing enzyme kinetics: Considering protease-as-substrate interactions in proteolytic networks. Proc Natl Acad Sci U S A 2020; 117:3307-3318. [PMID: 31980525 DOI: 10.1073/pnas.1912207117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Enzymes are catalysts in biochemical reactions that, by definition, increase rates of reactions without being altered or destroyed. However, when that enzyme is a protease, a subclass of enzymes that hydrolyze other proteins, and that protease is in a multiprotease system, protease-as-substrate dynamics must be included, challenging assumptions of enzyme inertness, shifting kinetic predictions of that system. Protease-on-protease inactivating hydrolysis can alter predicted protease concentrations used to determine pharmaceutical dosing strategies. Cysteine cathepsins are proteases capable of cathepsin cannibalism, where one cathepsin hydrolyzes another with substrate present, and misunderstanding of these dynamics may cause miscalculations of multiple proteases working in one proteolytic network of interactions occurring in a defined compartment. Once rates for individual protease-on-protease binding and catalysis are determined, proteolytic network dynamics can be explored using computational models of cooperative/competitive degradation by multiple proteases in one system, while simultaneously incorporating substrate cleavage. During parameter optimization, it was revealed that additional distraction reactions, where inactivated proteases become competitive inhibitors to remaining, active proteases, occurred, introducing another network reaction node. Taken together, improved predictions of substrate degradation in a multiple protease network were achieved after including reaction terms of autodigestion, inactivation, cannibalism, and distraction, altering kinetic considerations from other enzymatic systems, since enzyme can be lost to proteolytic degradation. We compiled and encoded these dynamics into an online platform (https://plattlab.shinyapps.io/catKLS/) for individual users to test hypotheses of specific perturbations to multiple cathepsins, substrates, and inhibitors, and predict shifts in proteolytic network reactions and system dynamics.
Collapse
|
18
|
Gao LH, Li SS, Yue H, Zhang ZL. Associations of Serum Cathepsin K and Polymorphisms in CTSK Gene With Bone Mineral Density and Bone Metabolism Markers in Postmenopausal Chinese Women. Front Endocrinol (Lausanne) 2020; 11:48. [PMID: 32117071 PMCID: PMC7031211 DOI: 10.3389/fendo.2020.00048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/27/2020] [Indexed: 12/17/2022] Open
Abstract
Cathepsin K plays an important role in bone resorption. The reports of the association of serum cathepsin K with bone mineral density (BMD) and bone turnover markers are conflicting and the role of serum cathepsin K as a bone turnover marker is unclear. The aims of the study were as follows: (1) to investigate the association of serum cathepsin K with BMD and markers of bone turnover and (2) to evaluate the correlations of single-nucleotide polymorphisms (SNPs) within the CTSK gene with serum cathepsin K, BMD, and markers of bone metabolism in postmenopausal Chinese women. A cross-sectional study was conducted with 1752 postmenopausal Chinese women. Four tagging SNPs (rs12085336, rs12746973, rs4379678, and rs10847) of the CTSK gene were genotyped. Serum cathepsin K of 768 and markers of bone metabolism of 1752 including serum intact PTH, 25-hydroxyvitamin D [25(OH)D], procollagen type 1 N-terminal propeptide (P1NP), and β-CrossLaps of type I collagen containing cross- linked C-telopeptide (β-CTX) were measured. The BMD of the lumbar spine and proximal femur were measured by dual-energy X-ray absorptiometry (DXA). No significant relationship was detected between serum cathepsin K and age, BMI, BMD or bone metabolic markers (all P > 0.05) after adjustment for age and BMI. We failed to identify any significant association between the genotypes or haplotypes of CTSK and BMD, bone turnover markers, or serum cathepsin K. Neither serum cathepsin K nor CTSK gene polymorphisms was correlated with BMD or bone turnover markers. Genetic polymorphisms of CTSK may not be a major contributor to variations in the serum cathepsin K or BMD in postmenopausal Chinese women. The results implied that serum cathepsin K may not be viewed as a substitute for bone turnover markers.
Collapse
|
19
|
Yamada H, Ochi Y, Mori H, Nishikawa S, Hashimoto Y, Tanaka M, Deacon S, Kawabata K. Cortical bone mineral density is increased by the cathepsin K inhibitor ONO-5334, which leads to a robust increase in bone strength: results from a 16-month study in ovariectomised cynomolgus monkeys. J Bone Miner Metab 2019; 37:636-647. [PMID: 30357565 DOI: 10.1007/s00774-018-0968-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/01/2018] [Indexed: 02/07/2023]
Abstract
This study evaluated the long-term effects of the cathepsin K inhibitor ONO-5334 on bone mass and strength in ovariectomised (OVX) cynomolgus monkeys. Animals were assigned to one of the following six groups: Sham (non-OVX), OVX control treated with vehicle, ONO-5334 1.2, 6 or 30 mg/kg/day, p.o., or alendronate (ALN) 0.05 mg/kg/2 weeks, i.v. for 16 months. Peripheral quantitative computed tomography (pQCT) analysis revealed that ONO-5334 increased not only trabecular bone mineral density (BMD) but also cortical BMD in the distal radius and the lumbar vertebra. ONO-5334 and ALN suppressed the deterioration of trabecular architecture by micro-CT analysis in the distal radius. Assessments of bone strength showed that ONO-5334 increased maximum load at the distal and midshaft radius. The linear regression lines between bone mass and strength in the lumbar vertebra were tended to be shifted towards increasing bone strength in the ONO-5334 6 and 30 mg/kg groups compared with the ALN groups. This indicated that bone strength was higher in the ONO-5334 groups than the ALN group, even though bone mineral content (BMC) and BMD were comparable. Subpopulation analysis revealed that, at similar integral BMC or BMD level, cortical bone mass for ONO-5334 was higher than for ALN; the opposite effects were observed for trabecular bone. In conclusion, ONO-5334 preferentially increased cortical bone, which may provide a greater contribution to bone strength. Since these results support a different mode of action for ONO-5334 compared with that of ALN, ONO-5334 may offer new therapeutic options to patients with osteoporosis.
Collapse
Affiliation(s)
- Hiroyuki Yamada
- Discovery Research Laboratories, Ono Pharmaceutical Co., Ltd, 3-1-1 Sakurai Shimamoto-cho Mishima-gun, Osaka, 618-8585, Japan.
| | - Yasuo Ochi
- Discovery Research Laboratories, Ono Pharmaceutical Co., Ltd, 3-1-1 Sakurai Shimamoto-cho Mishima-gun, Osaka, 618-8585, Japan
| | - Hiroshi Mori
- Discovery Research Laboratories, Ono Pharmaceutical Co., Ltd, 3-1-1 Sakurai Shimamoto-cho Mishima-gun, Osaka, 618-8585, Japan
| | - Satoshi Nishikawa
- Discovery Research Laboratories, Ono Pharmaceutical Co., Ltd, 3-1-1 Sakurai Shimamoto-cho Mishima-gun, Osaka, 618-8585, Japan
| | - Yasuaki Hashimoto
- Discovery Research Laboratories, Ono Pharmaceutical Co., Ltd, 3-1-1 Sakurai Shimamoto-cho Mishima-gun, Osaka, 618-8585, Japan
| | - Makoto Tanaka
- Discovery Research Laboratories, Ono Pharmaceutical Co., Ltd, 3-1-1 Sakurai Shimamoto-cho Mishima-gun, Osaka, 618-8585, Japan
| | - Steve Deacon
- Drug Development, ONO Pharma UK LTD, MidCity Place, 71 High Holborn, London, WC1V 6EA, UK
| | - Kazuhito Kawabata
- Discovery Research Laboratories, Ono Pharmaceutical Co., Ltd, 3-1-1 Sakurai Shimamoto-cho Mishima-gun, Osaka, 618-8585, Japan
| |
Collapse
|
20
|
Effects of the Cathepsin K Inhibitor ONO-5334 and Concomitant Use of ONO-5334 with Methotrexate on Collagen-Induced Arthritis in Cynomolgus Monkeys. Int J Rheumatol 2019; 2019:5710340. [PMID: 30906325 PMCID: PMC6397998 DOI: 10.1155/2019/5710340] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 12/13/2022] Open
Abstract
We examined whether the cathepsin K inhibitor, ONO-5334, administered alone or in combination with methotrexate (MTX), could ameliorate joint destruction evoked by collagen-induced arthritis (CIA) in female cynomolgus monkeys. CIA was induced by immunizing with bovine type II collagen. ONO-5334 (30 mg/kg/day) was orally administered once daily and MTX (10 mg/body/day) twice weekly for 9 weeks. X-ray (evaluation of joint destruction) and swelling (inflammatory) scores of proximal interphalangeal (PIP), distal interphalangeal (DIP), and metacarpophalangeal (MP) joints were evaluated. Urinary concentrations of C-terminal telopeptide of type I collagen (CTX-I) and type II collagen (CTX-II) were measured. Arthritis, accompanied by bone and cartilage destruction, was successfully induced in this collagen-induced arthritis monkey model. ONO-5334 showed no suppressive effect on joint swelling, while the joint swelling scores in the MTX and combination (ONO-5334 + MTX) groups were less than 50% compared with the control group. ONO-5334 decreased X-ray score by a mean of 64% (p<0.05 vs the control group), and MTX also decreased in X-ray score by a mean of 46% but with no statistical significance. Combination of ONO-5334 and MTX further decreased the X-ray score by 28% over MTX group (74% reduction vs the control group, p<0.01). Maximum increase in CTX-I (10-fold) and CTX-II (7-fold) compared to baseline was observed at 7 and 3 weeks after the first sensitization, respectively. After treatment with ONO-5334 alone or in combination with MTX, concentrations were maintained near baseline for both markers. In conclusion, ONO-5334 prevented joint destruction but not joint inflammation in this monkey CIA model. Concomitant use of ONO-5334 with MTX reduced architectural joint destruction compared to MTX alone; therefore, ONO-5334 may help to prevent joint destruction in combination with MTX for the treatment of rheumatoid arthritis.
