1
|
Hassan FA, Slone C, McDonald RJ, Dueber JC, Ashraf AM, Windon MJ, Fackelmayer OJ, Lee CY, Bocklage TJ, Allison DB. Folliculin ( FLCN) in Thyroid Tumors: Incidence, Significance, and Role as a Driver Gene and Secondary Alteration. Curr Oncol 2025; 32:224. [PMID: 40277780 PMCID: PMC12026003 DOI: 10.3390/curroncol32040224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/01/2025] [Accepted: 04/05/2025] [Indexed: 04/26/2025] Open
Abstract
Thyroid carcinomas are driven by diverse molecular alterations, but the tumor suppressor gene folliculin (FLCN), best known for its role in Birt-Hogg-Dubé (BHD) syndrome, has received limited attention in thyroid tumors. Here, we describe two thyroid tumors with pathogenic FLCN alterations-one germline and one somatic-and analyze the broader prevalence and significance of FLCN in thyroid carcinomas using multiple large sequencing datasets, including ORIEN-AVATAR. Patient 1, with a germline FLCN mutation and a history of BHD syndrome, presented with a well-circumscribed oncocytic adenoma. Molecular testing confirmed biallelic FLCN inactivation, but no additional mutations or aggressive features were observed, and the patient remained disease-free post-thyroidectomy. Patient 2 harbored a somatic FLCN mutation in an oncocytic poorly differentiated thyroid carcinoma, which exhibited extensive angioinvasion, high proliferative activity, and concurrent TP53 and RB1 mutations. The tumor progressed with metastatic disease despite multimodal treatment. Thyroid carcinomas revealed FLCN alterations in 1.1% of cases. Pathogenic mutations were rare but associated with oncocytic morphology, while homozygous deletions occurred more frequently in genomically unstable tumors, including anaplastic thyroid carcinoma. These findings suggest FLCN mutations may act as early oncogenic drivers in oncocytic thyroid neoplasms, while deletions represent secondary events in aggressive tumor evolution. The lack of FLCN coverage in standard thyroid molecular panels likely underestimates its clinical relevance. Including FLCN in genetic testing could improve tumor detection and characterization, particularly in BHD patients who may benefit from routine thyroid screening. Further studies are needed to clarify FLCN's role in thyroid cancer pathogenesis.
Collapse
Affiliation(s)
- Faisal A. Hassan
- Department of Pathology & Laboratory Medicine, University of Kentucky College of Medicine, Lexington, KY 40506, USA
| | - Camryn Slone
- Kentucky College of Medicine, University of Kentucky, Lexington, KY 40506, USA
| | - Robert J. McDonald
- Department of Pathology & Laboratory Medicine, University of Kentucky College of Medicine, Lexington, KY 40506, USA
| | - Julie C. Dueber
- Department of Pathology & Laboratory Medicine, University of Kentucky College of Medicine, Lexington, KY 40506, USA
| | - Adeel M. Ashraf
- Department of Pathology & Laboratory Medicine, University of Kentucky College of Medicine, Lexington, KY 40506, USA
| | - Melina J. Windon
- Department of Otolaryngology—Head and Neck Surgery, University of Kentucky College of Medicine, Lexington, KY 40506, USA
| | - Oliver J. Fackelmayer
- Department of Surgery, Division of Endocrine Surgery, University of Kentucky College of Medicine, Lexington, KY 40506, USA
| | - Cortney Y. Lee
- Department of Surgery, Division of Endocrine Surgery, University of Kentucky College of Medicine, Lexington, KY 40506, USA
| | - Therese J. Bocklage
- Department of Pathology & Laboratory Medicine, University of Kentucky College of Medicine, Lexington, KY 40506, USA
- Markey Cancer Center, Lexington, KY 40536, USA
| | - Derek B. Allison
- Department of Pathology & Laboratory Medicine, University of Kentucky College of Medicine, Lexington, KY 40506, USA
- Markey Cancer Center, Lexington, KY 40536, USA
| |
Collapse
|
2
|
Chu W, Peng W, Lu Y, Liu Y, Li Q, Wang H, Wang L, Zhang B, Liu Z, Han L, Ma H, Yang H, Han C, Lu X. PRMT6 Epigenetically Drives Metabolic Switch from Fatty Acid Oxidation toward Glycolysis and Promotes Osteoclast Differentiation During Osteoporosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403177. [PMID: 39120025 PMCID: PMC11516099 DOI: 10.1002/advs.202403177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/23/2024] [Indexed: 08/10/2024]
Abstract
Epigenetic regulation of metabolism profoundly influences cell fate commitment. During osteoclast differentiation, the activation of RANK signaling is accompanied by metabolic reprogramming, but the epigenetic mechanisms by which RANK signaling induces this reprogramming remain elusive. By transcriptional sequence and ATAC analysis, this study identifies that activation of RANK signaling upregulates PRMT6 by epigenetic modification, triggering a metabolic switching from fatty acids oxidation toward glycolysis. Conversely, Prmt6 deficiency reverses this shift, markedly reducing HIF-1α-mediated glycolysis and enhancing fatty acid oxidation. Consequently, PRMT6 deficiency or inhibitor impedes osteoclast differentiation and alleviates bone loss in ovariectomized (OVX) mice. At the molecular level, Prmt6 deficiency reduces asymmetric dimethylation of H3R2 at the promoters of genes including Ppard, Acox3, and Cpt1a, enhancing genomic accessibility for fatty acid oxidation. PRMT6 thus emerges as a metabolic checkpoint, mediating metabolic switch from fatty acid oxidation to glycolysis, thereby supporting osteoclastogenesis. Unveiling PRMT6's critical role in epigenetically orchestrating metabolic shifts in osteoclastogenesis offers a promising target for anti-resorptive therapy.
