1
|
Zhu M, Jiang S, Li X, Zhong W, Cao W, Luo Q, Wu A, Wu G, Zhang Q. TP8, A Novel Chondroinductive Peptide, Significantly Promoted Neo-Cartilage Repair without Activating Bone Formation. Adv Healthc Mater 2025; 14:e2401752. [PMID: 39690790 PMCID: PMC11874676 DOI: 10.1002/adhm.202401752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/16/2024] [Indexed: 12/19/2024]
Abstract
The repair of large cartilage defects remains highly challenging in the fields of orthopedics and oral and maxillofacial surgery. A chondroinductive agent is promising to activate endogenous mesenchymal stem cells (MSCs) so as to facilitate cartilage regeneration. In this study, we analyze the crystallographic data of the critical binding domain of transforming growth factor β3 (TGF-β3) with its type II receptor and successfully develop a novel chondroinductive peptide - TGF-β3-derived peptide No. 8 (TP8) that can induce an ectopic cartilage formation without obvious bone formation. TP8 shows a comparable capacity as TGF-β3 in enhancing glycosaminoglycans (GAGs) and proteoglycans (PGs) secretion in the micromass of bone marrow MSCs (BMSCs) and promoting the expression of chondrogenic markers in comparison with the Control group. TP8 induces a significantly higher expression of the SRY-box transcription factor 9 (Sox9) gene than TGF-β3. Moreover, TP8 significantly upregulates the phosphorylation of Smad1/5 but not MAPK/JNK or Smad 2/3. The knockdown of low-density lipoprotein receptor (LDLR) -related protein-1 (Lrp1), a transmembrane endocytosis receptor, nullifies the TP8-induced Sox9 expression. In the critical-size cartilage defects in rabbit medial femoral condyles, TP8 can induce neo-cartilage formation with a significantly thicker deep zone in comparison with the TGF-β3 and Control. These findings suggest a promising application potential of TP8 in cartilage tissue engineering.
Collapse
Affiliation(s)
- Mingjing Zhu
- Department of Temporomandibular JointSchool and Hospital of StomatologyGuangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhou Medical UniversityGuangzhou510180China
- Department of Oral Cell BiologyAcademic Centre for Dentistry Amsterdam (ACTA)University of Amsterdam and Vrije Universiteit AmsterdamAmsterdam Movement SciencesAmsterdam1081 LAthe Netherlands
| | - Siqing Jiang
- Department of Temporomandibular JointSchool and Hospital of StomatologyGuangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhou Medical UniversityGuangzhou510180China
| | - Xingyang Li
- Department of Temporomandibular JointSchool and Hospital of StomatologyGuangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhou Medical UniversityGuangzhou510180China
| | - Wenchao Zhong
- Department of Temporomandibular JointSchool and Hospital of StomatologyGuangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhou Medical UniversityGuangzhou510180China
- Department of Human GeneticsAmsterdam UMC Location Vrije Universiteit AmsterdamAmsterdam1081 HZNetherlands
- Department of Clinical ChemistryAmsterdam UMC Location Vrije Universiteit AmsterdamAmsterdam1081 HVNetherlands
- Amsterdam Movement SciencesTissue Function and RegenerationAmsterdam1081 HVNetherlands
| | - Wei Cao
- Department of Temporomandibular JointSchool and Hospital of StomatologyGuangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhou Medical UniversityGuangzhou510180China
| | - Qianting Luo
- Department of maxillofacial surgeryJiangmen Central HospitalJiangmen529030China
| | - Antong Wu
- Department of Temporomandibular JointSchool and Hospital of StomatologyGuangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhou Medical UniversityGuangzhou510180China
| | - Gang Wu
- Savid School of StomatologyHangzhou Medical CollegeHangzhou311399China
| | - Qingbin Zhang
- Department of Temporomandibular JointSchool and Hospital of StomatologyGuangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhou Medical UniversityGuangzhou510180China
| |
Collapse
|
2
|
Hodgson K, Orozco-Moreno M, Goode EA, Fisher M, Garnham R, Beatson R, Turner H, Livermore K, Zhou Y, Wilson L, Visser EA, Pijnenborg JF, Eerden N, Moons SJ, Rossing E, Hysenaj G, Krishna R, Peng Z, Nangkana KP, Schmidt EN, Duxfield A, Dennis EP, Heer R, Lawson MA, Macauley M, Elliott DJ, Büll C, Scott E, Boltje TJ, Drake RR, Wang N, Munkley J. Sialic acid blockade inhibits the metastatic spread of prostate cancer to bone. EBioMedicine 2024; 104:105163. [PMID: 38772281 PMCID: PMC11134892 DOI: 10.1016/j.ebiom.2024.105163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Bone metastasis is a common consequence of advanced prostate cancer. Bisphosphonates can be used to manage symptoms, but there are currently no curative treatments available. Altered tumour cell glycosylation is a hallmark of cancer and is an