Collapse
|
21
|
Ma B, Wesolowski G, Luo B, Lifsted T, Wessner K, Adamson G, Glantschnig H, Lubbers LS. Suppression of cathepsin K biomarker in synovial fluid as a free-drug-driven process. J Circ Biomark 2019; 8:1849454418821819. [PMID: 30671145 PMCID: PMC6327326 DOI: 10.1177/1849454418821819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 12/01/2018] [Indexed: 11/17/2022] Open
Abstract
Cathepsin K (CatK) inhibitors exhibited chondroprotective and pain-reducing effects in animal models, however, improvements were relatively modest at dose levels achieving maximal suppression of CatK biomarkers in urine. In this report, a previously characterized CatK inhibitor (MK-1256) is utilized to explore the potential of reduced target engagement and/or suboptimal exposure (free drug) as limiting factors to the pharmacological potential of CatK inhibitors in the knee joint. Following oral administration of MK-1256 at a dose level achieving maximal inhibition of urinary biomarker (helical peptide) in dogs, full suppression of the biomarker in synovial fluid was observed. Subsequent tissue distribution studies conducted in dogs and rabbits revealed that MK-1256 levels in synovial fluid and cartilage were consistent with the free-drug hypothesis. Reasonable projection (within twofold) of drug levels in these tissues can be made based on plasma drug concentration with adjustments for binding factors. These results indicate that the previously observed efficacies in the animal models were not limited by compound distribution or target engagement in the knee tissues.
Collapse
Affiliation(s)
- Bennett Ma
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., West Point, PA, USA
| | | | - Bin Luo
- Department of Pharmacology, Merck & Co., West Point, PA, USA
| | - Traci Lifsted
- Department of Pharmacology, Merck & Co., West Point, PA, USA
| | - Keith Wessner
- Department of Pharmacology, Merck & Co., West Point, PA, USA
| | - Gary Adamson
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., West Point, PA, USA
| | | | - Laura S Lubbers
- Department of Pharmacology, Merck & Co., West Point, PA, USA
| |
Collapse
|
22
|
Kemp GJ, Birrell F, Clegg PD, Cuthbertson DJ, De Vito G, van Dieën JH, Del Din S, Eastell R, Garnero P, Goljanek–Whysall K, Hackl M, Hodgson R, Jackson MJ, Lord S, Mazzà C, McArdle A, McCloskey EV, Narici M, Peffers MJ, Schiaffino S, Mathers JC. Developing a toolkit for the assessment and monitoring of musculoskeletal ageing. Age Ageing 2018; 47:iv1-iv19. [PMID: 30203052 PMCID: PMC6127513 DOI: 10.1093/ageing/afy143] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/03/2018] [Indexed: 12/12/2022] Open
Abstract
The complexities and heterogeneity of the ageing process have slowed the development of consensus on appropriate biomarkers of healthy ageing. The Medical Research Council–Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA) is a collaboration between researchers and clinicians at the Universities of Liverpool, Sheffield and Newcastle. One of CIMA’s objectives is to ‘Identify and share optimal techniques and approaches to monitor age-related changes in all musculoskeletal tissues, and to provide an integrated assessment of musculoskeletal function’—in other words to develop a toolkit for assessing musculoskeletal ageing. This toolkit is envisaged as an instrument that can be used to characterise and quantify musculoskeletal function during ‘normal’ ageing, lend itself to use in large-scale, internationally important cohorts, and provide a set of biomarker outcome measures for epidemiological and intervention studies designed to enhance healthy musculoskeletal ageing. Such potential biomarkers include: biochemical measurements in biofluids or tissue samples, in vivo measurements of body composition, imaging of structural and physical properties, and functional tests. This review assesses candidate biomarkers of musculoskeletal ageing under these four headings, details their biological bases, strengths and limitations, and makes practical recommendations for their use. In addition, we identify gaps in the evidence base and priorities for further research on biomarkers of musculoskeletal ageing.
Collapse
Affiliation(s)
- Graham J Kemp
- Department of Musculoskeletal Biology, Faculty of Health and Life Sciences, Institute of Ageing and Chronic Disease (IACD), University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, UK
- The MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA)
| | - Fraser Birrell
- Institute of Cellular Medicine, Musculoskeletal Research Group, Newcastle University, Newcastle upon Tyne, UK
- The MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA)
| | - Peter D Clegg
- Department of Musculoskeletal Biology, Faculty of Health and Life Sciences, Institute of Ageing and Chronic Disease (IACD), University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, UK
- The MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA)
| | - Daniel J Cuthbertson
- Department of Musculoskeletal Biology, Faculty of Health and Life Sciences, Institute of Ageing and Chronic Disease (IACD), University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, UK
- The MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA)
| | - Giuseppe De Vito
- School of Public Health, Physiotherapy and Sports Science, Institute for Sport and Health, University College Dublin, Belfield, Dublin, Ireland
| | - Jaap H van Dieën
- Department of Human Movement Sciences, VU University Amsterdam, Amsterdam Movement Sciences, Van der Boechorststraat 9, Amsterdam, The Netherlands
| | - Silvia Del Din
- Clinical Ageing Research Unit, Institute of Neuroscience/Newcastle University Institute for Ageing, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Richard Eastell
- Mellanby Centre for Bone Research, University of Sheffield, Sheffield, UK
- The MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA)
| | - Patrick Garnero
- Division of Bone Diseases, Geneva University Hospital and Faculty of Medicine, 1205 Geneva, Switzerland
| | - Katarzyna Goljanek–Whysall
- Department of Musculoskeletal Biology, Faculty of Health and Life Sciences, Institute of Ageing and Chronic Disease (IACD), University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, UK
- The MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA)
| | | | - Richard Hodgson
- Centre for Imaging Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester, UK
| | - Malcolm J Jackson
- Department of Musculoskeletal Biology, Faculty of Health and Life Sciences, Institute of Ageing and Chronic Disease (IACD), University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, UK
- The MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA)
| | - Sue Lord
- Clinical Ageing Research Unit, Institute of Neuroscience/Newcastle University Institute for Ageing, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Claudia Mazzà
- Department of Mechanical Engineering & INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK
- The MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA)
| | - Anne McArdle
- Department of Musculoskeletal Biology, Faculty of Health and Life Sciences, Institute of Ageing and Chronic Disease (IACD), University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, UK
- The MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA)
| | - Eugene V McCloskey
- Mellanby Centre for Bone Research, University of Sheffield, Sheffield, UK
- The MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA)
| | - Marco Narici
- MRC-ARUK Centre of Excellence for Musculoskeletal Ageing Research, Derby Royal Hospital, Uttoxeter Road, Derby, UK
| | - Mandy J Peffers
- Department of Musculoskeletal Biology, Faculty of Health and Life Sciences, Institute of Ageing and Chronic Disease (IACD), University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, UK
- The MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA)
| | - Stefano Schiaffino
- Venetian Institute of Molecular Medicine (VIMM), Via Orus 2, Padova, Italy
| | - John C Mathers
- Human Nutrition Research Centre, Institute of Cellular Medicine and Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, UK
- The MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA)
| |
Collapse
|
23
|
Yamashita T, Hagino H, Hayashi I, Hayashibara M, Tanida A, Nagira K, Fukui R, Nagashima H. Effect of a cathepsin K inhibitor on arthritis and bone mineral density in ovariectomized rats with collagen-induced arthritis. Bone Rep 2018; 9:1-10. [PMID: 29992179 PMCID: PMC6034140 DOI: 10.1016/j.bonr.2018.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 05/22/2018] [Accepted: 05/28/2018] [Indexed: 11/28/2022] Open
Abstract
Objectives Cathepsin K is expressed by osteoclasts and synovial fibroblasts and degrades key components of bone and cartilage. Inhibition of cathepsin K protease activity may be beneficial for the prevention of bone erosion and cartilage degradation in rheumatoid arthritis (RA). The collagen-induced arthritis (CIA) rat model is well established for studying the pathology and treatment of RA. We investigated the effect of ONO-KK1-300-01, a cathepsin K inhibitor (CKI), on arthritis and bone mineral density (BMD) in rats with CIA. Methods Seven-month-old female Sprague Dawley rats were divided into 5 groups: rats without CIA (CNT); CIA rats that underwent ovariectomy (OVX) and were treated with CKI; CIA rats that underwent OVX and were treated with vehicle (Veh); CIA rats that underwent sham surgery and were treated with CKI; and CIA rats that underwent sham surgery and were treated with Veh. CKI was orally administered at a dose of 15 mg/kg, thus initiating collagen sensitization, until death at 4 weeks. We evaluated hind paw thickness and the arthritis score every week until death. Radiographs of the resected left foot were obtained with a soft X-ray apparatus. Destruction of bone and cartilage was classified and scored as previously described by Engelhardt et al. BMD was measured by bone densitometry at the halfway point between the distal metaphysis and the diaphysis of the resected right femur. We also performed histomorphometry of the proximal left tibia, histological evaluation of arthritis, and a bone strength test. Results CKI administration significantly reduced hind paw thickness and the arthritis score, and prevented a decrease in BMD. The radiographic score was significantly lower in the CKI group than in the Veh group. In the histomorphometric analysis, bone-resorption parameters were significantly lower in the CKI groups than in the Veh groups. CKI significantly inhibited synovial proliferation in the CIA rats. In the bone strength test, the ultimate stress was significantly higher in the CKI groups than in the Veh groups. Conclusion Our findings indicate that cathepsin K inhibitors may inhibit systemic and local bone loss, ameliorate arthritis, and attenuate the decrease of bone strength in an animal model of arthritis.
