1
|
Zhang H, Dong Z, Su J, Zhou Z, Li W, Yuan X, Chen L, He W. Research trends and hotspots of osteoporosis and intestinal microbiota: A bibliometric analysis. Medicine (Baltimore) 2025; 104:e41939. [PMID: 40324264 PMCID: PMC12055077 DOI: 10.1097/md.0000000000041939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Osteoporosis (OP) is the second most detrimental chronic disease, and thus novel diagnostic and therapeutic approaches are needed. In recent years, there has been an increased emphasis on the utilization of gut microbiota (GM) in the context of OP. However, a comprehensive bibliometric analysis on this subject is currently lacking. Furthermore, a deeper exploration of the role of GM in bone health is imperative, and there is a pressing need to foster international and inter-agency exchange and experience in this field. Accordingly, this study aimed to provide an overview of the research trends in this field and propose suggestions for related scientific and technological research and development. METHODS The Web of Science database was searched for articles related to both GM and OP. Statistical analyses and data visualization were performed using the EXCEL and CiteSpace software. RESULTS China exhibited the highest number of publications, followed by the United States. NUTRIENTS and Sichuan University were identified as the journal and institution, respectively, with the highest number of articles. Notably, the keywords "gut microbiota" and "bone loss" have been increasingly used in publications. CONCLUSION In conclusion, this study fills the existing gap in the literature and contributes valuable insights to the understanding of the relationship between GM and OP.
Collapse
Affiliation(s)
- Hongbin Zhang
- Department of Orthopaedics, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Zhejiang, China
| | - Zhiyu Dong
- Department of Traditional Chinese Medicine, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Zhejiang, China
| | - Jinyi Su
- Department of Orthopaedics, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Zhejiang, China
| | - Zhiqiang Zhou
- Department of Rheumatism Immunity, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Zhejiang, China
| | - Wenbing Li
- Department of Pneumology, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Zhejiang, China
| | - Xuefei Yuan
- Department of Reproductive Center, Changhai Hospital of Shanghai, Shanghai, China
| | - Limin Chen
- Department of Traditional Chinese Medicine, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Zhejiang, China
| | - Wenquan He
- Department of Orthopaedics, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Zhejiang, China
| |
Collapse
|
2
|
Zhang Y, Chi J, Manley B, Oh E, Yang H, Wang J, Li X. Inflammatory Bowel Disease as a Risk Factor for Complications and Revisions Following Lumbar Discectomy. Global Spine J 2025; 15:1932-1938. [PMID: 39069374 PMCID: PMC11571289 DOI: 10.1177/21925682241270069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
Study DesignRetrospective cohort study.ObjectivesPatients with IBD are at an increased risk for postoperative complications following surgery. The goal of this study is to investigate if inflammatory bowel disease (IBD) is a risk factor for complications following lumbar discectomy.MethodsWe identified IBD patients who underwent lumbar discectomy for lumbar disc herniation (LDH) and matched to them with controls without IBD in a1:5 ratio. We excluded patients with a history of spinal injury, cancer, infection, trauma, or surgery to remove the digestive tract. We used multivariate logistic regression analyses to compare postoperative outcomes, including 90-day complications, 90-day emergency department visits, and 90-day readmissions. In addition, 2-year re-discectomy rates and a 3-year lumbar fusion rate were compared between the cohorts.ResultsAfter applying the study criteria, we identified 6134 IBD patients with LDH for further analysis. With the exception of dura tears, patients with IBD had significantly higher rates of medical complications, incision-related complications, ED visits, and readmission rates compared to patients without IBD, especially for the 2-year and 3-year rates of disc recurrence and revision surgery.ConclusionsPatients with IBD who underwent lumbar discectomy are at a significantly higher rate of complications. Therefore, spine surgeons and other health care providers should be aware of this higher risk associated with IBD patients and properly treat the patients' IBD before surgery to lower these risks.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Spine Surgery, Spinal Deformity Center, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, USA
| | - Jialun Chi
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, USA
| | - Brock Manley
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, USA
| | - Eunha Oh
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, USA
| | - Hanzhi Yang
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, USA
| | - Jesse Wang
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, USA
| | - Xudong Li
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, USA
| |
Collapse
|
3
|
Wasim R, Sumaiya, Ahmad A, Anwar A, Salman A. Microbial imbalance in the gut: a new frontier in Rheumatoid arthritis research. Inflammopharmacology 2025:10.1007/s10787-025-01737-7. [PMID: 40220199 DOI: 10.1007/s10787-025-01737-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025]
Abstract
A chronic autoimmune illness that causes joint destruction and inflammation, rheumatoid arthritis (RA) often results in disability. Genetic, environmental, and immune system variables all have a role in the pathophysiology of RA. The complex community of bacteria that live in the gastrointestinal system, known as the gut microbiota, has been implicated in the onset and progression of RA in recent years, according to mounting data. An imbalance in the gut microbiota's composition, known as dysbiosis, has been noted in RA patients. This imbalance may impact inflammatory pathways and immunological responses, which in turn may contribute to the development and severity of the illness. Research has shown that some bacterial species, including Firmicutes, Bacteroidetes, and Proteobacteria, are either more abundant or less prevalent in RA patients than in healthy people. The gut-immune system axis may be modulated, immunological tolerance may be affected, and pro-inflammatory cytokine production may be enhanced by these microbial changes, all of which may lead to systemic inflammation linked to RA. Moreover, changes in intestinal permeability and a rise in microbial metabolite translocation may make autoimmune reactions worse. Probiotics, antibiotics, and dietary changes have also been investigated as possible treatment approaches to help RA patients regain the balance of their gut microbiota. Still up for debate, however, are the precise ways in which the gut microbiome affects RA. Comprehending the complex connection between gut microbiota and RA may give new perspectives on managing and preventing the condition, as well as future prospects for medicines that target the microbiome.
Collapse
Affiliation(s)
- Rufaida Wasim
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow, UP, 226022, India.
| | - Sumaiya
- Career Post Graduate Institute of Dental Sciences and Hospital, Lucknow, India
| | - Asad Ahmad
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow, UP, 226022, India
| | - Aamir Anwar
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow, UP, 226022, India
| | - Aimen Salman
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow, UP, 226022, India
| |
Collapse
|
4
|
Cyphert EL, Clare S, Dash A, Nixon JC, Raphael J, Harrison J, Heilbronner A, Kim HJ, Cunningham M, Lebl D, Schwab F, Hernandez CJ, Stein EM. A Pilot Study of the Gut Microbiota in Spine Fusion Surgery Patients. HSS J 2025; 21:65-72. [PMID: 39846059 PMCID: PMC11748416 DOI: 10.1177/15563316231201410] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 01/24/2025]
Abstract
Background The microbiome has been identified as a contributor to bone quality. As skeletal health is critical to success of orthopedic surgery, the gut microbiome may be a modifiable factor associated with postoperative outcomes. For spine fusion surgery in particular, de novo bone formation and sufficient bone mineral density are essential for successful outcomes. Given the prevalence and complexity of these procedures, the identification of novel factors that may be related to operative success is important. Questions/purposes We sought to investigate how the composition of the microbiota related to bone health in a focused spinal fusion surgery cohort. Methods We investigated the composition of the microbiome in a cohort of 31 patients prior to spinal fusion surgery, as well as changes in the microbiome over 6 weeks postoperatively. Preoperative areal bone mineral density (BMD) was measured by dual-energy X-ray absorptiometry. Results Composition of gut microbiota differed among spinal fusion patients with low bone mass (T-score ≤ -1.0) and those with normal BMD (P = .03). There was no significant change in composition of the gut microbiota between preoperative evaluation and 6 weeks postoperatively. Conclusions Our findings in this small sample suggest there may be a relationship between BMD and composition of the gut microbiome in patients who undergo spinal fusion surgery. Further work is needed to investigate these relationships as well as potential interventions to foster a favorable microbial composition in spinal fusion surgery patients.
Collapse
Affiliation(s)
- Erika L. Cyphert
- Sibley School of Mechanical & Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | | | | | - Jacob C. Nixon
- Sibley School of Mechanical & Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | | | | | | | - Han Jo Kim
- Hospital for Special Surgery, New York, NY, USA
| | | | - Darren Lebl
- Hospital for Special Surgery, New York, NY, USA
| | | | - Christopher J. Hernandez
- Sibley School of Mechanical & Aerospace Engineering, Cornell University, Ithaca, NY, USA
- Hospital for Special Surgery, New York, NY, USA
| | | |
Collapse
|
5
|
Du Y, Huo Y, Yang Y, Lin P, Liu W, Wang Z, Zeng W, Li J, Liang Z, Yuan C, Zhu J, Luo Z, Liu Y, Ma C, Yang C. Role of sirtuins in obesity and osteoporosis: molecular mechanisms and therapeutic targets. Cell Commun Signal 2025; 23:20. [PMID: 39799353 PMCID: PMC11724515 DOI: 10.1186/s12964-024-02025-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/30/2024] [Indexed: 01/15/2025] Open
Abstract
The prevalence of obesity and osteoporosis (OP) represents a significant public health concern on a global scale. A substantial body of evidence indicates that there is a complex relationship between obesity and OP, with a correlation between the occurrence of OP and obesity. In recent years, sirtuins have emerged as a prominent area of interest in the fields of aging and endocrine metabolism. Among the various research avenues exploring the potential of sirtuins, the effects of these proteins on obesity and OP have garnered significant attention from numerous researchers. Sirtuins regulate energy balance and lipid balance, which in turn inhibit the process of adipogenesis. Additionally, sirtuins regulate the balance between osteogenic and osteoblastic activity, which protects against the development of OP. However, no study has yet provided a comprehensive discussion of the relationship between the three: sirtuins, obesity, and OP. This paper will therefore describe the relationship between sirtuins and obesity, the relationship between sirtuins and OP, and a discussion focusing on the possibility of treating OP caused by obesity by targeting sirtuins. This will be based on the common influences on the occurrence of obesity and OP (such as mesenchymal stem cells, gut microbiota, and insulin). Finally, the potential of SIRT1, an important member of sirtuins, in polyphenolic natural products for the treatment of obesity and OP will be presented. This will contribute to a better understanding of the interactions between sirtuins and obesity and bone, which will facilitate the development of new therapeutic strategies for obesity and OP in the future.
Collapse
Grants
- Nos. 2021B1515140012, 2023A1515010083 the Natural Science Foundation of Guangdong Province
- No. 20211800905342 the Dongguan Science and Technology of Social Development Program
- No. A2024398 the Medical Scientific Research Foundation of Guangdong Province
- No. k202005 the Research and Development Fund of Dongguan People' s Hospital
- Nos. GDMU2021003, GDMU2021049, GDMU2022031, GDMU2022047, GDMU2022063, GDMU2022077, GDMU2022078, GDMU2023008, GDMU2023015, GDMU2023026, GDMU2023042, GDMU2023102 the Guangdong Medical University Students' Innovation and Entrepreneurship Training Program
- Nos. 202210571008, S202210571075, 202310571031, S202310571047, S202310571078, S202310571063, S202310571077 the Provincial and National College Students' Innovation and Entrepreneurship Training Program
- No. 4SG24028G the Guangdong Medical University-Southern Medical University twinning research team project
- No. PF100-2-01 "Climbing 100" Joint Merit Training Program Funded Project
- Nos. 2023ZYDS001, 2023FZDS001, 2023FYDB010 the Guangdong Medical University Students' Innovation Experiment Program
- the Research and Development Fund of Dongguan People’ s Hospital
- the Guangdong Medical University Students’ Innovation and Entrepreneurship Training Program
- the Provincial and National College Students’ Innovation and Entrepreneurship Training Program
- the Cai Limin National Traditional Chinese Medicine Inheritance Studio
- the Guangdong Medical University Students’ Innovation Experiment Program
Collapse
Affiliation(s)
- Yikuan Du
- Central Laboratory, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, 523059, China
| | - Yuying Huo
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Yujia Yang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Peiqi Lin
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Wuzheng Liu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Ziqin Wang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Wenqi Zeng
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Jiahui Li
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Zhonghan Liang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Chenyue Yuan
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Jinfeng Zhu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Ziyi Luo
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Yi Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China
| | - Chunling Ma
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China
| | - Chun Yang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
6
|
Yu YF, Gong HF, Li WJ, Wu M, Hu G. Exploring the causal relationship of gut microbiota in nonunion: a Mendelian randomization analysis mediated by immune cell. Front Microbiol 2024; 15:1447877. [PMID: 39736989 PMCID: PMC11683590 DOI: 10.3389/fmicb.2024.1447877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/25/2024] [Indexed: 01/01/2025] Open
Abstract
Background Emerging research indicates that gut microbiota (GM) are pivotal in the regulation of immune-mediated bone diseases. Nonunion, a bone metabolic disorder, has an unclear causal relationship with GM and immune cells. This study aims to elucidate the causal relationship between GM and nonunion using Mendelian Randomization (MR) and to explore the mediating role of immune cells. Methods Using a two-step, two-sample Mendelian randomization approach, this study explores the causal link between GM and nonunion, as well as the mediating role of immune cells in this relationship. Data were sourced from multiple cohorts and consortiums, including the MiBioGen consortium. GM data were derived from a recently published dataset of 473 gut microbiota, and nonunion data were obtained from genome-wide association studies (GWAS). Results MR analysis identified 12 bacterial genera with protective effects against nonunion and seven bacterial genera associated with a higher risk of nonunion, including Agathobacter sp000434275, Aureimonas, Clostridium M, Lachnospirales, Megamonas funiformis, and Peptoccia. Reverse MR analysis indicated that nonunion does not influence GM. Additionally, MR analysis identified 12 immune cell types positively associated with nonunion and 14 immune cell types negatively associated with nonunion. Building on these findings, we conducted mediation MR analysis to identify 24 crucial GM and immune cell-mediated relationships affecting nonunion. Notably, Campylobacter D, Megamonas funiformis, Agathobacter sp000434275, Lachnospirales, Clostridium E sporosphaeroides, and Clostridium M significantly regulated nonunion through multiple immune cell characteristics. Conclusions To our knowledge, our research results are the first to emphasize a causal relationship between the gut microbiome and nonunion, potentially mediated by immune cells. The correlations and mediation effects identified in our study provide valuable insights into potential therapeutic strategies targeting the gut microbiome, informing global action plans.