important driver of a malignant phenotype. In prostate cancer, the sialyltransferase ST6GAL1 is upregulated, and studies show ST6GAL1-mediated aberrant sialylation of N-glycans promotes prostate tumour growth and disease progression. METHODS Here, we monitor ST6GAL1 in tumour and serum samples from men with aggressive prostate cancer and using in vitro and in vivo models we investigate the role of ST6GAL1 in prostate cancer bone metastasis. FINDINGS ST6GAL1 is upregulated in patients with prostate cancer with tumours that have spread to the bone and can promote prostate cancer bone metastasis in vivo. The mechanisms involved are multi-faceted and involve modification of the pre-metastatic niche towards bone resorption to promote the vicious cycle, promoting the development of M2 like macrophages, and the regulation of immunosuppressive sialoglycans. Furthermore, using syngeneic mouse models, we show that inhibiting sialylation can block the spread of prostate tumours to bone. INTERPRETATION Our study identifies an important role for ST6GAL1 and α2-6 sialylated N-glycans in prostate cancer bone metastasis, provides proof-of-concept data to show that inhibiting sialylation can suppress the spread of prostate tumours to bone, and highlights sialic acid blockade as an exciting new strategy to develop new therapies for patients with advanced prostate cancer. FUNDING Prostate Cancer Research and the Mark Foundation For Cancer Research, the Medical Research Council and Prostate Cancer UK.
Collapse
Affiliation(s)
- Kirsty Hodgson
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle upon Tyne NE1 3BZ, UK
| | - Margarita Orozco-Moreno
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle upon Tyne NE1 3BZ, UK
| | - Emily Archer Goode
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle upon Tyne NE1 3BZ, UK
| | - Matthew Fisher
- The Mellanby Centre for Musculoskeletal Research, Division of Clinical Medicine, The University of Sheffield, Sheffield, UK
| | - Rebecca Garnham
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle upon Tyne NE1 3BZ, UK
| | - Richard Beatson
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College London (UCL), Rayne 9 Building, London WC1E 6JF, UK
| | - Helen Turner
- Cellular Pathology, The Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne NE1 4LP, UK
| | - Karen Livermore
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle upon Tyne NE1 3BZ, UK
| | - Yuhan Zhou
- The Mellanby Centre for Musculoskeletal Research, Division of Clinical Medicine, The University of Sheffield, Sheffield, UK
| | - Laura Wilson
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Paul O'Gorman Building, Newcastle upon Tyne NE2 4HH, UK
| | - Eline A Visser
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | | | - Nienke Eerden
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands; GlycoTherapeutics B.V., Nijmegen, the Netherlands
| | | | - Emiel Rossing
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Gerald Hysenaj
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle upon Tyne NE1 3BZ, UK
| | - Rashi Krishna
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle upon Tyne NE1 3BZ, UK
| | - Ziqian Peng
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle upon Tyne NE1 3BZ, UK
| | - Kyla Putri Nangkana
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle upon Tyne NE1 3BZ, UK
| | - Edward N Schmidt
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Adam Duxfield
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle upon Tyne NE1 3BZ, UK; International Centre for Life, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE1 3BZ, UK
| | - Ella P Dennis
- International Centre for Life, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE1 3BZ, UK
| | - Rakesh Heer
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Paul O'Gorman Building, Newcastle upon Tyne NE2 4HH, UK; Department of Urology, Freeman Hospital, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK
| | - Michelle A Lawson
- The Mellanby Centre for Musculoskeletal Research, Division of Clinical Medicine, The University of Sheffield, Sheffield, UK
| | - Matthew Macauley
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - David J Elliott
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle upon Tyne NE1 3BZ, UK
| | - Christian Büll
- Biomolecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, the Netherlands
| | - Emma Scott
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle upon Tyne NE1 3BZ, UK
| | - Thomas J Boltje
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC, USA
| | - Ning Wang
- The Mellanby Centre for Musculoskeletal Research, Division of Clinical Medicine, The University of Sheffield, Sheffield, UK; Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, LE2 7LX, UK.