Collapse
Affiliation(s)
- Takahiro Yamashita
- Department of Orthopedic Surgery, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Hiroshi Hagino
- School of Health Science, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Ikuta Hayashi
- Department of Orthopedic Surgery, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Masako Hayashibara
- Department of Orthopedic Surgery, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Atsushi Tanida
- Department of Orthopedic Surgery, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Keita Nagira
- Department of Orthopedic Surgery, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Ryohei Fukui
- Division of Clinical Radiology, Tottori University Hospital, Yonago, Tottori, Japan
| | - Hideki Nagashima
- Department of Orthopedic Surgery, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| |
Collapse
|
24
|
Lu J, Wang M, Wang Z, Fu Z, Lu A, Zhang G. Advances in the discovery of cathepsin K inhibitors on bone resorption. J Enzyme Inhib Med Chem 2018; 33:890-904. [PMID: 29723068 PMCID: PMC6010086 DOI: 10.1080/14756366.2018.1465417] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cathepsin K (Cat K), highly expressed in osteoclasts, is a cysteine protease member of the cathepsin lysosomal protease family and has been of increasing interest as a target of medicinal chemistry efforts for its role in bone matrix degradation. Inhibition of the Cat K enzyme reduces bone resorption and thus, has rendered the enzyme as an attractive target for anti-resorptive osteoporosis therapy. Over the past decades, considerable efforts have been made to design and develop highly potent, excellently selective and orally applicable Cat K inhibitors. These inhibitors are derived from synthetic compounds or natural products, some of which have passed preclinical studies and are presently in clinical trials at different stages of advancement. In this review, we briefly summarised the historic development of Cat K inhibitors and discussed the relationship between structures of inhibitors and active sites in Cat K for the purpose of guiding future development of inhibitors.
Collapse
Affiliation(s)
- Jun Lu
- a Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University , Hong Kong SAR , China.,b Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University , Hong Kong SAR , China
| | - Maolin Wang
- a Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University , Hong Kong SAR , China.,b Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University , Hong Kong SAR , China
| | - Ziyue Wang
- a Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University , Hong Kong SAR , China
| | - Zhongqi Fu
- a Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University , Hong Kong SAR , China
| | - Aiping Lu
- a Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University , Hong Kong SAR , China.,b Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University , Hong Kong SAR , China
| | - Ge Zhang
- a Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University , Hong Kong SAR , China.,b Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University , Hong Kong SAR , China
| |
Collapse
|
25
|
Lindström E, Rizoska B, Henderson I, Terelius Y, Jerling M, Edenius C, Grabowska U. Nonclinical and clinical pharmacological characterization of the potent and selective cathepsin K inhibitor MIV-711. J Transl Med 2018; 16:125. [PMID: 29743078 PMCID: PMC5944028 DOI: 10.1186/s12967-018-1497-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 04/30/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Cathepsin K is an attractive therapeutic target for diseases in which bone resorption is excessive such as osteoporosis and osteoarthritis (OA). The current paper characterized the pharmacological profile of the potent and selective cathepsin K inhibitor, MIV-711, in vitro and in cynomolgus monkeys, and assessed translation to human based on a single dose clinical study in man. METHODS The potency and selectivity of MIV-711 were assessed in vitro using recombinant enzyme assays and differentiated human osteoclasts. MIV-711 was administered to healthy cynomolgus monkeys (3-30 µmol/kg, p.o.). Plasma levels of MIV-711 and the bone resorption biomarker CTX-I were measured after single dose experiments, and urine levels of CTX-I, NTX-I and CTX-II biomarkers were measured after repeat dose experiments. The safety, pharmacokinetics and pharmacodynamics (serum CTX-I) of MIV-711 were assessed in human healthy subjects after single ascending doses from 20 to 600 mg. RESULTS MIV-711 was a potent inhibitor of human cathepsin K (Ki: 0.98 nmol/L) with > 1300-fold selectivity towards other human cathepsins. MIV-711 inhibited human osteoclast-mediated bone resorption with an IC50 value of 43 nmol/L. Single oral doses of MIV-711 to monkeys reduced plasma levels of CTX-I in a dose-dependent fashion by up to 57% at trough. The effect on CTX-I was linearly correlated to the plasma exposure of MIV-711, while the efficacy duration outlasted plasma exposure. Repeat oral dosing with MIV-711 also reduced urinary levels of the bone resorption biomarkers CTX-I (by 93%) and NTX-I (by 71%) and the cartilage degradation biomarker CTX-II (by 71%). MIV-711 was safe and well-tolerated when given as single ascending doses to healthy subjects. MIV-711 reduced serum CTX-I levels in a dose-dependent manner by up to 79% at trough. The relationship between MIV-711 exposure and effects on these biomarkers in humans was virtually identical when compared to the corresponding monkey data. CONCLUSIONS MIV-711 is a potent and selective cathepsin K inhibitor with dose-dependent effects on biomarkers of bone and cartilage degradation in monkey and human. Taken together, MIV-711 shows promise for the treatment of bone and cartilage related disorders in humans, such as OA. Trial Registration EudraCT number 2011-003024-12, registered on June 22nd 2011.
Collapse
|
26
|
Liu GF, Wang ZQ, Liu L, Zhang BT, Miao YY, Yu SN. A network meta-analysis on the short-term efficacy and adverse events of different anti-osteoporosis drugs for the treatment of postmenopausal osteoporosis. J Cell Biochem 2018; 119:4469-4481. [PMID: 29227547 DOI: 10.1002/jcb.26550] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 12/01/2017] [Indexed: 12/18/2022]
Abstract
A network meta-analysis was conducted to compare the short-term efficacy and adverse events of different drugs for the treatment of postmenopausal osteoporosis (PMO), providing a more effective treatment for PMO. We initially searched through various databases like PubMed, Cochrane Library, and EMBASE from inception till October 2016. All randomized controlled trials (RCTs) of drugs for the treatment of PMO were included for direct and indirect comparison. A combination of direct and indirect evidence of different inhibitors of anti-diabetic drugs for treatment of PMO were considered for calculating the weighted mean difference (WMD) value or odd ratio (OR) value and to draw surface under the cumulative ranking (SUCRA) curves. Twenty-seven RCTs were ultimately incorporated into this network meta-analysis comprising of 48 200 patients suffering from PMO. The network meta-analysis revealed that compared with placebo, alendronate had better efficacy on improving bone mineral density (BMD) at lumbar spine, femoral neck, and total hip. Risedronate and raloxifene had relatively lower incidence of new vertebral fractures. The SUCRA analysis showed that alendronate had better efficacy on improving BMD, risedronate could significantly decrease the incidence of fresh fracture and bazedoxifene was relatively safe. The available evidence suggested that alendronate and risedronate might be the superior choices for the treatment of PMO, while bazedoxifene was a comparatively safer option for patients.