Collapse
Affiliation(s)
- Wenxiang Chu
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Weilin Peng
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Yingying Lu
- Obstetrics and Gynecology HospitalFudan UniversityShanghai200011China
| | - Yishan Liu
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Qisheng Li
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Haibin Wang
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Liang Wang
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Bangke Zhang
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Zhixiao Liu
- Histology and Embryology Department and Shanghai Key Laboratory of Cell EngineeringNaval Medical UniversityShanghai200433China
| | - Lin Han
- Department of OrthopaedicsThird Affiliated Hospital of Naval Medical UniversityShanghai201805China
| | - Hongdao Ma
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Haisong Yang
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Chaofeng Han
- Histology and Embryology Department and Shanghai Key Laboratory of Cell EngineeringNaval Medical UniversityShanghai200433China
- National Key Laboratory of Immunity and Inflammation, Institute of ImmunologyNaval Medical UniversityShanghai200433China
| | - Xuhua Lu
- Department of Orthopaedic SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| |
Collapse
|
3
|
Cao S, Li Y, Song R, Meng X, Fuchs M, Liang C, Kachler K, Meng X, Wen J, Schlötzer-Schrehardt U, Taudte V, Gessner A, Kunz M, Schleicher U, Zaiss MM, Kastbom A, Chen X, Schett G, Bozec A. L-arginine metabolism inhibits arthritis and inflammatory bone loss. Ann Rheum Dis 2024; 83:72-87. [PMID: 37775153 PMCID: PMC10803985 DOI: 10.1136/ard-2022-223626] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 08/29/2023] [Indexed: 10/01/2023]
Abstract
OBJECTIVES To investigate the effect of the L-arginine metabolism on arthritis and inflammation-mediated bone loss. METHODS L-arginine was applied to three arthritis models (collagen-induced arthritis, serum-induced arthritis and human TNF transgenic mice). Inflammation was assessed clinically and histologically, while bone changes were quantified by μCT and histomorphometry. In vitro, effects of L-arginine on osteoclast differentiation were analysed by RNA-seq and mass spectrometry (MS). Seahorse, Single Cell ENergetIc metabolism by profilIng Translation inHibition and transmission electron microscopy were used for detecting metabolic changes in osteoclasts. Moreover, arginine-associated metabolites were measured in the serum of rheumatoid arthritis (RA) and pre-RA patients. RESULTS L-arginine inhibited arthritis and bone loss in all three models and directly blocked TNFα-induced murine and human osteoclastogenesis. RNA-seq and MS analyses indicated that L-arginine switched glycolysis to oxidative phosphorylation in inflammatory osteoclasts leading to increased ATP production, purine metabolism and elevated inosine and hypoxanthine levels. Adenosine deaminase inhibitors blocking inosine and hypoxanthine production abolished the inhibition of L-arginine on osteoclastogenesis in vitro and in vivo. Altered arginine levels were also found in RA and pre-RA patients. CONCLUSION Our study demonstrated that L-arginine ameliorates arthritis and bone erosion through metabolic reprogramming and perturbation of purine metabolism in osteoclasts.
Collapse
Affiliation(s)
- Shan Cao
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Shanghai, Germany
- Department of Rheumatology, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixuan Li
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Shanghai, Germany
- Department of Rheumatology, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Song
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Shanghai, Germany
- Department of Rheumatology, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xianyi Meng
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Shanghai, Germany
| | - Maximilian Fuchs
- Chair of Medical Informatics, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Chunguang Liang
- Chair of Medical Informatics, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Bioinformatics, Biocenter, University of Würzburg Am Hubland, Würzburg, Germany
| | - Katerina Kachler
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Shanghai, Germany
| | - Xinyu Meng
- Department of Rheumatology, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinming Wen
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Shanghai, Germany
- Cancer Center, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Ursula Schlötzer-Schrehardt
- Department of Ophthalmology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Verena Taudte
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Core Facility for Metabolomics, Department of Medicine, Philipps University of Marburg, Marburg, Germany
| | - Arne Gessner
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Meik Kunz
- Chair of Medical Informatics, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Ulrike Schleicher
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Mario M Zaiss
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Shanghai, Germany
| | - Alf Kastbom
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Xiaoxiang Chen
- Department of Rheumatology, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Shanghai, Germany
| | - Aline Bozec
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Shanghai, Germany
| |
Collapse
|
4
|
Jiang T, Xia T, Qiao F, Wang N, Jiang Y, Xin H. Role and Regulation of Transcription Factors in Osteoclastogenesis. Int J Mol Sci 2023; 24:16175. [PMID: 38003376 PMCID: PMC10671247 DOI: 10.3390/ijms242216175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Bones serve mechanical and defensive functions, as well as regulating the balance of calcium ions and housing bone marrow.. The qualities of bones do not remain constant. Instead, they fluctuate throughout life, with functions increasing in some situations while deteriorating in others. The synchronization of osteoblast-mediated bone formation and osteoclast-mediated bone resorption is critical for maintaining bone mass and microstructure integrity in a steady state. This equilibrium, however, can be disrupted by a variety of bone pathologies. Excessive osteoclast differentiation can result in osteoporosis, Paget's disease, osteolytic bone metastases, and rheumatoid arthritis, all of which can adversely affect people's health. Osteoclast differentiation is regulated by transcription factors NFATc1, MITF, C/EBPα, PU.1, NF-κB, and c-Fos. The transcriptional activity of osteoclasts is largely influenced by developmental and environmental signals with the involvement of co-factors, RNAs, epigenetics, systemic factors, and the microenvironment. In this paper, we review these themes in regard to transcriptional regulation in osteoclastogenesis.
Collapse
Affiliation(s)
- Tao Jiang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (T.J.); (T.X.); (F.Q.)
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Tianshuang Xia
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (T.J.); (T.X.); (F.Q.)
| | - Fangliang Qiao
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (T.J.); (T.X.); (F.Q.)
| | - Nani Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China;
| | - Yiping Jiang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (T.J.); (T.X.); (F.Q.)
| | - Hailiang Xin
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (T.J.); (T.X.); (F.Q.)
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| |
Collapse
|
5
|
Li X, Chen Y, Gong S, Chen H, Liu H, Li X, Hao J. Emerging roles of TFE3 in metabolic regulation. Cell Death Discov 2023; 9:93. [PMID: 36906611 PMCID: PMC10008649 DOI: 10.1038/s41420-023-01395-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/13/2023] Open
Abstract
TFE3 is a member of the MiT family of the bHLH-leucine zipper transcription factor. We previously focused on the role of TFE3 in autophagy and cancer. Recently, an increasing number of studies have revealed that TFE3 plays an important role in metabolic regulation. TFE3 participates in the metabolism of energy in the body by regulating pathways such as glucose and lipid metabolism, mitochondrial metabolism, and autophagy. This review summarizes and discusses the specific regulatory mechanisms of TFE3 in metabolism. We determined both the direct regulation of TFE3 on metabolically active cells, such as hepatocytes and skeletal muscle cells, and the indirect regulation of TFE3 through mitochondrial quality control and the autophagy-lysosome pathway. The role of TFE3 in tumor cell metabolism is also summarized in this review. Understanding the diverse roles of TFE3 in metabolic processes can provide new avenues for the treatment of some metabolism-related disorders.