Collapse
Affiliation(s)
- Yun-fei Yu
- Department of Orthopedics, Wuxi Hospital of Traditional Chinese Medicine, Wuxi, Jiangsu, China
| | - Hai-Feng Gong
- Department of Trauma Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Wei-Ju Li
- Department of Orthopedics, Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Mao Wu
- Department of Orthopedics, Wuxi Hospital of Traditional Chinese Medicine, Wuxi, Jiangsu, China
| | - Gang Hu
- Department of Orthopedics, Wuxi Hospital of Traditional Chinese Medicine, Wuxi, Jiangsu, China
| |
Collapse
|
7
|
Qi P, Xie R, Liu H, Zhang Z, Cheng Y, Ma J, Wan K, Xie X. Mechanisms of gut homeostasis regulating Th17/Treg cell balance in PMOP. Front Immunol 2024; 15:1497311. [PMID: 39735544 PMCID: PMC11671525 DOI: 10.3389/fimmu.2024.1497311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/25/2024] [Indexed: 12/31/2024] Open
Abstract
Postmenopausal osteoporosis (PMOP) is a metabolic bone disease driven by estrogen deficiency, primarily manifesting as reduced bone mass and heightened fracture risk. Its development is intricately linked to the balance between Th17 and Treg cells. Recent studies have highlighted the significant role of gut homeostasis in PMOP. The gut microbiota profoundly impacts bone health by modulating the host's immune system, metabolic pathways, and endocrine functions. In particular, the regulation of Th17 and Treg cell balance by gut homeostasis plays a pivotal role in the onset and progression of PMOP. Th17 cells secrete pro-inflammatory cytokines that stimulate osteoclast activity, accelerating bone resorption, while Treg cells counteract this process through anti-inflammatory mechanisms, preserving bone mass. The gut microbiota and its metabolites can influence Th17/Treg equilibrium, thereby modulating bone metabolism. Furthermore, the integrity of the gut barrier is critical for systemic immune stability, and its disruption can lead to immune dysregulation and metabolic imbalances. Thus, targeting gut homeostasis to restore Th17/Treg balance offers a novel therapeutic avenue for the prevention and treatment of PMOP.
Collapse
Affiliation(s)
- Peng Qi
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | | | - Hao Liu
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Zixuan Zhang
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yuan Cheng
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Jilong Ma
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Kangwei Wan
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - XingWen Xie
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
8
|
Chen T, Wang N, Hao Y, Fu L. Fecal microbiota transplantation from postmenopausal osteoporosis human donors accelerated bone mass loss in mice. Front Cell Infect Microbiol 2024; 14:1488017. [PMID: 39703374 PMCID: PMC11655470 DOI: 10.3389/fcimb.2024.1488017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/13/2024] [Indexed: 12/21/2024] Open
Abstract
Objectives To investigate the effect of gut microbiota from postmenopausal osteoporosis patients on bone mass in mice. Methods Fecal samples were collected from postmenopausal women with normal bone mass (Con, n=5) and postmenopausal women with osteoporosis (Op, n=5). Microbial composition was identified by shallow shotgun sequencing. Then fecal samples were transplanted into pseudo-sterile mice previously treated with antibiotics for 4 weeks. These mice were categorized into two groups: the Vehicle group (n=7) received fecal samples from individuals with normal bone mass, and the FMT group (n=7) received fecal samples from individuals with osteoporosis. After 8 weeks, bone mass, intestinal microbial composition, intestinal permeability and inflammation were assessed, followed by a correlation analysis. Results The bone mass was significantly reduced in the FMT group. Microbiota sequencing showed that Shannon index (p < 0.05) and Simpson index (p < 0.05) were significantly increased in Op groups, and β diversity showed significant differences. the recipient mice were similar. linear discriminant analysis effect size (LEfSe) analysis of mice showed that Halobiforma, Enterorhabdus, Alistipes, and Butyricimonas were significantly enriched in the FMT group. Lachnospiraceae and Oscillibacter were significantly enriched in the Vehicle group. H&E staining of intestinal tissues showed obvious intestinal mucosal injury in mice. Intestinal immunohistochemistry showed that the expression of Claudin and ZO-1 in the intestinal tissue of the FMT group mice was decreased. The FITC-Dextran (FD-4) absorption rate and serum soluble CD14 (sCD14) content were increased in FMT mice. Correlation analysis showed that these dominant genera were significantly associated with bone metabolism and intestinal permeability, and were associated with the enrichment of specific enzymes. Serum and bone tissue inflammatory cytokines detection showed that the expression of TNF-α and IL-17A in the FMT group were significantly increased. Conclusion Overall, our findings suggested gut microbiota from postmenopausal osteoporosis patients accelerate bone mass loss in mice. Aberrant gut microbiota might play a causal role in the process of bone mass loss mediated by inflammation after the destruction of the intestinal barrier.
Collapse
Affiliation(s)
- Tinglong Chen
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Innovative Orthopaedic Instruments and Personalized Medicine, Clinical and Translational Research Center for 3D Printing Technology, Shanghai, China
| | - Ning Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Innovative Orthopaedic Instruments and Personalized Medicine, Clinical and Translational Research Center for 3D Printing Technology, Shanghai, China
| | - Yongqiang Hao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Innovative Orthopaedic Instruments and Personalized Medicine, Clinical and Translational Research Center for 3D Printing Technology, Shanghai, China
| | - Lingjie Fu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Innovative Orthopaedic Instruments and Personalized Medicine, Clinical and Translational Research Center for 3D Printing Technology, Shanghai, China
| |
Collapse
|
9
|
Mårild K, Söderling J, Axelrad J, Halfvarson J, Forss A, Michaëlsson K, Olén O, Ludvigsson JF. A nationwide cohort study of inflammatory bowel disease, histological activity and fracture risk. Aliment Pharmacol Ther 2024; 60:1549-1560. [PMID: 39308339 PMCID: PMC11599792 DOI: 10.1111/apt.18275] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/27/2024] [Accepted: 09/05/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND Individuals with inflammatory bowel disease (IBD) are at increased risk of fracture. It is unclear if this risk varies by recent histological activity. AIMS To determine the fracture risk in IBD during periods with and without histological inflammation. METHODS We studied a nationwide cohort of 54,591 individuals diagnosed with IBD in 1990-2016 with longitudinal data on ileo-colorectal biopsies. Fractures were identified by inpatient and hospital-based outpatient diagnoses. We derived Cox regression estimated hazard ratios (HRs) for fracture during 12 months following a histological inflammation (vs. histological remission) record after adjusting for socio-demographics, comorbidities, IBD duration, IBD-related surgery and hospitalization. We adjusted sensitivity analyses for medical IBD treatment including corticosteroids. RESULTS Mean age of patients was 44.0 (SD = 18.3) and 45.5 (SD = 17.1) years at biopsy with histological inflammation and remission, respectively. For histological inflammation, there were 1.37 (95% CI 1.29-1.46) fractures per 100 years' follow-up versus 1.31 (95% CI 1.19-1.44) for remission (adjusted [a]HR 1.12; 95% CI 1.00-1.26; p = 0.04). HRs were similar with histological inflammation of Crohn's disease (1.11; 95% CI 0.91-1.36) and ulcerative colitis (1.18; 95% CI 1.02-1.36). Estimates were consistent across age groups. An overall small excess risk of any fracture remained after accounting for corticosteroids. A more prominently raised fracture risk was observed in corticosteroid-naïve IBD patients with histological inflammation versus histological remission (aHR 1.41; 95% CI 1.07-1.85). The aHR of hip fracture following histological inflammation was 1.29 (95% CI 0.87-1.92). CONCLUSIONS Histological inflammation in IBD predicted a small increase in short-term fracture risk. Measures to reduce disease activity may reduce fracture risk in IBD.
Collapse
Affiliation(s)
- Karl Mårild
- Department of PediatricsInstitute of Clinical Sciences, Sahlgrenska AcademyGothenburgSweden
- Department of PediatricsQueen Silvia Children's HospitalGothenburgSweden
| | - Jonas Söderling
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetSolnaSweden
- Clinical Epidemiology Division, Department of Medicine SolnaKarolinska InstitutetStockholmSweden
| | - Jordan Axelrad
- Inflammatory Bowel Disease Center at NYU Langone Health, Division of Gastroenterology, Department of MedicineNYU Grossman School of MedicineNew YorkNew YorkUSA
| | - Jonas Halfvarson
- Department of Gastroenterology, Faculty of Medicine and HealthÖrebro UniversityÖrebroSweden
| | - Anders Forss
- Clinical Epidemiology Division, Department of Medicine SolnaKarolinska InstitutetStockholmSweden
- Gastroenterology Unit, Department of Gastroenterology, Dermatovenereology and RheumatologyKarolinska University HospitalStockholmSweden
| | | | - Karl Michaëlsson
- Department of Surgical Sciences, Medical EpidemiologyUppsala UniversityUppsalaSweden
| | - Ola Olén
- Clinical Epidemiology Division, Department of Medicine SolnaKarolinska InstitutetStockholmSweden
- Sachs' Children and Youth Hospital, Stockholm South General HospitalStockholmSweden
- Department of Clinical Science and Education SödersjukhusetKarolinska InstitutetStockholmSweden
| | - Jonas F. Ludvigsson
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetSolnaSweden
- Department of PediatricsÖrebro University HospitalÖrebroSweden
- Department of MedicineColumbia University College of Physicians and SurgeonsNew YorkNew YorkUSA
| |
Collapse
|
10
|
Ma Y, Liu Y, Li H, Yang K, Yao G. Changes in blood physiological and biochemical parameters and intestinal flora in newborn horses and mares with angular limb deformities. Front Vet Sci 2024; 11:1503117. [PMID: 39660173 PMCID: PMC11628492 DOI: 10.3389/fvets.2024.1503117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Introduction Angular limb deformities (ALDs) are a common skeletal development disorder in newborn foals. This condition affects the growth and development of foals and severely impacts their future athletic performance and economic value, causing significant financial losses to the horse industry. Placentitis, metritis, and severe metabolic diseases during mare pregnancy are significant causes of ALDs in newborn foals. It has been established that intestinal flora disorders can easily lead to inflammatory and metabolic diseases in the host. However, the incidence of ALDs in foals in Zhaosu County, Xinjiang, a key production area of China's horse industry, remains unclear. Additionally, the relationship between functional changes in foals with ALDs and their mares and changes in their intestinal flora is not well-understood. Methods This study investigated the status of ALD in newborn foals through clinical observation and imaging examinations. In addition, molecular biological methods were applied to examine the effects of ALDs foals and their mares on physiological and biochemical markers and gut microbiota. Results The results showed that the incidence of ALD in Zhaosu area of China was 4.13%. In addition, by comparing and correlating the physiological and biochemical indicators and intestinal flora of foals and mares with ALD with those of healthy horses, it was found that foals and mares with ALD may promote the occurrence and development of the disease through the "blood marker changes-intestinal flora-ALDs" axis. In addition, by comparing the physiological and biochemical indicators and intestinal flora of foals and mares with ALD with the intestinal flora of healthy horses, it was found that the physiological and biochemical indicators and intestinal flora structure and metabolic pathways of foals and mares with ALD had significant changes. Discussion The diversity, species composition, and function of the intestinal flora of ALDs and their mares were significantly altered. These findings provide a scientific basis for understanding the etiology of ALDs in foals and offer new perspectives for diagnosing and treatment ALDs in newborn foals.
Collapse
Affiliation(s)
- Yuhui Ma
- College of Animal Science and Technology, Xinjiang Agricultural University, Urumqi, China
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Zhaosu County Xiyu Horse Industry Co., Ltd., Zhaosu, China
| | - Yigang Liu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Hai Li
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Kailun Yang
- College of Animal Science and Technology, Xinjiang Agricultural University, Urumqi, China
| | - Gang Yao
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
11
|
Liu C, Cyphert EL, Stephen SJ, Wang B, Morales AL, Nixon JC, Natsoulas NR, Garcia M, Carmona PB, Vill AC, Donnelly E, Brito IL, Vashishth D, Hernandez CJ. Microbiome-induced increases and decreases in bone matrix strength can be initiated after skeletal maturity. J Bone Miner Res 2024; 39:1621-1632. [PMID: 39348436 PMCID: PMC11523134 DOI: 10.1093/jbmr/zjae157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/25/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
Recent studies in mice have indicated that the gut microbiome can regulate bone tissue strength. However, prior work involved modifications to the gut microbiome in growing animals and it is unclear if the same changes in the microbiome, applied later in life, would change matrix strength. Here we changed the composition of the gut microbiome before and/or after skeletal maturity (16 weeks of age) using oral antibiotics (ampicillin + neomycin). Male and female mice (n = 143 total, n = 12-17/group/sex) were allocated into five study groups: (1) Unaltered, (2) Continuous (dosing 4-24 weeks of age), (3) Delayed (dosing only 16-24 weeks of age), (4) Initial (dosing 4-16 weeks of age, suspended at 16 weeks), and (5) Reconstituted (dosing from 4-16 weeks following by fecal microbiota transplant from Unaltered donors). Animals were euthanized at 24 weeks of age. In males, bone matrix strength in the femur was 25%-35% less than expected by geometry in mice from the Continuous (p = 0.001), Delayed (p = 0.005), and Initial (p = 0.040) groups as compared to Unaltered. Reconstitution of the gut microbiota led to a bone matrix strength similar to Unaltered animals (p = 0.929). In females, microbiome-induced changes in bone matrix strength followed the same trend as males but were not significantly different, demonstrating a sex-dependent response of bone matrix to the gut microbiota. Minor differences in chemical composition of bone matrix were observed with Raman spectroscopy. Our findings indicate that microbiome-induced impairment of bone matrix in males can be initiated and/or reversed after skeletal maturity. The portion of the femoral cortical bone formed after skeletal maturity (16 weeks) was small; suggesting that microbiome-induced changes in bone matrix occurred without osteoblast/osteoclast turnover through a yet unidentified mechanism. These findings provide evidence that the mechanical properties of bone matrix can be altered in the adult skeleton.
Collapse
Affiliation(s)
- Chongshan Liu
- Departments of Orthopaedic Surgery and Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, United States
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States
| | - Erika L Cyphert
- Departments of Orthopaedic Surgery and Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, United States
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States
| | - Samuel J Stephen
- Shirley Ann Jackson, PhD Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Bowen Wang
- Shirley Ann Jackson, PhD Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Angie L Morales
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States
| | - Jacob C Nixon
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States
| | - Nicholas R Natsoulas
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States
| | - Matthew Garcia
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States
| | | | - Albert C Vill
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Eve Donnelly
- Department of Material Science and Engineering, Cornell University, Ithaca, NY, United States
- Reseach Division, Hospital for Special Surgery, New York, NY, United States
| | - Ilana L Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Deepak Vashishth
- Shirley Ann Jackson, PhD Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Rensselaer - Icahn School of Medicine at Mount Sinai Center for Engineering and Precision Medicine, New York, NY, United States
| | - Christopher J Hernandez
- Departments of Orthopaedic Surgery and Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, United States
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| |
Collapse
|
12
|
Song C, Liu F, Mei Y, Cai W, Cheng K, Guo D, Liu Y, Shi H, Duan DD, Liu Z. Integrated metagenomic and metabonomic mechanisms for the therapeutic effects of Duhuo Jisheng decoction on intervertebral disc degeneration. PLoS One 2024; 19:e0310014. [PMID: 39418241 PMCID: PMC11486403 DOI: 10.1371/journal.pone.0310014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 08/20/2024] [Indexed: 10/19/2024] Open
Abstract
Intervertebral disc degeneration (IVDD) is a prevalent orthopedic condition with lower back pain as the predominant clinical presentation that challenges clinical treatment with few therapeutic options. Duhuo Jisheng Decoction (DHJSD) has been proven effective in the therapy of IVDD, but the precise underlying mechanisms remain not fully elucidated. The current study was designed to test our hypothesis that DHJSD may systematically correct the phenotypic disruption of the gut microbiota and changes in the serum metabolome linked to IVDD. Analysis of the active ingredients of DHJSD by ultra high performance liquid chromatography. An integrated metagenomic and metabonomic approach was used to analyze feces and blood samples from normal and IVDD rats. Compared to the control group, fiber ring pinning on the caudal 3 to caudal 5 segments of the rats caused IVDD and significantly altered the compositions of the intestinal microbiota and serum metabolites. Integrated analysis revealed commonly-altered metabolic pathways shared by both intestinal microbiota and serum metabolome of the IVDD rats. DHJSD inhibited the degenerative process and restored the compositions of the perturbed gut microbiota, particularly the relative abundance of commensal microbes of the Prevotellaceae family. DHJSD also corrected the altered metabolic pathways involved in the metabolism of glycine, serine, threonine, valine, the citric acid cycle, and biosynthesis of leucine and isoleucine. DHJSD inhibited the disc degeneration process by an integrated metagenomic and metabonomic mechanism to restore the microbiome profile and normalize the metabonomic pathways.