Collapse
Affiliation(s)
- Gui-Feng Liu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zong-Qiang Wang
- Medical Department, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lin Liu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Bu-Tian Zhang
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ying-Ying Miao
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shao-Nan Yu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
27
|
Blake GM, Puri T, Siddique M, Frost ML, Moore AEB, Fogelman I. Site specific measurements of bone formation using [ 18F] sodium fluoride PET/CT. Quant Imaging Med Surg 2018. [PMID: 29541623 DOI: 10.21037/qims.2018.01.02] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Dynamic positron emission tomography (PET) imaging with fluorine-18 labelled sodium fluoride ([18F]NaF) allows the quantitative assessment of regional bone formation by measuring the plasma clearance of fluoride to bone at any site in the skeleton. Today, hybrid PET and computed tomography (CT) dual-modality systems (PET/CT) are widely available, and [18F]NaF PET/CT offers a convenient non-invasive method of studying bone formation at the important osteoporotic fracture sites at the hip and spine, as well as sites of pure cortical or trabecular bone. The technique complements conventional measurements of bone turnover using biochemical markers or bone biopsy as a tool to investigate new therapies for osteoporosis, and has a potential role as an early biomarker of treatment efficacy in clinical trials. This article reviews methods of acquiring and analyzing dynamic [18F]NaF PET/CT scan data, and outlines a simplified approach combining venous blood sampling with a series of short (3- to 5-minute) static PET/CT scans acquired at different bed positions to estimate [18F]NaF plasma clearance at multiple sites in the skeleton with just a single injection of tracer.
Collapse
Affiliation(s)
- Glen M Blake
- Biomedical Engineering Department, King's College London, Strand, LondonUK
| | - Tanuj Puri
- Biomedical Engineering Department, King's College London, Strand, LondonUK
| | - Musib Siddique
- Biomedical Engineering Department, King's College London, Strand, LondonUK
| | - Michelle L Frost
- Department of Radiology, Royal Marsden Hospital, Sutton, Surrey, UK
| | - Amelia E B Moore
- Osteoporosis Research Unit, King's College London, Guy's Campus, London, UK
| | - Ignac Fogelman
- Nuclear Medicine Department, King's College London, Guy's Campus, London, UK
| |
Collapse
|
28
|
Panwar P, Xue L, Søe K, Srivastava K, Law S, Delaisse JM, Brömme D. An Ectosteric Inhibitor of Cathepsin K Inhibits Bone Resorption in Ovariectomized Mice. J Bone Miner Res 2017; 32:2415-2430. [PMID: 28745432 DOI: 10.1002/jbmr.3227] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/19/2017] [Accepted: 07/22/2017] [Indexed: 12/13/2022]
Abstract
The potent cathepsin K (CatK) inhibitor, Tanshinone IIA sulfonic sodium (T06), was tested for its in vitro and in vivo antiresorptive activities. T06 binds in an ectosteric site of CatK remote from its active site and selectively inhibits collagen degradation with an IC50 value of 2.7 ± 0.2 μM (CatK:T06 molar ratio of 1:5). However, it does not suppress fluorogenic peptide cleavage and gelatinolysis at a 2500-fold molar excess. Contrary to active site-directed CatK inhibitors, such as odanacatib, T06 suppresses bone resorption in both human and mouse osteoclasts equally well (IC50 value for human and mouse osteoclasts: 237 ± 60 nM and 245 ± 55 nM, respectively) and its antiresorptive activity is fully reversible in both cell types. Moreover, T06 affects neither the metabolic activity of osteoclasts nor osteoclastogenesis. In in vivo studies, 40 mg T06/kg/d given to 12-week-old ovariectomized (OVX) mice for 3 months reduced plasma CTx-1 by 20% and increased osteoblast numbers and plasma P1NP by ∼28% when compared with the OVX control. μCT analysis of T06-treated OVX mice showed a 35% increase in bone mineral density and other femoral trabecular bone parameters when compared with OVX animals. T06 did not alter the number of osteoclasts, had no estrogenic effect on the uterus, did not change plasma estradiol levels, and did not inhibit fibroblast-mediated TGF-ß1 processing or degradation and cognitive functions in OVX mice. This study indicates that the ectosteric inhibitor, T06, is a selective antiresorptive CatK inhibitor that may overcome the shortcomings of side effect-prone active site-directed drugs, which all failed in clinical trials. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Preety Panwar
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, Canada.,Clinical Cell Biology, Vejle Hospital/Lillebaelt Hospital, Institute of Regional Health Research, University of Southern Denmark, Vejle, Denmark.,Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Liming Xue
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, Canada
| | - Kent Søe
- Clinical Cell Biology, Vejle Hospital/Lillebaelt Hospital, Institute of Regional Health Research, University of Southern Denmark, Vejle, Denmark
| | - Kamini Srivastava
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, Canada
| | - Simon Law
- Centre for Blood Research, University of British Columbia, Vancouver, Canada.,Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Jean-Marie Delaisse
- Clinical Cell Biology, Vejle Hospital/Lillebaelt Hospital, Institute of Regional Health Research, University of Southern Denmark, Vejle, Denmark
| | - Dieter Brömme
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, Canada.,Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
29
|
Szulc P, Naylor K, Hoyle NR, Eastell R, Leary ET. Use of CTX-I and PINP as bone turnover markers: National Bone Health Alliance recommendations to standardize sample handling and patient preparation to reduce pre-analytical variability. Osteoporos Int 2017. [PMID: 28631236 DOI: 10.1007/s00198-017-4082-4] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
UNLABELLED The National Bone Health Alliance (NBHA) recommends standardized sample handling and patient preparation for C-terminal telopeptide of type I collagen (CTX-I) and N-terminal propeptide of type I procollagen (PINP) measurements to reduce pre-analytical variability. Controllable and uncontrollable patient-related factors are reviewed to facilitate interpretation and minimize pre-analytical variability. INTRODUCTION The IOF and the International Federation of Clinical Chemistry (IFCC) Bone Marker Standards Working Group have identified PINP and CTX-I in blood to be the reference markers of bone turnover for the fracture risk prediction and monitoring of osteoporosis treatment. Although used in clinical research for many years, bone turnover markers (BTM) have not been widely adopted in clinical practice primarily due to their poor within-subject and between-lab reproducibility. The NBHA Bone Turnover Marker Project team aim to reduce pre-analytical variability of CTX-I and PINP measurements through standardized sample handling and patient preparation. METHODS Recommendations for sample handling and patient preparations were made based on review of available publications and pragmatic considerations to reduce pre-analytical variability. Controllable and un-controllable patient-related factors were reviewed to facilitate interpretation and sample collection. RESULTS Samples for CTX-I must be collected consistently in the morning hours in the fasted state. EDTA plasma is preferred for CTX-I for its greater sample stability. Sample collection conditions for PINP are less critical as PINP has minimal circadian variability and is not affected by food intake. Sample stability limits should be observed. The uncontrollable aspects (age, sex, pregnancy, immobility, recent fracture, co-morbidities, anti-osteoporotic drugs, other medications) should be considered in BTM interpretation. CONCLUSION Adopting standardized sample handling and patient preparation procedures will significantly reduce controllable pre-analytical variability. The successful adoption of such recommendations necessitates the close collaboration of various stakeholders at the global stage, including the laboratories, the medical community, the reagent manufacturers and the regulatory agencies.
Collapse
Affiliation(s)
- P Szulc
- INSERM UMR 1033, Hôpital Edouard Herriot, University of Lyon, Pavillon F, Place d'Arsonval, 69437, Lyon, France.
| | - K Naylor
- Academic Unit of Bone Metabolism and Mellanby Centre for Bone Research, University of Sheffield, Sheffield, UK
| | | | - R Eastell
- Academic Unit of Bone Metabolism and Mellanby Centre for Bone Research, University of Sheffield, Sheffield, UK
| | - E T Leary
- ETL Consulting, Seattle, WA, 98177, USA
- Pacific Biomarkers, Seattle, WA, 98119, USA
| | | |
Collapse
|
30
|
Drake MT, Clarke BL, Oursler MJ, Khosla S. Cathepsin K Inhibitors for Osteoporosis: Biology, Potential Clinical Utility, and Lessons Learned. Endocr Rev 2017; 38:325-350. [PMID: 28651365 PMCID: PMC5546879 DOI: 10.1210/er.2015-1114] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 06/20/2017] [Indexed: 12/24/2022]
Abstract
Cathepsin K is a cysteine protease member of the cathepsin lysosomal protease family. Although cathepsin K is highly expressed in osteoclasts, lower levels of cathepsin K are also found in a variety of other tissues. Secretion of cathepsin K from the osteoclast into the sealed osteoclast-bone cell interface results in efficient degradation of type I collagen. The absence of cathepsin K activity in humans results in pycnodysostosis, characterized by increased bone mineral density and fractures. Pharmacologic cathepsin K inhibition leads to continuous increases in bone mineral density for ≤5 years of treatment and improves bone strength at the spine and hip. Compared with other antiresorptive agents, cathepsin K inhibition is nearly equally efficacious for reducing biochemical markers of bone resorption but comparatively less active for reducing bone formation markers. Despite multiple efforts to develop cathepsin K inhibitors, potential concerns related to off-target effects of the inhibitors against other cathepsins and cathepsin K inhibition at nonbone sites, including skin and perhaps cardiovascular and cerebrovascular sites, prolonged the regulatory approval process. A large multinational randomized, double-blind phase III study of odanacatib in postmenopausal women with osteoporosis was recently completed. Although that study demonstrated clinically relevant reductions in fractures at multiple sites, odanacatib was ultimately withdrawn from the regulatory approval process after it was found to be associated with an increased risk of cerebrovascular accidents. Nonetheless, the underlying biology and clinical effects of cathepsin K inhibition remain of considerable interest and could guide future therapeutic approaches for osteoporosis.