| | - Jennifer Munkley
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle upon Tyne NE1 3BZ, UK.
| |
Collapse
|
3
|
Wu X, Zheng L, Reboll MR, Hyde LF, Mass E, Niessen HW, Kosanke M, Pich A, Giannitsis E, Tillmanns J, Bauersachs J, Heineke J, Wang Y, Korf-Klingebiel M, Polten F, Wollert KC. Cysteine-rich with EGF-like domains 2 (CRELD2) is an endoplasmic reticulum stress-inducible angiogenic growth factor promoting ischemic heart repair. NATURE CARDIOVASCULAR RESEARCH 2024; 3:186-202. [PMID: 39196188 PMCID: PMC11358006 DOI: 10.1038/s44161-023-00411-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/07/2023] [Indexed: 08/29/2024]
Abstract
Tissue repair after myocardial infarction (MI) is guided by autocrine and paracrine-acting proteins. Deciphering these signals and their upstream triggers is essential when considering infarct healing as a therapeutic target. Here we perform a bioinformatic secretome analysis in mouse cardiac endothelial cells and identify cysteine-rich with EGF-like domains 2 (CRELD2), an endoplasmic reticulum stress-inducible protein with poorly characterized function. CRELD2 was abundantly expressed and secreted in the heart after MI in mice and patients. Creld2-deficient mice and wild-type mice treated with a CRELD2-neutralizing antibody showed impaired de novo microvessel formation in the infarct border zone and developed severe postinfarction heart failure. CRELD2 protein therapy, conversely, improved heart function after MI. Exposing human coronary artery endothelial cells to recombinant CRELD2 induced angiogenesis, associated with a distinct phosphoproteome signature. These findings identify CRELD2 as an angiogenic growth factor and unravel a link between endoplasmic reticulum stress and ischemic tissue repair.
Collapse
Affiliation(s)
- Xuekun Wu
- Division of Molecular and Translational Cardiology, Hans Borst Center for Heart and Stem Cell Research, Hannover Medical School, Hannover, Germany
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
- Stanford University School of Medicine, Stanford, CA, USA
| | - Linqun Zheng
- Division of Molecular and Translational Cardiology, Hans Borst Center for Heart and Stem Cell Research, Hannover Medical School, Hannover, Germany
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
- Department of Cardiology, Shanghai General Hospital, Shanghai, China
| | - Marc R Reboll
- Division of Molecular and Translational Cardiology, Hans Borst Center for Heart and Stem Cell Research, Hannover Medical School, Hannover, Germany
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Lillian F Hyde
- Division of Molecular and Translational Cardiology, Hans Borst Center for Heart and Stem Cell Research, Hannover Medical School, Hannover, Germany
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Elvira Mass
- Developmental Biology of the Immune System, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Hans W Niessen
- Department of Pathology and Department of Cardiac Surgery, Institute for Cardiovascular Research, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Maike Kosanke
- Research Core Unit Genomics, Hannover Medical School, Hannover, Germany
| | - Andreas Pich
- Core Unit Proteomics and Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | | | - Jochen Tillmanns
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Joerg Heineke
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
- Department of Cardiovascular Physiology, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Yong Wang
- Division of Molecular and Translational Cardiology, Hans Borst Center for Heart and Stem Cell Research, Hannover Medical School, Hannover, Germany
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Mortimer Korf-Klingebiel
- Division of Molecular and Translational Cardiology, Hans Borst Center for Heart and Stem Cell Research, Hannover Medical School, Hannover, Germany
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Felix Polten
- Division of Molecular and Translational Cardiology, Hans Borst Center for Heart and Stem Cell Research, Hannover Medical School, Hannover, Germany
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Kai C Wollert
- Division of Molecular and Translational Cardiology, Hans Borst Center for Heart and Stem Cell Research, Hannover Medical School, Hannover, Germany.
