1
|
Birjandi AA, Sharpe P. Therapeutic potential of curcumin in regenerative dentistry. FRONTIERS IN DENTAL MEDICINE 2025; 6:1537478. [PMID: 40196309 PMCID: PMC11973315 DOI: 10.3389/fdmed.2025.1537478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 02/17/2025] [Indexed: 04/09/2025] Open
Abstract
Introduction Natural compounds have emerged as promising candidates in drug development due to their potent immunomodulatory anti-inflammatory, antibacterial, analgesic, and healing properties. They have shown significant therapeutic potential in clinical applications, such as mouth rinses, toothpastes, and localized delivery systems. The use of natural alternatives can contribute to tackling antimicrobial resistance. Among natural compounds, curcumin has gained particular attention, demonstrating robust anti-cancer, antibiotic, and anti-inflammatory activities in numerous in vivo studies, while exhibiting a favorable safety profile for the treatment of various diseases. In this study, the remedial effects of curcumin and its metabolite, tetrahydrocurcumin, on dental pulp were explored. In addition, these results were compared with our previous findings on the effects of these natural compounds on periodontal ligament and gingival epithelial cells, further broadening our understanding of their therapeutic potential in oral disease such as caries and periodontitis. Methods RNA sequencing was used to investigate the differentially expressed genes in dental pulp cells following treatments with curcumin and tetrahydrocurcumin. Results We show that treatment of dental pulp cells with 1 μM of curcumin or tetrahydrocurcumin is sufficient to promote Wnt signaling pathway in dental pulp cells. Curcumin treatment promotes the upregulation of cellular metabolism and enhances cellular response to stress. Our enrichment analysis shows that treatment with tetrahydrocurcumin modulates the extracellular matrix and angiogenesis. Conclusions The findings of this study highlight the cytoprotective and regenerative properties of curcumin and tetrahydrocurcumin. These properties could be leveraged as a therapeutic approach to promote tissue regeneration in oral diseases.
Collapse
Affiliation(s)
| | - Paul Sharpe
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, Kings College London, London, United Kingdom
| |
Collapse
|
2
|
Cheng D, Bao Y, Wang X, Xiang H, Guo T, Du Y, Zhang Z, Guo H. WNT3A promotes the cementogenic differentiation of dental pulp stem cells through the FOXO1 signaling pathway. Eur J Med Res 2025; 30:68. [PMID: 39905528 DOI: 10.1186/s40001-024-02259-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/23/2024] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Dental pulp stem cells (DPSCs) possess capability of multidirectional differentiation, and their cementogenic differentiation potential enables them to participate in cementum repair and regeneration. The molecular mechanisms underlying cementogenic differentiation of DPSCs remain unclear. METHODS DPSC data set GSE138179 was retrieved from gene expression omnibus (GEO) database. Weighted gene co-expression network analysis (WGCNA) was employed to identify significant modules. Pathway enrichment exploration was conducted utilizing gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Set Enrichment Analysis (GSEA), and Metascape tools. CIBERSORT was utilized to analyze immune cell infiltration analysis. The comparative toxicogenomics database (CTD) was utilized for the validation of core targets. Subsequently, cell experiments were conducted to validate the core targets. Changes in protein expression related to the FOXO1 signaling pathway, cell cycle, and apoptosis were evaluated using western blotting (WB). RESULTS Differentially expressed genes (DEGs) associated with DPSC cementogenic differentiation were predominantly enriched in crucial pathways such as the signaling pathway, cell apoptosis, and Wnt signaling pathway. Bioinformatics analysis confirmed WNT3A as a pivotal biomarker for DPSC cementogenic differentiation, and WNT3A was highly expressed in the cementogenic differentiation group. Western blotting results demonstrated that compared to the DPSC group, molecules such as Caspase-3, Caspase-9, FAS, P53, and BAX were downregulated in the CDDPSC group, suggesting reduced apoptosis. Furthermore, upregulation of WNT3A expression in CDDPSC-OE further suppressed the expression of these apoptotic molecules, suggesting a mitigated apoptotic response. Downregulation of WNT3A expression in CDDPSC-KO resulted in increased expression of apoptosis-related molecules, thereby enhancing apoptosis. CONCLUSIONS WNT3A is highly expressed in the cementogenic differentiation of DPSC, and WNT3A mediates FOXO1 pathway to promote differentiation of dental pulp stem cells into cementogenic differentiation, thus realizing the formation and maintenance of cementum tissue.
Collapse
Affiliation(s)
- Dongmei Cheng
- Department of Oral Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Yang Bao
- Department of Oral Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Xue Wang
- Department of Oral Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Haidong Xiang
- Department of Oral Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Tianyuan Guo
- Department of Plastic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Yong Du
- Department of Oral Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Zhiyong Zhang
- Department of Oral Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Han Guo
- Department of Oral Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
3
|
Sabatini C, Lin HJ, Ovik G, Hall R, Lee T. The proneural transcription factor Atoh1 promotes odontogenic differentiation in human dental pulp stem cells (DPSCs). BMC Mol Cell Biol 2025; 26:5. [PMID: 39833721 PMCID: PMC11744864 DOI: 10.1186/s12860-025-00530-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Bioengineering of human teeth for replacement is an appealing regenerative approach in the era of gene therapy. Developmentally regulated transcription factors hold promise in the quest because these transcriptional regulators constitute the gene regulatory networks driving cell fate determination. Atonal homolog 1 (Atoh1) is a transcription factor of the basic helix-loop-helix (bHLH) family essential for neurogenesis in the cerebellum, auditory hair cell differentiation, and intestinal stem cell specification. The functional versatility of Atoh1 prompted us to test the possibility that Atoh1 may intersect the dental pulp stem cell (DPSC) gene regulatory network governing odontogenic differentiation. METHODS We isolated DPSCs from human dental pulps and treated the cells with a replication-deficient adenoviral vector to achieve robust ectopic expression of Atoh1, following which the growth and odontogenic differentiation profiles of DPSCs were characterized. RESULTS DPSCs harboring the Atoh1 expression vector exhibited an approximately 3,000-fold increase in the expression of Atoh1 compared to the negative control, leading to increased DPSC proliferation in the growth medium (P < 0.05). In the odontogenic medium, Atoh1 caused an early induction of BMP2 (P < 0.001) followed by a late induction of BMP7 (P < 0.01) and increased Wnt signaling (P < 0.01). The increased BMP/Wnt signaling led to up to 8-fold increased expression of the master osteogenic transcription factor Osterix (P < 0.005) while exhibiting no significant effect on Runx2 or Dlx5, which are abundantly expressed in DPSCs. Atoh1 stimulated expression of type I collagen (P < 0.005) and small integrin-binding ligand, N-linked glycoproteins (SIBLINGs) such as bone sialoprotein (P < 0.001), dentin matrix protein 1 (P < 0.05), dentin sialophosphoprotein (P < 0.005), and osteopontin (P < 0.001), resulting in increased dentin matrix mineralization (P < 0.05). The odontogenic phenotype is associated with metabolic remodeling marked by enhanced glycolytic flux and attenuated mitochondrial metabolic enzyme activities. CONCLUSIONS Atoh1, despite being a proneural transcription factor in development, possesses a novel odontogenic function upon ectopic expression in DPSCs. This in vitro study demonstrates a novel odontogenic mechanism mediated by ectopic expression of the transcription factor Atoh1 in human DPSCs. The finding may offer an innovative strategy for gene-based regeneration of the pulp-dentin complex.
Collapse
Affiliation(s)
- Camila Sabatini
- Department of Restorative Dentistry, School of Dental Medicine, University at Buffalo, 3435 Main Street, Buffalo, NY, 14214, USA.
| | - Huey-Jiun Lin
- Department of Biochemistry, University at Buffalo, 3435 Main Street, Buffalo, NY, 14214, USA
| | - Galib Ovik
- Department of Biochemistry, University at Buffalo, 3435 Main Street, Buffalo, NY, 14214, USA
| | - Richard Hall
- Department of Oral Surgery, University at Buffalo, 3435 Main Street, Buffalo, NY, 14214, USA
| | - Techung Lee
- Department of Biochemistry, University at Buffalo, 3435 Main Street, Buffalo, NY, 14214, USA
| |
Collapse
|
4
|
Huang P, Li W, Guan J, Jia Y, Wang D, Chen Y, Xiao N, Ou S, Wang Y, Yang B. Synthetic Vesicle-Based Drug Delivery Systems for Oral Disease Therapy: Current Applications and Future Directions. J Funct Biomater 2025; 16:25. [PMID: 39852581 PMCID: PMC11766321 DOI: 10.3390/jfb16010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/01/2025] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Oral diseases such as dental caries, periodontitis, and oral cancer are prevalent and present significant challenges to global public health. Although these diseases are typically treated through procedures like dental preparation and resin filling, scaling and root planning, or surgical excision, these interventions are often not entirely effective, and postoperative drug therapy is usually required. Traditional drug treatments, however, are limited by factors such as poor drug penetration, significant side effects, and the development of drug resistance. As a result, there is a growing need for novel drug delivery systems that can enhance therapeutic efficacy, reduce side effects, and improve treatment outcomes. In recent years, drug-loaded vesicles, such as liposomes, polymersomes, and extracellular vesicles (EVs), have emerged as promising drug delivery platforms due to their high drug encapsulation efficiency, controlled release properties, and excellent biocompatibility. This review provides an in-depth examination of the characteristics, advantages, and limitations of liposomes, polymersomes, and extracellular vesicles in the context of oral disease treatment. It further explores the reasons for their advantages and limitations and discusses the specific applications, development prospects, and strategies for optimizing these vesicle-based systems for improved clinical outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yan Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (P.H.); (W.L.); (J.G.); (Y.J.); (D.W.); (Y.C.); (N.X.); (S.O.)
| | - Bo Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (P.H.); (W.L.); (J.G.); (Y.J.); (D.W.); (Y.C.); (N.X.); (S.O.)
| |
Collapse
|
5
|
Irfan M, Kim JH, Sreekumar S, Chung S. RNA sequencing reveals key factors modulating TNFα-stimulated odontoblast-like differentiation of dental pulp stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.632294. [PMID: 39868289 PMCID: PMC11761799 DOI: 10.1101/2025.01.09.632294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Inflammation is a complex host response to harmful infections or injuries, playing both beneficial and detrimental roles in tissue regeneration. Notably, clinical dentinogenesis associated with caries development occurs within an inflammatory environment. Reparative dentinogenesis is closely linked to intense inflammation, which triggers the recruitment and differentiation of dental pulp stem cells (DPSCs) into the dentin lineage. Understanding how inflammatory responses influence DPSCs is essential for elucidating the mechanisms underlying dentin and pulp regeneration. Given the limited data on this process, a broad approach is employed here to gain a deeper understanding of the complex mechanisms involved and to identify downstream signaling targets. This study aims to investigate the role of inflammation and the complement receptor C5L2 in the odontoblastic differentiation of DPSCs and the associated transcriptomic changes using poly-A RNA sequencing (RNA-seq). RNA-seq techniques provide insight into the transcriptome of a cell, offering higher coverage and greater resolution of its dynamic nature. Following inflammatory stimulation, DPSCs exhibit significantly altered gene profiles, including marked upregulation of key odontogenic genes, highlighting the critical role of inflammation in dentinogenesis. We demonstrate that TNFα-treated odontoblast-like differentiating DPSCs, under C5L2 modulation, exhibit significant differential gene expression and transcriptomic changes. The data presented may provide new avenues for experimental approaches to uncover pathways in dentinogenesis by identifying specific transcription factors and gene profiles.
Collapse
Affiliation(s)
- Muhammad Irfan
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago 60612, IL, USA
| | - Ji Hyun Kim
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago 60612, IL, USA
| | - Sreelekshmi Sreekumar
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago 60612, IL, USA
| | - Seung Chung
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago 60612, IL, USA
| |
Collapse
|
6
|
Mizoguchi T. In vivo dynamics of hard tissue-forming cell origins: Insights from Cre/loxP-based cell lineage tracing studies. JAPANESE DENTAL SCIENCE REVIEW 2024; 60:109-119. [PMID: 38406212 PMCID: PMC10885318 DOI: 10.1016/j.jdsr.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024] Open
Abstract
Bone tissue provides structural support for our bodies, with the inner bone marrow (BM) acting as a hematopoietic organ. Within the BM tissue, two types of stem cells play crucial roles: mesenchymal stem cells (MSCs) (or skeletal stem cells) and hematopoietic stem cells (HSCs). These stem cells are intricately connected, where BM-MSCs give rise to bone-forming osteoblasts and serve as essential components in the BM microenvironment for sustaining HSCs. Despite the mid-20th century proposal of BM-MSCs, their in vivo identification remained elusive owing to a lack of tools for analyzing stemness, specifically self-renewal and multipotency. To address this challenge, Cre/loxP-based cell lineage tracing analyses are being employed. This technology facilitated the in vivo labeling of specific cells, enabling the tracking of their lineage, determining their stemness, and providing a deeper understanding of the in vivo dynamics governing stem cell populations responsible for maintaining hard tissues. This review delves into cell lineage tracing studies conducted using commonly employed genetically modified mice expressing Cre under the influence of LepR, Gli1, and Axin2 genes. These studies focus on research fields spanning long bones and oral/maxillofacial hard tissues, offering insights into the in vivo dynamics of stem cell populations crucial for hard tissue homeostasis.