Collapse
Affiliation(s)
- Matthew T. Drake
- Division of Endocrinology and Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Bart L. Clarke
- Division of Endocrinology and Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Merry Jo Oursler
- Division of Endocrinology and Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Sundeep Khosla
- Division of Endocrinology and Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| |
Collapse
|
31
|
Kramer L, Turk D, Turk B. The Future of Cysteine Cathepsins in Disease Management. Trends Pharmacol Sci 2017; 38:873-898. [PMID: 28668224 DOI: 10.1016/j.tips.2017.06.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/23/2017] [Accepted: 06/05/2017] [Indexed: 02/06/2023]
Abstract
Since the discovery of the key role of cathepsin K in bone resorption, cysteine cathepsins have been investigated by pharmaceutical companies as drug targets. The first clinical results from targeting cathepsins by activity-based probes and substrates are paving the way for the next generation of molecular diagnostic imaging, whereas the majority of antibody-drug conjugates currently in clinical trials depend on activation by cathepsins. Finally, cathepsins have emerged as suitable vehicles for targeted drug delivery. It is therefore timely to review the future of cathepsins in drug discovery. We focus here on inflammation-associated diseases because dysregulation of the immune system accompanied by elevated cathepsin activity is a common feature of these conditions.
Collapse
Affiliation(s)
- Lovro Kramer
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, 1000 Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, 1000 Ljubljana, Slovenia
| | - Dušan Turk
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, 1000 Ljubljana, Slovenia; Center of Excellence CIPKEBIP, Jamova 39, 1000 Ljubljana, Slovenia
| | - Boris Turk
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, 1000 Ljubljana, Slovenia; Center of Excellence CIPKEBIP, Jamova 39, 1000 Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia.
| |
Collapse
|
32
|
Tanaka M, Hashimoto Y, Hasegawa C, Deacon S, Eastell R. Antiresorptive effect of a cathepsin K inhibitor ONO-5334 and its relationship to BMD increase in a phase II trial for postmenopausal osteoporosis. BMC Musculoskelet Disord 2017. [PMID: 28629344 PMCID: PMC5477094 DOI: 10.1186/s12891-017-1625-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background ONO-5334 is a cathepsin K inhibitor that induced bone mineral density (BMD) gain in a phase II study in postmenopausal osteoporosis patients. Even though the antiresorptive effect could only be monitored in the morning during the study, simulation can allow the antiresorptive effect to be assessed over 24 h, with assessment of the relationship to BMD gain. Methods Inhibition of the serum C-telopeptide of type I collagen (sCTX) level at doses of ONO-5334 of 100 mg once daily (QD), 300 mg QD, and 50 mg twice daily (BID) was simulated using plasma ONO-5334 pharmacokinetic (PK) data for repeated dose administration in a phase I study and corresponding sCTX inhibition from the PK-pharmacodynamic (PK/PD) relationship. sCTX was selected because it has a high signal-to-noise ratio compared to other telopeptides. A negative sigmoidal shape for the PK/PD relationship between plasma ONO-5334 and sCTX levels was obtained in our previous study. Results The simulated sCTX inhibition reached >99% of the maximal inhibitory effect (Emax) at 0.5 h in all treatment groups, and decreased to <80% Emax at 8 and 12 h at 50 mg BID and 100 mg QD, respectively. However, sCTX inhibition at 300 mg QD was maintained at ≥82% Emax over 24 h. The mean sCTX inhibition rates for 24 h at 100 mg QD, 300 mg QD and 50 mg BID were 63, 95 and 80% Emax, respectively. There was a positive linear relationship by treatment group between mean sCTX inhibition over 24 h and observed BMD gain in the phase II study. Conclusion The dose response for BMD with ONO-5334 at 100 and 300 mg QD and higher BMD gain at 50 mg BID vs. 100 mg QD can be explained by sCTX inhibition over 24 h. The simulation gave the antiresorptive effect of ONO-5334 over 24 h and allowed prediction of BMD gain due to ONO-5334. Trial registration The registration number in The European Union Clinical Trials Register is 2007–002417-39. The date of registration was August 31, 2007. Electronic supplementary material The online version of this article (doi:10.1186/s12891-017-1625-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Makoto Tanaka
- Research Promotion, Ono Pharmaceutical Co., Ltd, 3-1-1 Sakurai, Shimamoto, Osaka, 618-8585, Japan.
| | - Yoshitaka Hashimoto
- Translational Medicine Center, Ono Pharmaceutical Co., Ltd, Shimamoto, Osaka, Japan
| | - Chihiro Hasegawa
- Translational Medicine Center, Ono Pharmaceutical Co., Ltd, Shimamoto, Osaka, Japan
| | - Steve Deacon
- Clinical Development, Ono Pharma UK Ltd, London, UK
| | - Richard Eastell
- Academic Unit of Bone Metabolism, University of Sheffield, Sheffield, UK
| |
Collapse
|
33
|
Abstract
Recently discovered mechanisms have assisted in developing new therapies for osteoporosis. New classes of drugs have been developed for the treatment of postmenopausal osteoporosis. Although there have been numerous advances over the past 2 decades, the search for newer therapies continues.
Collapse
Affiliation(s)
- Leonardo Bandeira
- Department of Medicine, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, PH8W-864, New York, NY 10032, USA
| | - John P Bilezikian
- Department of Medicine, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, PH8W-864, New York, NY 10032, USA.
| |
Collapse
|
34
|
Applicability of in vitro-in vivo translation of cathepsin K inhibition from animal species to human with the use of free-drug hypothesis. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:435-441. [DOI: 10.1007/s00210-017-1356-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 01/31/2017] [Indexed: 12/22/2022]
|
35
|
Identification of mouse cathepsin K structural elements that regulate the potency of odanacatib. Biochem J 2017; 474:851-864. [PMID: 28049758 DOI: 10.1042/bcj20160985] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/19/2016] [Accepted: 01/03/2017] [Indexed: 01/19/2023]
Abstract
Cathepsin K (CatK) is the predominant mammalian bone-degrading protease and thus an ideal target for antiosteoporotic drug development. Rodent models of osteoporosis are preferred due to their close reflection of the human disease and their ease of handling, genetic manipulation and economic affordability. However, large differences in the potency of CatK inhibitors for the mouse/rat vs. the human protease orthologs have made it impossible to use rodent models. This is even more of a problem considering that the most advanced CatK inhibitors, including odanacatib (ODN) and balicatib, failed in human clinical trials due to side effects and rodent models are not available to investigate the mechanism of these failures. Here, we elucidated the structural elements of the potency differences between mouse and human CatK (hCatK) using ODN. We determined and compared the structures of inhibitor-free mouse CatK (mCatK), hCatK and ODN bound to hCatK. Two structural differences were identified and investigated by mutational analysis. Humanizing subsite 2 in mCatK led to a 5-fold improvement of ODN binding, whereas the replacement of Tyr61 in mCatK with Asp resulted in an hCatK with comparable ODN potency. Combining both sites further improved the inhibition of the mCatK variant. Similar results were obtained for balicatib. These findings will allow the generation of transgenic CatK mice that will facilitate the evaluation of CatK inhibitor adverse effects and to explore routes to avoid them.