Collapse
Affiliation(s)
- Chao Song
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Fei Liu
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Yongliang Mei
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Weiye Cai
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Kang Cheng
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Daru Guo
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Yong Liu
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Houyin Shi
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Dayue Darrel Duan
- Center for Phenomics of Traditional Chinese Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Zongchao Liu
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Luzhou Longmatan District People’s Hospital, Luzhou, Sichuan Province, China
| |
Collapse
|
13
|
He W, Bertram HC, Yin JY, Nie SP. Lactobacilli and Their Fermented Foods as a Promising Strategy for Enhancing Bone Mineral Density: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17730-17745. [PMID: 39078823 DOI: 10.1021/acs.jafc.4c03218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Lactobacilli fermentation possesses special nutritional and health values to food, especially in improving diseases related to the gut microbiota such as osteoporosis risk. Previous research indicates that lactobacilli-fermented foods have the potential to enhance the bone mineral density (BMD), as suggested by some clinical studies. Nonetheless, there is currently a lack of comprehensive summaries of the effects and potential mechanisms of lactobacilli-fermented foods on BMD. This review summarizes findings from preclinical and clinical studies, revealing that lactobacilli possess the potential to mitigate age-related and secondary factor-induced bone loss. Furthermore, these findings imply that lactobacilli are likely mediated through the modulation of bone remodeling via gut inflammation-related pathways. Additionally, lactobacilli fermentation may augment calcium accessibility through directly promoting calcium absorption or modifying food constituents. Considering the escalating global health challenge of bone-related issues among the elderly population, this review may offer a valuable reference for the development of food strategies aimed at preventing osteoporosis.
Collapse
Affiliation(s)
- Weiwei He
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | | | - Jun-Yi Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| |
Collapse
|
14
|
Naik A, Godbole M. Elucidating the Intricate Roles of Gut and Breast Microbiomes in Breast Cancer Metastasis to the Bone. Cancer Rep (Hoboken) 2024; 7:e70005. [PMID: 39188104 PMCID: PMC11347752 DOI: 10.1002/cnr2.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 07/10/2024] [Accepted: 08/11/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Breast cancer is the most predominant and heterogeneous cancer in women. Moreover, breast cancer has a high prevalence to metastasize to distant organs, such as the brain, lungs, and bones. Patients with breast cancer metastasis to the bones have poor overall and relapse-free survival. Moreover, treatment using chemotherapy and immunotherapy is ineffective in preventing or reducing cancer metastasis. RECENT FINDINGS Microorganisms residing in the gut and breast, termed as the resident microbiome, have a significant influence on the formation and progression of breast cancer. Recent studies have identified some microorganisms that induce breast cancer metastasis to the bone. These organisms utilize multiple mechanisms, including induction of epithelial-mesenchymal transition, steroid hormone metabolism, immune modification, bone remodeling, and secretion of microbial products that alter tumor microenvironment, and enhance propensity of breast cancer cells to metastasize. However, their involvement makes these microorganisms suitable as novel therapeutic targets. Thus, studies are underway to prevent and reduce breast cancer metastasis to distant organs, including the bone, using chemotherapeutic or immunotherapeutic drugs, along with probiotics, antibiotics or fecal microbiota transplantation. CONCLUSIONS The present review describes association of gut and breast microbiomes with bone metastases. We have elaborated on the mechanisms utilized by breast and gut microbiomes that induce breast cancer metastasis, especially to the bone. The review also highlights the current treatment options that may target both the microbiomes for preventing or reducing breast cancer metastases. Finally, we have specified the necessity of maintaining a diverse gut microbiome to prevent dysbiosis, which otherwise may induce breast carcinogenesis and metastasis especially to the bone. The review may facilitate more detailed investigations of the causal associations between these microbiomes and bone metastases. Moreover, the potential treatment options described in the review may promote discussions and research on the modes to improve survival of patients with breast cancer by targeting the gut and breast microbiomes.
Collapse
Affiliation(s)
- Amruta Naik
- Department of Biosciences and Technology, School of Science and Environmental StudiesDr. Vishwanath Karad MIT World Peace UniversityPuneIndia
| | - Mukul S. Godbole
- Department of Biosciences and Technology, School of Science and Environmental StudiesDr. Vishwanath Karad MIT World Peace UniversityPuneIndia
| |
Collapse
|
15
|
Dou J, Liang Z, Liu J, Liu N, Hu X, Tao S, Zhen X, Yang L, Zhang J, Jiang G. Quinoa alleviates osteoporosis in ovariectomized rats by regulating gut microbiota imbalance. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5052-5063. [PMID: 38284744 DOI: 10.1002/jsfa.13339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/04/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND Postmenopausal osteoporosis (PMO) is associated with dysregulation of bone metabolism and gut microbiota. Quinoa is a grain with high nutritional value, and its effects and potential mechanisms on PMO have not been reported yet. Therefore, the purpose of this study is to investigate the bone protective effect of quinoa on ovariectomy (OVX) rats by regulating bone metabolism and gut microbiota. RESULTS Quinoa significantly improved osteoporosis-related biochemical parameters of OVX rats and ameliorated ovariectomy-induced bone density reduction and trabecular structure damage. Quinoa intervention may repair the intestinal barrier by upregulating the expression of tight junction proteins in the duodenum. In addition, quinoa increased the levels of Firmicutes, and decreased the levels of Bacteroidetes and Prevotella, reversing the dysregulation of the gut microbiota. This may be related to estrogen signaling pathway, secondary and primary bile acid biosynthesis, benzoate degradation, synthesis and degradation of ketone bodies, NOD-like receptor signaling pathway and biosynthesis of tropane, piperidine and pyridine alkaloids. Correlation analysis showed that there is a strong correlation between gut microbiota with significant changes in abundance and parameters related to osteoporosis. CONCLUSION Quinoa could significantly reverse the high intestinal permeability and change the composition of gut microbiota in OVX rats, thereby improving bone microstructure deterioration and bone metabolism disorder, and ultimately protecting the bone loss of OVX rats. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jinfang Dou
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhengting Liang
- School of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, China
| | - Jiaxian Liu
- Zhong Li Science and Technology Limited Company, Beijing, China
| | - Nannan Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xuehong Hu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Siyu Tao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xianjie Zhen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lihua Yang
- Tangshan Maternal and Child Health Care Hospital, Tangshan, China
| | - Jinghua Zhang
- Tangshan Maternal and Child Health Care Hospital, Tangshan, China
| | - Guangjian Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
16
|
Longo UG, Lalli A, Bandini B, Angeletti S, Lustig S, Budhiparama NC. The influence of gut microbiome on periprosthetic joint infections: State-of-the art. J ISAKOS 2024; 9:353-361. [PMID: 38272392 DOI: 10.1016/j.jisako.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Early periprosthetic joint infection constitutes one of the most frightening complications of joint replacement. Recently, some evidence has highlighted the potential link between dysregulation of the gut microbiota and degenerative diseases of joints. It has been hypothesized that microbiome dysbiosis may increase the risk of periprosthetic joint infection by facilitating bacterial translocation from these sites to the bloodstream or by impairing local or systemic immune responses. Although the processes tying the gut microbiome to infection susceptibility are still unknown, new research suggests that the presurgical gut microbiota-a previously unconsidered component-may influence the patient's ability to resist infection. Exploring the potential impact of the microbiome on periprosthetic joint infections may therefore bring new insights into the pathogenesis and therapy of these disorders. For a successful therapy, a proper surgical procedure in conjunction with an antibacterial concept is essential. As per the surgical approach, different treatment strategies include surgical irrigation, debridement, antibiotic therapy, and implant retention with or without polyethylene exchange. Other alternatives could be one-stage or two-stage revisions surgery. Interventions that either directly target gut microbes as well as interventions that modify the composition and/or function of the commensal microbes represent an innovative and potentially successful field to be explored. In recent times, innovative therapeutic methods have arisen in the realm of microbiome restoration and the management of gut-related ailments. These progressive approaches offer fresh perspectives on tackling intricate microbial imbalances in the gastrointestinal tract. These emerging therapies signify a shift towards more precise and individualized approaches to microbiome restoration and the management of gut-related disorders. Once a more advanced knowledge of the pathways linking the gut microbiota to musculoskeletal tissues is gained, relevant microbiome-based therapies can be developed. If dysbiosis is proven to be a significant contributor, developing treatments for dysbiosis may represent a new frontier in the prevention of periprosthetic joint infections.
Collapse
Affiliation(s)
- Umile Giuseppe Longo
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Alberto Lalli
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy.
| | - Benedetta Bandini
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy.
| | - Silvia Angeletti
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy.
| | - Sebastien Lustig
- Orthopaedic Department, Lyon North University Hospital, Hôpital de La Croix Rousse, Hospices Civils de Lyon, 103 Grande Rue de la Croix Rousse, 69004 Lyon, France.
| | - Nicolaas Cyrillus Budhiparama
- Department of Orthopaedic and Traumatology, Faculty of Medicine, Unversitas Airlangga, Jl. Mayjend. Prof. Dr. Moestopo 6-8, Surabaya 60286, Indonesia; Department of Orthopaedics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands.
| |
Collapse
|
17
|
Xue Y, Wang X, Liu H, Kang J, Liang X, Yao A, Dou Z. Assessment of the relationship between gut microbiota and bone mineral density: a two-sample Mendelian randomization study. Front Microbiol 2024; 15:1298838. [PMID: 38841058 PMCID: PMC11150656 DOI: 10.3389/fmicb.2024.1298838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 05/01/2024] [Indexed: 06/07/2024] Open
Abstract
Background Emerging evidence from observational studies and clinical trials suggests a connection between the gut microbiota and variations in bone mineral density (BMD). Nonetheless, the specific association between gut microbiota and BMD alterations at different skeletal sites has not been comprehensively explored. To address this, we employed Genome-Wide Association Study (GWAS) summary statistics from a publicly accessible database, conducting a two-sample Mendelian Randomization analysis to elucidate the potential causal relationship between gut microbiota composition and BMD. Methods This study utilized two distinct thresholds for screening instrumental variables (IVs), followed by an extensive series of quality control procedures to identify IVs that were significantly related to exposure. Gut microbiota were classified into two sets based on hierarchical levels: phylum, class, order, family, and genus. Bone mineral density (BMD) data were systematically collected from four skeletal sites: femoral neck, lumbar spine, forearm, and heel. For Mendelian Randomization (MR) analysis, robust methods including Inverse-Variance Weighting (IVW) and the Wald Ratio Test were employed. Additional analytical tests such as the Outlier Test, Heterogeneity Test, 'Leave-One-Out' Test, and Pleiotropy Test were conducted to assess the impact of horizontal pleiotropy, heterogeneities, and the genetic variation stability of gut microbiota on BMD causal associations. The MR Steiger Directionality Test was applied to exclude studies with potential directional biases. Results In this two-sample Mendelian randomization analysis, we utilized five sets of exposure GWAS (Genome-Wide Association Studies) summary statistics and four sets of outcome GWAS summary statistics. The initial analysis, applying a threshold of p < 5 × 10-6, identified 48 significant causal relationships between genetic liability in the gut microbiome and bone mineral density (BMD). A subsequent analysis with a more stringent threshold of p < 5 × 10-8 uncovered 14 additional causal relationships. Upon applying the Bonferroni correction, 9 results from the first analysis and 10 from the second remained statistically significant. Conclusion Our MR analysis revealed a causal relationship between gut microbiota and bone mineral density at all sites, which could lead to discoveries in future mechanistic and clinical studies of microbiota-associated osteoporosis.
Collapse
Affiliation(s)
- Yuan Xue
- Graduate School, College of Basic Medical Sciences, Shanxi University of Traditional Chinese Medicine, Taiyuan, China
- Department of Traditional Chinese Medicine, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xuan Wang
- Graduate School, College of Basic Medical Sciences, Shanxi University of Traditional Chinese Medicine, Taiyuan, China
- Dean’s Office, Shanxi Vocational College of Health, Taiyuan, China
| | - Honglin Liu
- Graduate School, College of Basic Medical Sciences, Shanxi University of Traditional Chinese Medicine, Taiyuan, China
| | - Junfeng Kang
- Department of Orthopedics, Affiliated Hospital of Shanxi University of Traditional Chinese Medicine, Taiyuan, China
| | - Xiaohong Liang
- Department of Orthopedics, Affiliated Hospital of Shanxi University of Traditional Chinese Medicine, Taiyuan, China
| | - Aina Yao
- Department of Brain Disease, Shanxi Acupuncture and Moxibustion Hospital, Taiyuan, China
| | - Zhifang Dou
- Graduate School, College of Basic Medical Sciences, Shanxi University of Traditional Chinese Medicine, Taiyuan, China
| |
Collapse
|
18
|
Huang KC, Chuang PY, Yang TY, Tsai YH, Li YY, Chang SF. Diabetic Rats Induced Using a High-Fat Diet and Low-Dose Streptozotocin Treatment Exhibit Gut Microbiota Dysbiosis and Osteoporotic Bone Pathologies. Nutrients 2024; 16:1220. [PMID: 38674910 PMCID: PMC11054352 DOI: 10.3390/nu16081220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) presents a challenge for individuals today, affecting their health and life quality. Besides its known complications, T2DM has been found to contribute to bone/mineral abnormalities, thereby increasing the vulnerability to bone fragility/fractures. However, there is still a need for appropriate diagnostic approaches and targeted medications to address T2DM-associated bone diseases. This study aims to investigate the relationship between changes in gut microbiota, T2DM, and osteoporosis. To explore this, a T2DM rat model was induced by combining a high-fat diet and low-dose streptozotocin treatment. Our findings reveal that T2DM rats have lower bone mass and reduced levels of bone turnover markers compared to control rats. We also observe significant alterations in gut microbiota in T2DM rats, characterized by a higher relative abundance of Firmicutes (F) and Proteobacteria (P), but a lower relative abundance of Bacteroidetes (B) at the phylum level. Further analysis indicates a correlation between the F/B ratio and bone turnover levels, as well as between the B/P ratio and HbA1c levels. Additionally, at the genus level, we observe an inverse correlation in the relative abundance of Lachnospiraceae. These findings show promise for the development of new strategies to diagnose and treat T2DM-associated bone diseases.