Collapse
Affiliation(s)
- Xingyu Li
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yongming Chen
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Siqiao Gong
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Huixia Chen
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Huafeng Liu
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Xiaoyu Li
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Junfeng Hao
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
6
|
Narazaki A, Shimizu R, Yoshihara T, Kikuta J, Sakaguchi R, Tobita S, Mori Y, Ishii M, Nishikawa K. Determination of the physiological range of oxygen tension in bone marrow monocytes using two-photon phosphorescence lifetime imaging microscopy. Sci Rep 2022; 12:3497. [PMID: 35273210 PMCID: PMC8913795 DOI: 10.1038/s41598-022-07521-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/15/2022] [Indexed: 01/01/2023] Open
Abstract
Oxygen is a key regulator of both development and homeostasis. To study the role of oxygen, a variety of in vitro and ex vivo cell and tissue models have been used in biomedical research. However, because of ambiguity surrounding the level of oxygen that cells experience in vivo, the cellular pathway related to oxygenation state and hypoxia have been inadequately studied in many of these models. Here, we devised a method to determine the oxygen tension in bone marrow monocytes using two-photon phosphorescence lifetime imaging microscopy with the cell-penetrating phosphorescent probe, BTPDM1. Phosphorescence lifetime imaging revealed the physiological level of oxygen tension in monocytes to be 5.3% in live mice exposed to normal air. When the mice inhaled hypoxic air, the level of oxygen tension in bone marrow monocytes decreased to 2.4%. By performing in vitro cell culture experiment within the physiological range of oxygen tension, hypoxia changed the molecular phenotype of monocytes, leading to enhanced the expression of CD169 and CD206, which are markers of a unique subset of macrophages in bone marrow, osteal macrophages. This current study enables the determination of the physiological range of oxygen tension in bone marrow with spatial resolution at a cellular level and application of this information on oxygen tension in vivo to in vitro assays. Quantifying oxygen tension in tissues can provide invaluable information on metabolism under physiological and pathophyisological conditions. This method will open new avenues for research on oxygen biology.
Collapse
Affiliation(s)
- Ayako Narazaki
- Graduate School of Medicine/Frontier Biosciences, Osaka University, Yamada-oka 2-2, Suita, Osaka, 565-0871, Japan
| | - Reito Shimizu
- Laboratory of Cell Biology and Metabolic Biochemistry, Department of Medical Life Systems, Graduate School of Life and Medical Sciences, Doshisha University, Tatara Miyakodani 1-3, Kyotanabe, Kyoto, 610-0394, Japan
| | - Toshitada Yoshihara
- Department of Chemistry and Chemical Biology, Gunma University, Kiryu, Gunma, 376-8515, Japan
| | - Junichi Kikuta
- Graduate School of Medicine/Frontier Biosciences, Osaka University, Yamada-oka 2-2, Suita, Osaka, 565-0871, Japan.,Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan.,Department of Immunology and Cell Biology, WPI-Immunology Frontier Research Center, Osaka University, Yamada-oka 2-2, Suita, Osaka, 565-0871, Japan
| | - Reiko Sakaguchi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan.,WPI-Research Initiative-Institute for Integrated Cell-Material Science, Kyoto University, Kyoto, 606-8501, Japan
| | - Seiji Tobita
- Department of Chemistry and Chemical Biology, Gunma University, Kiryu, Gunma, 376-8515, Japan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan.,WPI-Research Initiative-Institute for Integrated Cell-Material Science, Kyoto University, Kyoto, 606-8501, Japan
| | - Masaru Ishii
- Graduate School of Medicine/Frontier Biosciences, Osaka University, Yamada-oka 2-2, Suita, Osaka, 565-0871, Japan.,Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan.,Department of Immunology and Cell Biology, WPI-Immunology Frontier Research Center, Osaka University, Yamada-oka 2-2, Suita, Osaka, 565-0871, Japan
| | - Keizo Nishikawa
- Graduate School of Medicine/Frontier Biosciences, Osaka University, Yamada-oka 2-2, Suita, Osaka, 565-0871, Japan. .,Laboratory of Cell Biology and Metabolic Biochemistry, Department of Medical Life Systems, Graduate School of Life and Medical Sciences, Doshisha University, Tatara Miyakodani 1-3, Kyotanabe, Kyoto, 610-0394, Japan. .,Department of Immunology and Cell Biology, WPI-Immunology Frontier Research Center, Osaka University, Yamada-oka 2-2, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
7
|
Emerging Therapeutic Potential of Short Mitochondrial-produced Peptides for Anabolic Osteogenesis. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-021-10353-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Zhao Z, Cai Z, Chen A, Cai M, Yang K. Application of metabolomics in osteoporosis research. Front Endocrinol (Lausanne) 2022; 13:993253. [PMID: 36452325 PMCID: PMC9702081 DOI: 10.3389/fendo.2022.993253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/28/2022] [Indexed: 11/15/2022] Open
Abstract
Osteoporosis (OP) is a systemic disease characterized by bone metabolism imbalance and bone microstructure destruction, which causes serious social and economic burden. At present, the diagnosis and treatment of OP mainly rely on imaging combined with drugs. However, the existing pathogenic mechanisms, diagnosis and treatment strategies for OP are not clear and effective enough, and the disease progression that cannot reflect OP further restricts its effective treatment. The application of metabolomics has facilitated the study of OP, further exploring the mechanism and behavior of bone cells, prevention, and treatment of the disease from various metabolic perspectives, finally realizing the possibility of a holistic approach. In this review, we focus on the application of metabolomics in OP research, especially the newer systematic application of metabolomics and treatment with herbal medicine and their extracts. In addition, the prospects of clinical transformation in related fields are also discussed. The aim of this study is to highlight the use of metabolomics in OP research, especially in exploring the pathogenesis of OP and the therapeutic mechanisms of natural herbal medicine, for the benefit of interdisciplinary researchers including clinicians, biologists, and materials engineers.
Collapse
Affiliation(s)
- Zhenyu Zhao
- Department of Orthopaedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengwei Cai
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aopan Chen
- Department of Orthopaedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ming Cai
- Department of Orthopaedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Ming Cai, ; Kai Yang,
| | - Kai Yang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Ming Cai, ; Kai Yang,
| |
Collapse
|
9
|
Nishikawa K, Seno S, Yoshihara T, Narazaki A, Sugiura Y, Shimizu R, Kikuta J, Sakaguchi R, Suzuki N, Takeda N, Semba H, Yamamoto M, Okuzaki D, Motooka D, Kobayashi Y, Suematsu M, Koseki H, Matsuda H, Yamamoto M, Tobita S, Mori Y, Ishii M. Osteoclasts adapt to physioxia perturbation through DNA demethylation. EMBO Rep 2021; 22:e53035. [PMID: 34661337 PMCID: PMC8647016 DOI: 10.15252/embr.202153035] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/03/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
Oxygen plays an important role in diverse biological processes. However, since quantitation of the partial pressure of cellular oxygen in vivo is challenging, the extent of oxygen perturbation in situ and its cellular response remains underexplored. Using two‐photon phosphorescence lifetime imaging microscopy, we determine the physiological range of oxygen tension in osteoclasts of live mice. We find that oxygen tension ranges from 17.4 to 36.4 mmHg, under hypoxic and normoxic conditions, respectively. Physiological normoxia thus corresponds to 5% and hypoxia to 2% oxygen in osteoclasts. Hypoxia in this range severely limits osteoclastogenesis, independent of energy metabolism and hypoxia‐inducible factor activity. We observe that hypoxia decreases ten‐eleven translocation (TET) activity. Tet2/3 cooperatively induces Prdm1 expression via oxygen‐dependent DNA demethylation, which in turn activates NFATc1 required for osteoclastogenesis. Taken together, our results reveal that TET enzymes, acting as functional oxygen sensors, regulate osteoclastogenesis within the physiological range of oxygen tension, thus opening new avenues for research on in vivo response to oxygen perturbation.