Collapse
|
36
|
Lama A, Santoro A, Corrado B, Pirozzi C, Paciello O, Pagano TB, Russo S, Calignano A, Mattace Raso G, Meli R. Extracorporeal shock waves alone or combined with raloxifene promote bone formation and suppress resorption in ovariectomized rats. PLoS One 2017; 12:e0171276. [PMID: 28158228 PMCID: PMC5291474 DOI: 10.1371/journal.pone.0171276] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/17/2017] [Indexed: 12/18/2022] Open
Abstract
Osteoporosis is a metabolic skeletal disease characterized by an imbalance between osteoclast-mediated bone resorption and osteoblast-mediated bone formation. We examined the beneficial effect of shock waves (SW) alone or in combination with raloxifene (RAL) on bone loss in ovariectomized rats (OVX). Sixteen weeks after surgery, OVX were treated for five weeks with SW at the antero-lateral side of the right hind leg, one session weekly, at 3 Hz (EFD of 0.33 mJ/mm2), or with RAL (5 mg/kg/die, per os) or with SW+RAL. Sera, femurs, tibiae and vertebrae were sampled for following biochemical and histological analysis. SW, alone or combined with RAL, prevented femur weight reduction and the deterioration of trabecular microarchitecture both in femur and vertebrae. All treatments increased Speed of Sound (SoS) values, improving bone mineral density, altered by OVX. Serum parameters involved in bone remodeling (alkaline phosphatase, receptor activator of nuclear factor kappa-B ligand, osteoprotegerin) and osteoblast proliferation (PTH), altered by ovariectomy, were restored by SW and RAL alone or in combination. In tibiae, SW+RAL significantly reduced cathepsin k and TNF-α levels, indicating the inhibition of osteoclast activity, while all treatments significantly increased runt-related transcription factor 2 and bone morphogenetic-2 expression, suggesting an increase in osteoblastogenic activity. Finally, in bone marrow from tibiae, SW or RAL reduced PPARγ and adiponectin transcription, indicating a shift of mesenchymal cells toward osteoblastogenesis, without showing a synergistic effect. Our data indicate SW therapy, alone and in combination with raloxifene, as an innovative strategy to limit the hypoestrogenic bone loss, restoring the balance between bone formation and resorption.
Collapse
Affiliation(s)
- Adriano Lama
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Anna Santoro
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Bruno Corrado
- Department of Public Health, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Claudio Pirozzi
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Orlando Paciello
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Teresa Bruna Pagano
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Sergio Russo
- Department of Public Health, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Antonio Calignano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Rosaria Meli
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
- * E-mail:
| |
Collapse
|
37
|
Mukherjee K, Chattopadhyay N. Pharmacological inhibition of cathepsin K: A promising novel approach for postmenopausal osteoporosis therapy. Biochem Pharmacol 2016; 117:10-9. [DOI: 10.1016/j.bcp.2016.04.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 04/12/2016] [Indexed: 12/11/2022]
|
38
|
Okano T, Inui K, Tada M, Sugioka Y, Mamoto K, Wakitani S, Koike T, Nakamura H. High frequency of vertebral fracture and low bone quality in patients with rheumatoid arthritis-Results from TOMORROW study. Mod Rheumatol 2016; 27:398-404. [PMID: 27484855 DOI: 10.1080/14397595.2016.1213943] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Osteoporosis is one of the complications in patients with rheumatoid arthritis (RA). In this study, we researched the morbidity of existing vertebral fractures and the risk factors for vertebral fractures in patients with RA. METHODS This study included 413 participants, 208 patients with RA, and 205 age- and sex-matched controls without RA. Clinical data, radiographic assessment of vertebral fracture from T4 to L4 in thoracic and lumber spine, bone mineral density (BMD), and bone metabolic markers (BMM) were analyzed. RESULTS Vertebral fractures were observed more frequently, severe and multiple in patients with RA. In the logistic regression analysis, age (adjusted odds ratios (OR): 1.07, 95% confidence interval (CI): 1.04-1.09) and RA (adjusted OR: 1.72, 95% CI: 1.04-2.83) were risk factors for existing vertebral fracture. Moreover, two bone matrix-related markers, undercarboxylated osteocalcin (ucOC) (adjusted OR: 1.68, 95% CI: 1.02-2.78), and urinary pentocidine (adjusted OR: 2.51, 95% CI: 1.48-4.24) were associated with existing vertebral fracture. CONCLUSIONS High frequent, multiple, and severe vertebral fractures were found in patients with RA compared to the controls. Low bone quality might be the cause of the frequent prevalence of vertebral fracture in patients with RA.
Collapse
Affiliation(s)
- Tadashi Okano
- a Department of Orthopaedic Surgery , Osaka City University Medical School , Osaka , Japan
| | - Kentaro Inui
- a Department of Orthopaedic Surgery , Osaka City University Medical School , Osaka , Japan
| | - Masahiro Tada
- b Department of Orthopaedic Surgery , Osaka City General Hospital , Osaka , Japan
| | - Yuko Sugioka
- c Center for Senile Degenerative Disorders (CSDD), Osaka City University Medical School , Osaka , Japan
| | - Kenji Mamoto
- a Department of Orthopaedic Surgery , Osaka City University Medical School , Osaka , Japan
| | - Shigeyuki Wakitani
- d Department of Health and Sports Sciences , Mukogawa Women's University , Hyogo , Japan , and
| | - Tatsuya Koike
- c Center for Senile Degenerative Disorders (CSDD), Osaka City University Medical School , Osaka , Japan.,e Shirahama Foundation for Health and Welfare , Search Institute for Bone and Arthritis Disease (SINBAD) , Wakayama , Japan
| | - Hiroaki Nakamura
- a Department of Orthopaedic Surgery , Osaka City University Medical School , Osaka , Japan
| |
Collapse
|
39
|
Fingolimod suppresses bone resorption in female patients with multiple sclerosis. J Neuroimmunol 2016; 298:24-31. [PMID: 27609272 DOI: 10.1016/j.jneuroim.2016.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/06/2016] [Accepted: 06/22/2016] [Indexed: 12/14/2022]
Abstract
Fingolimod is a sphingosine-1-phosphate receptor agonist used to inhibit the inflammatory activity of multiple sclerosis (MS), and has been shown to suppress osteoporosis in mouse models. In this study, levels of bone turnover markers were quantified in serum and urine samples from MS patients treated with fingolimod. Compared with untreated MS patients and healthy controls, fingolimod-treated MS patients had a significantly lower level of the bone resorption marker type I collagen cross-linked N-telopeptide in urine. This finding was prominent in female but was not seen in male subjects. Our results suggest that fingolimod may have a beneficial effect on bone mass loss in female MS patients.
Collapse
|
40
|
Appelman-Dijkstra NM, Papapoulos SE. From disease to treatment: from rare skeletal disorders to treatments for osteoporosis. Endocrine 2016; 52:414-26. [PMID: 26892377 PMCID: PMC4879160 DOI: 10.1007/s12020-016-0888-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/02/2016] [Indexed: 12/18/2022]
Abstract
During the past 15 years there has been an expansion of our knowledge of the cellular and molecular mechanisms regulating bone remodeling that identified new signaling pathways fundamental for bone renewal as well as previously unknown interactions between bone cells. Central for these developments have been studies of rare bone disorders. These findings, in turn, have led to new treatment paradigms for osteoporosis some of which are at late stages of clinical development. In this article, we review three rare skeletal disorders with case descriptions, pycnodysostosis and the craniotubular hyperostoses sclerosteosis and van Buchem disease that led to the development of cathepsin K and sclerostin inhibitors, respectively, for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Natasha M Appelman-Dijkstra
- Center for Bone Quality, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| | - Socrates E Papapoulos
- Center for Bone Quality, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| |
Collapse
|
41
|
Gennari L, Rotatori S, Bianciardi S, Nuti R, Merlotti D. Treatment needs and current options for postmenopausal osteoporosis. Expert Opin Pharmacother 2016; 17:1141-52. [DOI: 10.1080/14656566.2016.1176147] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Luigi Gennari
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Stefano Rotatori
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Simone Bianciardi
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Ranuccio Nuti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Daniela Merlotti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Division of Genetics and Cell Biology, Age Related Diseases, San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
42
|
Chapurlat R. Cathepsin K inhibitors and antisclerostin antibodies. The next treatments for osteoporosis? Joint Bone Spine 2016; 83:254-6. [DOI: 10.1016/j.jbspin.2015.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/24/2015] [Indexed: 10/22/2022]
|
43
|
Yamada H, Ochi Y, Mori H, Nishikawa S, Hashimoto Y, Nakanishi Y, Tanaka M, Bruce M, Deacon S, Kawabata K. Effects of 16-month treatment with the cathepsin K inhibitor ONO-5334 on bone markers, mineral density, strength and histomorphometry in ovariectomized cynomolgus monkeys. Bone 2016; 86:43-52. [PMID: 26921823 DOI: 10.1016/j.bone.2016.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 02/21/2016] [Accepted: 02/22/2016] [Indexed: 12/29/2022]
Abstract
We examined the effects of ONO-5334, a cathepsin K inhibitor, on bone markers, BMD, strength and histomorphometry in ovariectomized (OVX) cynomolgus monkeys. ONO-5334 (1.2, 6 and 30mg/kg/day, p.o.), alendronate (0.05mg/kg/2weeks, i.v.), or vehicle was administered to OVX monkeys (all groups N=20) for 16months. A concurrent Sham group (N=20) was also treated with vehicle for 16months. OVX significantly increased bone resorption and formation markers and decreased BMD in lumbar vertebra, femoral neck, proximal tibia and distal radius. Alendronate suppressed these parameters to a level similar to that in the Sham-operated monkeys. ONO-5334 at doses 6 and 30mg/kg decreased bone resorption markers to a level roughly half of that in the Sham group, while keeping bone formation markers level above that in the Sham monkeys. Changes in DXA BMD confirmed that ONO-5334 at doses 6 and 30mg/kg increased BMD to a level greater than that in the Sham group in all examined sites. In the proximal tibia, in vivo pQCT analysis showed that ONO-5334 at doses 6 and 30mg/kg suppressed trabecular BMD loss to the sham level. However, ONO-5334 increased cortical BMD, cortical area and cortical thickness to a level greater than that in the Sham group, suggesting that ONO-5334 improves both cortical BMD and cortical geometry. Histomorphometric analysis revealed that ONO-5334 suppressed bone formation rate (BFR) at osteonal site in the midshaft femur but did not influence OVX-induced increase in BFR at either the periosteal or endocortical surfaces. Unlike alendronate, ONO-5334 increased osteoclasts surface (Oc.S/BS) and serum tartrate-resistant acid phosphatise 5b (TRAP5b) activity, highlighting the difference in the mode of action between these two drugs. Our results suggest that ONO-5334 has therapeutic potential not only in vertebral bones, but also in non-vertebral bones.