Collapse
Affiliation(s)
- Kuo-Chin Huang
- School of Medicine, Chang Gung University College of Medicine, Taoyuan City 33302, Taiwan; (K.-C.H.); (P.-Y.C.); (T.-Y.Y.); (Y.-H.T.); (Y.-Y.L.)
- Department of Orthopaedic Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi City 61363, Taiwan
| | - Po-Yao Chuang
- School of Medicine, Chang Gung University College of Medicine, Taoyuan City 33302, Taiwan; (K.-C.H.); (P.-Y.C.); (T.-Y.Y.); (Y.-H.T.); (Y.-Y.L.)
- Department of Orthopaedic Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi City 61363, Taiwan
| | - Tien-Yu Yang
- School of Medicine, Chang Gung University College of Medicine, Taoyuan City 33302, Taiwan; (K.-C.H.); (P.-Y.C.); (T.-Y.Y.); (Y.-H.T.); (Y.-Y.L.)
- Department of Orthopaedic Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi City 61363, Taiwan
| | - Yao-Hung Tsai
- School of Medicine, Chang Gung University College of Medicine, Taoyuan City 33302, Taiwan; (K.-C.H.); (P.-Y.C.); (T.-Y.Y.); (Y.-H.T.); (Y.-Y.L.)
- Department of Orthopaedic Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi City 61363, Taiwan
| | - Yen-Yao Li
- School of Medicine, Chang Gung University College of Medicine, Taoyuan City 33302, Taiwan; (K.-C.H.); (P.-Y.C.); (T.-Y.Y.); (Y.-H.T.); (Y.-Y.L.)
- Department of Orthopaedic Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi City 61363, Taiwan
| | - Shun-Fu Chang
- Department of Medical Research and Development, Chiayi Chang Gung Memorial Hospital, Chiayi City 61363, Taiwan
| |
Collapse
|
19
|
Pal S, Morgan X, Dar HY, Gacasan CA, Patil S, Stoica A, Hu YJ, Weitzmann MN, Jones RM, Pacifici R. Gender-affirming hormone therapy preserves skeletal maturation in young mice via the gut microbiome. J Clin Invest 2024; 134:e175410. [PMID: 38530358 PMCID: PMC11093603 DOI: 10.1172/jci175410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/20/2024] [Indexed: 03/27/2024] Open
Abstract
Gender-affirming hormone therapy (GAHT) is often prescribed to transgender (TG) adolescents to alleviate gender dysphoria, but the effect of GAHT on the growing skeleton is unclear. We found GAHT to improve trabecular bone structure via increased bone formation in young male mice and not to affect trabecular structure in female mice. GAHT modified gut microbiome composition in both male and female mice. However, fecal microbiota transfers (FMTs) revealed that GAHT-shaped gut microbiome was a communicable regulator of bone structure and turnover in male, but not in female mice. Mediation analysis identified 2 species of Bacteroides as significant contributors to the skeletal effects of GAHT in male mice, with Bacteroides supplementation phenocopying the effects of GAHT on bone. Bacteroides have the capacity to expand Treg populations in the gut. Accordingly, GAHT expanded intestinal Tregs and stimulated their migration to the bone marrow (BM) in male but not in female mice. Attesting to the functional relevance of Tregs, pharmacological blockade of Treg expansion prevented GAHT-induced bone anabolism. In summary, in male mice GAHT stimulated bone formation and improved trabecular structure by promoting Treg expansion via a microbiome-mediated effect, while in female mice, GAHT neither improved nor impaired trabecular structure.
Collapse
Affiliation(s)
- Subhashis Pal
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine and
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
| | - Xochitl Morgan
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Hamid Y. Dar
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine and
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
| | - Camilo Anthony Gacasan
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics and
| | - Sanchiti Patil
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine and
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
| | - Andreea Stoica
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine and
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
| | - Yi-Juan Hu
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, Georgia, USA
| | - M. Neale Weitzmann
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine and
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
- Atlanta VA Healthcare System, Atlanta, Georgia, USA
| | - Rheinallt M. Jones
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics and
| | - Roberto Pacifici
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine and
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
- Immunology and Molecular Pathogenesis Program, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
20
|
Wu KC, McCauley KE, Lynch SV, Nayak RR, King NJ, Patel S, Kim TY, Condra K, Fadrosh D, Nguyen D, Lin DL, Lynch K, Rogers SJ, Carter JT, Posselt AM, Stewart L, Schafer AL. Alteration in the gut microbiome is associated with changes in bone metabolism after laparoscopic sleeve gastrectomy. J Bone Miner Res 2024; 39:95-105. [PMID: 38477719 PMCID: PMC11240164 DOI: 10.1093/jbmr/zjad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 11/20/2023] [Accepted: 12/07/2023] [Indexed: 03/14/2024]
Abstract
Laparoscopic sleeve gastrectomy (LSG), the most common bariatric surgical procedure, leads to durable weight loss and improves obesity-related comorbidities. However, it induces abnormalities in bone metabolism. One unexplored potential contributor is the gut microbiome, which influences bone metabolism and is altered after surgery. We characterized the relationship between the gut microbiome and skeletal health in severe obesity and after LSG. In a prospective cohort study, 23 adults with severe obesity underwent skeletal health assessment and stool collection preoperatively and 6 mo after LSG. Gut microbial diversity and composition were characterized using 16S rRNA gene sequencing, and fecal concentrations of short-chain fatty acids (SCFA) were measured with LC-MS/MS. Spearman's correlations and PERMANOVA analyses were applied to assess relationships between the gut microbiome and bone health measures including serum bone turnover markers (C-terminal telopeptide of type 1 collagen [CTx] and procollagen type 1 N-terminal propeptide [P1NP]), areal BMD, intestinal calcium absorption, and calciotropic hormones. Six months after LSG, CTx and P1NP increased (by median 188% and 61%, P < .01) and femoral neck BMD decreased (mean -3.3%, P < .01). Concurrently, there was a decrease in relative abundance of the phylum Firmicutes. Although there were no change in overall microbial diversity or fecal SCFA concentrations after LSG, those with greater within-subject change in gut community microbial composition (β-diversity) postoperatively had greater increases in P1NP level (ρ = 0.48, P = .02) and greater bone loss at the femoral neck (ρ = -0.43, P = .04). In addition, within-participant shifts in microbial richness/evenness (α-diversity) were associated with changes in IGF-1 levels (ρ = 0.56, P < .01). The lower the postoperative fecal butyrate concentration, the lower the IGF-1 level (ρ = 0.43, P = .04). Meanwhile, the larger the decrease in butyrate concentration, the higher the postoperative CTx (ρ = -0.43, P = .04). These findings suggest that LSG-induced gut microbiome alteration may influence skeletal outcomes postoperatively, and microbial influences on butyrate formation and IGF-1 are possible mechanisms.
Collapse
Affiliation(s)
- Karin C Wu
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, United States
- Medical Services, San Francisco Veterans Affairs Health Care System, San Francisco, CA 94121, United States
| | - Kathryn E McCauley
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, United States
| | - Susan V Lynch
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, United States
| | - Renuka R Nayak
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, United States
- Medical Services, San Francisco Veterans Affairs Health Care System, San Francisco, CA 94121, United States
| | - Nicole J King
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, United States
- Medical Services, San Francisco Veterans Affairs Health Care System, San Francisco, CA 94121, United States
| | - Sheena Patel
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, United States
| | - Tiffany Y Kim
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, United States
- Medical Services, San Francisco Veterans Affairs Health Care System, San Francisco, CA 94121, United States
| | - Katherine Condra
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, United States
- Medical Services, San Francisco Veterans Affairs Health Care System, San Francisco, CA 94121, United States
| | - Doug Fadrosh
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, United States
| | - Dat Nguyen
- The Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Din L Lin
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, United States
| | - Kole Lynch
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, United States
| | - Stanley J Rogers
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, United States
| | - Jonathan T Carter
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, United States
| | - Andrew M Posselt
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, United States
| | - Lygia Stewart
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, United States
- Surgical Services, San Francisco Veterans Affairs Health Care System, San Francisco, CA 94121, United States
| | - Anne L Schafer
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, United States
- Medical Services, San Francisco Veterans Affairs Health Care System, San Francisco, CA 94121, United States
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94143, United States
| |
Collapse
|
21
|
Liu C, Cyphert EL, Stephen SJ, Wang B, Morales AL, Nixon JC, Natsoulas NR, Garcia M, Blazquez Carmona P, Vill AC, Donnelly EL, Brito IL, Vashishth D, Hernandez CJ. Microbiome-induced Increases and Decreases in Bone Tissue Strength can be Initiated After Skeletal Maturity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.574074. [PMID: 38260539 PMCID: PMC10802367 DOI: 10.1101/2024.01.03.574074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Recent studies in mice have indicated that the gut microbiome can regulate bone tissue strength. However, prior work involved modifications to the gut microbiome in growing animals and it is unclear if the same changes in the microbiome, applied later in life, would change matrix strength. Here we changed the composition of the gut microbiome before and/or after skeletal maturity (16 weeks of age) using oral antibiotics (ampicillin + neomycin). Male and female mice (n=143 total, n=12-17/group/sex) were allocated into five study groups:1) Unaltered, 2) Continuous (dosing 4-24 weeks of age), 3) Delayed (dosing only 16-24 weeks of age), 4) Initial (dosing 4-16 weeks of age, suspended at 16 weeks), and 5) Reconstituted (dosing from 4-16 weeks following by fecal microbiota transplant from Unaltered donors). Animals were euthanized at 24 weeks of age. In males, bone matrix strength in the femur was 25-35% less than expected from geometry in mice from the Continuous (p= 0.001), Delayed (p= 0.005), and Initial (p=0.040) groups as compared to Unaltered. Reconstitution of the gut microbiota, however, led to a bone matrix strength similar to Unaltered animals (p=0.929). In females, microbiome-induced changes in bone matrix strength followed the same trend as males but were not significantly different, demonstrating sex-related differences in the response of bone matrix to the gut microbiota. Minor differences in chemical composition of bone matrix were observed (Raman spectroscopy). Our findings indicate that microbiome-induced impairment of bone matrix in males can be initiated and/or reversed after skeletal maturity. The portion of the femoral cortical bone formed after skeletal maturity (16 weeks) is small; however, this suggests that microbiome-induced changes in bone matrix occur without osteoblast/osteoclast turnover using an, as of yet unidentified mechanism. These findings add to evidence that the mechanical properties of bone matrix can be altered in the adult skeleton.
Collapse
Affiliation(s)
- C Liu
- Departments of Orthopaedic Surgery and Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - E L Cyphert
- Departments of Orthopaedic Surgery and Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - S J Stephen
- Shirley Ann Jackson, PhD Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - B Wang
- Shirley Ann Jackson, PhD Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - A L Morales
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - J C Nixon
- Departments of Orthopaedic Surgery and Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
- Shirley Ann Jackson, PhD Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
- Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Spain
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Department of Material Science and Engineering, Cornell University, Ithaca, NY, USA
- Reseach Division, Hospital for Special Surgery, New York, NY, USA
- Rensselaer - Icahn School of Medicine at Mount Sinai Center for Engineering and Precision Medicine, New York, NY
- Chan Zuckerberg Biohub San Francisco, CA, US
| | - N R Natsoulas
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - M Garcia
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | | | - A C Vill
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - E L Donnelly
- Department of Material Science and Engineering, Cornell University, Ithaca, NY, USA
- Reseach Division, Hospital for Special Surgery, New York, NY, USA
| | - I L Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - D Vashishth
- Shirley Ann Jackson, PhD Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
- Rensselaer - Icahn School of Medicine at Mount Sinai Center for Engineering and Precision Medicine, New York, NY
| | - C J Hernandez
- Departments of Orthopaedic Surgery and Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
- Chan Zuckerberg Biohub San Francisco, CA, US
| |
Collapse
|
22
|
Li Y, Zhang Y, Cao M, Zhang R, Wu M, Rui Y, Liu N. The supplementation of Rothia as a potential preventive approach for bone loss in mice with ovariectomy-induced osteoporosis. Food Sci Nutr 2024; 12:340-353. [PMID: 38268892 PMCID: PMC10804113 DOI: 10.1002/fsn3.3747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 01/26/2024] Open
Abstract
There is an inseparable link between bone metabolism and gut microbiota, and the supplementation of probiotics exhibits a significant role in maintaining the homeostasis of gut microbiota and inhibiting bone loss. This study aims to explore the preventive and therapeutic potentials and the specific mechanisms of Rothia on osteoporosis. The mice models of osteoporosis induced by ovariectomy (OVX) were built, and the regular (once a day) and quantitative (200 μL/d) gavage of Rothia was performed for 8 weeks starting from 1 week after OVX. Microcomputed tomography was used to analyze the bone mass and bone microstructure of mice in each group after sacrifice. Histological staining and immunohistochemistry were then applied to identify the expression of pro-inflammatory cytokines, intestinal permeability, and osteogenic and osteoclastic activities of mice. The collected feces of mice in each group were used for 16S rRNA high-throughput sequencing to detect the alterations in composition, abundance, and diversity of gut microbiota. This study demonstrated that the gavage of Rothia alleviated bone loss in mice with OVX-induced osteoporosis, improved OVX-induced intestinal mucosal barrier injury, optimized intestinal permeability (zonula occludens protein 1 and occludin), reduced intestinal inflammation (tumor necrosis factor-α and interleukin-1β), and regulated imbalance of gut microbiota. Based on "gut-bone" axis, this study revealed that regular and quantitative gavage of Rothia can relieve bone loss in mice with OVX-induced osteoporosis by repairing the intestinal mucosal barrier injury, optimizing the intestinal permeability, inhibiting the release of pro-inflammatory cytokines, and improving the disorder of gut microbiota.