Collapse
|
7
|
Amir M, Jeevithan L, Barkat M, Fatima SH, Khan M, Israr S, Naseer F, Fayyaz S, Elango J, Wu W, Maté Sánchez de Val JE, Rahman SU. Advances in Regenerative Dentistry: A Systematic Review of Harnessing Wnt/β-Catenin in Dentin-Pulp Regeneration. Cells 2024; 13:1153. [PMID: 38995004 PMCID: PMC11240772 DOI: 10.3390/cells13131153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024] Open
Abstract
Dentin pulp has a complex function as a major unit in maintaining the vitality of teeth. In this sense, the Wnt/β-Catenin pathway has a vital part in tooth development, maintenance, repair, and regeneration by controlling physiological activities such as growth, differentiation, and migration. This pathway consists of a network of proteins, such as Wnt signaling molecules, which interact with receptors of targeted cells and play a role in development and adult tissue homeostasis. The Wnt signals are specific spatiotemporally, suggesting its intricate mechanism in development, regulation, repair, and regeneration by the formation of tertiary dentin. This review provides an overview of the recent advances in the Wnt/β-Catenin signaling pathway in dentin and pulp regeneration, how different proteins, molecules, and ligands influence this pathway, either upregulating or silencing it, and how it may be used in the future for clinical dentistry, in vital pulp therapy as an effective treatment for dental caries, as an alternative approach for root canal therapy, and to provide a path for therapeutic and regenerative dentistry.
Collapse
Affiliation(s)
- Mariam Amir
- Department of Oral Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25000, Pakistan
| | - Lakshmi Jeevithan
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China (W.W.)
| | - Maham Barkat
- Department of Oral Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25000, Pakistan
| | - Syeda Habib Fatima
- Department of Oral Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25000, Pakistan
| | - Malalai Khan
- Department of Oral Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25000, Pakistan
| | - Sara Israr
- Department of Oral Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25000, Pakistan
| | - Fatima Naseer
- Department of Oral Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25000, Pakistan
| | - Sarmad Fayyaz
- Department of Dental Materials Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25000, Pakistan
| | - Jeevithan Elango
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China (W.W.)
- Center of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
- Department of Biomaterials Engineering, Faculty of Health Sciences, UCAM—Universidad Católica San Antonio de Murcia, Guadalupe, 30107 Murcia, Spain;
| | - Wenhui Wu
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China (W.W.)
| | - José Eduardo Maté Sánchez de Val
- Department of Biomaterials Engineering, Faculty of Health Sciences, UCAM—Universidad Católica San Antonio de Murcia, Guadalupe, 30107 Murcia, Spain;
| | - Saeed Ur Rahman
- Department of Oral Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25000, Pakistan
| |
Collapse
|
8
|
Shi P, Xie X, Xu C, Wu Y, Wang J. Activation of Wnt signaling in Axin2 + cells leads to osteodentin formation and cementum overgrowth. Oral Dis 2023; 29:3551-3558. [PMID: 36520568 DOI: 10.1111/odi.14472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/28/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVES In this study, we used the mouse incisor model to investigate the regulatory mechanisms of Wnt/β-catenin signaling on Axin2+ cells in tooth development. MATERIALS AND METHODS Axin2lacZ/+ reporter mice were used to define the expression pattern of Axin2 in mouse incisors. We traced the fate of Axin2+ cells from postnatal Day 21 (P21) to P56 using Axin2CreERT2/+ and R26RtdTomato/+ reporter mice. For constitutive activation of Wnt signaling, Axin2CreERT2/+ , β-cateninflox(Ex3)/+ , and R26RtdTomato/+ (CA-β-cat) mice were generated to investigate the gain of function (GOF) of β-catenin in mouse incisor growth. RESULTS The X-gal staining of Axin2lacZ/+ reporter mice and lineage tracing showed that Axin2 was widely expressed in dental mesenchyme of mouse incisors, and Axin2+ cells were essential cell sources for odontoblasts, pulp cells, and periodontal ligament cells. The constitutive activation of Wnt signaling in Axin2+ cells resulted in the formation of osteodentin featured with increased DMP1 and dispersed DSP expression and overgrowth of cementum. CONCLUSION Wnt signaling plays a key role in the differentiation and maturation of Axin2+ cells in mouse incisors.
Collapse
Affiliation(s)
- Peilei Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu, China
| | - Xudong Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu, China
| | - Chunmei Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu, China
| | - Yafei Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Luo N, Deng YW, Wen J, Xu XC, Jiang RX, Zhan JY, Zhang Y, Lu BQ, Chen F, Chen X. Wnt3a-Loaded Hydroxyapatite Nanowire@Mesoporous Silica Core-Shell Nanocomposite Promotes the Regeneration of Dentin-Pulp Complex via Angiogenesis, Oxidative Stress Resistance, and Odontogenic Induction of Stem Cells. Adv Healthc Mater 2023; 12:e2300229. [PMID: 37186211 DOI: 10.1002/adhm.202300229] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/06/2023] [Indexed: 05/17/2023]
Abstract
Pulp exposure often leads to pulp necrosis, root fractures, and ultimate tooth loss. The repair of the exposure site with pulp capping treatment is of great significance to preserving pulp vitality, but its efficacy is impaired by the low bioactivity of capping materials and cell injuries from the local accumulation of oxidative stress. This study develops a Wnt3a-loaded hydroxyapatite nanowire@mesoporous silica (Wnt3a-HANW@MpSi) core-shell nanocomposite for pulp capping treatments. The ultralong and highly flexible hydroxyapatite nanowires provide the framework for the composites, and the mesoporous silica shell endows the composite with the capacity of efficiently loading/releasing Wnt3a and Si ions. Under in vitro investigation, Wnt3a-HANW@MpSi not only promotes the oxidative stress resistance of dental pulp stem cells (DPSCs), enhances their migration and odontogenic differentiation, but also exhibits superior properties of angiogenesis in vitro. Revealed by the transcriptome analysis, the underlying mechanisms of odontogenic enhancement by Wnt3a-HANW@MpSi are closely related to multiple biological processes and signaling pathways toward pulp/dentin regeneration. Furthermore, an animal model of subcutaneous transplantation demonstrates the significant reinforcement of the formation of dentin-pulp complex-like tissues and blood vessels by Wnt3a-HANW@MpSi in vivo. These results indicate the promising potential of Wnt3a-HANW@MpSi in treatments of dental pulp exposure.
Collapse
Affiliation(s)
- Nan Luo
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
| | - Yu-Wei Deng
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, 200011, P. R. China
| | - Jin Wen
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, 200011, P. R. China
| | - Xiao-Chen Xu
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
| | - Rui-Xue Jiang
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, 200011, P. R. China
| | - Jing-Yu Zhan
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
| | - Yu Zhang
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
| | - Bing-Qiang Lu
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Feng Chen
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Xi Chen
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
| |
Collapse
|
10
|
Mu R, Zhang H, Zhang Z, Li X, Ji J, Wang X, Gu Y, Qin X. Trans-cinnamaldehyde loaded chitosan based nanocapsules display antibacterial and antibiofilm effects against cavity-causing Streptococcus mutans. J Oral Microbiol 2023; 15:2243067. [PMID: 37546377 PMCID: PMC10402844 DOI: 10.1080/20002297.2023.2243067] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/07/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023] Open
Abstract
Background Dental caries is a multifactorial disease, and the bacteria such as Streptococcus mutans (S. mutans) is one of the risk factors. The poor effect of existing anti-bacterial is mainly related to drug resistance, the short time of drug action, and biofilm formation. Methods To address this concern, we report here on the cinnamaldehyde (CA) loaded chitosan (CS) nanocapsules (CA@CS NC) sustained release CA for antibacterial treatment. The size, ζ-potential, and morphology were characterized. The antibacterial activities in vitro were studied by growth curve assay, pH drop assay, biofilm assay, and qRT-PCR In addition, cytotoxicity assay, organ index, body weight, and histopathology results were analyzed to evaluate the safety and biocompatibility in a rat model. Results CA@CS NC can adsorb the bacterial membrane due to electronic interaction, releasing CA slowly for a long time. At the same time, it has reliable antibacterial activity against S. mutans and downregulated the expression levels of QS, virulence, biofilm, and adhesion genes. In addition, it greatly reduced the cytotoxicity of CA and significantly inhibited dental caries in rats without obvious toxicity. Conclusion Our results showed that CA@CS NC had antibacterial and antibiofilm effects on S. mutans and inhibit dental caries. Besides, it showed stronger efficacy and less toxicity, and was able to adsorb bacteria releasing CA slowly, providing a new nanomaterial solution for the treatment of dental caries.
Collapse
Affiliation(s)
- Ran Mu
- School of Biological Engineering, Zhuhai Campus of Zunyi Medical University, Guangdong, China
- Department of Clinical Medicine, The Fifth Clinical Institute, Zhuhai Campus of Zunyi Medical University, Guangdong, China
| | - Hanyi Zhang
- School of Biological Engineering, Zhuhai Campus of Zunyi Medical University, Guangdong, China
| | - Zhiyuan Zhang
- School of Biological Engineering, Zhuhai Campus of Zunyi Medical University, Guangdong, China
| | - Xinyue Li
- School of Biological Engineering, Zhuhai Campus of Zunyi Medical University, Guangdong, China
| | - Jiaxuan Ji
- Department of Clinical Medicine, The Fifth Clinical Institute, Zhuhai Campus of Zunyi Medical University, Guangdong, China
| | - Xinyue Wang
- Department of Clinical Medicine, The Fifth Clinical Institute, Zhuhai Campus of Zunyi Medical University, Guangdong, China
| | - Yu Gu
- School of Stomatology, Zhuhai Campus of Zunyi Medical University, Guangdong, China
| | - Xiaofei Qin
- School of Biological Engineering, Zhuhai Campus of Zunyi Medical University, Guangdong, China
| |
Collapse
|
11
|
Sukarawan W, Rattanawarawipa P, Yaemkleebbua K, Nowwarote N, Pavasant P, Limjeerajarus CN, Osathanon T. Wnt3a promotes odonto/osteogenic differentiation in vitro and tertiary dentin formation in a rat model. Int Endod J 2023; 56:514-529. [PMID: 36633501 DOI: 10.1111/iej.13888] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023]
Abstract
AIM To investigate the effect of Wnt3a on odonto/osteogenic differentiation of stem cells isolated from human exfoliated deciduous teeth (SHEDs) and reparative dentine formation in a rat model. METHODOLOGY Stem cells isolated from human exfoliated deciduous teeth were cultured in media with Wnt3a (50-200 ng/ml). Wnt activation was confirmed by β-catenin immunocytochemistry. Colony-forming unit assay (normalized percentage area), osteogenic gene expression analysis by real-time polymerase chain reaction and mineralization assays measured by the absorption at 540 nm were performed. Tertiary dentine formation in vivo was evaluated using 8-week-old, male Wistar rats. Cavities with pinpoint pulp exposure by a sharp instrument were prepared at the mesial surface of the first molars. Teeth were divided into (n = 6): (1) distilled water (negative control), (2) phosphate-buffered saline (PBS), (3) lithium chloride in DI (20 μM), and (4) Wnt3a in PBS (200 ng/ml). Collagen sponge was used as a scaffold. The cavity was sealed with glass ionomer restoration. Four weeks later, animals were euthanized by sodium pentobarbital (120 mg/kg body weight). Hard tissue formation was evaluated using micro-computerized tomography. Sixty consecutive slides from the initial plane were analysed and calculated as bone/dentine volume per total tissue volume. Paraffin sections (2 μm) were stained with haematoxylin and eosin and Masson's trichrome for morphological evaluation. Data are presented as the mean ± standard error. Mann-Whitney U test was used for two-group comparison. Kruskal Wallis followed by pairwise comparison was employed for three or more group comparisons. Statistical analysis was performed using GraphPad Prism 7. Differences were considered significant at p < .05. RESULTS Wnt3a decreased SHEDs colony formation and increased OSX, BMP2, and DMP1 expression, corresponding to an increase in mineralization. Additionally, a significant increase in dentine/bone volume per total tissue volume was observed in Wnt3a treated defects. Dentine bridge formation at the exposure sites treated with Wnt3a demonstrated, while fibrous tissues were observed in the control. CONCLUSIONS Wnt3a suppressed proliferation, increased osteogenic differentiation of SHEDs and promotes tertiary dentine formation. Wnt3a could be utilized as biological molecule for vital pulp therapy.
Collapse
Affiliation(s)
- Waleerat Sukarawan
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Department of Pediatric Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Panarat Rattanawarawipa
- Department of Pediatric Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Kamonwan Yaemkleebbua
- Department of Pediatric Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Nunthawan Nowwarote
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Centre de Recherche des Cordeliers, Université de Paris, Sorbonne Université, INSERM UMRS 1138, Molecular Oral Pathophysiology, Paris, France.,Dental Faculty Garancière, Oral Biology Department, Université de Paris, Paris, France
| | - Prasit Pavasant
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Chalida Nakalekha Limjeerajarus
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thanaphum Osathanon
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
12
|
Kornsuthisopon C, Tompkins KA, Osathanon T. Tideglusib enhances odontogenic differentiation in human dental pulp stem cells in vitro. Int Endod J 2023; 56:369-384. [PMID: 36458950 DOI: 10.1111/iej.13877] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022]
Abstract
AIM Tideglusib is a small molecule agonist of the canonical Wnt pathway. The present study investigated the influence of Tideglusib on human dental pulp stem cell (hDPSC) proliferation, apoptosis, migration and odonto/osteogenic differentiation. METHODOLOGY hDPSCs were treated with 50, 100 nM or 200 nM Tideglusib. β-catenin accumulation was detected by immunofluorescence staining. Colony-forming unit ability was assessed by staining with Coomassie blue. Cell cycle progression and cell apoptosis were investigated using flow cytometry. Cell migration was examined using an in vitro wound-healing assay. Osteogenic differentiation was examined using alkaline phosphatase (ALP) staining, alizarin red S staining and osteogenic-related gene expression. The gene expression profile was examined using a high-throughput RNA sequencing technique. All experiments were repeated using cells derived from at least four different donors (n = 4). The Mann-Whitney U-test was used to identify significant differences between two independent group comparisons. For three or more group comparisons, statistical differences were assessed using the Kruskal-Wallis test followed by pairwise comparison. The significance level was set at 5% (p < .05). RESULTS Tideglusib activated the Wnt signalling pathway in hDPSCs as demonstrated by an increase in cytoplasmic β-catenin accumulation and nuclear translocation. Tideglusib did not affect hDPSC proliferation, cell cycle progression, cell apoptosis or cell migration. In contrast, 50 and 100 nM Tideglusib significantly enhanced mineralization and osteogenic marker gene expression (RUNX2, ALP, BMP2 and DSPP; p < .05). CONCLUSIONS Tideglusib enhanced the odonto/osteogenic differentiation of hDPSCs. Therefore, incorporating this bioactive molecule in a pulp-capping material could be a promising strategy to promote dentine repair.