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
4
|
Ding L, Liu Y, Meng X, Jiang Y, Lin J, Cheng S, Xu Z, Zhao X, Li H, Wang Y, Li Z. Biomarker and genomic analyses reveal molecular signatures of non-cardioembolic ischemic stroke. Signal Transduct Target Ther 2023; 8:222. [PMID: 37248226 DOI: 10.1038/s41392-023-01465-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023] Open
Abstract
Acute ischemic stroke (AIS) is a major cause of disability and mortality worldwide. Non-cardioembolic ischemic stroke (NCIS), which constitutes the majority of AIS cases, is highly heterogeneous, thus requiring precision medicine treatments. This study aimed to investigate the molecular mechanisms underlying NCIS heterogeneity. We integrated data from the Third China National Stroke Registry, including clinical phenotypes, biomarkers, and whole-genome sequencing data for 7695 patients with NCIS. We identified 30 molecular clusters based on 63 biomarkers and explored the comprehensive landscape of biological heterogeneity and subpopulations in NCIS. Dimensionality reduction revealed fine-scale subpopulation structures associated with specific biomarkers. The subpopulations with biomarkers for inflammation, abnormal liver and kidney function, homocysteine metabolism, lipid metabolism, and gut microbiota metabolism were associated with a high risk of unfavorable clinical outcomes, including stroke recurrence, disability, and mortality. Several genes encoding potential drug targets were identified as putative causal genes that drive the clusters, such as CDK10, ERCC3, and CHEK2. We comprehensively characterized the genetic architecture of these subpopulations, identified their molecular signatures, and revealed the potential of the polybiomarkers and polygenic prediction for assessing clinical outcomes. Our study demonstrates the power of large-scale molecular biomarkers and genomics to understand the underlying biological mechanisms of and advance precision medicine for NCIS.
Collapse
Affiliation(s)
- Lingling Ding
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, 100070, China
| | - Yu Liu
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Xia Meng
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Yong Jiang
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, 100070, China
| | - Jinxi Lin
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Si Cheng
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Zhe Xu
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Xingquan Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, 100070, China
| | - Hao Li
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, 100070, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100070, China
- Clinical Center for Precision Medicine in Stroke, Capital Medical University, Beijing, 100070, China
| | - Zixiao Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, 100070, China.
- Chinese Institute for Brain Research, Beijing, China.
- Beijing Engineering Research Center of Digital Healthcare for Neurological Diseases, Beijing, 100070, China.
| |
Collapse
|
5
|
Dennis EP, Watson RN, McPate F, Briggs MD. Curcumin Reduces Pathological Endoplasmic Reticulum Stress through Increasing Proteolysis of Mutant Matrilin-3. Int J Mol Sci 2023; 24:ijms24021496. [PMID: 36675026 PMCID: PMC9867355 DOI: 10.3390/ijms24021496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
The intracellular retention of mutant cartilage matrix proteins and pathological endoplasmic reticulum (ER) stress disrupts ossification and has been identified as a shared disease mechanism in a range of skeletal dysplasias including short limbed-dwarfism, multiple epiphyseal dysplasia type 5 (EDM5). Although targeting ER stress is an attractive avenue for treatment and has proven successful in the treatment of a related skeletal dysplasia, to date no drugs have proven successful in reducing ER stress in EDM5 caused by the retention of mutant matrilin-3. Our exciting findings show that by using our established luciferase ER stress screening assay, we can identify a "natural" chemical, curcumin, which is able to reduce pathological ER stress in a cell model of EDM5 by promoting the proteasomal degradation mutant matrilin-3. Therefore, this is an important in vitro study in which we describe, for the first time, the success of a naturally occurring chemical as a potential treatment for this currently incurable rare skeletal disease. As studies show that curcumin can be used as a potential treatment for range of diseases in vitro, current research is focused on developing novel delivery strategies to enhance its bioavailability. This is an important and exciting area of research that will have significant clinical impact on a range of human diseases including the rare skeletal disease, EDM5.