Collapse
Affiliation(s)
- Ying‐Juan Li
- Department of Geriatrics, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingJiangsuPR China
- School of MedicineSoutheast UniversityNanjingJiangsuPR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingJiangsuPR China
| | - Yuan‐Wei Zhang
- School of MedicineSoutheast UniversityNanjingJiangsuPR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingJiangsuPR China
- Department of Orthopaedics, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingJiangsuPR China
| | - Mu‐Min Cao
- School of MedicineSoutheast UniversityNanjingJiangsuPR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingJiangsuPR China
- Department of Orthopaedics, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingJiangsuPR China
| | - Ruo‐Lan Zhang
- School of MedicineSoutheast UniversityNanjingJiangsuPR China
| | - Meng‐Ting Wu
- School of MedicineSoutheast UniversityNanjingJiangsuPR China
| | - Yun‐Feng Rui
- School of MedicineSoutheast UniversityNanjingJiangsuPR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingJiangsuPR China
- Department of Orthopaedics, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingJiangsuPR China
| | - Nai‐Feng Liu
- School of MedicineSoutheast UniversityNanjingJiangsuPR China
- Department of Cardiology, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingJiangsuPR China
| |
Collapse
|
23
|
Kim T, Kim H. Pathophysiology and Therapeutic Management of Bone Loss in Patients with Critical Illness. Pharmaceuticals (Basel) 2023; 16:1718. [PMID: 38139844 PMCID: PMC10747168 DOI: 10.3390/ph16121718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/28/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Patients with critical illnesses are at higher risk of comorbidities, which can include bone mineral density loss, bone turnover marker increase, and fragility fractures. Patients admitted to intensive care units (ICUs) have a higher risk of bone fractures. Since hypermetabolism is a characteristic of ICU patients, such patients are often rapidly affected by systemic deterioration, which often results in systemic wasting disease. Major risk factors for ICU-related bone loss include physical restraint, inflammation, neuroendocrine stress, malnutrition, and medications. A medical history of critical illness should be acknowledged as a risk factor for impaired bone metabolism. Bone loss associated with ICU admission should be recognized as a key component of post-intensive care syndrome, and further research that focuses on treatment protocols and prevention strategies is required. Studies aimed at maintaining gut integrity have emphasized protein administration and nutrition, while research is ongoing to evaluate the therapeutic benefits of anti-resorptive agents and physical therapy. This review examines both current and innovative clinical strategies that are used for identifying risk factors of bone loss. It provides an overview of perioperative outcomes and discusses the emerging novel treatment modalities. Furthermore, the review presents future directions in the treatment of ICU-related bone loss.
Collapse
Affiliation(s)
- Taejin Kim
- Department of Urology, CHA University Ilsan Medical Center, CHA University School of Medicine, Goyang-si 10414, Republic of Korea;
| | - Hyojin Kim
- Division of Critical Care Medicine, Department of Anesthesiology and Pain Medicine, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong-si 14353, Republic of Korea
| |
Collapse
|
24
|
Waldbaum JD, Xhumari J, Akinsuyi OS, Arjmandi B, Anton S, Roesch LFW. Association between Dysbiosis in the Gut Microbiota of Primary Osteoporosis Patients and Bone Loss. Aging Dis 2023; 14:2081-2095. [PMID: 37199579 PMCID: PMC10676803 DOI: 10.14336/ad.2023.0425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/25/2023] [Indexed: 05/19/2023] Open
Abstract
In recent decades, gut microbiome research has experienced significant growth, driven by technological advances that enable quantifying bacterial taxa with greater precision. Age, diet, and living environment have emerged as three key factors influencing gut microbes. Dysbiosis, resulting from alterations in these factors, may lead to changes in bacterial metabolites that regulate pro- and anti-inflammatory processes and consequently impact bone health. Restoration of a healthy microbiome signature could mitigate inflammation and potentially reduce bone loss associated with osteoporosis or experienced by astronauts during spaceflight. However, current research is hindered by contradictory findings, insufficient sample sizes, and inconsistency in experimental conditions and controls. Despite progress in sequencing technology, defining a healthy gut microbiome across global populations remains elusive. Challenges persist in identifying accurate gut bacterial metabolics, specific taxa, and their effects on host physiology. We suggest greater attention be directed towards this issue in Western countries as the cost of treating osteoporosis in the United States reaches billions of dollars annually, with expenses projected to continue rising.
Collapse
Affiliation(s)
- Julien D.H. Waldbaum
- Department of Microbiology and Cell Science, College of Agriculture and Life Sciences, University of Florida, Florida, USA.
| | - Jessica Xhumari
- Department of Microbiology and Cell Science, College of Agriculture and Life Sciences, University of Florida, Florida, USA.
| | - Oluwamayowa S. Akinsuyi
- Department of Microbiology and Cell Science, College of Agriculture and Life Sciences, University of Florida, Florida, USA.
| | - Bahram Arjmandi
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Florida, USA.
| | - Stephen Anton
- Department of Physiology and Aging, College of Public Health and Health Professions, College of Medicine, University of Florida, Florida, USA.
| | - Luiz Fernando Wurdig Roesch
- Department of Microbiology and Cell Science, College of Agriculture and Life Sciences, University of Florida, Florida, USA.
| |
Collapse
|
25
|
Kharrazian D, Herbert M, Lambert J. The Relationships between Intestinal Permeability and Target Antibodies for a Spectrum of Autoimmune Diseases. Int J Mol Sci 2023; 24:16352. [PMID: 38003542 PMCID: PMC10671756 DOI: 10.3390/ijms242216352] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
The worldwide prevalence of autoimmune diseases that have limited treatment options and preventive strategies is rapidly rising. There is growing evidence that the microbiota and the integrity of the intestinal barrier play a role in autoimmune diseases. The potential to evaluate intestinal barrier integrity for susceptible individuals and to determine whether restoring intestinal junction integrity impacts autoimmune diseases is an important area of research that requires further attention. In the intestinal permeability model of autoimmune diseases, the breakdown of the intestinal tight junction proteins (zonulin/occludin) allows bacteria, toxins, undigested dietary proteins, and other antigens to pass into the lumen, thereby increasing the number of inflammatory reactions and the activation of immune cells throughout the body. In this study, we investigate the relationship between zonulin/occludin antibodies, which are used to determine intestinal permeability, with autoantibodies used to diagnose autoimmunity. Our investigation may identify significant levels of circulating autoantibodies in human subjects with intestinal permeability compared to those without intestinal permeability. Furthermore, we identified that significant positive linear correlations between serum occludin/zonulin antibodies and circulating autoantibodies could be used to determine autoimmune diseases.
Collapse
Affiliation(s)
- Datis Kharrazian
- Harvard Medical School, Boston, MA 02215, USA;
- Massachusetts General Hospital, Charlestown, MA 02114, USA
- Department of Preventive Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Martha Herbert
- Harvard Medical School, Boston, MA 02215, USA;
- Massachusetts General Hospital, Charlestown, MA 02114, USA
- Higher Synthesis Foundation, Cambridge, MA 02138, USA
| | - Jama Lambert
- Independent Researcher, Puerto Vallarta 48300, Jalisco, Mexico;
| |
Collapse
|
26
|
Evenepoel P, Stenvinkel P, Shanahan C, Pacifici R. Inflammation and gut dysbiosis as drivers of CKD-MBD. Nat Rev Nephrol 2023; 19:646-657. [PMID: 37488276 DOI: 10.1038/s41581-023-00736-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 07/26/2023]
Abstract
Two decades ago, Kidney Disease: Improving Global Outcomes coined the term chronic kidney disease-mineral and bone disorder (CKD-MBD) to describe the syndrome of biochemical, bone and extra-skeletal calcification abnormalities that occur in patients with CKD. CKD-MBD is a prevalent complication and contributes to the excessively high burden of fractures and cardiovascular disease, loss of quality of life and premature mortality in patients with CKD. Thus far, therapy has focused primarily on phosphate retention, abnormal vitamin D metabolism and parathyroid hormone disturbances, but these strategies have largely proved unsuccessful, thus calling for paradigm-shifting concepts and innovative therapeutic approaches. Interorgan crosstalk is increasingly acknowledged to have an important role in health and disease. Accordingly, mounting evidence suggests a role for both the immune system and the gut microbiome in bone and vascular biology. Gut dysbiosis, compromised gut epithelial barrier and immune cell dysfunction are prominent features of the uraemic milieu. These alterations might contribute to the inflammatory state observed in CKD and could have a central role in the pathogenesis of CKD-MBD. The emerging fields of osteoimmunology and osteomicrobiology add another level of complexity to the pathogenesis of CKD-MBD, but also create novel therapeutic opportunities.
Collapse
Affiliation(s)
- Pieter Evenepoel
- Laboratory of Nephrology, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Herestraat, Leuven, Belgium.
| | - Peter Stenvinkel
- Department of Renal Medicine M99, Karolinska University Hospital, Stockholm, Sweden
| | - Catherine Shanahan
- British Heart Foundation Centre of Excellence, School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, London, UK
| | - Roberto Pacifici
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory Microbiome Research Center, and Immunology and Molecular Pathogenesis Program, Emory University, Atlanta, GA, USA
| |
Collapse
|
27
|
Merrill LC, Mangano KM. Racial and Ethnic Differences in Studies of the Gut Microbiome and Osteoporosis. Curr Osteoporos Rep 2023; 21:578-591. [PMID: 37597104 DOI: 10.1007/s11914-023-00813-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/29/2023] [Indexed: 08/21/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the scientific evidence published in the past 5 years examining the epidemiology of bone health as it relates to the gut microbiome, across race and ethnicity groups. RECENT FINDINGS The link between the gut microbiome and bone health is well established and is supported by numerous biological mechanisms. However, human study research in this field is dominated by studies of older adults residing in Asian countries. A limited number of epidemiological and randomized controlled trials have been conducted with individuals in other countries; however, they are marked by their racial and ethnic homogeneity, use varied measures of the gut microbiome, and different interventions (where applicable), making comparisons across race and ethnic groups difficult. As the global prevalence of osteoporosis increases, the need for lifestyle interventions is critical. Existing data suggest that racial and ethnic differences in gut microbiome exist. Studies examining the relation between bone health and gut microbial structure and function across diverse racial and ethnic groups are needed to determine appropriate microbiome-based interventions.
Collapse
Affiliation(s)
- Lisa C Merrill
- Department of Public Health, University of Massachusetts Lowell, 61 Wilder Street, O'Leary 540, Lowell, MA, 01854, USA
| | - Kelsey M Mangano
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, 3 Solomont Way, Suite 4, Lowell, MA, 01854, USA.
| |
Collapse
|
28
|
Fu Z, Chen X, Xu C, Li G, Wu Y, Liu Q, Weng Z, Yan Q, Wang G, Gu A. Association of gut microbiota composition and craniosynostosis. Transl Pediatr 2023; 12:1464-1475. [PMID: 37692543 PMCID: PMC10485648 DOI: 10.21037/tp-23-76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/28/2023] [Indexed: 09/12/2023] Open
Abstract
Background Gut microbiota has been reported to be associated with a series of metabolic diseases including metabolic bone disease. However, study about gut microbiota and craniosynostosis (CS) is very rare. We aim to investigate the gut microbiota composition in CS patients and assess the possible relationship. Methods A total of 30 infants with CS and 30 infants with non-CS treated in Children's Hospital of Nanjing Medical University of Jiangsu Province from June 2021 to March 2022 were finally included in this study. All processing and analysis are carried out using 16S ribosomal RNA (rRNA) high-throughput gene sequencing. Results The CS group have significantly lower levels of family, genus, and species than non-CS group (all P<0.05). Furthermore, Staphylococcales and Lactobacillales at the order level, Enterococcaceae and Staphylococcaceae at the family level, and Enterococcus and Staphylococcus at the genus level were significantly enriched in the CS group (all P<0.05). Additionally, functional prediction showed that six metabolic pathways significantly differed between the two groups (all P<0.05). Of those, pathways involving polycyclic aromatic hydrocarbon degradation (P=0.030) and penicillin and cephalosporin biosynthesis (P=0.027) were more abundant in CS group than in non-CS group. Conclusions Gut microbiota was statistically associated with the development of CS, and several taxa and specific functional pathways with significantly altered abundance have been identified in CS patients. These findings can provide clues for the study on the mechanism and early diagnosis of CS.
Collapse
Affiliation(s)
- Zuqiang Fu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
- School of Public Health, Southeast University, Nanjing, China
| | - Xiu Chen
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Cheng Xu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Guang Li
- Department of Neurosurgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yuying Wu
- Department of Neurosurgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Qian Liu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Zhenkun Weng
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Qing Yan
- Department of Neurosurgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Gang Wang
- Department of Neurosurgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing, China
- School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
29
|
Vahidi G, Moody M, Welhaven HD, Davidson L, Rezaee T, Behzad R, Karim L, Roggenbeck BA, Walk ST, Martin SA, June RK, Heveran CM. Germ-Free C57BL/6 Mice Have Increased Bone Mass and Altered Matrix Properties but Not Decreased Bone Fracture Resistance. J Bone Miner Res 2023; 38:1154-1174. [PMID: 37221143 PMCID: PMC10530360 DOI: 10.1002/jbmr.4835] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/02/2023] [Accepted: 05/12/2023] [Indexed: 05/25/2023]
Abstract
The gut microbiome impacts bone mass, which implies a disruption to bone homeostasis. However, it is not yet clear how the gut microbiome affects the regulation of bone mass and bone quality. We hypothesized that germ-free (GF) mice have increased bone mass and decreased bone toughness compared with conventionally housed mice. We tested this hypothesis using adult (20- to 21-week-old) C57BL/6J GF and conventionally raised female and male mice (n = 6-10/group). Trabecular microarchitecture and cortical geometry were measured from micro-CT of the femur distal metaphysis and cortical midshaft. Whole-femur strength and estimated material properties were measured using three-point bending and notched fracture toughness. Bone matrix properties were measured for the cortical femur by quantitative back-scattered electron imaging and nanoindentation, and, for the humerus, by Raman spectroscopy and fluorescent advanced glycation end product (fAGE) assay. Shifts in cortical tissue metabolism were measured from the contralateral humerus. GF mice had reduced bone resorption, increased trabecular bone microarchitecture, increased tissue strength and decreased whole-bone strength that was not explained by differences in bone size, increased tissue mineralization and fAGEs, and altered collagen structure that did not decrease fracture toughness. We observed several sex differences in GF mice, most notably for bone tissue metabolism. Male GF mice had a greater signature of amino acid metabolism, and female GF mice had a greater signature of lipid metabolism, exceeding the metabolic sex differences of the conventional mice. Together, these data demonstrate that the GF state in C57BL/6J mice alters bone mass and matrix properties but does not decrease bone fracture resistance. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Ghazal Vahidi
- Department of Mechanical & Industrial Engineering; Montana State University, Bozeman MT 59717
| | - Maya Moody
- Department of Chemistry & Biochemistry; Montana State University, Bozeman MT 59717
| | - Hope D. Welhaven
- Department of Chemistry & Biochemistry; Montana State University, Bozeman MT 59717
| | - Leah Davidson
- Department of Chemical and Biological Engineering; University of Idaho, Moscow ID 83844
| | - Taraneh Rezaee
- Department of Bioengineering; University of Massachusetts, Dartmouth, MA 02747
| | - Ramina Behzad
- Department of Bioengineering; University of Massachusetts, Dartmouth, MA 02747
| | - Lamya Karim
- Department of Bioengineering; University of Massachusetts, Dartmouth, MA 02747
| | - Barbara A. Roggenbeck
- Department of Microbiology & Cell Biology, Montana State University; Bozeman MT 59717
| | - Seth T. Walk
- Department of Microbiology & Cell Biology, Montana State University; Bozeman MT 59717
| | - Stephan A. Martin
- Translational Biomarkers Core Laboratory; Center for American Indian and Rural Health Equity; Montana State University, Bozeman MT 59717
| | - Ronald K. June
- Department of Mechanical & Industrial Engineering; Montana State University, Bozeman MT 59717
| | - Chelsea M. Heveran
- Department of Mechanical & Industrial Engineering; Montana State University, Bozeman MT 59717
| |
Collapse
|
30
|
Golchin A, Ranjbarvan P, Parviz S, Shokati A, Naderi R, Rasmi Y, Kiani S, Moradi F, Heidari F, Saltanatpour Z, Alizadeh A. The role of probiotics in tissue engineering and regenerative medicine. Regen Med 2023; 18:635-657. [PMID: 37492007 DOI: 10.2217/rme-2022-0209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023] Open
Abstract
Tissue engineering and regenerative medicine (TERM) as an emerging field is a multidisciplinary science and combines basic sciences such as biomaterials science, biology, genetics and medical sciences to achieve functional TERM-based products to regenerate or replace damaged or diseased tissues or organs. Probiotics are useful microorganisms which have multiple effective functions on human health. They have some immunomodulatory and biocompatibility effects and improve wound healing. In this article, we describe the latest findings on probiotics and their pro-healing properties on various body systems that are useable in regenerative medicine. Therefore, this review presents a new perspective on the therapeutic potential of probiotics for TERM.