Collapse
Affiliation(s)
- Keizo Nishikawa
- Laboratory of Cell Biology and Metabolic Biochemistry, Department of Medical Life Systems, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan.,Department of Immunology and Cell Biology, WPI-Immunology Frontier Research Center, Osaka University, Suita, Japan.,Graduate School of Medicine/Frontier Biosciences, Osaka University, Suita, Japan
| | - Shigeto Seno
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Osaka, Japan
| | - Toshitada Yoshihara
- Department of Chemistry and Chemical Biology, Gunma University, Kiryu, Japan
| | - Ayako Narazaki
- Graduate School of Medicine/Frontier Biosciences, Osaka University, Suita, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University, Tokyo, Japan
| | - Reito Shimizu
- Laboratory of Cell Biology and Metabolic Biochemistry, Department of Medical Life Systems, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Junichi Kikuta
- Department of Immunology and Cell Biology, WPI-Immunology Frontier Research Center, Osaka University, Suita, Japan.,Graduate School of Medicine/Frontier Biosciences, Osaka University, Suita, Japan.,Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan
| | - Reiko Sakaguchi
- WPI-Research Initiative-Institute for Integrated Cell-Material Science, Kyoto University, Kyoto, Japan.,Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Norio Suzuki
- Division of Oxygen Biology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Norihiko Takeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroaki Semba
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Cardiovascular Medicine/Basic Research, The Cardiovascular Institute, Tokyo, Japan
| | - Masamichi Yamamoto
- Department of Artificial Kidneys, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Daisuke Okuzaki
- Single Cell Genomics, Human Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Yasuhiro Kobayashi
- Institute for Oral Science, Matsumoto Dental University, Shiojiri, Japan
| | | | - Haruhiko Koseki
- Developmental Genetics Group, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
| | - Hideo Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Osaka, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Seiji Tobita
- Department of Chemistry and Chemical Biology, Gunma University, Kiryu, Japan
| | - Yasuo Mori
- WPI-Research Initiative-Institute for Integrated Cell-Material Science, Kyoto University, Kyoto, Japan.,Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, WPI-Immunology Frontier Research Center, Osaka University, Suita, Japan.,Graduate School of Medicine/Frontier Biosciences, Osaka University, Suita, Japan.,Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan
| |
Collapse
|
10
|
Bothrops moojeni Venom and Its Components Strongly Affect Osteoclasts' Maturation and Protein Patterns. Toxins (Basel) 2021; 13:toxins13070459. [PMID: 34208941 PMCID: PMC8310197 DOI: 10.3390/toxins13070459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022] Open
Abstract
Osteoclasts (OCs) are important for bone maintenance, calcium balance, and tissue regeneration regulation and are involved in different inflammatory diseases. Our study aimed to evaluate the effect of Bothrops moojeni's venom and its low and high molecular mass (HMM and LMM) fractions on human peripheral blood mononuclear cell (PBMC)-derived OCs' in vitro differentiation. Bothrops moojeni, a Brazilian lanced-head viper, presents a rich but not well-explored, venom composition. This venom is a potent inducer of inflammation, which can be used as a tool to investigate the inflammatory process. Human PBMCs were isolated and induced to OC differentiation following routine protocol. On the fourth day of differentiation, the venom was added at different concentrations (5, 0.5, and 0.05 µg/mL). We observed a significant reduction of TRAP+ (tartrate-resistant acid phosphatase) OCs at the concentration of 5 µg/mL. We evaluated the F-actin-rich OCs structure's integrity; disruption of its integrity reflects bone adsorption capacity. F-actin rings phalloidin staining demonstrated that venom provoked their disruption in treated OCs. HMM, fraction reduces TRAP+ OCs at a concentration of 5 µg/mL and LMM fraction at 1 µg/mL, respectively. Our results indicate morphological changes that the venom induced cause in OCs. We analyzed the pattern of soluble proteins found in the conditioned cell culture medium OCs treated with venom and its fractions using mass spectrometry (LC-MS/IT-Tof). The proteomic analyses indicate the possible pathways and molecular mechanisms involved in OC reduction after the treatment.
Collapse
|
11
|
Ramirez Reyes JMJ, Cuesta R, Pause A. Folliculin: A Regulator of Transcription Through AMPK and mTOR Signaling Pathways. Front Cell Dev Biol 2021; 9:667311. [PMID: 33981707 PMCID: PMC8107286 DOI: 10.3389/fcell.2021.667311] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/29/2021] [Indexed: 12/15/2022] Open
Abstract
Folliculin (FLCN) is a tumor suppressor gene responsible for the inherited Birt-Hogg-Dubé (BHD) syndrome, which affects kidneys, skin and lungs. FLCN is a highly conserved protein that forms a complex with folliculin interacting proteins 1 and 2 (FNIP1/2). Although its sequence does not show homology to known functional domains, structural studies have determined a role of FLCN as a GTPase activating protein (GAP) for small GTPases such as Rag GTPases. FLCN GAP activity on the Rags is required for the recruitment of mTORC1 and the transcriptional factors TFEB and TFE3 on the lysosome, where mTORC1 phosphorylates and inactivates these factors. TFEB/TFE3 are master regulators of lysosomal biogenesis and function, and autophagy. By this mechanism, FLCN/FNIP complex participates in the control of metabolic processes. AMPK, a key regulator of catabolism, interacts with FLCN/FNIP complex. FLCN loss results in constitutive activation of AMPK, which suggests an additional mechanism by which FLCN/FNIP may control metabolism. AMPK regulates the expression and activity of the transcriptional cofactors PGC1α/β, implicated in the control of mitochondrial biogenesis and oxidative metabolism. In this review, we summarize our current knowledge of the interplay between mTORC1, FLCN/FNIP, and AMPK and their implications in the control of cellular homeostasis through the transcriptional activity of TFEB/TFE3 and PGC1α/β. Other pathways and cellular processes regulated by FLCN will be briefly discussed.