Collapse
Affiliation(s)
- Chatvadee Kornsuthisopon
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Kevin A Tompkins
- Office of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thanaphum Osathanon
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Office of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
13
|
Chen Y, Wang X, Wu Z, Jia S, Wan M. Epigenetic regulation of dental-derived stem cells and their application in pulp and periodontal regeneration. PeerJ 2023; 11:e14550. [PMID: 36620748 PMCID: PMC9817962 DOI: 10.7717/peerj.14550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/20/2022] [Indexed: 01/05/2023] Open
Abstract
Dental-derived stem cells have excellent proliferation ability and multi-directional differentiation potential, making them an important research target in tissue engineering. An increasing number of dental-derived stem cells have been discovered recently, including dental pulp stem cells (DPSCs), stem cells from exfoliated deciduous teeth (SHEDs), stem cells from apical papilla (SCAPs), dental follicle precursor cells (DFPCs), and periodontal ligament stem cells (PDLSCs). These stem cells have significant application prospects in tissue regeneration because they are found in an abundance of sources, and they have good biocompatibility and are highly effective. The biological functions of dental-derived stem cells are regulated in many ways. Epigenetic regulation means changing the expression level and function of a gene without changing its sequence. Epigenetic regulation is involved in many biological processes, such as embryonic development, bone homeostasis, and the fate of stem cells. Existing studies have shown that dental-derived stem cells are also regulated by epigenetic modifications. Pulp and periodontal regeneration refers to the practice of replacing damaged pulp and periodontal tissue and restoring the tissue structure and function under normal physiological conditions. This treatment has better therapeutic effects than traditional treatments. This article reviews the recent research on the mechanism of epigenetic regulation of dental-derived stem cells, and the core issues surrounding the practical application and future use of pulp and periodontal regeneration.
Collapse
Affiliation(s)
- Yuyang Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Xiayi Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Zhuoxuan Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Shiyu Jia
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Mian Wan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China,State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
14
|
Florimond M, Minic S, Sharpe P, Chaussain C, Renard E, Boukpessi T. Modulators of Wnt Signaling Pathway Implied in Dentin Pulp Complex Engineering: A Literature Review. Int J Mol Sci 2022; 23:ijms231810582. [PMID: 36142496 PMCID: PMC9502831 DOI: 10.3390/ijms231810582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/26/2022] Open
Abstract
The main goal of vital pulp therapy (VPT) is to preserve the vitality of the pulp tissue, even when it is exposed due to bacterial invasion, iatrogenic mechanical preparation, or trauma. The type of new dentin formed as a result of VPT can differ in its cellular origin, its microstructure, and its barrier function. It is generally agreed that the new dentin produced by odontoblasts (reactionary dentin) has a tubular structure, while the dentin produced by pulp cells (reparative dentin) does not or has less. Thus, even VPT aims to maintain the vitality of the pulp. It does not regenerate the dentin pulp complex integrity. Therefore, many studies have sought to identify new therapeutic strategies to successfully regenerate the dentin pulp complex. Among them is a Wnt protein-based strategy based on the fact that Wnt proteins seem to be powerful stem cell factors that allow control of the self-renewal and proliferation of multiple adult stem cell populations, suitable for homeostasis maintenance, tissue healing, and regeneration promotion. Thus, this review outlines the different agents targeting the Wnt signaling that could be applied in a tooth environment, and could be a potential therapy for dentin pulp complex and bone regeneration.
Collapse
Affiliation(s)
- Marion Florimond
- Laboratory of Orofacial Pathologies, Imaging and Biotherapies, School of Dentistry, Laboratoire d’Excellence INFLAMEX, Université Paris Cité, URP 2496, 1 Rue Maurice Arnoux, 92120 Montrouge, France
- Dental Department, Charles Foix Hospital, AP-HP, 94200 Ivry sur Seine, France
| | - Sandra Minic
- Laboratory of Orofacial Pathologies, Imaging and Biotherapies, School of Dentistry, Laboratoire d’Excellence INFLAMEX, Université Paris Cité, URP 2496, 1 Rue Maurice Arnoux, 92120 Montrouge, France
| | - Paul Sharpe
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London SE1 9RT, UK
| | - Catherine Chaussain
- Laboratory of Orofacial Pathologies, Imaging and Biotherapies, School of Dentistry, Laboratoire d’Excellence INFLAMEX, Université Paris Cité, URP 2496, 1 Rue Maurice Arnoux, 92120 Montrouge, France
- Dental Department, and Reference Center for Rare Diseases of Calcium and Phosphorus Metabolism, Bretonneau Hospital, AP-HP, 75018 Paris, France
| | - Emmanuelle Renard
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Nantes Université, ONIRIS, 44000 Nantes, France
- CHU de Nantes, Service d’Odontologie Restauratrice et Chirurgicale, 44000 Nantes, France
| | - Tchilalo Boukpessi
- Laboratory of Orofacial Pathologies, Imaging and Biotherapies, School of Dentistry, Laboratoire d’Excellence INFLAMEX, Université Paris Cité, URP 2496, 1 Rue Maurice Arnoux, 92120 Montrouge, France
- Dental Department, Pitié Salpétrière Hospital, DMU CHIR, AP-HP, 75013 Paris, France
- Correspondence:
| |
Collapse
|
15
|
6-Bromoindirubin-3′-Oxime Regulates Colony Formation, Apoptosis, and Odonto/Osteogenic Differentiation in Human Dental Pulp Stem Cells. Int J Mol Sci 2022; 23:ijms23158676. [PMID: 35955809 PMCID: PMC9368902 DOI: 10.3390/ijms23158676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 12/12/2022] Open
Abstract
6-bromoindirubin-3′-oxime (BIO) is a candidate small molecule that effectively modulates Wnt signalling owing to its stable property. The present study investigated the influence of BIO on the odonto/osteogenic differentiation of human dental pulp stem cells (hDPSCs). hDPSCs were treated with 200, 400, or 800 nM BIO, and the effects on hDPSC responses and osteogenic differentiation were assessed. BIO-mediated Wnt activation was confirmed by β-catenin nuclear translocation detected by immunofluorescence staining. BIO attenuated colony formation and cell migration determined by in vitro wound-healing assay. BIO increased early apoptotic cell population evaluated using flow cytometry. For osteogenic induction, BIO promoted alkaline phosphatase (ALP) activity and mineralisation in a dose-dependent manner. ALP, RUNX2, OCN, OSX, ANKH, DMP1, and DSPP mRNA expression were significantly upregulated. The OPG/RANKL expression ratio was also increased. Further, BIO attenuated adipogenic differentiation as demonstrated by decreased lipid accumulation and adipogenic-related gene expression. Bioinformatic analysis of RNA sequencing data from the BIO-treated hDPSCs revealed that BIO modulated pathways related to autophagy and actin cytoskeleton regulation. These findings demonstrated that BIO treatment promoted hDPSC osteogenic differentiation. Therefore, this small molecule is a strong candidate as a bioactive molecule to enhance dentin repair.
Collapse
|
16
|
Han Y, Koohi-Moghadam M, Chen Q, Zhang L, Chopra H, Zhang J, Dissanayaka WL. HIF-1α Stabilization Boosts Pulp Regeneration by Modulating Cell Metabolism. J Dent Res 2022; 101:1214-1226. [PMID: 35798352 DOI: 10.1177/00220345221091528] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Stem cell-based therapeutics is a promising strategy in dental pulp regeneration. However, low cell viability after transplantation in vivo due to the ischemic microenvironment is still a critical challenge for future clinical application. With the aim of improving postimplantation cell survival and pulp tissue regeneration, stem cells from human exfoliated deciduous teeth (SHED) were preconditioned to a hypoxic condition by hypoxia-inducible factor 1α (HIF-1α) stabilization via knockdown of prolyl hydroxylase domain-containing protein 2 (PHD2) using lentiviral short hairpin RNA. HIF-1α-stabilized SHED were encapsulated in PuraMatrix hydrogel, injected into root canals of human tooth fragments, and implanted in the subcutaneous space of immunodeficient mice. After 28 d, enhanced dental pulp-like tissue formation was observed with a significantly higher level of vascularization, which could be attributed to both endothelial differentiation of SHED and recruitment of host blood vessels. Furthermore, dentin-like tissue formation in vivo and accelerated odontogenic/osteogenic differentiation both in vivo and in vitro were observed. At 7 d postimplantation, significantly less DNA damage and higher Ki67 expression were detected in the HIF-1α-stabilized SHED group compared with the control SHED. Accordingly, cell viability assay and staining for Ki67 and apoptotic cells in vitro showed that HIF-1α stabilization could decrease cell apoptosis and enhance cell survival significantly. We demonstrated that PI3K/AKT pathway activation had resulted in low caspase 3 expression in HIF-1α-stabilized SHED in hypoxic conditions. Furthermore, we found that HIF-1α-induced cell survival could also be attributed to the upregulated expression of PDK1, HK2, and Glut1, which contributes to the maintenance of reactive oxygen species homeostasis and metabolic adaptation in hypoxia. In addition, we identified Smad7 as 1 of the top 3 upregulated genes through RNA sequencing in HIF-1α-stabilized SHED and demonstrated its essential role in HK2 and Glut1 upregulation. Taken together, HIF-1α stabilization enhances cell survival of SHED through modulating various target genes and potential signaling pathways, as well as odontogenic tissue formation during dental pulp regeneration, which could benefit stem cell-based therapy in general.
Collapse
Affiliation(s)
- Y Han
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - M Koohi-Moghadam
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - Q Chen
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - L Zhang
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - H Chopra
- Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - J Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - W L Dissanayaka
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
17
|
The glycoprotein Wnt6 regulates human dental papilla cells differentiation by canonical Wnt signaling pathway. Arch Oral Biol 2022; 141:105469. [DOI: 10.1016/j.archoralbio.2022.105469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022]
|
18
|
The effect of BMP4, FGF8 and WNT3a on mouse iPS cells differentiating to odontoblast-like cells. Med Mol Morphol 2022; 55:199-209. [PMID: 35578118 DOI: 10.1007/s00795-022-00318-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/23/2022] [Indexed: 10/18/2022]
Abstract
We investigated whether BMP4, FGF8, and/or WNT3a on neural crest-like cells (NCLC) derived from mouse induced pluripotent stem (miPS) cells will promote differentiation of odontoblasts-like cells. After the miPS cells matured into embryonic body (EB) cells, they were cultured in a neural induction medium to produce NCLC. As the differentiation of NCLC were confirmed by RT-qPCR, they were then disassociated and cultured with a medium containing, BMP4, FGF8, and/or WNT3a for 7 and 14 days. The effect of these stimuli on NCLC were assessed by RT-qPCR, ALP staining, and immunocytochemistry. The cultured EB cells presented a significant increase of Snai1, Slug, and Sox 10 substantiating the differentiation of NCLC. NCLC stimulated with more than two stimuli significantly increased the odontoblast markers Dmp-1, Dspp, Nestin, Alp, and Runx2 expression compared to control with no stimulus. The expression of Dmp-1 and Dspp upregulated more when FGF8 was combined with WNT3a. ALP staining was positive in groups containing BMP4 and fluorescence was observed in immunocytochemistry of the common significant groups between Dmp-1 and Dspp. After stimulation, the cell morphology demonstrated a spindle-shaped cells with long projections resembling odontoblasts. Simultaneous BMP4, FGF8, and WNT3a stimuli significantly differentiated NCLC into odontoblast-like cells.
Collapse
|
19
|
Kwack KH, Lee HW. Clinical Potential of Dental Pulp Stem Cells in Pulp Regeneration: Current Endodontic Progress and Future Perspectives. Front Cell Dev Biol 2022; 10:857066. [PMID: 35478967 PMCID: PMC9035692 DOI: 10.3389/fcell.2022.857066] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022] Open
Abstract
Dental caries is a common disease that not only destroys the rigid structure of the teeth but also causes pulp necrosis in severe cases. Once pulp necrosis has occurred, the most common treatment is to remove the damaged pulp tissue, leading to a loss of tooth vitality and increased tooth fragility. Dental pulp stem cells (DPSCs) isolated from pulp tissue exhibit mesenchymal stem cell-like characteristics and are considered ideal candidates for regenerating damaged dental pulp tissue owing to their multipotency, high proliferation rate, and viability after cryopreservation. Importantly, DPSCs do not elicit an allogeneic immune response because they are non-immunogenic and exhibit potent immunosuppressive properties. Here, we provide an up-to-date review of the clinical applicability and potential of DPSCs, as well as emerging trends in the regeneration of damaged pulp tissue. In addition, we suggest the possibility of using DPSCs as a resource for allogeneic transplantation and provide a perspective for their clinical application in pulp regeneration.