Collapse
Affiliation(s)
- Ali Golchin
- Cellular & Molecular Research Center, Cellular & Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
- Department of Clinical Biochemistry & Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
| | - Parviz Ranjbarvan
- Cellular & Molecular Research Center, Cellular & Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
- Department of Clinical Biochemistry & Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
| | - Shima Parviz
- Department of Tissue Engineering & Applied cell sciences, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, 71348-14336, Iran
| | - Amene Shokati
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Roya Naderi
- Neurophysiology Research center & Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
| | - Yousef Rasmi
- Cellular & Molecular Research Center & Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
| | - Samaneh Kiani
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, 48157-33971, Iran
| | - Faezeh Moradi
- Department of Tissue engineering, Medical Sciences Faculty, Tarbiat Modares University, Tehran, 14117-13116, Iran
| | - Fahimeh Heidari
- Department of Molecular Medicine, School of Advanced Medical Sciences & Technologies, Shiraz University of Medical Sciences, Shiraz, 71348-14336, Iran
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, 71348-14336, Iran
| | - Zohreh Saltanatpour
- Pediatric Cell & Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
- Stem Cell & Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Akram Alizadeh
- Nervous System Stem Cells Research Center & Department of Tissue Engineering & Applied Cell Sciences, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, 35147-99422, Iran
| |
Collapse
|
31
|
Xu J, Chen C, Gan S, Liao Y, Fu R, Hou C, Yang S, Zheng Z, Chen W. The Potential Value of Probiotics after Dental Implant Placement. Microorganisms 2023; 11:1845. [PMID: 37513016 PMCID: PMC10383117 DOI: 10.3390/microorganisms11071845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Dental implantation is currently the optimal solution for tooth loss. However, the health and stability of dental implants have emerged as global public health concerns. Dental implant placement, healing of the surgical site, osseointegration, stability of bone tissues, and prevention of peri-implant diseases are challenges faced in achieving the long-term health and stability of implants. These have been ongoing concerns in the field of oral implantation. Probiotics, as beneficial microorganisms, play a significant role in the body by inhibiting pathogens, promoting bone tissue homeostasis, and facilitating tissue regeneration, modulating immune-inflammatory levels. This review explores the potential of probiotics in addressing post-implantation challenges. We summarize the existing research regarding the importance of probiotics in managing dental implant health and advocate for further research into their potential applications.
Collapse
Affiliation(s)
- Jia Xu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chenfeng Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of General Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shuaiqi Gan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yihan Liao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ruijie Fu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chuping Hou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shuhan Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zheng Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Jinjiang Out-Patient Section, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
32
|
Campaniello D, Bevilacqua A, Speranza B, Racioppo A, Sinigaglia M, Corbo MR. A narrative review on the use of probiotics in several diseases. Evidence and perspectives. Front Nutr 2023; 10:1209238. [PMID: 37497058 PMCID: PMC10368401 DOI: 10.3389/fnut.2023.1209238] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
Gut microbiota is a complex ecosystem, strictly linked to health and disease, as a balanced composition (referred as eubiosis) is necessary for several physiological functions, while an unbalanced composition (dysbiosis) is often associated to pathological conditions and/or diseases. An altered microbiota could be positively affected and partially restored through probiotic supplementation, among others. This review addresses the effects of probiotics in several conditions, used as case-studies (colorectal cancer, neuro-psychiatric diseases, intestinal diseases, obesity, diabetes, metabolic syndrome, immune system, and musculoskeletal system disorders) by pointing out the clinical outcomes, the mode of action, mainly related to the production of short chain fatty acids (SCFA), the impact of probiotic dose and mode of supplementation, as well as trying to highlight a hit of the most used genera.
Collapse
|
33
|
McGuire BD, Dees A, Hao L, Buckendahl P, Ogilvie AR, Sun H, Rezaee T, Barrett LO, Karim L, Dominguez-Bello MG, Bello NT, Shapses SA. A vitamin D deficient diet increases weight gain and compromises bone biomechanical properties without a reduction in BMD in adult female mice. J Steroid Biochem Mol Biol 2023; 231:106314. [PMID: 37088440 DOI: 10.1016/j.jsbmb.2023.106314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/27/2023] [Accepted: 04/20/2023] [Indexed: 04/25/2023]
Abstract
Vitamin D contributes to the development and maintenance of bone. Evidence suggests vitamin D status can also alter energy balance and gut health. In young animals, vitamin D deficiency (VDD) negatively affects bone mineral density (BMD) and bone microarchitecture, and these effects may also occur due to chronic ethanol intake. However, evidence is limited in mature models, and addressing this was a goal of the current study. Seven-month-old female C57BL/6 mice (n = 40) were weight-matched and randomized to one of four ad libitum diets: control, alcohol (Alc), vitamin D deficient (0 IU/d), or Alc+VDD for 8 weeks. A purified (AIN-93) diet was provided with water or alcohol (10 %) ad libitum. Body weight and food intake were recorded weekly, and feces were collected at 0, 4, and 8 weeks. At the age of 9 months, intestinal permeability was assessed by oral gavage of fluorescein isothiocyanate-dextran. Thereafter, bone mineral density (BMD) was measured by dual-energy X-ray absorptiometry. The microarchitecture of the distal femur was assessed by micro-computed tomography and biomechanical properties were evaluated by cyclic reference point indentation. VDD did not affect BMD or most bone microarchitecture parameters, however, the polar moment of inertia (p < 0.05) was higher in the VDD groups compared to vitamin D sufficient groups. VDD mice also had lower whole bone water content (p < 0.05) and a greater average unloading slope (p < 0.01), and energy dissipated (p < 0.01), indicating the femur displayed a brittle phenotype. In addition, VDD caused a greater increase in energy intake (p < 0.05), weight gain (p < 0.05), and a trend for higher intestinal permeability (p = 0.08). The gut microbiota of the VDD group had a reduction in alpha diversity (p < 0.05) and a lower abundance of ASVs from Rikenellaceae, Clostridia_UCG-014, Oscillospiraceae, and Lachnospiraceae (p < 0.01). There was little to no effect of alcohol supplementation on outcomes. Overall, these findings suggest that vitamin D deficiency causes excess weight gain and reduces the biomechanical strength of the femur as indicated by the higher average unloading slope and energy dissipated without an effect on BMD in a mature murine model.
Collapse
Affiliation(s)
- Brandon D McGuire
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Azra Dees
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Lihong Hao
- Department of Animal Sciences, Rutgers University, New Brunswick, NJ, USA
| | | | - Anna R Ogilvie
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Haipeng Sun
- Department of Microbiology and Biochemistry, New Brunswick, NJ, USA
| | - Taraneh Rezaee
- Department of Bioengineering, University of Massachusetts Dartmouth, Dartmouth, MA 02747, USA
| | - Leland O Barrett
- Department of Bioengineering, University of Massachusetts Dartmouth, Dartmouth, MA 02747, USA
| | - Lamya Karim
- Department of Bioengineering, University of Massachusetts Dartmouth, Dartmouth, MA 02747, USA
| | - Maria Gloria Dominguez-Bello
- Department of Microbiology and Biochemistry, New Brunswick, NJ, USA; NJ Institute of Food, Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
| | - Nicholas T Bello
- Department of Animal Sciences, Rutgers University, New Brunswick, NJ, USA; NJ Institute of Food, Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
| | - Sue A Shapses
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA; NJ Institute of Food, Nutrition and Health, Rutgers University, New Brunswick, NJ, USA; Department of Medicine, Rutgers-Robert Wood Johnson Univ. Hospital, New Brunswick, NJ, USA.
| |
Collapse
|
34
|
Bedree JK, Kerns K, Chen T, Lima BP, Liu G, Ha P, Shi J, Pan HC, Kim JK, Tran L, Minot SS, Hendrickson EL, Lamont EI, Schulte F, Hardt M, Stephens D, Patel M, Kokaras A, Stodieck L, Shirazi-Fard Y, Wu B, Kwak JH, Ting K, Soo C, McLean JS, He X, Shi W. Specific host metabolite and gut microbiome alterations are associated with bone loss during spaceflight. Cell Rep 2023; 42:112299. [PMID: 37080202 PMCID: PMC10344367 DOI: 10.1016/j.celrep.2023.112299] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 10/30/2022] [Accepted: 03/07/2023] [Indexed: 04/22/2023] Open
Abstract
Understanding the axis of the human microbiome and physiological homeostasis is an essential task in managing deep-space-travel-associated health risks. The NASA-led Rodent Research 5 mission enabled an ancillary investigation of the gut microbiome, varying exposure to microgravity (flight) relative to ground controls in the context of previously shown bone mineral density (BMD) loss that was observed in these flight groups. We demonstrate elevated abundance of Lactobacillus murinus and Dorea sp. during microgravity exposure relative to ground control through whole-genome sequencing and 16S rRNA analyses. Specific functionally assigned gene clusters of L. murinus and Dorea sp. capable of producing metabolites, lactic acid, leucine/isoleucine, and glutathione are enriched. These metabolites are elevated in the microgravity-exposed host serum as shown by liquid chromatography-tandem mass spectrometry (LC-MS/MS) metabolomic analysis. Along with BMD loss, ELISA reveals increases in osteocalcin and reductions in tartrate-resistant acid phosphatase 5b signifying additional loss of bone homeostasis in flight.
Collapse
Affiliation(s)
- Joseph K Bedree
- Section of Oral Biology, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Microbiology, The Forsyth Institute, Cambridge, MA 02142, USA.
| | - Kristopher Kerns
- Department of Periodontics, School of Dentistry, University of Washington, Seattle, WA 98195, USA
| | - Tsute Chen
- Department of Microbiology, The Forsyth Institute, Cambridge, MA 02142, USA; Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Bruno P Lima
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Guo Liu
- Section of Oral Biology, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Pin Ha
- Section of Orthodontics, Division of Growth & Development, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Division of Plastic and Reconstructive Surgery, School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jiayu Shi
- Section of Oral Biology, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hsin Chuan Pan
- Section of Oral Biology, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jong Kil Kim
- Section of Oral Biology, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Luan Tran
- Section of Oral Biology, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Samuel S Minot
- Microbiome Research Initiative, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Erik L Hendrickson
- Department of Periodontics, School of Dentistry, University of Washington, Seattle, WA 98195, USA
| | - Eleanor I Lamont
- Department of Periodontics, School of Dentistry, University of Washington, Seattle, WA 98195, USA
| | - Fabian Schulte
- Forsyth Center for Salivary Diagnostics, Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA 02142, USA; Harvard School of Dental Medicine, Department of Developmental Biology, Boston, MA 02115, USA
| | - Markus Hardt
- Forsyth Center for Salivary Diagnostics, Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA 02142, USA; Harvard School of Dental Medicine, Department of Developmental Biology, Boston, MA 02115, USA
| | - Danielle Stephens
- Multiplex Core, Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA 02142, USA
| | - Michele Patel
- Multiplex Core, Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA 02142, USA
| | - Alexis Kokaras
- Department of Microbiology, The Forsyth Institute, Cambridge, MA 02142, USA
| | - Louis Stodieck
- BioServe Space Technologies, Department of Aerospace Engineering Sciences, University of Colorado, Boulder, CO 80303, USA
| | - Yasaman Shirazi-Fard
- Bone and Signaling Laboratory, Space Biosciences Division, NASA Ames Research Center, Mail Stop 288-2, Moffett Field, CA 94035, USA
| | - Benjamin Wu
- Department of Bioengineering, School of Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jin Hee Kwak
- Section of Orthodontics, Division of Growth & Development, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kang Ting
- Section of Orthodontics, Division of Growth & Development, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chia Soo
- Division of Plastic and Reconstructive Surgery, School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Orthopedic Surgery, School of Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jeffrey S McLean
- Department of Periodontics, School of Dentistry, University of Washington, Seattle, WA 98195, USA
| | - Xuesong He
- Department of Microbiology, The Forsyth Institute, Cambridge, MA 02142, USA; Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Wenyuan Shi
- Department of Microbiology, The Forsyth Institute, Cambridge, MA 02142, USA.
| |
Collapse
|
35
|
Sharma MK, Regmi P, Applegate T, Chai L, Kim WK. Osteoimmunology: A Link between Gastrointestinal Diseases and Skeletal Health in Chickens. Animals (Basel) 2023; 13:1816. [PMID: 37889704 PMCID: PMC10251908 DOI: 10.3390/ani13111816] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 09/29/2023] Open
Abstract
Bone serves as a multifunctional organ in avian species, giving structural integrity to the body, aiding locomotion and flight, regulating mineral homeostasis, and supplementing calcium for eggshell formation. Furthermore, immune cells originate and reside in the bone marrow, sharing a milieu with bone cells, indicating a potential interaction in functions. In avian species, the prevalence of gastrointestinal diseases can alter the growth and the immune response, which costs a great fortune to the poultry industry. Previous studies have shown that coccidiosis and necrotic enteritis can dramatically reduce bone quality as well. However, possible mechanisms on how bone quality is influenced by these disease conditions have not yet been completely understood, other than the reduced feed intake. On the other hand, several mediators of the immune response, such as chemokines and cytokines, play a vital role in the differentiation and activation of osteoclasts responsible for bone resorption and osteoblasts for bone formation. In the case of Eimeria spp./Clostridium perfringens coinfection, these mediators are upregulated. One possible mechanism for accelerated bone loss after gastrointestinal illnesses might be immune-mediated osteoclastogenesis via cytokines-RANKL-mediated pathways. This review article thus focuses on osteoimmunological pathways and the interaction between host immune responses and bone biology in gastrointestinal diseases like coccidiosis and necrotic enteritis affecting skeletal health.