Collapse
Affiliation(s)
- Hiroyuki Yamada
- Discovery Research Laboratories, ONO Pharmaceutical Co., Ltd., 3-1-1 Sakurai, Shimamoto-cho, Mishima-gun, Osaka 618-8585, Japan.
| | - Yasuo Ochi
- Discovery Research Laboratories, ONO Pharmaceutical Co., Ltd., 3-1-1 Sakurai, Shimamoto-cho, Mishima-gun, Osaka 618-8585, Japan
| | - Hiroshi Mori
- Discovery Research Laboratories, ONO Pharmaceutical Co., Ltd., 3-1-1 Sakurai, Shimamoto-cho, Mishima-gun, Osaka 618-8585, Japan
| | - Satoshi Nishikawa
- Discovery Research Laboratories, ONO Pharmaceutical Co., Ltd., 3-1-1 Sakurai, Shimamoto-cho, Mishima-gun, Osaka 618-8585, Japan
| | - Yasuaki Hashimoto
- Discovery Research Laboratories, ONO Pharmaceutical Co., Ltd., 3-1-1 Sakurai, Shimamoto-cho, Mishima-gun, Osaka 618-8585, Japan
| | - Yasutomo Nakanishi
- Discovery Research Laboratories, ONO Pharmaceutical Co., Ltd., 3-1-1 Sakurai, Shimamoto-cho, Mishima-gun, Osaka 618-8585, Japan
| | - Makoto Tanaka
- Discovery Research Laboratories, ONO Pharmaceutical Co., Ltd., 3-1-1 Sakurai, Shimamoto-cho, Mishima-gun, Osaka 618-8585, Japan
| | - Mark Bruce
- Drug Development, ONO Pharma UK Ltd., MidCity Place, 71 High Holborn, London WC1V 6EA, UK
| | - Steve Deacon
- Drug Development, ONO Pharma UK Ltd., MidCity Place, 71 High Holborn, London WC1V 6EA, UK
| | - Kazuhito Kawabata
- Discovery Research Laboratories, ONO Pharmaceutical Co., Ltd., 3-1-1 Sakurai, Shimamoto-cho, Mishima-gun, Osaka 618-8585, Japan
| |
Collapse
|
44
|
Current Knowledge, Drug-Based Therapeutic Options and Future Directions in Managing Osteoporosis. Clin Rev Bone Miner Metab 2016. [DOI: 10.1007/s12018-016-9207-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
45
|
Duong LT, Leung AT, Langdahl B. Cathepsin K Inhibition: A New Mechanism for the Treatment of Osteoporosis. Calcif Tissue Int 2016; 98:381-97. [PMID: 26335104 DOI: 10.1007/s00223-015-0051-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/10/2015] [Indexed: 12/22/2022]
Abstract
Cathepsin K (CatK), a cysteine protease, is highly expressed by osteoclasts and very efficiently degrades type I collagen, the major component of the organic bone matrix. Robust genetic and pharmacological preclinical studies consistently demonstrate that CatK inhibition increases bone mass, improves bone microarchitecture and strength. Recent advances in the understanding of the molecular and cellular mechanisms involved in bone modeling and remodeling suggest that inhibition of CatK decreases bone resorption, but increases the number of cells of osteoclast lineage. This in turn maintains the signals for bone formation, and perhaps may even increase bone formation on some cortical surfaces. Several CatK inhibitors, including relacatib, balicatib, odanacatib and ONO-5334 had entered clinical development for metabolic bone disorders with increased bone resorption, such as postmenopausal osteoporosis. However, odanacatib (ODN) is the only candidate continuing in development. ODN is a highly selective oral CatK inhibitor dosed once-weekly in humans. In a Phase 2 clinical trial, postmenopausal women treated with ODN had sustained reductions of bone resorption markers, while bone formation markers returned to normal after an initial decline within the first 2 years on treatment. In turn areal bone mineral density increased continuously at both spine and hip for up to 5 years. ODN has also been demonstrated to improve bone mass in women with postmenopausal osteoporosis previously treated with alendronate and in men with osteoporosis. ODN is currently in a worldwide Phase 3 fracture outcome trial for the treatment of postmenopausal osteoporosis with interim results supporting its anti-fracture efficacy at the spine, hip and non-vertebral sites.
Collapse
Affiliation(s)
| | | | - Bente Langdahl
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
46
|
Brömme D, Panwar P, Turan S. Cathepsin K osteoporosis trials, pycnodysostosis and mouse deficiency models: Commonalities and differences. Expert Opin Drug Discov 2016; 11:457-72. [DOI: 10.1517/17460441.2016.1160884] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dieter Brömme
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, Canada
| | - Preety Panwar
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, Canada
| | - Serap Turan
- Department of Pediatric Endocrinology, Marmara University, Istanbul, Turkey
| |
Collapse
|
47
|
Eastell R, Dijk DJ, Small M, Greenwood A, Sharpe J, Yamada H, Yuba M, Tanimoto M, Deacon S. Morning vs evening dosing of the cathepsin K inhibitor ONO-5334: effects on bone resorption in postmenopausal women in a randomized, phase 1 trial. Osteoporos Int 2016; 27:309-18. [PMID: 26446770 PMCID: PMC4715857 DOI: 10.1007/s00198-015-3342-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/24/2015] [Indexed: 12/31/2022]
Abstract
UNLABELLED The cathepsin K inhibitor, ONO-5334, improves bone mineral density in postmenopausal women with osteoporosis. The effects of morning versus evening administration of ONO-5334 were investigated by measuring bone turnover marker levels in healthy postmenopausal women. Morning administration of ONO-5334 showed a more consistent suppressive effect on bone resorption than evening administration. INTRODUCTION Bone turnover is thought to be subject to circadian variation, and the efficacy of osteoporosis treatments may be optimized by regulating the time of dosing. This study assessed whether evening administration of the cathepsin K inhibitor, ONO-5334, had a differential effect on the bone turnover marker, C-terminal telopeptide of type I collagen (CTX-I), compared with morning administration. METHODS This was a single-center, single blind crossover study. Fourteen healthy postmenopausal women were assigned to receive ONO-5334 150 mg once daily for 5 days in each period; they were randomized to receive either evening doses in the first period and morning doses in the second or vice versa. Serum and urinary levels of CTX-I were measured throughout the study. RESULTS Both regimens showed similar patterns of reduction in serum and urinary CTX-I; however, CTX-I suppression was more consistently >60% over 24 h following morning administration. Morning administration led to 6% greater suppression of 24-h serum CTX-I area under the effect curve (AUE; 69 vs 63%; P < .05) and 7% greater suppression of urinary CTX-I/creatinine AUE (93 vs 86%; P < .01) than evening administration. Higher plasma ONO-5334 concentrations were observed between 12 and 24 h postdose following morning administration, with mean trough concentrations for the morning and evening regimens at 9.4 and 4.0 ng/mL, respectively. There were no safety findings of concern. CONCLUSION Morning dosing of ONO-5334 is more efficacious at reducing markers of bone turnover in healthy postmenopausal women than evening dosing. TRIAL REGISTRATION ClinicalTrials.gov: NCT01384188 , registered on June 27, 2011 EudraCT: 2008-006284-37.
Collapse
Affiliation(s)
- R Eastell
- Academic Unit of Bone Metabolism, University of Sheffield, Sheffield, UK.