Collapse
Affiliation(s)
- Kyu Hwan Kwack
- Department of Dentistry, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Hyeon-Woo Lee
- Department of Pharmacology, School of Dentistry, Graduate School, Institute of Oral Biology, Kyung Hee University, Seoul, South Korea
- *Correspondence: Hyeon-Woo Lee,
| |
Collapse
|
20
|
Rahman SU, Ponnusamy S, Nagrath M, Arany PR. Precision-engineered niche for directed differentiation of MSCs to lineage-restricted mineralized tissues. J Tissue Eng 2022; 13:20417314211073934. [PMID: 35237403 PMCID: PMC8883406 DOI: 10.1177/20417314211073934] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/31/2021] [Indexed: 12/30/2022] Open
Abstract
The major difference between tissue healing and regeneration is the extent of instructional cues available to precisely direct the biological response. A classic example is reparative or osteodentin that is seen in response to physicochemical injury to the pulp-dentin complex. Dentin regeneration can direct the differentiation of dental stem cells using concerted actions of both soluble (biomolecules, agonists, and antagonists) and insoluble (matrix topology) cues. The major purpose of this study was to examine the synergistic combination of two discrete biomaterial approaches by utilizing nanofiber scaffolds in discrete configurations (aligned or random) with incorporated polymeric microspheres capable of controlled release of growth factors. Further, to ensure appropriate disinfection for clinical use, Radio-Frequency Glow Discharge (RFGD) treatments were utilized, followed by seeding with a mesenchymal stem cell (MSC) line. SEM analysis revealed electrospinning generated controlled architectural features that significantly improved MSC adhesion and proliferation on the aligned nanofiber scaffolds compared to randomly oriented scaffolds. These responses were further enhanced by RFGD pre-treatments. These enhanced cell adhesion and proliferative responses could be attributed to matrix-induced Wnt signaling that was abrogated by pre-treatments with anti-Wnt3a neutralizing antibodies. Next, we incorporated controlled-release microspheres within these electrospun scaffolds with either TGF-β1 or BMP4. We observed that these scaffolds could selectively induce dentinogenic or osteogenic markers (DSPP, Runx2, and BSP) and mineralization. This work demonstrates the utility of a novel, modular combinatorial scaffold system capable of lineage-restricted differentiation into bone or dentin. Future validation of this scaffold system in vivo as a pulp capping agent represents an innovative dentin regenerative approach capable of preserving tooth pulp vitality.
Collapse
Affiliation(s)
- Saeed Ur Rahman
- Oral Biology, Surgery and Biomedical Engineering, University at Buffalo, Buffalo, NY, USA
- Oral Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Sasikumar Ponnusamy
- Oral Biology, Surgery and Biomedical Engineering, University at Buffalo, Buffalo, NY, USA
| | - Malvika Nagrath
- Oral Biology, Surgery and Biomedical Engineering, University at Buffalo, Buffalo, NY, USA
| | - Praveen R Arany
- Oral Biology, Surgery and Biomedical Engineering, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
21
|
Xiao J, Zheng Y, Zhang W, Zhang Y, Cao P, Liang Y, Bao L, Shi S, Feng X. General Control Nonrepressed Protein 5 Modulates Odontogenic Differentiation Through NF-κB Pathway in Tumor Necrosis Factor-α-Mediated Impaired Human Dental Pulp Stem Cells. Cell Reprogram 2022; 24:95-104. [PMID: 35172106 DOI: 10.1089/cell.2021.0113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Dental pulp stem cells (DPSCs) from pulpitis patients showed defective osteogenic differentiation. However, as the most well-studied histone acetyltransferase, the impaired general control nonrepressed protein 5 (GCN5) plays essential roles in various developmental processes. The aim of this study was to investigate the effect of GCN5 on DPSCs odontogenic differentiation. The healthy dental pulp tissues were obtained from the extracted impacted third molar of patients with the informed consent. DPSCs were treated with a high concentration of tumor necrosis factor-alpha (TNF-α) (100 ng/mL) and odontogenic differentiation-related gene and GCN5 protein level by Western blot analysis. Proliferation of the DPSCs was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Immunofluorescence staining detected GCN5 and NF-κB signaling for p-p65. The mechanism of GCN5 regulating odontogenic differentiation of DPSCs was determined by small interfering RNA analysis. Our data suggested that TNF-α can significantly reduce mineralization and the expression of dentin matrix acidic phosphoprotein 1 and dentin sialophosphoprotein at higher concentration (100 ng/mL). Meanwhile, it showed that the inflammation in microenvironment resulted in a downregulation of GCN5 expression and GCN5 knockdown caused decreased odontogenic differentiation of DPSCs was also found. In addition, the knockdown of GCN5 increased the expression of phosphorylation of p65, thus activating NF-κB pathway of DPSCs. Meanwhile, NF-κB pathway inhibitor pyrrolidinedithiocarbamic acid reversed the siGCN5 decreased odontogenic differentiation of DPSCs. Altogether, our findings indicated that in inflammatory microenvironments GCN5 plays a protective role in pulpitis impaired odontogenic differentiation of DPSCs by activating NF-κB pathway, which may provide a potential approach to dentin regeneration.
Collapse
Affiliation(s)
- Jingwen Xiao
- Department of Stomatology, Haimen District People's Hospital, Nantong, China
| | - Ya Zheng
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wei Zhang
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Ye Zhang
- Jiangsu Vocational College of Medicine, Yancheng, China
| | - Peipei Cao
- Nantong Boyue Dentistry Out-patient Department, Nantong, China
| | - Yi Liang
- Department of Stomatology, Shanghai East Hospital Affiliated with Tongji University, Shanghai, China
| | - Liuliu Bao
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Suping Shi
- Department of Stomatology, Haimen District People's Hospital, Nantong, China
| | - Xingmei Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| |
Collapse
|
22
|
Aryal YP, Yeon CY, Kim TY, Lee ES, Sung S, Pokharel E, Kim JY, Choi SY, Yamamoto H, Sohn WJ, Lee Y, An SY, An CH, Jung JK, Ha JH, Kim JY. Facilitating Reparative Dentin Formation Using Apigenin Local Delivery in the Exposed Pulp Cavity. Front Physiol 2021; 12:773878. [PMID: 34955887 PMCID: PMC8703200 DOI: 10.3389/fphys.2021.773878] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/08/2021] [Indexed: 01/03/2023] Open
Abstract
Apigenin, a natural product belonging to the flavone class, affects various cell physiologies, such as cell signaling, inflammation, proliferation, migration, and protease production. In this study, apigenin was applied to mouse molar pulp after mechanically pulpal exposure to examine the detailed function of apigenin in regulating pulpal inflammation and tertiary dentin formation. In vitro cell cultivation using human dental pulp stem cells (hDPSCs) and in vivo mice model experiments were employed to examine the effect of apigenin in the pulp and dentin regeneration. In vitro cultivation of hDPSCs with apigenin treatment upregulated bone morphogenetic protein (BMP)- and osteogenesis-related signaling molecules such as BMP2, BMP4, BMP7, bone sialoprotein (BSP), runt-related transcription factor 2 (RUNX2), and osteocalcin (OCN) after 14 days. After apigenin local delivery in the mice pulpal cavity, histology and cellular physiology, such as the modulation of inflammation and differentiation, were examined using histology and immunostainings. Apigenin-treated specimens showed period-altered immunolocalization patterns of tumor necrosis factor (TNF)-α, myeloperoxidase (MPO), NESTIN, and transforming growth factor (TGF)-β1 at 3 and 5 days. Moreover, the apigenin-treated group showed a facilitated dentin-bridge formation with few irregular tubules after 42 days from pulpal cavity preparation. Micro-CT images confirmed obvious dentin-bridge structures in the apigenin-treated specimens compared with the control. Apigenin facilitated the reparative dentin formation through the modulation of inflammation and the activation of signaling regulations. Therefore, apigenin would be a potential therapeutic agent for regenerating dentin in exposed pulp caused by dental caries and traumatic injury.
Collapse
Affiliation(s)
- Yam Prasad Aryal
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Chang-Yeol Yeon
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Tae-Young Kim
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Eui-Seon Lee
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Shijin Sung
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Elina Pokharel
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Ji-Youn Kim
- Department of Dental Hygiene, College of Health Science, Gachon University, Incheon, South Korea
| | - So-Young Choi
- Department of Oral and Maxillofacial Surgery, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Hitoshi Yamamoto
- Department of Histology and Developmental Biology, Tokyo Dental College, Tokyo, Japan
| | - Wern-Joo Sohn
- Pre-major of Cosmetics and Pharmaceutics, Daegu Haany University, Gyeongsan, South Korea
| | - Youngkyun Lee
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Seo-Young An
- Department of Oral and Maxillofacial Radiology, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Chang-Hyeon An
- Department of Oral and Maxillofacial Radiology, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Jae-Kwang Jung
- Department of Oral Medicine, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Jung-Hong Ha
- Department of Conservative Dentistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Jae-Young Kim
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
23
|
Xin T, Li Q, Bai R, Zhang T, Zhou Y, Zhang Y, Han B, Yang R. A novel mutation of SATB2 inhibits odontogenesis of human dental pulp stem cells through Wnt/β-catenin signaling pathway. Stem Cell Res Ther 2021; 12:595. [PMID: 34863303 PMCID: PMC8642962 DOI: 10.1186/s13287-021-02660-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/23/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND SATB2-associated syndrome (SAS) is a multisystem disorder caused by mutation of human SATB2 gene. Tooth agenesis is one of the most common phenotypes observed in SAS. Our study aimed at identifying novel variant of SATB2 in a patient with SAS, and to investigate the cellular and molecular mechanism of tooth agenesis caused by SATB2 mutation. METHODS We applied whole exome sequencing (WES) to identify the novel mutation of SATB2 in a Chinese patient with SAS. Construction and overexpression of wild-type and the mutant vector was performed, followed by functional analysis including flow cytometry assay, fluorescent immunocytochemistry, western blot, quantitative real-time PCR and Alizarin Red S staining to investigate its impact on hDPSCs and the underlying mechanisms. RESULTS As a result, we identified a novel frameshift mutation of SATB2 (c. 376_378delinsTT) in a patient with SAS exhibiting tooth agenesis. Human DPSCs transfected with mutant SATB2 showed decreased cell proliferation and odontogenic differentiation capacity compared with hDPSCs transfected with wild-type SATB2 plasmid. Mechanistically, mutant SATB2 failed to translocate into nucleus and distributed in the cytoplasm, failing to activate Wnt/β-catenin signaling pathway, whereas the wild-type SATB2 translocated into the nucleus and upregulated the expression of active β-catenin. When we used Wnt inhibitor XAV939 to treat hDPSCs transfected with wild-type SATB2 plasmid, the increased odontogenic differentiation capacity was attenuated. Furthermore, we found that SATB2 mutation resulted in the upregulation of DKK1 and histone demethylase JHDM1D to inhibit Wnt/β-catenin signaling pathway. CONCLUSION We identified a novel frameshift mutation of SATB2 (c.376_378delinsTT, p.Leu126SerfsX6) in a Chinese patient with SATB2-associated syndrome (SAS) exhibiting tooth agenesis. Mechanistically, SATB2 regulated osteo/odontogenesis of human dental pulp stem cells through Wnt/β-catenin signaling pathway by regulating DKK1 and histone demethylase JHDM1D.
Collapse
Affiliation(s)
- Tianyi Xin
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081 People’s Republic of China
| | - Qian Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081 People’s Republic of China
| | - Rushui Bai
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081 People’s Republic of China
| | - Ting Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081 People’s Republic of China
| | - Yanheng Zhou
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081 People’s Republic of China
| | - Yuehua Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034 People’s Republic of China
| | - Bing Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081 People’s Republic of China
| | - Ruili Yang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081 People’s Republic of China
| |
Collapse
|
24
|
Kornsuthisopon C, Photichailert S, Nowwarote N, Tompkins KA, Osathanon T. Wnt signaling in dental pulp homeostasis and dentin regeneration. Arch Oral Biol 2021; 134:105322. [PMID: 34844087 DOI: 10.1016/j.archoralbio.2021.105322] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Wnt signaling is crucial in the physiological and pathological processes of dental pulp tissues. The present study described the effects of Wnt signaling in dental pulp homeostasis and regeneration. DESIGN Publications in Pubmed and Scopus database were searched, and a narrative review was performed. The roles of Wnt signaling in dental pulp tissue were reviewed and discussed. RESULT In vitro and in vivo evidence have confirmed the involvement of Wnt signaling in tooth development, dental pulp homeostasis, and physiological processes in dental pulp responses. Manipulating Wnt signaling components generates beneficial effects on pulp healing, dentin repair, and epigenetic regulation related to stemness maintenance, implying that Wnt signaling is a potential therapeutic target for future clinical dental applications. Additionally, an overview of the epigenetic control of dental pulp stem cells by Wnt signaling is provided. CONCLUSION This review provides basic knowledge on Wnt signaling and outlines its functions in dental pulp tissues, focusing on their potential as therapeutic treatments by targeting the Wnt signaling pathway.
Collapse
Affiliation(s)
- Chatvadee Kornsuthisopon
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Suphalak Photichailert
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nunthawan Nowwarote
- Centre de Recherche des Cordeliers, Universite de Paris, Sorbonne Universite, INSERM UMRS 1138, Molecular Oral Pathophysiology and Universite de Paris, Dental Faculty Garanciere, Oral Biology Department, Paris F-75006, France
| | - Kevin A Tompkins
- Office of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thanaphum Osathanon
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
25
|
Tokavanich N, Wein MN, English JD, Ono N, Ono W. The Role of Wnt Signaling in Postnatal Tooth Root Development. FRONTIERS IN DENTAL MEDICINE 2021; 2:769134. [PMID: 35782525 PMCID: PMC9248717 DOI: 10.3389/fdmed.2021.769134] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Appropriate tooth root formation and tooth eruption are critical for achieving and maintaining good oral health and quality of life. Tooth eruption is the process through which teeth emerge from their intraosseous position to their functional position in the oral cavity. This temporospatial process occurs simultaneously with tooth root formation through a cascade of interactions between the epithelial and adjoining mesenchymal cells. Here, we will review the role of the Wnt system in postnatal tooth root development. This signaling pathway orchestrates the process of tooth root formation and tooth eruption in conjunction with several other major signaling pathways. The Wnt signaling pathway is comprised of the canonical, or Wnt/β-catenin, and the non-Canonical signaling pathway. The expression of multiple Wnt ligands and their downstream transcription factors including β-catenin is found in the cells in the epithelia and mesenchyme starting from the initiation stage of tooth development. The inhibition of canonical Wnt signaling in an early stage arrests odontogenesis. Wnt transcription factors continue to be present in dental follicle cells, the progenitor cells responsible for differentiation into cells constituting the tooth root and the periodontal tissue apparatus. This expression occurs concurrently with osteogenesis and cementogenesis. The conditional ablation of β-catenin in osteoblast and odontoblast causes the malformation of the root dentin and cementum. On the contrary, the overexpression of β-catenin led to shorter molar roots with thin and hypo-mineralized dentin, along with the failure of tooth eruption. Therefore, the proper expression of Wnt signaling during dental development is crucial for regulating the proliferation, differentiation, as well as epithelial-mesenchymal interaction essential for tooth root formation and tooth eruption.