Collapse
Affiliation(s)
| | | | | | | | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA; (M.K.S.); (P.R.); (T.A.); (L.C.)
| |
Collapse
|
36
|
Wang X, Wu Y, Liu Y, Chen F, Chen S, Zhang F, Li S, Wang C, Gong Y, Huang R, Hu M, Ning Y, Zhao H, Guo X. Altered gut microbiome profile in patients with knee osteoarthritis. Front Microbiol 2023; 14:1153424. [PMID: 37250055 PMCID: PMC10213253 DOI: 10.3389/fmicb.2023.1153424] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Osteoarthritis (OA) is a kind of chronic, degenerative disorder with unknown causes. In this study, we aimed to improve our understanding of the gut microbiota profile in patients with knee OA. Methods 16S rDNA gene sequencing was performed to detect the gut microbiota in fecal samples collected from the patients with OA (n = 32) and normal control (NC, n = 57). Then the metagenomic sequencing was used to identify the genes or functions linked with gut microbial changes at the species level in the fecal samples from patients with OA and NC groups. Results The Proteobacteria was identified as dominant bacteria in OA group. We identified 81 genera resulted significantly different in abundance between OA and NC. The abundance of Agathobacter, Ruminococcus, Roseburia, Subdoligranulum, and Lactobacillus showed significant decrease in the OA compared to the NC. The abundance of genera Prevotella_7, Clostridium, Flavonifractor and Klebsiella were increasing in the OA group, and the families Lactobacillaceae, Christensenellaceae, Clostridiaceae_1 and Acidaminococcaceae were increasing in the NC. The metagenomic sequencing showed that the abundance of Bacteroides stercoris, Bacteroides vulgatus and Bacteroides uniformis at the species level were significantly decreasing in the OA, and the abundance of Escherichia coli, Klebsiella pneumoniae, Shigella flexneri and Streptococcus salivarius were significantly increased in OA. Discussion The results of our study interpret a comprehensive profile of the gut microbiota in patients with knee OA and offer the evidence that the cartilage-gut-microbiome axis could play a crucial role in underlying the mechanisms and pathogenesis of OA.
Collapse
Affiliation(s)
- Xi Wang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an, Shaanxi, China
| | - Yifan Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Yanli Liu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Feihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Sijie Chen
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an, Shaanxi, China
| | - Feiyu Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an, Shaanxi, China
| | - Shujin Li
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an, Shaanxi, China
| | - Chaowei Wang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Yi Gong
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Ruitian Huang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Minhan Hu
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an, Shaanxi, China
| | - Yujie Ning
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an, Shaanxi, China
| | - Hongmou Zhao
- Foot and Ankle Surgery Department, Honghui Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an, Shaanxi, China
- Clinical Research Center for Endemic Disease of Shaanxi Province, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
37
|
Yang J, Wu J. Discovery of potential biomarkers for osteoporosis diagnosis by individual omics and multi-omics technologies. Expert Rev Mol Diagn 2023:1-16. [PMID: 37140363 DOI: 10.1080/14737159.2023.2208750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
INTRODUCTION Global aging has made osteoporosis an increasingly serious public health problem. Osteoporotic fractures seriously affect the quality of life of patients and increase disability and mortality rates. Early diagnosis is important for timely intervention. The continuous development of individual- and multi-omics methods is helpful for the exploration and discovery of biomarkers for the diagnosis of osteoporosis. AREAS COVERED In this review, we first introduce the epidemiological status of osteoporosis and then describe the pathogenesis of osteoporosis. Furthermore, the latest progress in individual- and multi-omics technologies for exploring biomarkers for osteoporosis diagnosis is summarized. Moreover, we clarify the advantages and disadvantages of the application of osteoporosis biomarkers obtained using the omics method. Finally, we put forward valuable views on the future research direction of diagnostic biomarkers of osteoporosis. EXPERT OPINION Omics methods undoubtedly provide greatly contribute to the exploration of diagnostic biomarkers of osteoporosis; however, in the future, the clinical validity and clinical utility of the obtained potential biomarkers should be thoroughly examined. In addition, the improvement and optimization of the detection methods for different types of biomarkers and standardization of the detection process guarantee the reliability and accuracy of the detection results.
Collapse
Affiliation(s)
- Jing Yang
- Department of Clinical Laboratory Medicine, Beijing Jishuitan Hospital, Peking University, Beijing, China
| | - Jun Wu
- Department of Clinical Laboratory Medicine, Beijing Jishuitan Hospital, Peking University, Beijing, China
| |
Collapse
|
38
|
Abstract
Immune cells play an important functional role in bone fracture healing. Fracture repair is a well-choreographed process that takes approximately 21 days in healthy mice. While the process is complex, conceptually it can be divided into four overlapping stages: inflammation, cartilaginous callus formation, bony callus formation, and remodeling. T cells play a key role in both the cartilaginous and bony callus phases by producing IL-17A. In this issue of the JCI, Dar et al. showed that T cells were recruited from the gut, where the gut microbiota determined the pool of T cells that expressed IL-17A. Treatment with antibiotics and dysbiosis reduced the expansion of IL-17-expressing CD4+ T cells (Th17) and impaired callus formation. These findings demonstrate crosstalk among the gut microbiota, the adaptive immune system, and bone that has clinical implications for fracture healing.
Collapse
Affiliation(s)
- Rajeev Aurora
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Matthew J. Silva
- Department of Orthopedics, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
39
|
Jackova Z, Stepan JJ, Coufal S, Kostovcik M, Galanova N, Reiss Z, Pavelka K, Wenchich L, Hruskova H, Kverka M. Interindividual differences contribute to variation in microbiota composition more than hormonal status: A prospective study. Front Endocrinol (Lausanne) 2023; 14:1139056. [PMID: 37033235 PMCID: PMC10081494 DOI: 10.3389/fendo.2023.1139056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/13/2023] [Indexed: 04/11/2023] Open
Abstract
Aims Ovarian hormone deficiency is one of the main risk factors for osteoporosis and bone fractures in women, and these risks can be mitigated by menopausal hormone therapy. Recent evidence suggests that gut microbiota may link changes in estrogen levels and bone metabolism. This study was conducted to investigate the potential relationship between hormonal and bone changes induced by oophorectomy and subsequent hormonal therapy and shifts in gut microbiota composition. Methods We collected 159 stool and blood samples in several intervals from 58 women, who underwent bilateral oophorectomy. Changes in fecal microbiota were assessed in paired samples collected from each woman before and after oophorectomy or the start of hormone therapy. Bacterial composition was determined by sequencing the 16S rRNA gene on Illumina MiSeq. Blood levels of estradiol, FSH, biomarkers of bone metabolism, and indices of low-grade inflammation were measured using laboratory analytical systems and commercial ELISA. Areal bone mineral density (BMD) of the lumbar spine, proximal femur, and femur neck was measured using dual-energy X-ray absorptiometry. Results We found no significant changes in gut microbiota composition 6 months after oophorectomy, despite major changes in hormone levels, BMD, and bone metabolism. A small decrease in bacterial diversity was apparent 18 months after surgery in taxonomy-aware metrics. Hormonal therapy after oophorectomy prevented bone loss but only marginally affected gut microbiota. There were no significant differences in β-diversity related to hormonal status, although several microbes (e.g., Lactococcus lactis) followed estrogen levels. Body mass index (BMI) was the most significantly associated with microbiota variance. Microbiota was not a suitable predictive factor for the state of bone metabolism. Conclusions We conclude that neither the loss of estrogens due to oophorectomy nor their gain due to subsequent hormonal therapy is associated with a specific gut microbiota signature. Sources of variability in microbiota composition are more related to interindividual differences than hormonal status.
Collapse
Affiliation(s)
- Zuzana Jackova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology, Czech Academy of Sciences, Prague, Czechia
| | - Jan J. Stepan
- Institute of Rheumatology, Prague, Czechia
- Department of Rheumatology, First Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Stepan Coufal
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology, Czech Academy of Sciences, Prague, Czechia
| | - Martin Kostovcik
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czechia
| | - Natalie Galanova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology, Czech Academy of Sciences, Prague, Czechia
| | - Zuzana Reiss
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology, Czech Academy of Sciences, Prague, Czechia
| | - Karel Pavelka
- Institute of Rheumatology, Prague, Czechia
- Department of Rheumatology, First Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | | | - Hana Hruskova
- Department of Obstetrics and Gynecology, Charles University in Prague, First Faculty of Medicine, Prague, Czechia
- General University Hospital in Prague, Prague, Czechia
| | - Miloslav Kverka
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology, Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
40
|
Ferrillo M, Giudice A, Migliario M, Renó F, Lippi L, Calafiore D, Marotta N, de Sire R, Fortunato L, Ammendolia A, Invernizzi M, de Sire A. Oral-Gut Microbiota, Periodontal Diseases, and Arthritis: Literature Overview on the Role of Probiotics. Int J Mol Sci 2023; 24:4626. [PMID: 36902056 PMCID: PMC10003001 DOI: 10.3390/ijms24054626] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
Periodontal diseases are oral inflammatory diseases affecting the tissues supporting and surrounding the teeth and include gingivitis and periodontitis. Oral pathogens may lead to microbial products spreading into the systemic circulation and reaching distant organs, while periodontal diseases have been related to low-grade systemic inflammation. Gut and oral microbiota alterations might play a role in the pathogenesis of several autoimmune and inflammatory diseases including arthritis, considering the role of the gut-joint axis in the regulation of molecular pathways involved in the pathogenesis of these conditions. In this scenario, it is hypothesized that probiotics might contribute to the oral and intestinal micro-ecological balance and could reduce low-grade inflammation typical of periodontal diseases and arthritis. This literature overview aims to summarize state-of-the-art ideas about linkages among oral-gut microbiota, periodontal diseases, and arthritis, while investigating the role of probiotics as a potential therapeutic intervention for the management of both oral diseases and musculoskeletal disorders.
Collapse
Affiliation(s)
- Martina Ferrillo
- Dentistry Unit, Department of Health Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
| | - Amerigo Giudice
- Dentistry Unit, Department of Health Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
| | - Mario Migliario
- Dentistry Unit, Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy
| | - Filippo Renó
- Innovative Research Laboratory for Wound Healing, Health Sciences Department, University of Eastern Piedmont, 28100 Novara, Italy
| | - Lorenzo Lippi
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy
- Translational Medicine, Dipartimento Attività Integrate Ricerca e Innovazione (DAIRI), Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| | - Dario Calafiore
- Physical Medicine and Rehabilitation Unit, Department of Neurosciences, ASST Carlo Poma, 46100 Mantova, Italy
| | - Nicola Marotta
- Physical Medicine and Rehabilitation Unit, Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
| | - Roberto de Sire
- Gastroenterology Unit, Department of Clinical Medicine and Surgery, University Federico II of Naples, 80126 Naples, Italy
| | - Leonzio Fortunato
- Dentistry Unit, Department of Health Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
| | - Antonio Ammendolia
- Physical Medicine and Rehabilitation Unit, Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
| | - Marco Invernizzi
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy
- Translational Medicine, Dipartimento Attività Integrate Ricerca e Innovazione (DAIRI), Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| | - Alessandro de Sire
- Physical Medicine and Rehabilitation Unit, Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
| |
Collapse
|
41
|
Bone loss is ameliorated by fecal microbiota transplantation through SCFA/GPR41/ IGF1 pathway in sickle cell disease mice. Sci Rep 2022; 12:20638. [PMID: 36450880 PMCID: PMC9712597 DOI: 10.1038/s41598-022-25244-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Bone loss is common in sickle cell disease (SCD), but the molecular mechanisms is unclear. Serum insulin-like growth factor 1 (IGF1) was low in SCD subjects and SCD mice. To determine if decreased IGF1 associated with low bone mass in SCD is due to reduced SCFA production by gut microbiota, we performed reciprocal fecal microbiota transplantation (FMT) between healthy control (Ctrl) and SCD mice. uCT and histomorphometry analysis of femur showed decreased bone volume/total volume (BV/TV), trabecular number (Tb.N), osteoblast surface/bone surface (Ob.S/BS), mineralizing surface/ bone surface (MS/BS), inter-label thickness (Ir.L.Th) in SCD mice were significantly improved after receiving Ctrl feces. Bone formation genes Alp, Col1, Runx2, and Dmp1 from SCD mice were significantly decreased and were rescued after FMT from Ctrl feces. Transplantation of Ctrl feces increased the butyrate, valerate, and propionate levels in cecal content of SCD mice. Decreased G-coupled protein receptors 41 and 43 (GPR41 and GPR43) mRNA in tibia and lower IGF1 in bone and serum of SCD mice were partially restored after FMT from Ctrl feces. These data indicate that the healthy gut microbiota of Ctrl mice is protective for SCD bone loss through regulating IGF1 in response to impaired bacterial metabolites SCFAs.
Collapse
|
42
|
Yang J, Liu W. The Role of AIM2 Inflammasome in Knee Osteoarthritis. J Inflamm Res 2022; 15:6453-6461. [PMID: 36467990 PMCID: PMC9717587 DOI: 10.2147/jir.s392652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Knee osteoarthritis (KOA), whose prevalence keeps rising, is still unsolved pathobiological/therapeutical problem. Historically, knee osteoarthritis was thought to be a "wear and tear" disease, while recent etiology hypotheses stressed it as a chronic, low-grade inflammatory disease. Inflammasomes mediated by the innate immunity systems have an important role in inflammatory diseases including KOA. A deluge of recent studies focused on the NLRP3 inflammasome with suggestions that its pharmacologic block would hinder degeneration. However, known inflammasomes are numerous and can also trigger IL-1β/IL-18 production and cells' pyroptotic death. Among them, AIM2 inflammasome is involved in key aspects of various acute and chronic inflammatory diseases. Therefore, while presently leaving out little-studied inflammasomes in KOA, this review focuses on the AIM2 inflammasomes that participate in KOA's complex mechanisms in conjunction with the activation of AIM2 inflammasomes in other diseases combined with the current studies on KOA mechanisms. Although human-specific data about it are relatively scant, we stress that only a holistic view including several inflammasomes including AIM2 inflammasome and other potential pathogenetic drivers will lead to successful therapy for knee osteoarthritis.