Collapse
Affiliation(s)
- Josué M. J. Ramirez Reyes
- Goodman Cancer Research Center, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Rafael Cuesta
- Goodman Cancer Research Center, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Arnim Pause
- Goodman Cancer Research Center, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| |
Collapse
|
12
|
Cho KM, Kim YS, Lee M, Lee HY, Bae YS. Isovaleric acid ameliorates ovariectomy-induced osteoporosis by inhibiting osteoclast differentiation. J Cell Mol Med 2021; 25:4287-4297. [PMID: 33768674 PMCID: PMC8093970 DOI: 10.1111/jcmm.16482] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 03/03/2021] [Accepted: 03/12/2021] [Indexed: 12/13/2022] Open
Abstract
Osteoclasts (OCs) play important roles in bone remodelling and contribute to bone loss by increasing bone resorption activity. Excessively activated OCs cause diverse bone disorders including osteoporosis. Isovaleric acid (IVA), also known as 3-methylbutanoic acid is a 5-carbon branched-chain fatty acid (BCFA), which can be generated by bacterial fermentation of a leucine-rich diet. Here, we find that IVA suppresses differentiation of bone marrow-derived macrophages into OCs by RANKL. IVA inhibited the expression of OC-related genes. IVA-induced inhibitory effects on OC generation were attenuated by pertussis toxin but not by H89, suggesting a Gi -coupled receptor-dependent but protein kinase A-independent response. Moreover, IVA stimulates AMPK phosphorylation, and treatment with an AMPK inhibitor blocks IVA-induced inhibition of OC generation. In an ovariectomized mouse model, addition of IVA to the drinking water resulted in significant decrease of body weight gain and inhibited the expression of not only OC-related genes but also fusogenic genes in the bone tissue. IVA exposure also blocked bone destruction and OC generation in the bone tissue of ovariectomized mice. Collectively, the results demonstrate that IVA is a novel bioactive BCFA that inhibits OC differentiation, suggesting that IVA can be considered a useful material to control osteoclast-associated bone disorders, including osteoporosis.
Collapse
Affiliation(s)
- Kwang Min Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Ye Seon Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Mingyu Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Ha Young Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Yoe-Sik Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| |
Collapse
|
13
|
Wang B, Yin X, Gan W, Pan F, Li S, Xiang Z, Han X, Li D. PRCC-TFE3 fusion-mediated PRKN/parkin-dependent mitophagy promotes cell survival and proliferation in PRCC-TFE3 translocation renal cell carcinoma. Autophagy 2020; 17:2475-2493. [DOI: 10.1080/15548627.2020.1831815] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Bo Wang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Xiaoqin Yin
- Department of Endocrinology, Shanghai Children’s Hospital, Shanghai, China
| | - Weidong Gan
- Department of Urology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Fan Pan
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Shiyuan Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Zou Xiang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
14
|
Nasser H, Adhikary P, Abdel-Daim A, Noyori O, Panaampon J, Kariya R, Okada S, Ma W, Baba M, Takizawa H, Yamane M, Niwa H, Suzu S. Establishment of bone marrow-derived M-CSF receptor-dependent self-renewing macrophages. Cell Death Discov 2020; 6:63. [PMID: 32714570 PMCID: PMC7378060 DOI: 10.1038/s41420-020-00300-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Recent studies have revealed that tissue macrophages are derived from yolk sac precursors or fetal liver monocytes, in addition to bone marrow monocytes. The relative contribution of these cells to the tissue macrophage pool is not fully understood, but embryo-derived cells are supposed to be more important because of their capacity to self-renew. Here, we show the presence of adult bone marrow-derived macrophages that retain self-renewing capacity. The self-renewing macrophages were readily obtained by long-term culture of mouse bone marrow cells with macrophage colony-stimulating factor (M-CSF), a key cytokine for macrophage development. They were non-tumorigenic and proliferated in the presence of M-CSF in unlimited numbers. Despite several differences from non-proliferating macrophages, they retained many features of cells of the monocytic lineage, including the differentiation into dendritic cells or osteoclasts. Among the transcription factors involved in the self-renewal of embryonic stem cells, Krüppel-like factor 2 (KLF2) was strongly upregulated upon M-CSF stimulation in the self-renewing macrophages, which was accompanied by the downregulation of MafB, a transcription factor that suppresses KLF2 expression. Indeed, knockdown of KLF2 led to cell cycle arrest and diminished cell proliferation in the self-renewing macrophages. Our new cell model would be useful to unravel differences in phenotype, function, and molecular mechanism of proliferation among self-renewing macrophages with different origins.
Collapse
Affiliation(s)
- Hesham Nasser
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-0811 Japan
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, 860-0811 Japan
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, 41511 Egypt
| | - Partho Adhikary
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-0811 Japan
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, 860-0811 Japan
- Present Address: Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, V6T 1Z3 Canada
| | - Amira Abdel-Daim
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-0811 Japan
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, 860-0811 Japan
| | - Osamu Noyori
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-0811 Japan
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, 860-0811 Japan
| | - Jutatip Panaampon
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-0811 Japan
| | - Ryusho Kariya
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-0811 Japan
| | - Seiji Okada
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-0811 Japan
| | - Wenjuan Ma
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, 860-0811 Japan
| | - Masaya Baba
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, 860-0811 Japan
| | - Hitoshi Takizawa
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, 860-0811 Japan
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, 860-8556 Japan
| | - Mariko Yamane
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, 860-0811 Japan
- Present Address: Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Hyogo, 650-0047 Japan
| | - Hitoshi Niwa
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, 860-0811 Japan
| | - Shinya Suzu
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-0811 Japan
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, 860-0811 Japan
| |
Collapse
|
15
|
Takafuji Y, Tatsumi K, Ishida M, Kawao N, Okada K, Kaji H. Extracellular vesicles secreted from mouse muscle cells suppress osteoclast formation: Roles of mitochondrial energy metabolism. Bone 2020; 134:115298. [PMID: 32092478 DOI: 10.1016/j.bone.2020.115298] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 12/13/2022]
Abstract
Recent reports have described the interactions of muscle and bone. Various muscle-derived humoral factors, known as myokines, affect bone. Although extracellular vesicles (EVs) play a vital role in physiological and pathophysiological processes by transferring their contents to distant tissues during bone metabolism, the roles of EVs in the muscle-bone interactions remain unknown. In the present study, we investigated the effects of EVs secreted from mouse muscle C2C12 cells on mouse bone cells and mitochondrial biogenesis. EVs secreted from C2C12 cells (Myo-EVs) were isolated from the conditioned medium of C2C12 cells by ultracentrifugation. Myo-EVs suppressed osteoclast formation as well as the expression of tartrate-resistant acid phosphatase, cathepsin K, nuclear factor of activated T-cells cytoplasmic 1 and dendritic cell-specific transmembrane protein induced by receptor activator of nuclear factor κB ligand (RANKL) in mouse bone marrow cells and preosteoclastic Raw264.7 cells. Moreover, Myo-EVs suppressed oxygen consumption and mRNA expression of the mitochondrial biogenesis markers enhanced by RANKL in these cells. However, Myo-EVs did not affect the phenotypes or mitochondrial biogenesis of mouse primary osteoblasts. In conclusion, the present study showed for the first time that Myo-EVs suppress osteoclast formation and mitochondrial energy metabolism in mouse bone marrow and Raw264.7 cells. EVs secreted from skeletal muscles might be a crucial mediator of muscle-bone interactions.