Collapse
Affiliation(s)
- Nicha Tokavanich
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, United States
| | - Marc N. Wein
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Jeryl D. English
- Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| | - Noriaki Ono
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| | - Wanida Ono
- Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| |
Collapse
|
26
|
Zhao L, Ito S, Arai A, Udagawa N, Horibe K, Hara M, Nishida D, Hosoya A, Masuko R, Okabe K, Shin M, Li X, Matsuo K, Abe S, Matsunaga S, Kobayashi Y, Kagami H, Mizoguchi T. Odontoblast death drives cell-rich zone-derived dental tissue regeneration. Bone 2021; 150:116010. [PMID: 34020080 DOI: 10.1016/j.bone.2021.116010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/25/2022]
Abstract
Severe dental tissue damage induces odontoblast death, after which dental pulp stem and progenitor cells (DPSCs) differentiate into odontoblast-like cells, contributing to reparative dentin. However, the damage-induced mechanism that triggers this regeneration process is still not clear. We aimed to understand the effect of odontoblast death without hard tissue damage on dental regeneration. Herein, using a Cre/LoxP-based strategy, we demonstrated that cell-rich zone (CZ)-localizing Nestin-GFP-positive and Nestin-GFP-negative cells proliferate and differentiate into odontoblast-like cells in response to odontoblast depletion. The regenerated odontoblast-like cells played a role in reparative dentin formation. RNA-sequencing analysis revealed that the expression of odontoblast differentiation- and activation-related genes was upregulated in the pulp in response to odontoblast depletion even without damage to dental tissue. In this regenerative process, the expression of type I parathyroid hormone receptor (PTH1R) increased in the odontoblast-depleted pulp, thereby boosting dentin formation. The levels of PTH1R and its downstream mediator, i.e., phosphorylated cyclic AMP response element-binding protein (Ser133) increased in the physically damaged pulp. Collectively, odontoblast death triggered the PTH1R cascade, which may represent a therapeutic target for inducing CZ-mediated dental regeneration.
Collapse
Affiliation(s)
- Lijuan Zhao
- Institute for Oral Science, Matsumoto Dental University, Nagano, Japan
| | - Shinichirou Ito
- Department of Oral and Maxillofacial Surgery, Tokyo Dental College, Tokyo, Japan
| | - Atsushi Arai
- Department of Orthodontics, Matsumoto Dental University, Nagano, Japan
| | - Nobuyuki Udagawa
- Department of Oral Biochemistry, Matsumoto Dental University, Nagano, Japan
| | - Kanji Horibe
- Department of Oral Histology, Matsumoto Dental University, Nagano, Japan
| | - Miroku Hara
- Department of Oral Diagnostics and Comprehensive Dentistry, Matsumoto Dental University Hospital, Nagano, Japan
| | - Daisuke Nishida
- Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Akihiro Hosoya
- Division of Histology, School of Dentistry, Health Science University of Hokkaido, Hokkaido, Japan
| | | | - Koji Okabe
- Section of Cellular Physiology, Department of Physiological Sciences and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan
| | - Masashi Shin
- Section of Cellular Physiology, Department of Physiological Sciences and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan; Oral Medicine Center, Fukuoka Dental College, Fukuoka, Japan
| | - Xianqi Li
- Department of Oral and Maxillofacial Surgery, Matsumoto Dental University, Nagano, Japan
| | - Koichi Matsuo
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, Tokyo, Japan
| | - Shinichi Abe
- Department of Anatomy, Tokyo Dental College, Tokyo, Japan
| | | | | | - Hideaki Kagami
- Institute for Oral Science, Matsumoto Dental University, Nagano, Japan
| | - Toshihide Mizoguchi
- Institute for Oral Science, Matsumoto Dental University, Nagano, Japan; Oral Health Science Center, Tokyo Dental College, Tokyo, Japan.
| |
Collapse
|
27
|
Birjandi AA, Sharpe P. Wnt Signalling in Regenerative Dentistry. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.725468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Teeth are complex structures where a soft dental pulp tissue is enriched with nerves, vasculature and connective tissue and encased by the cushioning effect of dentin and the protection of a hard enamel in the crown and cementum in the root. Injuries such as trauma or caries can jeopardise these layers of protection and result in pulp exposure, inflammation and infection. Provision of most suitable materials for tooth repair upon injury has been the motivation of dentistry for many decades. Wnt signalling, an evolutionarily conserved pathway, plays key roles during pre- and post-natal development of many organs including the tooth. Mutations in the components of this pathway gives rise to various types of developmental tooth anomalies. Wnt signalling is also fundamental in the response of odontoblasts to injury and repair processes. The complexity of tooth structure has resulted in diverse studies looking at specific compartments or cell types of this organ. This review looks at the current advances in the field of tooth development and regeneration. The objective of the present review is to provide an updated vision on dental biomaterials research, focusing on their biological properties and interactions to act as evidence for their potential use in vital pulp treatment procedures. We discuss the outstanding questions and future directions to make this knowledge more translatable to the clinics.
Collapse
|
28
|
Shah J, Manton DJ, McCullough MJ, Rajan S. Odontoblast markers and dentine reactions in carious primary molars with and without hypomineralised enamel defects. Int J Paediatr Dent 2021; 31:451-458. [PMID: 33222333 DOI: 10.1111/ipd.12750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/07/2020] [Accepted: 10/22/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Wnt/β-Catenin signalling and DMP1 have key roles in tertiary dentinogenesis. AIM To compare the relationship between remaining dentine thickness (RDT), tertiary dentine thickness (TDT), β-catenin and dentine matrix protein 1 (DMP1) in carious second primary molar teeth with normal (SPM) and hypomineralised enamel (HSPM). DESIGN Extracted carious SPM and HSPM were fixed, sectioned (5 μm) and stained with haematoxylin and eosin or with indirect immunofluorescence for β-catenin and DMP1. Image analysis was performed to determine RDT, TDT, β-catenin and DMP1 intensity in the odontoblast layer and dentine-pulp complex. RESULTS Carious SPM (n = 11; mean RDT = 1536.1 μm) and HSPM (n = 12; mean RDT = 1179.9 μm) had mean TDT 248.6 μm and 518.1 μm, respectively (P = .02). There were no significant differences in intensity values in the odontoblast layer and dentine-pulp complex for β-catenin and DMP1 for both groups. CONCLUSION There was no observable variation in Wnt/β-catenin and DMP1 expression between HSPM and SPM despite a statistically significant twofold increased TDT in HSPM compared with SPM that had similar RDT. Thus, the observed increased TDT in HSPM is more likely due to an earlier onset of repair processes rather than an amplified response to caries.
Collapse
Affiliation(s)
- Janita Shah
- Paediatric Dentistry, Melbourne Dental School, The University of Melbourne, Melbourne, Vic., Australia.,Oral Health Services, Health Care Agency, Mahé, Republic of Seychelles
| | - David J Manton
- Paediatric Dentistry, Melbourne Dental School, The University of Melbourne, Melbourne, Vic., Australia.,Centrum voor Tandheelkunde en Mondzorgkunde, Universitair Medisch Centrum Groningen, Groningen, The Netherlands
| | - Michael J McCullough
- Oral Anatomy, Medicine and Surgery, Melbourne Dental School, The University of Melbourne, Melbourne, Vic., Australia
| | - Sadna Rajan
- Paediatric Dentistry, Melbourne Dental School, The University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
29
|
Doolan BJ, Onoufriadis A, Kantaputra P, McGrath JA. WNT10A, dermatology and dentistry. Br J Dermatol 2021; 185:1105-1111. [PMID: 34184264 DOI: 10.1111/bjd.20601] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2021] [Indexed: 12/31/2022]
Abstract
WNTs (Wingless-related integration sites) are secreted glycoproteins that are involved in signalling pathways critical to organ development and tissue regeneration. Of the 19 known WNT ligands, one member of this family, WNT10A, appears to have specific relevance to skin, its appendages and teeth. This review focuses on how variants in the WNT10A gene have been associated with various ectodermal disorders and how such changes may have clinical relevance to dermatologists and dentists. Germline mutations in WNT10A underlie several forms of autosomal recessive ectodermal dysplasia in which heterozygous carriers may also display some lesser ectodermal anomalies. Within the general population, multiple heterozygous variants in WNT10A can cause skin, hair, sweat gland or dental alterations, also known as ectodermal derivative impairments. WNT10A variants have also been implicated in hair thickness, male androgenetic alopecia, hair curl, acne vulgaris, lipodystrophy, keloids, wound healing, tooth size, tooth agenesis, hypodontia, taurodontism and oral clefting. Beyond dermatology and dentistry, WNT10A abnormalities have also been identified in kidney fibrosis, keratoconus, certain malignancies (particularly gastrointestinal) and neuropathic pain pathways. In this review, we detail how WNT10A is implicated as a key physiological and pathological contributor to syndromic and nonsyndromic disorders, as well as population variants, affecting the skin and teeth, and document all reported mutations in WNT10A with genotype-phenotype correlation.
Collapse
Affiliation(s)
- B J Doolan
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, UK
| | - A Onoufriadis
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, UK
| | - P Kantaputra
- Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Medical Genetics Research, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - J A McGrath
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, UK
| |
Collapse
|
30
|
Alaohali A, Salzlechner C, Zaugg LK, Suzano F, Martinez A, Gentleman E, Sharpe PT. GSK3 Inhibitor-Induced Dentinogenesis Using a Hydrogel. J Dent Res 2021; 101:46-53. [PMID: 34152872 PMCID: PMC8721547 DOI: 10.1177/00220345211020652] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Small-molecule drugs targeting glycogen synthase kinase 3 (GSK3) as inhibitors of the protein kinase activity are able to stimulate reparative dentine formation. To develop this approach into a viable clinical treatment for exposed pulp lesions, we synthesized a novel, small-molecule noncompetitive adenosine triphosphate (ATP) drug that can be incorporated into a biodegradable hydrogel for placement by syringe into the tooth. This new drug, named NP928, belongs to the thiadiazolidinone (TDZD) family and has equivalent activity to similar drugs of this family such as tideglusib. However, NP928 is more water soluble than other TDZD drugs, making it more suitable for direct delivery into pulp lesions. We have previously reported that biodegradable marine collagen sponges can successfully deliver TDZD drugs to pulp lesions, but this involves in-theater preparation of the material, which is not ideal in a clinical context. To improve surgical handling and delivery, here we incorporated NP928 into a specifically tailored hydrogel that can be placed by syringe into a damaged tooth. This hydrogel is based on biodegradable hyaluronic acid and can be gelled in situ upon dental blue light exposure, similarly to other common dental materials. NP928 released from hyaluronic acid-based hydrogels upregulated Wnt/β-catenin activity in pulp stem cells and fostered reparative dentine formation compared to marine collagen sponges delivering equivalent concentrations of NP928. This drug-hydrogel combination has the potential to be rapidly developed into a therapeutic procedure that is amenable to general dental practice.
Collapse
Affiliation(s)
- A Alaohali
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK.,Department of Dental and Oral Health, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | - C Salzlechner
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - L K Zaugg
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK.,Department of Reconstructive Dentistry, University Center for Dental Medicine, University of Basel, Basel, Switzerland
| | - F Suzano
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - A Martinez
- Centro de Investigaciones Biologicas-CSIC, Madrid, Spain
| | - E Gentleman
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - P T Sharpe
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
31
|
Vijaykumar A, Mina M. Lithium Chloride Exerts Differential Effects on Dentinogenesis and Osteogenesis in Primary Pulp Cultures. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.649500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Wnt/β-catenin signaling is known to play essential roles in odontoblast differentiation and reparative dentin formation. Various Wnt activators including LiCl have been increasingly studied for their effectiveness to induce repair of the dentin-pulp complex. LiCl is a simple salt thought to activate Wnt/β-catenin signaling by inhibiting GSK3β. Previous in vitro and in vivo studies showed that LiCl increased odontoblast differentiation and enhanced reparative dentin formation. However, the underlying molecular and cellular mechanisms by which LiCl regulates odontoblast and osteoblast differentiation during reparative dentinogenesis are not well-understood. Our in vitro studies show that exposure of early dental pulp progenitors to LiCl increased the survival and the pool of αSMA+ progenitors, leading to enhanced odontoblast and osteoblast differentiation. The positive effects of LiCl in the differentiation of osteoblasts and odontoblasts from αSMA+ progenitors are mediated by Wnt/β-catenin signaling. Our results also showed that continuous and late exposure of dental pulp cells to LiCl increased the expression of odontoblast markers through Wnt/β-catenin signaling, and the number of odontoblasts expressing DMP1-Cherry and DSPP-Cerulean transgenes. However, unlike the early treatment, both continuous and late treatments decreased the expression of Bsp and the expression of BSP-GFPtpz transgene. These observations suggest that prolonged treatment with LiCl in more mature cells of the dental pulp has an inhibitory effect on osteoblast differentiation. The inhibitory effects of LiCl on osteogenesis and Bsp were not mediated through Wnt/β-catenin signaling. These observations suggest that the effects of LiCl, and GSK3β antagonists on reparative dentinogenesis involve multiple pathways and are not specific to Wnt/β-catenin signaling.