Collapse
Affiliation(s)
- Jiyong Yang
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510095, People’s Republic of China
| | - Wengang Liu
- Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, 510095, People’s Republic of China
- Correspondence: Wengang Liu, Orthopedics Department, Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, 510095, People’s Republic of China, Email
| |
Collapse
|
43
|
Zemanova N, Omelka R, Mondockova V, Kovacova V, Martiniakova M. Roles of Gut Microbiome in Bone Homeostasis and Its Relationship with Bone-Related Diseases. BIOLOGY 2022; 11:1402. [PMID: 36290306 PMCID: PMC9598716 DOI: 10.3390/biology11101402] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022]
Abstract
The extended microbial genome-the gut microbiome (GM)-plays a significant role in host health and disease. It is able to influence a number of physiological functions. During dysbiosis, GM is associated with the development of various chronic diseases with impaired bone quality. In general, GM is important for bone homeostasis and can affect it via several mechanisms. This review describes the roles of GM in bone homeostasis through influencing the immune and endocrine functions, short-chain fatty acids production, calcium absorption and the gut-brain axis. The relationship between GM composition and several bone-related diseases, specifically osteoporosis, osteoarthritis, rheumatoid arthritis, diabetes mellitus, obesity and bone cancer, is also highlighted and summarized. GM manipulation may become a future adjuvant therapy in the prevention of many chronic diseases. Therefore, the beneficial effects of probiotic therapy to improve the health status of individuals with aforementioned diseases are provided, but further studies are needed to clearly confirm its effectiveness. Recent evidence suggests that GM is responsible for direct and indirect effects on drug efficacy. Accordingly, various GM alterations and interactions related to the treatment of bone-related diseases are mentioned as well.
Collapse
Affiliation(s)
- Nina Zemanova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia
| | - Vladimira Mondockova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia
| | - Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia
| |
Collapse
|
44
|
Liu L, Tian F, Li GY, Xu W, Xia R. The effects and significance of gut microbiota and its metabolites on the regulation of osteoarthritis: Close coordination of gut-bone axis. Front Nutr 2022; 9:1012087. [PMID: 36204373 PMCID: PMC9530816 DOI: 10.3389/fnut.2022.1012087] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) is a common chronic degenerative disease of articular cartilage in middle-aged and older individuals, which can result in the joint pain and dysfunction, and even cause the joint deformity or disability. With the enhancing process of global aging, OA has gradually become a major public health problem worldwide. Explaining pathogenesis of OA is critical for the development of new preventive and therapeutic interventions. In recent years, gut microbiota (GM) has been generally regarded as a “multifunctional organ,” which is closely relevant with a variety of immune, metabolic and inflammatory functions. Meanwhile, more and more human and animal researches have indicated the existence of gut-bone axis and suggested that GM and its metabolites are closely involved in the pathogenic process of OA, which might become a potential and promising intervention target. Based on the close coordination of gut-bone axis, this review aims to summarize and discuss the mechanisms of GM and its metabolites influencing OA from the aspects of the intestinal mucosal barrier modulation, intestinal metabolites modulation, immune modulation and strategies for the prevention or treatment of OA based on perspectives of GM and its metabolites, thus providing a profound knowledge and recognition of it.
Collapse
|
45
|
Critical illness and bone metabolism: where are we now and what is next? Eur J Med Res 2022; 27:177. [PMID: 36104724 PMCID: PMC9472372 DOI: 10.1186/s40001-022-00805-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/02/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractCritical illness refers to the clinical signs of severe, variable and life-threatening critical conditions, often accompanied by insufficiency or failure of one or more organs. Bone health of critically ill patients is severely affected during and after ICU admission. Therefore, clinical work should focus on ICU-related bone loss, and early development and implementation of related prevention and treatment strategies: optimized and personalized nutritional support (high-quality protein, trace elements and intestinal prebiotics) and appropriate physiotherapy and muscle training should be implemented as early as possible after ICU admission and discharge. At the same time, the drug regulates excessive metabolism and resists osteoporosis.
Collapse
|
46
|
Elam RE, Bůžková P, Barzilay JI, Wang Z, Nemet I, Budoff MJ, Cauley JA, Fink HA, Lee Y, Robbins JA, Wang M, Hazen SL, Mozaffarian D, Carbone LD. Trimethylamine N-oxide and hip fracture and bone mineral density in older adults: The cardiovascular health study. Bone 2022; 161:116431. [PMID: 35577327 PMCID: PMC10712255 DOI: 10.1016/j.bone.2022.116431] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022]
Abstract
CONTEXT Gut microbiota-derived metabolite trimethylamine N-oxide (TMAO) may adversely affect bone by inducing oxidative stress. Whether this translates into increased fracture risk in older adults is uncertain. OBJECTIVE Determine the associations of plasma TMAO with hip fracture and bone mineral density (BMD) in older adults. DESIGN AND SETTING Cox hazard models and linear regression stratified by sex examined the associations of TMAO with hip fracture and BMD in the longitudinal cohort of the Cardiovascular Health Study. PARTICIPANTS 5019 U.S. adults aged ≥65 years. EXPOSURE Plasma TMAO. MAIN OUTCOME MEASURES Incident hip fractures; total hip BMD dual x-ray absorptiometry in a subset (n = 1400). RESULTS Six hundred sixty-six incident hip fractures occurred during up to 26 years of follow-up (67,574 person-years). After multivariable adjustment, TMAO was not significantly associated with hip fracture (women: hazard ratio (HR) [95% confidence interval (CI)] of 1.00[0.92,1.09] per TMAO doubling; men: 1.12[0.95,1.33]). TMAO was also not associated with total hip BMD (women: BMD difference [95% CI] of 0.42 g/cm2*100 [-0.34,1.17] per TMAO doubling; men: 0.19[-1.04,1.42]). In exploratory analyses, we found an interaction between body mass index (BMI) and the association of TMAO with hip fracture (P < 0.01). Higher TMAO was significantly associated with risk of hip fracture in adults with overweight or obesity (BMI ≥ 25) (HR [95% CI]:1.17[1.05,1.31]), but not normal or underweight. CONCLUSIONS Among older US men and women, TMAO was not significantly associated with risk of hip fracture or BMD overall. Exploratory analyses suggested a significant association between higher TMAO and hip fracture when BMI was elevated, which merits further study.
Collapse
Affiliation(s)
- Rachel E Elam
- Division of Rheumatology, Department of Medicine, Augusta University, Augusta, GA, USA; Charlie Norwood Veterans Affairs Medical Center, Veterans Affairs Health Care System, Augusta, GA, USA.
| | - Petra Bůžková
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Joshua I Barzilay
- Division of Endocrinology, Kaiser Permanente of Georgia, Emory University School of Medicine, Atlanta, GA, USA
| | - Zeneng Wang
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Ina Nemet
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Matthew J Budoff
- Department of Cardiology and Medicine, University of California - Los Angeles, Los Angeles, CA, USA
| | - Jane A Cauley
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Howard A Fink
- Geriatric Research Education and Clinical Center, Veterans Affairs Health Care System, Minneapolis, MN, USA
| | - Yujin Lee
- Department of Food and Nutrition, Myongji University, Yongin, Republic of Korea
| | - John A Robbins
- Department of Medicine, University of California, Davis, Modesto, CA, USA
| | - Meng Wang
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Stanley L Hazen
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA; Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Dariush Mozaffarian
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Laura D Carbone
- Division of Rheumatology, Department of Medicine, Augusta University, Augusta, GA, USA; Charlie Norwood Veterans Affairs Medical Center, Veterans Affairs Health Care System, Augusta, GA, USA
| |
Collapse
|
47
|
Pereira L, Monteiro R. Tailoring gut microbiota with a combination of Vitamin K and probiotics as a possible adjuvant in the treatment of rheumatic arthritis: a systematic review. Clin Nutr ESPEN 2022; 51:37-49. [DOI: 10.1016/j.clnesp.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/14/2022] [Accepted: 08/01/2022] [Indexed: 10/15/2022]
|
48
|
Giordano-Kelhoffer B, Lorca C, March Llanes J, Rábano A, del Ser T, Serra A, Gallart-Palau X. Oral Microbiota, Its Equilibrium and Implications in the Pathophysiology of Human Diseases: A Systematic Review. Biomedicines 2022; 10:biomedicines10081803. [PMID: 36009350 PMCID: PMC9405223 DOI: 10.3390/biomedicines10081803] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 02/06/2023] Open
Abstract
Imbalances of the oral microbiota and dysbiosis have traditionally been linked to the occurrence of teeth and oral diseases. However, recent findings indicate that this microbiota exerts relevant influence in systemic health. Dysbiosis of the oral microbiota is implicated in the apparition and progression of cardiovascular, neurodegenerative and other major human diseases. In fact, the oral microbiota are the second most diverse and largely populated microbiota of the human body and its relationships with systemic health, although widely explored, they still lack of proper integration. The purpose of this systematic review is thus to widely examine the implications of oral microbiota in oral, cardiovascular and neurodegenerative diseases to offer integrative and up-to-date interpretations. To achieve that aim, we identified a total of 121 studies curated in PUBMED from the time interval January 2003–April 2022, which after careful screening resulted in 79 studies included. The reviewed scientific literature provides plausible vias of implication of dysbiotic oral microbiota in systemic human diseases, and encourages further research to continue elucidating the highly relevant and still poorly understood implications of this niche microbiota in systemic health. PROSPERO Registration Number: CRD42022299692. This systematic review follows relevant PRISMA guidelines.
Collapse
Affiliation(s)
- Barbara Giordano-Kelhoffer
- Faculty of Dentistry, Universitat Internacional de Catalunya (UIC), 08017 Barcelona, Spain;
- Bioengineering Institute of Technology, Faculty of Health Sciences, Universitat Internacional de Catalunya (UIC), 08017 Barcelona, Spain
- Faculty of Health Sciences, Valencian International University, 46002 Valencia, Spain
- Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRB Lleida), Neuroscience Area, +Pec Proteomics Research Group (+PPRG), University Hospital Arnau de Vilanova (HUAV), 25198 Lleida, Spain;
| | - Cristina Lorca
- Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRB Lleida), Neuroscience Area, +Pec Proteomics Research Group (+PPRG), University Hospital Arnau de Vilanova (HUAV), 25198 Lleida, Spain;
- IMDEA—Food Research Institute, +Pec Proteomics, Campus of International Excellence UAM + CSIC, Old Cantoblanco Hospital, 8 Crta. Canto Blanco, 28049 Madrid, Spain
| | - Jaume March Llanes
- NeuroPGA Research Group—Psychology Department, University of Lleida (UdL), 25001 Lleida, Spain;
| | - Alberto Rábano
- Alzheimer’s Centre Reina Sofia—CIEN Foundation, 28031 Madrid, Spain; (A.R.); (T.d.S.)
| | - Teodoro del Ser
- Alzheimer’s Centre Reina Sofia—CIEN Foundation, 28031 Madrid, Spain; (A.R.); (T.d.S.)
| | - Aida Serra
- IMDEA—Food Research Institute, +Pec Proteomics, Campus of International Excellence UAM + CSIC, Old Cantoblanco Hospital, 8 Crta. Canto Blanco, 28049 Madrid, Spain
- Correspondence: (A.S.); (X.G.-P.); Tel.: +34-91-7278-100 (A.S.); +34-97-3702-224 (X.G.-P.)
| | - Xavier Gallart-Palau
- Faculty of Health Sciences, Valencian International University, 46002 Valencia, Spain
- Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRB Lleida), Neuroscience Area, +Pec Proteomics Research Group (+PPRG), University Hospital Arnau de Vilanova (HUAV), 25198 Lleida, Spain;
- Psychology Department, University of Lleida (UdL), 25001 Lleida, Spain
- Correspondence: (A.S.); (X.G.-P.); Tel.: +34-91-7278-100 (A.S.); +34-97-3702-224 (X.G.-P.)
| |
Collapse
|
49
|
Effect of Administration of Azithromycin and/or Probiotic Bacteria on Bones of Estrogen-Deficient Rats. Pharmaceuticals (Basel) 2022; 15:ph15080915. [PMID: 35893739 PMCID: PMC9331654 DOI: 10.3390/ph15080915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
The gut microbiota plays an important role in maintaining homeostasis, including that of the skeletal system. Antibiotics may affect the skeletal system directly or indirectly by influencing the microbiota. Probiotic bacteria have been reported to favorably affect bones in conditions of estrogen deficiency. The aim of this study was to investigate the effects of azithromycin (AZM) administered alone or with probiotic bacteria (Lactobacillus rhamnosus; LR) on bones in estrogen-deficient rats. The experiments were carried out on mature rats divided into five groups: non-ovariectomized (NOVX) control rats, ovariectomized (OVX) control rats, and OVX rats treated with: LR, AZM, or AZM with LR. The drugs were administered for 4 weeks. Serum biochemical parameters, bone mineralization, histomorphometric parameters, and mechanical properties were examined. Estrogen deficiency increased bone turnover and worsened cancellous bone microarchitecture and mechanical properties. The administration of LR or AZM slightly favorably affected some skeletal parameters of estrogen-deficient rats. The administration of AZM with LR did not lead to the addition of the effects observed for the separate treatments, indicating that the effects could be microbiota-mediated.
Collapse
|
50
|
Pal S, Perrien DS, Yumoto T, Faccio R, Stoica A, Adams J, Coopersmith CM, Jones RM, Weitzmann MN, Pacifici R. The microbiome restrains melanoma bone growth by promoting intestinal NK and Th1 cell homing to bone. J Clin Invest 2022; 132:e157340. [PMID: 35503658 PMCID: PMC9197523 DOI: 10.1172/jci157340] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/29/2022] [Indexed: 11/19/2022] Open
Abstract
Bone metastases are frequent complications of malignant melanoma leading to reduced quality of life and significant morbidity. Regulation of immune cells by the gut microbiome influences cancer progression, but the role of the microbiome in tumor growth in bone is unknown. Using intracardiac or intratibial injections of B16-F10 melanoma cells into mice, we showed that gut microbiome depletion by broad-spectrum antibiotics accelerated intraosseous tumor growth and osteolysis. Microbiome depletion blunted melanoma-induced expansion of intestinal NK cells and Th1 cells and their migration from the gut to tumor-bearing bones. Demonstrating the functional relevance of immune cell trafficking from the gut to the bone marrow (BM) in bone metastasis, blockade of S1P-mediated intestinal egress of NK and Th1 cells, or inhibition of their CXCR3/CXCL9-mediated influx into the BM, prevented the expansion of BM NK and Th1 cells and accelerated tumor growth and osteolysis. Using a mouse model, this study revealed mechanisms of microbiota-mediated gut-bone crosstalk that are relevant to the immunological restraint of melanoma metastasis and tumor growth in bone. Microbiome modifications induced by antibiotics might have negative clinical consequences in patients with melanoma.
Collapse
Affiliation(s)
- Subhashis Pal
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, and
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
| | - Daniel S. Perrien
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, and
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
| | - Tetsuya Yumoto
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Roberta Faccio
- Department of Orthopedics, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Andreea Stoica
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, and
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
| | - Jonathan Adams
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, and
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
| | - Craig M. Coopersmith
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Rheinallt M. Jones
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - M. Neale Weitzmann
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, and
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
- Atlanta VA Health Care System, Department of Veterans Affairs, Decatur, Georgia, USA
| | - Roberto Pacifici
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, and
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
- Immunology and Molecular Pathogenesis Program, Emory University, Atlanta, Georgia, USA
| |
Collapse
|