Collapse
Affiliation(s)
- Yoshimasa Takafuji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan
| | - Kohei Tatsumi
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan
| | - Masayoshi Ishida
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan
| | - Naoyuki Kawao
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan
| | - Kiyotaka Okada
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan
| | - Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan.
| |
Collapse
|
16
|
Chu L, Luo Y, Chen H, Miao Q, Wang L, Moats R, Wang T, Kennedy JC, Henske EP, Shi W. Mesenchymal folliculin is required for alveolar development: implications for cystic lung disease in Birt-Hogg-Dubé syndrome. Thorax 2020; 75:486-493. [PMID: 32238524 DOI: 10.1136/thoraxjnl-2019-214112] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/13/2020] [Accepted: 03/18/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Pulmonary cysts and spontaneous pneumothorax are presented in most patients with Birt-Hogg-Dubé (BHD) syndrome, which is caused by loss of function mutations in the folliculin (FLCN) gene. The pathogenic mechanisms underlying the cystic lung disease in BHD are poorly understood. METHODS Mesenchymal Flcn was specifically deleted in mice or in cultured lung mesenchymal progenitor cells using a Cre/loxP approach. Dynamic changes in lung structure, cellular and molecular phenotypes and signalling were measured by histology, immunofluorescence staining and immunoblotting. RESULTS Deletion of Flcn in mesoderm-derived mesenchymal cells results in significant reduction of postnatal alveolar growth and subsequent alveolar destruction, leading to cystic lesions. Cell proliferation and alveolar myofibroblast differentiation are inhibited in the Flcn knockout lungs, and expression of the extracellular matrix proteins Col3a1 and elastin are downregulated. Signalling pathways including mTORC1, AMP-activated protein kinase, ERK1/2 and Wnt-β-catenin are differentially affected at different developmental stages. All the above changes have statistical significance (p<0.05). CONCLUSIONS Mesenchymal Flcn is an essential regulator during alveolar development and maintenance, through multiple cellular and molecular mechanisms. The mesenchymal Flcn knockout mouse model provides the first in vivo disease model that may recapitulate the stages of cyst development in human BHD. These findings elucidate the developmental origins and mechanisms of lung disease in BHD.
Collapse
Affiliation(s)
- Ling Chu
- The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Yongfeng Luo
- The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Hui Chen
- The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Qing Miao
- The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Larry Wang
- The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Rex Moats
- The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Tiansheng Wang
- The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - John C Kennedy
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Elizabeth P Henske
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Wei Shi
- The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
17
|
Mullin BH, Tickner J, Zhu K, Kenny J, Mullin S, Brown SJ, Dudbridge F, Pavlos NJ, Mocarski ES, Walsh JP, Xu J, Wilson SG. Characterisation of genetic regulatory effects for osteoporosis risk variants in human osteoclasts. Genome Biol 2020; 21:80. [PMID: 32216834 PMCID: PMC7098081 DOI: 10.1186/s13059-020-01997-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/11/2020] [Indexed: 12/15/2022] Open
Abstract
Background Osteoporosis is a complex disease with a strong genetic contribution. A recently published genome-wide association study (GWAS) for estimated bone mineral density (eBMD) identified 1103 independent genome-wide significant association signals. Most of these variants are non-coding, suggesting that regulatory effects may drive many of the associations. To identify genes with a role in osteoporosis, we integrate the eBMD GWAS association results with those from our previous osteoclast expression quantitative trait locus (eQTL) dataset. Results We identify sixty-nine significant cis-eQTL effects for eBMD GWAS variants after correction for multiple testing. We detect co-localisation of eBMD GWAS and osteoclast eQTL association signals for 21 of the 69 loci, implicating a number of genes including CCR5, ZBTB38, CPE, GNA12, RIPK3, IQGAP1 and FLCN. Summary-data-based Mendelian Randomisation analysis of the eBMD GWAS and osteoclast eQTL datasets identifies significant associations for 53 genes, with TULP4 presenting as a strong candidate for pleiotropic effects on eBMD and gene expression in osteoclasts. By performing analysis using the GARFIELD software, we demonstrate significant enrichment of osteoporosis risk variants among high-confidence osteoclast eQTL across multiple GWAS P value thresholds. Mice lacking one of the genes of interest, the apoptosis/necroptosis gene RIPK3, show disturbed bone micro-architecture and increased osteoclast number, highlighting a new biological pathway relevant to osteoporosis. Conclusion We utilise a unique osteoclast eQTL dataset to identify a number of potential effector genes for osteoporosis risk variants, which will help focus functional studies in this area.
Collapse
Affiliation(s)
- Benjamin H Mullin
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia. .,School of Biomedical Sciences, The University of Western Australia, Crawley, WA, 6009, Australia.
| | - Jennifer Tickner
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Kun Zhu
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia.,School of Biomedical Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Jacob Kenny
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Shelby Mullin
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia.,School of Biomedical Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Suzanne J Brown
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Frank Dudbridge
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Nathan J Pavlos
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Edward S Mocarski
- Department of Microbiology and Immunology, Emory Vaccine Center, School of Medicine, Emory University, Atlanta, GA, USA
| | - John P Walsh
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia.,Medical School, The University of Western Australia, Crawley, WA, Australia
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Scott G Wilson
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia.,School of Biomedical Sciences, The University of Western Australia, Crawley, WA, 6009, Australia.,Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| |
Collapse
|
18
|
Isono Y, Furuya M, Kuwahara T, Sano D, Suzuki K, Jikuya R, Mitome T, Otake S, Kawahara T, Ito Y, Muraoka K, Nakaigawa N, Kimura Y, Baba M, Nagahama K, Takahata H, Saito I, Schmidt LS, Linehan WM, Kodama T, Yao M, Oridate N, Hasumi H. FLCN alteration drives metabolic reprogramming towards nucleotide synthesis and cyst formation in salivary gland. Biochem Biophys Res Commun 2020; 522:931-938. [PMID: 31806376 PMCID: PMC8195446 DOI: 10.1016/j.bbrc.2019.11.184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023]
Abstract
FLCN is a tumor suppressor gene which controls energy homeostasis through regulation of a variety of metabolic pathways including mitochondrial oxidative metabolism and autophagy. Birt-Hogg-Dubé (BHD) syndrome which is driven by germline alteration of the FLCN gene, predisposes patients to develop kidney cancer, cutaneous fibrofolliculomas, pulmonary cysts and less frequently, salivary gland tumors. Here, we report metabolic roles for FLCN in the salivary gland as well as their clinical relevance. Screening of salivary glands of BHD patients using ultrasonography demonstrated increased cyst formation in the salivary gland. Salivary gland tumors that developed in BHD patients exhibited an upregulated mTOR-S6R pathway as well as increased GPNMB expression, which are characteristics of FLCN-deficient cells. Salivary gland-targeted Flcn knockout mice developed cytoplasmic clear cell formation in ductal cells with increased mitochondrial biogenesis, upregulated mTOR-S6K pathway, upregulated TFE3-GPNMB axis and upregulated lipid metabolism. Proteomic and metabolite analysis using LC/MS and GC/MS revealed that Flcn inactivation in salivary gland triggers metabolic reprogramming towards the pentose phosphate pathway which consequently upregulates nucleotide synthesis and redox regulation, further supporting that Flcn controls metabolic homeostasis in salivary gland. These data uncover important roles for FLCN in salivary gland; metabolic reprogramming under FLCN deficiency might increase nucleotide production which may feed FLCN-deficient salivary gland cells to trigger tumor initiation and progression, providing mechanistic insight into salivary gland tumorigenesis as well as a foundation for development of novel therapeutics for salivary gland tumors.