Collapse
|
32
|
Hara M, Horibe K, Mori H, Nakamura H. The role of canonical Wnt signaling in dentin bridge formation. J Oral Biosci 2021; 63:199-209. [PMID: 33845204 DOI: 10.1016/j.job.2021.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Wnt signaling has been reported to be involved in dentin bridge formation. However, the detailed mechanism has not yet been clarified. We elucidated the localization of canonical Wnt signaling molecules during dentin bridge formation. METHODS Pulp of the maxillary first molar in mice was exposed and directly capped with MTA cement. Maxillae were collected on the 1st, 4th, 7th, 14th, and 28th days after treatment. After μCT analysis, immunohistochemistry for Wnt3a, Wnt10a, β-catenin, F4/80, and osterix was performed in paraffin-embedded sections. RESULTS On the 4th and 7th days after pulp capping, odontoblasts and dental pulp cells expressed Wnt3a, Wnt10a, and β-catenin. On the 14th day, reactionary dentin was formed around the pulp exposure area. Odontoblasts and dental pulp cells express Wnt3a, Wnt10a, and β-catenin. Additionally, F4/80- and Wnt10a-positive macrophages were observed at the center of the dental pulp. When the dentin bridge was formed on the 28th day, reparative odontoblasts expressed Wnt3a, β-catenin and osterix. CONCLUSION Wnt ligands derived from odontoblasts and dental pulp cells are important for the activation of odontoblasts and the differentiation of reparative odontoblasts during dentin bridge formation. Macrophage-derived Wnts are also involved in reparative odontoblast differentiation.
Collapse
Affiliation(s)
- Miroku Hara
- Department of Oral Diagnostics and Comprehensive Dentistry, Matsumoto Dental University Hospital, 1780 Hirooka-gobara, Shiojiri, Nagano, 399-0781, Japan
| | - Kanji Horibe
- Department of Oral Histology, Matsumoto Dental University, 1780 Hirooka-gobara, Shiojiri, Nagano, 399-0781, Japan
| | - Hiroshi Mori
- Department of Oral Diagnostics and Comprehensive Dentistry, Matsumoto Dental University Hospital, 1780 Hirooka-gobara, Shiojiri, Nagano, 399-0781, Japan
| | - Hiroaki Nakamura
- Department of Oral Histology, Matsumoto Dental University, 1780 Hirooka-gobara, Shiojiri, Nagano, 399-0781, Japan.
| |
Collapse
|
33
|
Abbass MMS, El-Rashidy AA, Sadek KM, Moshy SE, Radwan IA, Rady D, Dörfer CE, Fawzy El-Sayed KM. Hydrogels and Dentin-Pulp Complex Regeneration: From the Benchtop to Clinical Translation. Polymers (Basel) 2020; 12:E2935. [PMID: 33316886 PMCID: PMC7763835 DOI: 10.3390/polym12122935] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Dentin-pulp complex is a term which refers to the dental pulp (DP) surrounded by dentin along its peripheries. Dentin and dental pulp are highly specialized tissues, which can be affected by various insults, primarily by dental caries. Regeneration of the dentin-pulp complex is of paramount importance to regain tooth vitality. The regenerative endodontic procedure (REP) is a relatively current approach, which aims to regenerate the dentin-pulp complex through stimulating the differentiation of resident or transplanted stem/progenitor cells. Hydrogel-based scaffolds are a unique category of three dimensional polymeric networks with high water content. They are hydrophilic, biocompatible, with tunable degradation patterns and mechanical properties, in addition to the ability to be loaded with various bioactive molecules. Furthermore, hydrogels have a considerable degree of flexibility and elasticity, mimicking the cell extracellular matrix (ECM), particularly that of the DP. The current review presents how for dentin-pulp complex regeneration, the application of injectable hydrogels combined with stem/progenitor cells could represent a promising approach. According to the source of the polymeric chain forming the hydrogel, they can be classified into natural, synthetic or hybrid hydrogels, combining natural and synthetic ones. Natural polymers are bioactive, highly biocompatible, and biodegradable by naturally occurring enzymes or via hydrolysis. On the other hand, synthetic polymers offer tunable mechanical properties, thermostability and durability as compared to natural hydrogels. Hybrid hydrogels combine the benefits of synthetic and natural polymers. Hydrogels can be biofunctionalized with cell-binding sequences as arginine-glycine-aspartic acid (RGD), can be used for local delivery of bioactive molecules and cellularized with stem cells for dentin-pulp regeneration. Formulating a hydrogel scaffold material fulfilling the required criteria in regenerative endodontics is still an area of active research, which shows promising potential for replacing conventional endodontic treatments in the near future.
Collapse
Affiliation(s)
- Marwa M. S. Abbass
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (M.M.S.A.); (S.E.M.); (I.A.R.); (D.R.)
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
| | - Aiah A. El-Rashidy
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
- Biomaterials Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt
| | - Khadiga M. Sadek
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
- Biomaterials Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt
| | - Sara El Moshy
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (M.M.S.A.); (S.E.M.); (I.A.R.); (D.R.)
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
| | - Israa Ahmed Radwan
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (M.M.S.A.); (S.E.M.); (I.A.R.); (D.R.)
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
| | - Dina Rady
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (M.M.S.A.); (S.E.M.); (I.A.R.); (D.R.)
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
| | - Christof E. Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, 24105 Kiel, Germany;
| | - Karim M. Fawzy El-Sayed
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, 24105 Kiel, Germany;
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
34
|
Sismanoglu S, Ercal P. Dentin-Pulp Tissue Regeneration Approaches in Dentistry: An Overview and Current Trends. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1298:79-103. [PMID: 32902726 DOI: 10.1007/5584_2020_578] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Conventional treatment approaches in irreversible pulpitis and apical periodontitis include the disinfection of the pulp space followed by filling with various materials, which is commonly known as the root canal treatment. Disadvantages including the loss of tooth vitality and defense mechanism against carious lesions, susceptibility to fractures, discoloration and microleakage led to the development of regenerative therapies for the dentin pulp-complex. The goal of dentin-pulp tissue regeneration is to reestablish the physiological pulp function such as pulp sensibility, pulp repair capability by mineralization and pulp immunity. Recent dentin-pulp tissue regeneration approaches can be divided into cell homing and cell transplantation. Cell based approaches include a suitable scaffold for the delivery of potent stem cells with or without bioactive molecules into the root canal system while cell homing is based on the recruitment of host endogenous stem cells from the resident tissue including periapical region or dental pulp. This review discusses the recent treatment modalities in dentin-pulp tissue regeneration through tissue engineering and current challenges and trends in this field of research.
Collapse
Affiliation(s)
- Soner Sismanoglu
- Department of Restorative Dentistry, Faculty of Dentistry, Altinbas University, Istanbul, Turkey
| | - Pınar Ercal
- Department of Oral Surgery, Faculty of Dentistry, Altinbas University, Istanbul, Turkey.
| |
Collapse
|
35
|
Turkkahraman H, Galindo F, Tulu US, Helms JA. A novel hypothesis based on clinical, radiological, and histological data to explain the dentinogenesis imperfecta type II phenotype. Connect Tissue Res 2020; 61:526-536. [PMID: 31284784 DOI: 10.1080/03008207.2019.1631296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose/Aim: The aim of this study was to explore whether dentinogenesis imperfecta (DGI)-related aberrations are detectable in odontogenic tissues. Materials and Methods: Morphological and histological analyses were carried out on 3 teeth (two maxillary 1st molars, one maxillary central incisor) extracted from a patient with DGI Type II. A maxillary 2nd molar teeth extracted from a healthy patient was used as control. A micro-computed tomographic (μCT) data-acquisition system was used to scan and reconstruct samples. Pentachrome and picrosirius red histologic stains were used to analyze odontogenic tissues and their collagenous matrices. Results: Our findings corroborate DGI effects on molar and incisor root elongation, and the hypo-mineralized state of DGI dentin. In addition to these findings, we discovered changes to the DGI pulp cavity: Reactionary dentin formation, which we theorize is exacerbated by the early loss of enamel, nearly obliterated an acellular but still-vascularized DGI pulp cavity. We also discovered an accumulation of lamellated cellular cementum at the root apices, which we hypothesize compensates for the severe and rapid attrition of the DGI tooth. Conclusions: Based on imaging and histological data, we propose a novel hypothesis to explain the complex dental phenotypes observed in patients with DGI Type II.
Collapse
Affiliation(s)
- Hakan Turkkahraman
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine , Stanford, CA, USA.,Department of Orthodontics and Oral Facial Genetics, School of Dentistry, Indiana University , Indianapolis, IN, USA
| | - Fernando Galindo
- School of Dentistry, Javeriana University , Bogotá, Colombia.,Fundación Santa Fé de Bogotá Hospital , Bogotá, Colombia
| | - Ustun Serdar Tulu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine , Stanford, CA, USA
| | - Jill A Helms
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine , Stanford, CA, USA
| |
Collapse
|
36
|
Vijaykumar A, Root SH, Mina M. Wnt/β-Catenin Signaling Promotes the Formation of Preodontoblasts In Vitro. J Dent Res 2020; 100:387-396. [PMID: 33103548 DOI: 10.1177/0022034520967353] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Odontoblast differentiation is a complex and multistep process regulated by signaling pathways, including the Wnt/β-catenin signaling pathway. Both positive and negative effects of Wnt/β-catenin signaling on dentinogenesis have been reported, but the underlying mechanisms of these conflicting results are still unclear. To gain a better insight into the role of Wnt/β-catenin in dentinogenesis, we used dental pulp cells from a panel of transgenic mice, in which fluorescent protein expression identifies cells at different stages of odontoblast and osteoblast differentiation. Our results showed that exposure of pulp cells to WNT3a at various times and durations did not induce premature differentiation of odontoblasts. These treatments supported the survival of undifferentiated cells in dental pulp and promoted the formation of 2.3GFP+ preodontoblasts and their rapid transition into differentiated odontoblasts expressing DMP1-Cherry and DSPP-Cerulean transgenes. WNT3a also promoted osteogenesis in dental pulp cultures. These findings provide critical information for the development of improved treatments for vital pulp therapy and dentin regeneration.
Collapse
Affiliation(s)
- A Vijaykumar
- Department of Craniofacial Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - S H Root
- Department of Craniofacial Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - M Mina
- Department of Craniofacial Sciences, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
37
|
circRNA Expression Profile in Dental Pulp Stem Cells during Odontogenic Differentiation. Stem Cells Int 2020; 2020:5405931. [PMID: 32952566 PMCID: PMC7482017 DOI: 10.1155/2020/5405931] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 06/25/2020] [Accepted: 08/08/2020] [Indexed: 12/11/2022] Open
Abstract
Introduction Odontogenic differentiation of human dental pulp stem cells (hDPSCs) is a key step of pulp regeneration. Recent studies showed that circular RNAs (circRNAs) have many biological functions and that competing endogenous RNA (ceRNA) is their most common mechanism of action. However, the role of circRNAs in hDPSCs during odontogenesis is still unclear. Methods Isolated hDPSCs were cultured in essential and odontogenic medium. Total RNA was extracted after 14 days of culture, and then, microarray analysis was performed to measure the differential expressions of circRNAs. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was then performed to validate the microarray results. Based on microarray data from this study and available in the database, a ceRNA network was constructed to investigate the potential function of circRNAs during odontogenesis. In addition, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to investigate the potential correlation between signaling pathways and circRNAs. In addition, qRT-PCR and Western blot analysis were used to explore the function of hsa_circRNA_104101. Results We found 43 upregulated circRNAs and 144 downregulated circRNAs during the odontogenic differentiation process (fold change > 1.5 and <-1.5, respectively; P < 0.05). qRT-PCR results were in agreement with the microarray results. Bioinformatic analysis revealed that the Wnt signaling pathway and the TGF-β signaling pathway, as well as the other pathways associated with odontogenic differentiation, were correlated to the differentially expressed circRNAs. hsa_circRNA_104101 was proved to promote the odontogenic differentiation of hDPSCs. Conclusion This study reported 187 circRNAs that were differentially expressed in hDPSCs during odontogenic differentiation. Bioinformatic analysis of the expression data suggested that circRNA-miRNA-mRNA networks might act as a crucial mechanism for hDPSC odontogenic differentiation, providing a theoretical foundation for the study of pulp regeneration regulation by circRNAs.
Collapse
|
38
|
Qi X, Xiao Q, Sheng R, Jiang S, Yuan Q, Liu W. Endogenous GDF11 regulates odontogenic differentiation of dental pulp stem cells. J Cell Mol Med 2020; 24:11457-11464. [PMID: 32845070 PMCID: PMC7576269 DOI: 10.1111/jcmm.15754] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 05/27/2020] [Accepted: 08/03/2020] [Indexed: 02/05/2023] Open
Abstract
Dental stem cell‐based tooth regeneration is the futuristic treatment for missing teeth. Growth differentiation factor 11 (GDF11), a novel member of the TGF‐beta superfamily, has been reported to play a critical role in regulating stem cell differentiation. However, the role of endogenous GDF11 during dental stem cell differentiation remains unknown. Here, we have shown that GDF11 was highly expressed in dental pulp tissues in both mouse and human. Knockdown of endogenous GDF11 in human dental pulp stem cells (hDPSCs) led to comparable proliferation and migration but attenuated odontogenic differentiation as evidenced by alkaline phosphatase and Alizarin Red S staining. In addition, transcriptional levels of odontogenic‐related genes were significantly down‐regulated according to real‐time polymerase chain reaction. Mechanistically, we performed RNA sequencing analysis and found that silencing of endogenous GDF11 compromised the process of ossification and osteoblast differentiation, especially down‐regulated transcription expression of Wnt pathway‐specific genes. Immunofluorescence staining also showed diminished β‐catenin expression and nuclei accumulation after knockdown of endogenous GDF11 in hDPSCs. In summary, our results suggested that endogenous GDF11 positively regulate odontogenic differentiation of hDPSCs through canonical Wnt/β‐catenin signalling pathway.