- Metabolic Bone Centre, Northern General Hospital, Herries Road, Sheffield, South Yorkshire, S5 7AU, UK.
| | - D-J Dijk
- Surrey Clinical Research Centre, University of Surrey, Guildford, UK
| | - M Small
- Ono Pharma UK Ltd, London, UK
| | - A Greenwood
- Surrey Clinical Research Centre, University of Surrey, Guildford, UK
| | | | | | - M Yuba
- Ono Pharmaceutical Co., Ltd, Osaka, Japan
| | - M Tanimoto
- Ono Pharmaceutical Co., Ltd, Osaka, Japan
| | | |
Collapse
|
48
|
Ochi Y, Yamada H, Mori H, Kawada N, Tanaka M, Imagawa A, Ohmoto K, Kawabata K. Combination therapy with ONO-KK1-300-01, a cathepsin K inhibitor, and parathyroid hormone results in additive beneficial effect on bone mineral density in ovariectomized rats. J Bone Miner Metab 2016; 34:33-40. [PMID: 25762435 DOI: 10.1007/s00774-014-0643-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 11/24/2014] [Indexed: 10/23/2022]
Abstract
This study examined the effects of a novel cathepsin K inhibitor, ONO-KK1-300-01 (KK1-300), used concurrently with parathyroid hormone (PTH) in ovariectomized (OVX) rats. KK1-300 (3 mg/kg, twice daily), alendronate (1 mg/kg, once daily) or vehicle were orally administered to OVX rats for 56 days, starting the day after ovariectomy, followed by combination treatment with or without PTH (3 μg/kg, subcutaneously three times a week) for another 28 days. OVX control animals exhibited a significant increase in both bone resorption (urinary deoxypyridinoline; DPD) and formation markers (serum osteocalcin) as well as microstructural changes associated with decreased bone mineral density (BMD). Combination treatment with KK1-300 and PTH significantly decreased urinary DPD and increased serum osteocalcin, indicating a sustained beneficial effect compared to the effect of each mono-therapy. On the other hand, combination therapy with alendronate and PTH weakened the PTH-induced increase in osteocalcin. In proximal tibia, combination treatment with KK1-300 and PTH increased BMD to a level significantly higher than that achieved following single treatment with KK1-300 or PTH alone. On the other hand, combination treatment with alendronate and PTH failed to produce any significant additive effect on BMD following single treatment with alendronate or PTH alone. Microstructural analysis revealed that the PTH-induced increase in bone formation (MS/BS and BFR/BS) was fully maintained following combination treatment with KK1-300 and PTH, but not following combination treatment with alendronate and PTH. These findings indicate that KK1-300, unlike alendronate, has an additive effect on the preventive action of PTH on bone loss in OVX rats.
Collapse
Affiliation(s)
- Yasuo Ochi
- Discovery Research Laboratories, Ono Pharmaceutical Co., Ltd., 3-1-1 Sakurai, Shimamoto-cho, Mishima-gun, Osaka, 618-8585, Japan.
| | - Hiroyuki Yamada
- Discovery Research Laboratories, Ono Pharmaceutical Co., Ltd., 3-1-1 Sakurai, Shimamoto-cho, Mishima-gun, Osaka, 618-8585, Japan
| | - Hiroshi Mori
- Discovery Research Laboratories, Ono Pharmaceutical Co., Ltd., 3-1-1 Sakurai, Shimamoto-cho, Mishima-gun, Osaka, 618-8585, Japan
| | - Naoki Kawada
- Discovery Research Laboratories, Ono Pharmaceutical Co., Ltd., 3-1-1 Sakurai, Shimamoto-cho, Mishima-gun, Osaka, 618-8585, Japan
| | - Makoto Tanaka
- Discovery Research Laboratories, Ono Pharmaceutical Co., Ltd., 3-1-1 Sakurai, Shimamoto-cho, Mishima-gun, Osaka, 618-8585, Japan
| | - Akira Imagawa
- Discovery Research Laboratories, Ono Pharmaceutical Co., Ltd., 3-1-1 Sakurai, Shimamoto-cho, Mishima-gun, Osaka, 618-8585, Japan
| | - Kazuyuki Ohmoto
- Discovery Research Laboratories, Ono Pharmaceutical Co., Ltd., 3-1-1 Sakurai, Shimamoto-cho, Mishima-gun, Osaka, 618-8585, Japan
| | - Kazuhito Kawabata
- Discovery Research Laboratories, Ono Pharmaceutical Co., Ltd., 3-1-1 Sakurai, Shimamoto-cho, Mishima-gun, Osaka, 618-8585, Japan
| |
Collapse
|
49
|
Tanaka M, Hashimoto Y, Hasegawa C. An oral cathepsin K inhibitor ONO-5334 inhibits N-terminal and C-terminal collagen crosslinks in serum and urine at similar plasma concentrations in postmenopausal women. Bone 2015; 81:178-185. [PMID: 26188109 DOI: 10.1016/j.bone.2015.07.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/02/2015] [Accepted: 07/11/2015] [Indexed: 11/28/2022]
Abstract
Relationships between the plasma concentration of a cathepsin K inhibitor (ONO-5334) and inhibition of bone resorption markers N-telopeptide of type I collagen (NTX) and C-telopeptide of type I collagen (CTX) in serum and urinary NTX/creatinine and CTX/creatinine were examined in 10 postmenopausal women. The subjects received slow-release tablets of 100mg ONO-5534 under fasted or fed conditions in a study with a crossover design. Inhibition of serum NTX and CTX levels and plasma concentrations of ONO-5334 were monitored at 0, 24, 48 and 168 h after dosing. Changes in urinary NTX/creatinine and CTX/creatinine levels in second morning urine were evaluated on 0, 1, 2 and 7 days after dosing. Data were analyzed using sigmoid maximal drug effect (Emax) models. The maximal inhibition, estimated Emax values, were -31.8% for serum NTX, -53.1% for serum CTX, -67.2% for urinary NTX/creatinine, and -95.2% for urinary CTX/creatinine. The estimated half maximal effective plasma concentrations (EC50) of ONO-5334 and confidence intervals were 1.79 (1.01 to 3.16) ng/mL for serum NTX, 2.07 (1.63 to 2.62) ng/mL for serum CTX, 1.85 (1.30 to 2.61) ng/mL for urinary NTX/creatinine, and 1.98 (0.94 to 3.76) ng/mL for urinary CTX/creatinine. EC50 values for the four crosslinks did not significantly differ, as indicated by the overlapping 95% confidence intervals. The highest signal-to-noise ratio was achieved with serum CTX, and was 2-fold higher than that on serum NTX. Inhibition for serum NTX and CTX, and urinary NTX/creatinine and CTX/creatinine by ONO-5334 were all correlated with correlation coefficients ranging from 0.55 to 0.80. In conclusion, data of ONO-5334 slow-releasing tablets in postmenopausal women were well fitted in Emax model. In all measured telopeptides, the maximal inhibition was obtained at urinary CTX/creatinine level, but serum CTX had the highest signal-to-noise ratio. Inhibition for all measured telopeptides by ONO-5334 were all correlated. The estimated half maximal effective plasma concentrations were not significantly different between all measured telopeptides.
Collapse
Affiliation(s)
- Makoto Tanaka
- Research Promotion, Ono Pharmaceutical Co., Ltd., Shimamoto, Osaka, Japan.
| | - Yoshitaka Hashimoto
- Translational Medicine Center, Ono Pharmaceutical Co., Ltd., Shimamoto, Osaka, Japan
| | - Chihiro Hasegawa
- Translational Medicine Center, Ono Pharmaceutical Co., Ltd., Shimamoto, Osaka, Japan
| |
Collapse
|
50
|
Makras P, Delaroudis S, Anastasilakis AD. Novel therapies for osteoporosis. Metabolism 2015; 64:1199-214. [PMID: 26277199 DOI: 10.1016/j.metabol.2015.07.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 07/02/2015] [Accepted: 07/06/2015] [Indexed: 12/28/2022]
Abstract
Since the identification of osteoporosis as a major health issue in aging populations and the subsequent development of the first treatment modalities for its management, considerable progress has been made in our understanding of the mechanisms controlling bone turnover and disease pathophysiology, thus enabling the pinpointing of new targets for intervention. This progress, along with advances in biotechnology, has rendered possible the development of ever more sophisticated treatments employing novel mechanisms of action. Denosumab, a monoclonal antibody against RANKL, approved for the treatment of postmenopausal and male osteoporosis, significantly and continuously increases bone mineral density (BMD) and maintains a low risk of vertebral, non-vertebral, and hip fractures for up to 8 years. Currently available combinations of estrogens with selective estrogen receptor modulators moderately increase BMD without causing the extra-skeletal adverse effects of each compound alone. The cathepsin K inhibitor odanacatib has recently been shown to decrease vertebral, non-vertebral, and hip fracture rates and is nearing approval. Romosozumab, an anti-sclerosin antibody, and abaloparatide, a PTH-related peptide analog, are at present in advanced stages of clinical evaluation, so far demonstrating efficaciousness together with a favorable safety profile. Several other agents are currently in earlier clinical and preclinical phases of development, including dickkopf-1 antagonists, activin A antagonists, β-arrestin analogs, calcilytics, and Src tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Polyzois Makras
- Department of Endocrinology and Diabetes, 251 Hellenic Air Force & VA General Hospital, Athens, Greece
| | - Sideris Delaroudis
- Department of Endocrinology, 424 General Military Hospital, Thessaloniki, Greece
| | | |
Collapse
|