Collapse
Affiliation(s)
- Yasuhiro Isono
- Department of Otorhinolaryngology, Yokohama, 236-0004, Japan
| | - Mitsuko Furuya
- Department of Molecular Pathology, Yokohama, 236-0004, Japan
| | - Tatsu Kuwahara
- Department of Otorhinolaryngology, Yokohama, 236-0004, Japan
| | - Daisuke Sano
- Department of Otorhinolaryngology, Yokohama, 236-0004, Japan
| | - Kae Suzuki
- Department of Urology, Yokohama, 236-0004, Japan
| | | | - Taku Mitome
- Department of Urology, Yokohama, 236-0004, Japan
| | - Shinji Otake
- Department of Urology, Yokohama, 236-0004, Japan
| | | | - Yusuke Ito
- Department of Urology, Yokohama, 236-0004, Japan
| | | | | | - Yayoi Kimura
- Advanced Medical Research Center, Yokohama City University, Yokohama, 236-0004, Japan
| | - Masaya Baba
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Kiyotaka Nagahama
- Department of Pathology, Graduate School of Medical Sciences, Kyorin University, Mitaka, Tokyo, 181-8611, Japan
| | - Hiroyuki Takahata
- Department of Pathology, Shikoku Cancer Center, Matsuyama, Ehime, 791-0280, Japan
| | - Ichiro Saito
- Department of Pathology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Laura S Schmidt
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tatsuhiko Kodama
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, 153-8904, Japan
| | - Masahiro Yao
- Department of Urology, Yokohama, 236-0004, Japan
| | | | | |
Collapse
|
19
|
Endoh M, Baba M, Endoh T, Hirayama A, Nakamura-Ishizu A, Umemoto T, Hashimoto M, Nagashima K, Soga T, Lang M, Schmidt LS, Linehan WM, Suda T. A FLCN-TFE3 Feedback Loop Prevents Excessive Glycogenesis and Phagocyte Activation by Regulating Lysosome Activity. Cell Rep 2020; 30:1823-1834.e5. [PMID: 32049013 PMCID: PMC8459211 DOI: 10.1016/j.celrep.2020.01.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 12/11/2019] [Accepted: 01/14/2020] [Indexed: 02/07/2023] Open
Abstract
The tumor suppressor folliculin (FLCN) suppresses nuclear translocation of TFE3, a master transcription factor for lysosomal biogenesis, via regulation of amino-acid-sensing Rag GTPases. However, the importance of this lysosomal regulation in mammalian physiology remains unclear. Following hematopoietic-lineage-specific Flcn deletion in mice, we found expansion of vacuolated phagocytes that accumulate glycogen in their cytoplasm, phenotypes reminiscent of lysosomal storage disorder (LSD). We report that TFE3 acts in a feedback loop to transcriptionally activate FLCN expression, and FLCN loss disrupts this loop, augmenting TFE3 activity. Tfe3 deletion in Flcn knockout mice reduces the number of phagocytes and ameliorates LSD-like phenotypes. We further reveal that TFE3 stimulates glycogenesis by promoting the expression of glycogenesis genes, including Gys1 and Gyg, upon loss of Flcn. Taken together, we propose that the FLCN-TFE3 feedback loop acts as a rheostat to control lysosome activity and prevents excessive glycogenesis and LSD-like phagocyte activation.
Collapse
Affiliation(s)
- Mitsuhiro Endoh
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore 117599, Singapore; International Research Center for Medical Sciences (IRCMS), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan; Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan.
| | - Masaya Baba
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan; Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| | - Tamie Endoh
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore 117599, Singapore; International Research Center for Medical Sciences (IRCMS), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan; Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
| | - Ayako Nakamura-Ishizu
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore 117599, Singapore; International Research Center for Medical Sciences (IRCMS), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Terumasa Umemoto
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Michihiro Hashimoto
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Kunio Nagashima
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
| | - Martin Lang
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Laura S Schmidt
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; Basic Science Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21702, USA
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Toshio Suda
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore 117599, Singapore; International Research Center for Medical Sciences (IRCMS), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan.
| |
Collapse
|
20
|
Ramírez JA, Iwata T, Park H, Tsang M, Kang J, Cui K, Kwong W, James RG, Baba M, Schmidt LS, Iritani BM. Folliculin Interacting Protein 1 Maintains Metabolic Homeostasis during B Cell Development by Modulating AMPK, mTORC1, and TFE3. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:2899-2908. [PMID: 31676673 PMCID: PMC6864314 DOI: 10.4049/jimmunol.1900395] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/30/2019] [Indexed: 12/11/2022]
Abstract
Folliculin interacting protein 1 (Fnip1) is a cytoplasmic protein originally discovered through its interaction with the master metabolic sensor 5' AMP-activated protein kinase (AMPK) and Folliculin, a protein mutated in individuals with Birt-Hogg-Dubé Syndrome. In response to low energy, AMPK stimulates catabolic pathways such as autophagy to enhance energy production while inhibiting anabolic pathways regulated by the mechanistic target of rapamycin complex 1 (mTORC1). We previously found that constitutive disruption of Fnip1 in mice resulted in a lack of peripheral B cells because of a block in B cell development at the pre-B cell stage. Both AMPK and mTORC1 were activated in Fnip1-deficient B cell progenitors. In this study, we found inappropriate mTOR localization at the lysosome under nutrient-depleted conditions. Ex vivo lysine or arginine depletion resulted in increased apoptosis. Genetic inhibition of AMPK, inhibition of mTORC1, or restoration of cell viability with a Bcl-xL transgene failed to rescue B cell development in Fnip1-deficient mice. Fnip1-deficient B cell progenitors exhibited increased nuclear localization of transcription factor binding to IgHM enhancer 3 (TFE3) in developing B cells, which correlated with an increased expression of TFE3-target genes, increased lysosome numbers and function, and increased autophagic flux. These results indicate that Fnip1 modulates autophagy and energy response pathways in part through the regulation of AMPK, mTORC1, and TFE3 in B cell progenitors.