Collapse
Affiliation(s)
- Xingying Qi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qingyue Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rui Sheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuang Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weiqing Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
39
|
Gong Y, Yuan S, Sun J, Wang Y, Liu S, Guo R, Dong W, Li R. R-Spondin 2 Induces Odontogenic Differentiation of Dental Pulp Stem/Progenitor Cells via Regulation of Wnt/β-Catenin Signaling. Front Physiol 2020; 11:918. [PMID: 32848860 PMCID: PMC7426510 DOI: 10.3389/fphys.2020.00918] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 07/09/2020] [Indexed: 12/28/2022] Open
Abstract
Odontoblast cells generated from human dental pulp stem/progenitor cells (hDPSCs) secrete reparative dentin in responds to an injury. Endogenous Wnt signaling is also activated during this process, and these Wnt-activated cells are responsible for the following repair response. R-spondin 2 (Rspo2) is a potent stem cell growth factor, which strongly potentiates Wnt/β-catenin signaling and plays a vital role in cell differentiation and regeneration. However, the role of Rspo2 during odontoblast differentiation in hDPSCs has not yet been completely understood. This study investigated the effects of Rspo2 on hDPSCs to provide therapeutic insight into dentin regeneration and reparative dentin formation. HDPSCs were extracted from human molars or premolars. Immunofluorescence staining and flow cytometric analysis were used to detect the mesenchymal stem cell markers in hDPSCs. EdU assay and Cell Counting Kit-8 (CCK-8) were performed to explore cell proliferation. The odontogenic differentiation levels were determined by measuring the mRNA and protein expression of DSPP, DMP-1, ALP, and BSP. Immunofluorescence staining was performed to detect the localization of β-catenin. The biological effects of Rspo2 on hDPSCs was investigated using the Lentivirus-based Rspo2 shRNA and recombined human Rspo2 (rhRspo2). Recombined human DKK-1 (rhDKK-1) and recombined human Wnt3a (rhWnt3a) were used for further investigation. The cells generated from human dental pulp expressed mesenchymal stem cell markers Vimentin, Stro-1, Nestin, C-kit, CD90, and CD73, while were negative for CD3, CD31, and CD34. The mRNA expression levels of the odontogenic-related genes DSPP, DMP-1, ALP, and BSP were upregulated in the rhRspo2 treated cells. Silencing Rspo2 suppressed the proliferation and differentiation of the hDPSCs. Blockade of Wnt signaling with DKK-1 inhibited Rspo2-induced activation of Wnt/β-catenin signaling and cell differentiation. The combined use of rhWnt3a and rhRspo2 created a synergistic effect to improve the activation of Wnt/β-catenin signaling. Rspo2 promoted the proliferation and odontogenic differentiation of hDPSCs by regulating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yuping Gong
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Clinical Medicine, Academy of Medical Sciences at Zhengzhou University, Zhengzhou, China
| | - Shuai Yuan
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingjing Sun
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Wang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sirui Liu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Runying Guo
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenhang Dong
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui Li
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
40
|
Yoshida S, Tomokiyo A, Hasegawa D, Hamano S, Sugii H, Maeda H. Insight into the Role of Dental Pulp Stem Cells in Regenerative Therapy. BIOLOGY 2020; 9:biology9070160. [PMID: 32659896 PMCID: PMC7407391 DOI: 10.3390/biology9070160] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/02/2020] [Accepted: 07/05/2020] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs) have the capacity for self-renewal and multilineage differentiation potential, and are considered a promising cell population for cell-based therapy and tissue regeneration. MSCs are isolated from various organs including dental pulp, which originates from cranial neural crest-derived ectomesenchyme. Recently, dental pulp stem cells (DPSCs) and stem cells from human exfoliated deciduous teeth (SHEDs) have been isolated from dental pulp tissue of adult permanent teeth and deciduous teeth, respectively. Because of their MSC-like characteristics such as high growth capacity, multipotency, expression of MSC-related markers, and immunomodulatory effects, they are suggested to be an important cell source for tissue regeneration. Here, we review the features of these cells, their potential to regenerate damaged tissues, and the recently acquired understanding of their potential for clinical application in regenerative medicine.
Collapse
Affiliation(s)
- Shinichiro Yoshida
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (A.T.); (D.H.); (H.S.); (H.M.)
- Correspondence: ; Tel.: +81-92-642-6432
| | - Atsushi Tomokiyo
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (A.T.); (D.H.); (H.S.); (H.M.)
| | - Daigaku Hasegawa
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (A.T.); (D.H.); (H.S.); (H.M.)
| | - Sayuri Hamano
- OBT Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hideki Sugii
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (A.T.); (D.H.); (H.S.); (H.M.)
| | - Hidefumi Maeda
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (A.T.); (D.H.); (H.S.); (H.M.)
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
41
|
Zhang S, Yang Y, Jia S, Chen H, Duan Y, Li X, Wang S, Wang T, Lyu Y, Chen G, Tian W. Exosome-like vesicles derived from Hertwig's epithelial root sheath cells promote the regeneration of dentin-pulp tissue. Am J Cancer Res 2020; 10:5914-5931. [PMID: 32483427 PMCID: PMC7254987 DOI: 10.7150/thno.43156] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/03/2020] [Indexed: 02/05/2023] Open
Abstract
Background: The formation of dentin-pulp involves complex epithelial-mesenchymal interactions between Hertwig's epithelial root sheath cells (HERS) and dental papilla cells (DPCs). Earlier studies have identified some of the regulatory molecules participating in the crosstalk between HERS and DPCs and the formation of dentin-pulp. In the present study we focused on the role of HERS-secreted exosomes in DPCs and the formation of dentin-pulp. Specifically, we hypothesized that exosome-like vesicles (ELVs) might mediate the function of HERS and trigger lineage-specific differentiation of dental mesenchymal cells. To test our hypothesis, we evaluated the potential of ELVs derived from a HERS cell line (ELVs-H1) in inducing in vitro and in vivo differentiation of DPCs. Methods: ELVs-H1 were characterized using transmission electron microscopy and dynamic light scattering. The proliferation, migration, and odontoblast differentiation of DPCs after treatment with ELVs-H1, was detected by CCK8, transwell, ALP, and mineralization assays, respectively. Real time PCR and western blotting were used to detect gene and protein expression. For in vivo studies, DPC cells were mixed with collagen gel combined with or without ELVs and transplanted into the renal capsule of rats or subcutaneously into nude mice. HE staining and immunostaining were used to verify the regeneration of dentin-pulp and expression of odontoblast differentiation markers. Results: ELVs-H1 promoted the migration and proliferation of DPCs and also induced odontogenic differentiation and activation of Wnt/β-catenin signaling. ELVs-H1 also contributed to tube formation and neural differentiation in vitro. In addition, ELVs-H1 attached to the collagen gel, and were slowly released and endocytosed by DPCs, enhancing cell survival. ELVs-H1 together with DPCs triggered regeneration of dental pulp-dentin like tissue comprised of hard (reparative dentin-like tissue) and soft (blood vessels and neurons) tissue, in an in vivo tooth root slice model. Conclusion: Our data highlighted the potential of ELVs-H1 as biomimetic tools in providing a microenvironment for specific differentiation of dental mesenchymal stem cells. From a developmental perspective, these vesicles might be considered as novel mediators facilitating the epithelial-mesenchymal crosstalk. Their instructive potency might be exploited for the regeneration of dental pulp-dentin tissues.
Collapse
|
42
|
Shi X, Mao J, Liu Y. Pulp stem cells derived from human permanent and deciduous teeth: Biological characteristics and therapeutic applications. Stem Cells Transl Med 2020; 9:445-464. [PMID: 31943813 PMCID: PMC7103623 DOI: 10.1002/sctm.19-0398] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/27/2019] [Indexed: 12/13/2022] Open
Abstract
Human pulp stem cells (PSCs) include dental pulp stem cells (DPSCs) isolated from dental pulp tissues of human extracted permanent teeth and stem cells from human exfoliated deciduous teeth (SHED). Depending on their multipotency and sensitivity to local paracrine activity, DPSCs and SHED exert therapeutic applications at multiple levels beyond the scope of the stomatognathic system. This review is specifically concentrated on PSC-updated biological characteristics and their promising therapeutic applications in (pre)clinical practice. Biologically, distinguished from conventional mesenchymal stem cell markers in vitro, NG2, Gli1, and Celsr1 have been evidenced as PSC markers in vivo. Both perivascular cells and glial cells account for PSC origin. Therapeutically, endodontic regeneration is where PSCs hold the most promises, attributable of PSCs' robust angiogenic, neurogenic, and odontogenic capabilities. More recently, the interplay between cell homing and liberated growth factors from dentin matrix has endowed a novel approach for pulp-dentin complex regeneration. In addition, PSC transplantation for extraoral tissue repair and regeneration has achieved immense progress, following their multipotential differentiation and paracrine mechanism. Accordingly, PSC banking is undergoing extensively with the intent of advancing tissue engineering, disease remodeling, and (pre)clinical treatments.
Collapse
Affiliation(s)
- Xin Shi
- Center of Stomatology, Tongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanPeople's Republic of China
| | - Jing Mao
- Center of Stomatology, Tongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanPeople's Republic of China
| | - Yan Liu
- Laboratory of Biomimetic Nanomaterials, Department of OrthodonticsPeking University School and Hospital of StomatologyBeijingPeople's Republic of China
| |
Collapse
|
43
|
Zhao Y, Yuan X, Bellido T, Helms JA. A Correlation between Wnt/Beta-catenin Signaling and the Rate of Dentin Secretion. J Endod 2019; 45:1357-1364.e1. [PMID: 31522810 PMCID: PMC10900857 DOI: 10.1016/j.joen.2019.07.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/21/2019] [Accepted: 07/26/2019] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Odontoblasts produce dentin throughout life and in response to trauma. The purpose of this study was to identify the roles of endogenous Wnt signaling in regulating the rate of dentin accumulation. METHODS Histology, immunohistochemistry, vital dye labeling, and histomorphometric assays were used to quantify the rate of dentin accumulation as a function of age. Two strains of Wnt reporter mice were used to identify and follow the distribution and number of Wnt-responsive odontoblasts as a function of age. To show a causal relationship between dentin secretion and Wnt signaling, dentin accumulation was monitored in a strain of mice in which Wnt signaling was aberrantly elevated. RESULTS Dentin deposition occurs throughout life, but the rate of accumulation slows with age. This decline in dentin secretion correlates with a decrease in endogenous Wnt signaling. In a genetically modified strain of mice, instead of tubular dentin, aberrantly elevated Wnt signaling resulted in accumulation of reparative dentin or osteodentin secreted from predontoblasts. CONCLUSIONS Wnt signaling regulates dentin secretion by odontoblasts, and the formation of reparative or osteodentin is the direct consequence of elevated Wnt signaling. These preclinical data have therapeutic implications for the development of a biologically based pulp capping medicant.
Collapse
Affiliation(s)
- Yuan Zhao
- Department of Cariology and Endodontology, School of Dentistry, Lanzhou University, Lanzhou, China; Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, California
| | - Xue Yuan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, California
| | - Teresita Bellido
- Departments of Anatomy and Cell Biology and Medicine, Division of Endocrinology, Indiana University School of Medicine and Roudebush Veterans Administration Medical Center, Indianapolis, Indiana
| | - Jill A Helms
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, California.
| |
Collapse
|
44
|
Rajan S, Ljunggren A, Manton DJ, Björkner AE, McCullough M. Post-mitotic odontoblasts in health, disease, and regeneration. Arch Oral Biol 2019; 109:104591. [PMID: 31710968 DOI: 10.1016/j.archoralbio.2019.104591] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 10/09/2019] [Accepted: 10/20/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Description of the odontoblast lifecycle, an overview of the known complex molecular interactions that occur when the health of the dental pulp is challenged and the current and future management strategies on vital and non-vital teeth. METHODS A literature search of the electronic databases included MEDLINE (1966-April 2019), CINAHL (1982-April 2019), EMBASE and EMBASE Classic (1947-April 2019), and hand searches of references retrieved were undertaken using the following MESH terms 'odontoblast*', 'inflammation', 'dental pulp*', 'wound healing' and 'regenerative medicine'. RESULTS Odontoblasts have a sensory and mechano-transduction role so as to detect external stimuli that challenge the dental pulp. On detection, odontoblasts stimulate the innate immunity by activating defence mechanisms key in the healing and repair mechanisms of the tooth. A better understanding of the role of odontoblasts within the dental pulp complex will allow an opportunity for biological management to remove the cause of the insult to the dental pulp, modulate the inflammatory process, and promote the healing and repair capabilities of the tooth. Current strategies include use of conventional dental pulp medicaments while newer methods include bioactive molecules, epigenetic modifications and tissue engineering. CONCLUSION Regenerative medicine methods are in their infancy and experimental stages at best. This review highlights the future direction of dental caries management and consequently research.
Collapse
Affiliation(s)
- S Rajan
- The University of Melbourne, Australia.
| | | | - D J Manton
- The University of Melbourne, Australia; Centrum voor Tandheelkunde en Mondzorgkunde, UMCG, University of Groningen, the Netherlands
| | | | | |
Collapse
|
45
|
Lu X, Yang J, Zhao S, Liu S. Advances of Wnt signalling pathway in dental development and potential clinical application. Organogenesis 2019; 15:101-110. [PMID: 31482738 DOI: 10.1080/15476278.2019.1656996] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Wnt signalling pathway is widely studied in many processes of biological development, like embryogenesis, tissue homeostasis and wound repair. It is universally known that Wnt signalling pathway plays an important role in tooth development. Here, we summarized the function of Wnt signalling pathway during tooth initiation, crown morphogenesis, root formation, and discussed the therapeutic potential of Wnt modulators.