Collapse
Affiliation(s)
- Julita A Ramírez
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195
| | - Terri Iwata
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195
| | - Heon Park
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195
| | - Mark Tsang
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195
| | - Janella Kang
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195
| | - Katy Cui
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195
| | - Winnie Kwong
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195
| | | | - Masaya Baba
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Laura S Schmidt
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
- Basic Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Brian M Iritani
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195;
| |
Collapse
|
21
|
Baba M, Furuya M, Motoshima T, Lang M, Funasaki S, Ma W, Sun HW, Hasumi H, Huang Y, Kato I, Kadomatsu T, Satou Y, Morris N, Karim BO, Ileva L, Kalen JD, Wilan Krisna LA, Hasumi Y, Sugiyama A, Kurahashi R, Nishimoto K, Oyama M, Nagashima Y, Kuroda N, Araki K, Eto M, Yao M, Kamba T, Suda T, Oike Y, Schmidt LS, Linehan WM. TFE3 Xp11.2 Translocation Renal Cell Carcinoma Mouse Model Reveals Novel Therapeutic Targets and Identifies GPNMB as a Diagnostic Marker for Human Disease. Mol Cancer Res 2019; 17:1613-1626. [PMID: 31043488 PMCID: PMC6679785 DOI: 10.1158/1541-7786.mcr-18-1235] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/12/2019] [Accepted: 04/26/2019] [Indexed: 12/16/2022]
Abstract
Renal cell carcinoma (RCC) associated with Xp11.2 translocation (TFE3-RCC) has been recently defined as a distinct subset of RCC classified by characteristic morphology and clinical presentation. The Xp11 translocations involve the TFE3 transcription factor and produce chimeric TFE3 proteins retaining the basic helix-loop-helix leucine zipper structure for dimerization and DNA binding suggesting that chimeric TFE3 proteins function as oncogenic transcription factors. Diagnostic biomarkers and effective forms of therapy for advanced cases of TFE3-RCC are as yet unavailable. To facilitate the development of molecular based diagnostic tools and targeted therapies for this aggressive kidney cancer, we generated a translocation RCC mouse model, in which the PRCC-TFE3 transgene is expressed specifically in kidneys leading to the development of RCC with characteristic histology. Expression of the receptor tyrosine kinase Ret was elevated in the kidneys of the TFE3-RCC mice, and treatment with RET inhibitor, vandetanib, significantly suppressed RCC growth. Moreover, we found that Gpnmb (Glycoprotein nonmetastatic B) expression was notably elevated in the TFE3-RCC mouse kidneys as seen in human TFE3-RCC tumors, and confirmed that GPNMB is the direct transcriptional target of TFE3 fusions. While GPNMB IHC staining was positive in 9/9 cases of TFE3-RCC, Cathepsin K, a conventional marker for TFE3-RCC, was positive in only 67% of cases. These data support RET as a potential target and GPNMB as a diagnostic marker for TFE3-RCC. The TFE3-RCC mouse provides a preclinical in vivo model for the development of new biomarkers and targeted therapeutics for patients affected with this aggressive form of RCC. IMPLICATIONS: Key findings from studies with this preclinical mouse model of TFE3-RCC underscore the potential for RET as a therapeutic target for treatment of patients with TFE3-RCC, and suggest that GPNMB may serve as diagnostic biomarker for TFE3 fusion RCC.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Animals
- Apoptosis
- Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Cell Cycle Proteins/genetics
- Cell Proliferation
- Child
- Chromosomes, Human, X
- Disease Models, Animal
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/pathology
- Male
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred C57BL
- Middle Aged
- Neoplasm Proteins/genetics
- Oncogene Proteins, Fusion
- Prognosis
- Survival Rate
- Translocation, Genetic
- Tumor Cells, Cultured
- Young Adult
Collapse
Affiliation(s)
- Masaya Baba
- Laboratory of Cancer Metabolism, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan.
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Mitsuko Furuya
- Department of Molecular Pathology, Yokohama City University, Yokohama, Japan
| | | | - Martin Lang
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Shintaro Funasaki
- Laboratory of Cancer Metabolism, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Wenjuan Ma
- Laboratory of Cancer Metabolism, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Hong-Wei Sun
- Biodata Mining and Discovery Section, NIAMS, NIH, Bethesda, Maryland
| | - Hisashi Hasumi
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
- Department of Urology, Yokohama City University, Yokohama, Japan
| | - Ying Huang
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ikuma Kato
- Department of Molecular Pathology, Yokohama City University, Yokohama, Japan
| | | | - Yorifumi Satou
- Laboratory of Retroviral Genomics and Transcriptomics, International Research Center for Medical Sciences (IRCMS), Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Nicole Morris
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Baktiar O Karim
- Pathology/Histotechnology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Lilia Ileva
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Joseph D Kalen
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Luh Ade Wilan Krisna
- Laboratory of Cancer Metabolism, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Yukiko Hasumi
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Aiko Sugiyama
- DSK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Ryoma Kurahashi
- Department of Urology, Kumamoto University, Kumamoto, Japan
- Department of Molecular Genetics, Kumamoto University, Kumamoto, Japan
| | - Koshiro Nishimoto
- Department of Uro-Oncology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Masafumi Oyama
- Department of Uro-Oncology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Yoji Nagashima
- Department of Surgical Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Naoto Kuroda
- Department of Pathology, Kochi Red Cross Hospital, Kochi, Japan
| | - Kimi Araki
- Division of Developmental Genetics, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Masatoshi Eto
- Department of Urology, Kyushyu University, Fukuoka, Japan
| | - Masahiro Yao
- Department of Urology, Yokohama City University, Yokohama, Japan
| | - Tomomi Kamba
- Department of Urology, Kumamoto University, Kumamoto, Japan
| | - Toshio Suda
- Laboratory of Stem Cell Regulation, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore
| | - Yuichi Oike
- Department of Molecular Genetics, Kumamoto University, Kumamoto, Japan
| | - Laura S Schmidt
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
22
|
Zheng CX, Sui BD, Qiu XY, Hu CH, Jin Y. Mitochondrial Regulation of Stem Cells in Bone Homeostasis. Trends Mol Med 2019; 26:89-104. [PMID: 31126872 DOI: 10.1016/j.molmed.2019.04.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/10/2019] [Accepted: 04/19/2019] [Indexed: 12/13/2022]
Abstract
Mitochondria have emerged as key contributors to the organismal homeostasis, in which mitochondrial regulation of stem cells is becoming increasingly important. Originated from mesenchymal stem cell (MSC) and hematopoietic stem cell (HSC) lineage commitments and interactions, bone is a representative organ where the mitochondrial essentiality to stem cell function has most recently been discovered, underlying skeletal health, aging, and diseases. Furthermore, mitochondrial medications based on modulating stem cell specification are emerging to provide promising therapies to counteract bone aging and pathologies. Here we review the cutting-edge knowledge regarding mitochondrial regulation of stem cells in bone homeostasis, highlighting mechanistic insights as well as mitochondrial strategies for augmented bone healing and tissue regeneration.
Collapse
Affiliation(s)
- Chen-Xi Zheng
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi' an, Shaanxi 710032, China
| | - Bing-Dong Sui
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi' an, Shaanxi 710032, China
| | - Xin-Yu Qiu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi' an, Shaanxi 710032, China
| | - Cheng-Hu Hu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi' an, Shaanxi 710032, China; Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi 710032, China.
| | - Yan Jin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi' an, Shaanxi 710032, China.
| |
Collapse
|