Collapse
Affiliation(s)
- Xi Lu
- Department of Stomatology, Huashan Hospital, Fudan University , Shanghai , P. R. China
| | - Jun Yang
- Department of Stomatology, Huashan Hospital, Fudan University , Shanghai , P. R. China
| | - Shouliang Zhao
- Department of Stomatology, Huashan Hospital, Fudan University , Shanghai , P. R. China
| | - Shangfeng Liu
- Department of Stomatology, Huashan Hospital, Fudan University , Shanghai , P. R. China
| |
Collapse
|
46
|
Tziafas D. Characterization of Odontoblast-like Cell Phenotype and Reparative Dentin Formation In Vivo: A Comprehensive Literature Review. J Endod 2019; 45:241-249. [PMID: 30803530 DOI: 10.1016/j.joen.2018.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/26/2018] [Accepted: 12/03/2018] [Indexed: 01/01/2023]
Abstract
INTRODUCTION The primary aim was to explore the criteria used in characterization of reparative cells and mineralized matrices formed after treatment of pulp exposures, and the sequence of relative events. The secondary aim was to evaluate whether the reparative events depend on the experimental model species, age, and therapeutic intervention. METHODS A literature search of databases using different combinations of the key words was undertaken. Data analysis was based only on studies having histological or histochemical assessment of the pulp tissue responses. The search yielded 86 studies, 47 capping material-based and 39 bioactive application-based experiments, which provided data on morphological or functional characterization of the mineralized matrices and the associated cells. RESULTS In 64% of capping material-based and 72% of bioactive application-based experiments, a 2-zone mineralized matrix formation (atubular followed by tubular) was detected, whereas characterization of odontoblastic differentiation is provided in only 25.5% and 46.1% of the studies, respectively. In 93.3% of the studies showing odontoblast-like cells, differentiated cells were in association with tubular mineralized matrix formation. Analyses further showed that cell- and matrix-related outcomes do not depend on experimental model species, age, and therapeutic intervention. CONCLUSIONS The evidence of the reviewed scientific literature is that dental pulp cells secrete a dentin-like matrix of tubular morphology in relation to primitive forms of atubular or osteotypic mineralized matrix. Furthermore, data analysis showed that dental pulp cells express in vivo the odontoblastic phenotype, and secrete matrix in a predentin-like pattern, regardless of the model species, age, and therapeutic intervention used.
Collapse
Affiliation(s)
- Dimitrios Tziafas
- Hamdan Bin Mohamed College of Dental Medicine, MBR University of Medicine and Health Sciences, Dubai, UAE.
| |
Collapse
|
47
|
Affiliation(s)
- Sarah E Millar
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
48
|
He L, Zhou J, Chen M, Lin CS, Kim SG, Zhou Y, Xiang L, Xie M, Bai H, Yao H, Shi C, Coelho PG, Bromage TG, Hu B, Tovar N, Witek L, Wu J, Chen K, Gu W, Zheng J, Sheu TJ, Zhong J, Wen J, Niu Y, Cheng B, Gong Q, Owens DM, Stanislauskas M, Pei J, Chotkowski G, Wang S, Yang G, Zegarelli DJ, Shi X, Finkel M, Zhang W, Li J, Cheng J, Tarnow DP, Zhou X, Wang Z, Jiang X, Romanov A, Rowe DW, Wang S, Ye L, Ling J, Mao J. Parenchymal and stromal tissue regeneration of tooth organ by pivotal signals reinstated in decellularized matrix. NATURE MATERIALS 2019; 18:627-637. [PMID: 31114073 PMCID: PMC7362336 DOI: 10.1038/s41563-019-0368-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 04/09/2019] [Indexed: 02/05/2023]
Abstract
Cells are transplanted to regenerate an organs' parenchyma, but how transplanted parenchymal cells induce stromal regeneration is elusive. Despite the common use of a decellularized matrix, little is known as to the pivotal signals that must be restored for tissue or organ regeneration. We report that Alx3, a developmentally important gene, orchestrated adult parenchymal and stromal regeneration by directly transactivating Wnt3a and vascular endothelial growth factor. In contrast to the modest parenchyma formed by native adult progenitors, Alx3-restored cells in decellularized scaffolds not only produced vascularized stroma that involved vascular endothelial growth factor signalling, but also parenchymal dentin via the Wnt/β-catenin pathway. In an orthotopic large-animal model following parenchyma and stroma ablation, Wnt3a-recruited endogenous cells regenerated neurovascular stroma and differentiated into parenchymal odontoblast-like cells that extended the processes into newly formed dentin with a structure-mechanical equivalency to native dentin. Thus, the Alx3-Wnt3a axis enables postnatal progenitors with a modest innate regenerative capacity to regenerate adult tissues. Depleted signals in the decellularized matrix may be reinstated by a developmentally pivotal gene or corresponding protein.
Collapse
Affiliation(s)
- Ling He
- Columbia University, Center for Craniofacial Regeneration, New York, NY, USA
- Operative Dentistry and Endodontics, Guanghua School of Stomatology, Affiliated Stomatology Hospital, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Jian Zhou
- Columbia University, Center for Craniofacial Regeneration, New York, NY, USA
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Mo Chen
- Columbia University, Center for Craniofacial Regeneration, New York, NY, USA
| | - Chyuan-Sheng Lin
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Sahng G Kim
- Columbia University, Center for Craniofacial Regeneration, New York, NY, USA
- Columbia University College of Dental Medicine, New York, NY, USA
| | - Yue Zhou
- Columbia University, Center for Craniofacial Regeneration, New York, NY, USA
- Department of Conservative Dentistry, Laboratory of Biomedical Science and Translational Medicine, School of Stomatology, Tongji University, Shanghai, China
| | - Lusai Xiang
- Columbia University, Center for Craniofacial Regeneration, New York, NY, USA
- Operative Dentistry and Endodontics, Guanghua School of Stomatology, Affiliated Stomatology Hospital, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Ming Xie
- Columbia University, Center for Craniofacial Regeneration, New York, NY, USA
- Department of Prosthodontics, Shanghai Jiao Tong University, Shanghai, China
| | - Hanying Bai
- Columbia University, Center for Craniofacial Regeneration, New York, NY, USA
| | - Hai Yao
- Department of Bioengineering, Clemson University, Charleston, SC, USA
| | - Changcheng Shi
- Department of Bioengineering, Clemson University, Charleston, SC, USA
| | - Paulo G Coelho
- Department of Biomaterials and Biomimetics, New York University, New York, NY, USA
| | - Timothy G Bromage
- Department of Biomaterials and Biomimetics, New York University, New York, NY, USA
| | - Bin Hu
- Department of Biomaterials and Biomimetics, New York University, New York, NY, USA
| | - Nick Tovar
- Department of Biomaterials and Biomimetics, New York University, New York, NY, USA
| | - Lukasz Witek
- Department of Biomaterials and Biomimetics, New York University, New York, NY, USA
| | - Jiaqian Wu
- Vivian L. Smith Department of Neurosurgery, Center for Stem Cell and Regenerative Medicine University of Texas McGovern Medical School at Houston, Houston, TX, USA
| | - Kenian Chen
- Vivian L. Smith Department of Neurosurgery, Center for Stem Cell and Regenerative Medicine University of Texas McGovern Medical School at Houston, Houston, TX, USA
| | - Wei Gu
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Jinxuan Zheng
- Columbia University, Center for Craniofacial Regeneration, New York, NY, USA
- Operative Dentistry and Endodontics, Guanghua School of Stomatology, Affiliated Stomatology Hospital, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Tzong-Jen Sheu
- University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, NY, USA
| | - Juan Zhong
- Columbia University, Center for Craniofacial Regeneration, New York, NY, USA
- Operative Dentistry and Endodontics, Guanghua School of Stomatology, Affiliated Stomatology Hospital, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Jin Wen
- Columbia University, Center for Craniofacial Regeneration, New York, NY, USA
- Department of Prosthodontics, Shanghai Jiao Tong University, Shanghai, China
| | - Yuting Niu
- Columbia University, Center for Craniofacial Regeneration, New York, NY, USA
| | - Bin Cheng
- Columbia University Mailman School of Public Health, Department of Biostatistics, New York, NY, USA
| | - Qimei Gong
- Columbia University, Center for Craniofacial Regeneration, New York, NY, USA
- Operative Dentistry and Endodontics, Guanghua School of Stomatology, Affiliated Stomatology Hospital, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - David M Owens
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
- Department of Dermatology, Columbia University, New York, NY, USA
| | | | - Jasmine Pei
- Columbia University, Center for Craniofacial Regeneration, New York, NY, USA
| | | | - Sainan Wang
- Columbia University, Center for Craniofacial Regeneration, New York, NY, USA
| | - Guodong Yang
- Columbia University, Center for Craniofacial Regeneration, New York, NY, USA
| | | | - Xin Shi
- Columbia University, Center for Craniofacial Regeneration, New York, NY, USA
| | | | - Wen Zhang
- Columbia University, Center for Craniofacial Regeneration, New York, NY, USA
- Operative Dentistry and Endodontics, Guanghua School of Stomatology, Affiliated Stomatology Hospital, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Junyuan Li
- Columbia University, Center for Craniofacial Regeneration, New York, NY, USA
| | - Jiayi Cheng
- Columbia University, Center for Craniofacial Regeneration, New York, NY, USA
| | - Dennis P Tarnow
- Columbia University College of Dental Medicine, New York, NY, USA
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Zuolin Wang
- Department of Conservative Dentistry, Laboratory of Biomedical Science and Translational Medicine, School of Stomatology, Tongji University, Shanghai, China
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Jiao Tong University, Shanghai, China
| | - Alexander Romanov
- Institute of Comparative Medicine, Columbia University Medical Center, New York, NY, USA
| | - David W Rowe
- Center for Regenerative Medicine and Skeletal Development, University of Connecticut Health Science Center, Farmington, CT, USA
| | - Songlin Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Junqi Ling
- Operative Dentistry and Endodontics, Guanghua School of Stomatology, Affiliated Stomatology Hospital, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.
| | - Jeremy Mao
- Columbia University, Center for Craniofacial Regeneration, New York, NY, USA.
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.
- Columbia University College of Dental Medicine, New York, NY, USA.
- Department of Orthopedic Surgery, Columbia University Physician and Surgeons, New York, NY, USA.
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
| |
Collapse
|
49
|
Liao C, Ou Y, Wu Y, Zhou Y, Liang S, Wang Y. Sclerostin inhibits odontogenic differentiation of human pulp‐derived odontoblast‐like cells under mechanical stress. J Cell Physiol 2019; 234:20779-20789. [PMID: 31025337 DOI: 10.1002/jcp.28684] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/02/2019] [Accepted: 04/05/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Chufang Liao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology, Wuhan University Wuhan China
| | - Yanjing Ou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology, Wuhan University Wuhan China
| | - Yun Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology, Wuhan University Wuhan China
| | - Yi Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology, Wuhan University Wuhan China
- Department of Prosthodontics Hospital of Stomatology, Wuhan University Wuhan China
| | - Shanshan Liang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology, Wuhan University Wuhan China
- Department of Prosthodontics Hospital of Stomatology, Wuhan University Wuhan China
| | - Yining Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology, Wuhan University Wuhan China
- Department of Prosthodontics Hospital of Stomatology, Wuhan University Wuhan China
| |
Collapse
|
50
|
Sb H, X J, Qh Y, Xr Z, Bb Z, Kh W, Xy S, Yt C, Xr R, Jf M, G W, Yh P. The vicious circle between mitochondrial oxidative stress and dynamic abnormality mediates triethylene glycol dimethacrylate-induced preodontoblast apoptosis. Free Radic Biol Med 2019; 134:644-656. [PMID: 30776408 DOI: 10.1016/j.freeradbiomed.2019.02.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 12/13/2022]
Abstract
Oxidative stress (OS) plays crucial roles in triethylene glycol dimethacrylate (TEGDMA, a major component in dental resin)-induced apoptosis of dental pulp cells. Mitochondria are important target organelles for regulating the balance of OS, meanwhile, imbalance of the mitochondrial dynamic associated with mitochondrial dysfunction is one major molecular mechanism for oxidative damages. However, whether these mitochondrial dependent pathways were involved in the apoptosis of dental pulp cells induced by TDGDMA remains unclarified. We demonstrated that TEGDMA decreased viability and induced apoptosis of mouse preodontoblasts (mDPC6T cell line) in a time- and dose-dependent manner. Furthermore, TEGDMA elevated the mitochondrial OS status and induced mitochondrial dysfunction, as reflected by the significant decrease of mitochondrial membrane potential, ATP production, the activity of Complex III and citrate synthase. In this process, we detected a dramatically impaired mitochondrial dynamic that was reflected by significantly enhanced mitochondrial fragmentation. Consistently, we also found a significant enhancement of the key upstream regulators for mitochondrial fission, such as short form of optic atrophy 1, dynamic related protein 1 oligomer and Fission 1. The respective inhibition of mitochondrial OS or mitochondrial fission could mutually attenuate each other, thereby significantly preventing both mitochondrial dysfunction and cell apoptosis. In conclusion, TEGDMA-induced preodontoblasts apoptosis was mediated by the vicious circle between mitochondrial OS and dynamic abnormality, which represented a new target to prevent TEGDMA-induced dental pulp cells apoptosis.
Collapse
Affiliation(s)
- Huang Sb
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China; Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China; Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, 1081 LA, the Netherlands.
| | - Jin X
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China; Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China
| | - Yu Qh
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China; Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China
| | - Zhang Xr
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China; Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China
| | - Zheng Bb
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China; Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China
| | - Wang Kh
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China; Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China
| | - Sun Xy
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China
| | - Chen Yt
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China
| | - Ren Xr
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China; Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China
| | - Ma Jf
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China; Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China
| | - Wu G
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, 1081 LA, the Netherlands.
| | - Pan Yh
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China; Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, PR China.
| |
Collapse
|