Collapse
|
6
|
Tang Q, Liu Q, Li Y, Mo L, He J. CRELD2, endoplasmic reticulum stress, and human diseases. Front Endocrinol (Lausanne) 2023; 14:1117414. [PMID: 36936176 PMCID: PMC10018036 DOI: 10.3389/fendo.2023.1117414] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
CRELD2, a member of the cysteine-rich epidermal growth factor-like domain (CRELD) protein family, is both an endoplasmic reticulum (ER)-resident protein and a secretory factor. The expression and secretion of CRELD2 are dramatically induced by ER stress. CRELD2 is ubiquitously expressed in multiple tissues at different levels, suggesting its crucial and diverse roles in different tissues. Recent studies suggest that CRELD2 is associated with cartilage/bone metabolism homeostasis and pathological conditions involving ER stress such as chronic liver diseases, cardiovascular diseases, kidney diseases, and cancer. Herein, we first summarize ER stress and then critically review recent advances in the knowledge of the characteristics and functions of CRELD2 in various human diseases. Furthermore, we highlight challenges and present future directions to elucidate the roles of CRELD2 in human health and disease.
Collapse
Affiliation(s)
- Qin Tang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qinhui Liu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanping Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Mo
- Center of Gerontology and Geriatrics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jinhan He
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Jinhan He,
| |
Collapse
|
7
|
Li Y, Zhao W, Fu R, Ma Z, Hu Y, Liu Y, Ding Z. Endoplasmic reticulum stress increases exosome biogenesis and packaging relevant to sperm maturation in response to oxidative stress in obese mice. Reprod Biol Endocrinol 2022; 20:161. [PMID: 36411474 PMCID: PMC9677646 DOI: 10.1186/s12958-022-01031-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 11/03/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Mammalian sperm maturation in the epididymis is mainly modulated by exosomes that are secreted into the epididymal lumen from epididymal epithelial cells (EECs). Exposure to oxidative stress (OS) resulting from being fed a high fat diet (HFD) reduces sperm fertility, which is one of the cause inducing male infertility. Thus, we hypothesize that stress-induced changes in exosome content play a critical role in mediating this detrimental process. METHODS: An obese mouse model was established by feeding a HFD. Then oxidative stress status was measured in the mouse caput epididymis, epididymal fluid and spermatozoa. Meanwhile, epididymis-derived purified exosomes were isolated and validated. Subsequently, liquid chromatography tandem mass spectrometry (LC-MS) was used to perform proteomic analysis of purified exosomes. Gene Ontology (GO) analysis was performed along with pathway enrichment to identify differentially expressed proteins (DEPs). RESULTS Two hundred and two DEPs mostly related to endoplasmic reticulum (ER) function were identified in the exosomes separated from the epididymis of control mice and obese mice. The ER stress and CD63 (an exosome marker), both increased in the caput epididymis of obese mice. Furthermore, an in vitro study showed that palmitic acid (PA), an-oxidative stress inducer, increased exosome biogenesis and secretion in the EECs. CONCLUSION Oxidative stress in the epididymal microenvironment induces ER stress in the EECs. This effect alters the epididymis-derived exosome content, profile and amounts of their differentially expressed ER proteins. Such changes may affect exosome biogenesis and cargo packaging, finally leading to abnormalities in sperm maturation and fertility.
Collapse
Affiliation(s)
- Yangyang Li
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Wenzhen Zhao
- Department of Histology and Embryology, School of Basic Medical Science, Dali University, 671000, Dali, Yunnan, China
| | - Rong Fu
- Department of Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Zhuoyao Ma
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Yanqin Hu
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Yue Liu
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| | - Zhide Ding
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, No.280, Chongqing Road (South), 200025, Shanghai, China.
| |
Collapse
|
8
|
Mark PR, Murray SA, Yang T, Eby A, Lai A, Lu D, Zieba J, Rajasekaran S, VanSickle EA, Rossetti LZ, Guidugli L, Watkins K, Wright MS, Bupp CP, Prokop JW. Autosomal recessive LRP1-related syndrome featuring cardiopulmonary dysfunction, bone dysmorphology, and corneal clouding. Cold Spring Harb Mol Case Stud 2022; 8:a006169. [PMID: 36307211 PMCID: PMC9632358 DOI: 10.1101/mcs.a006169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 08/22/2022] [Indexed: 01/25/2023] Open
Abstract
We provide the first study of two siblings with a novel autosomal recessive LRP1-related syndrome identified by rapid genome sequencing and overlapping multiple genetic models. The patients presented with respiratory distress, congenital heart defects, hypotonia, dysmorphology, and unique findings, including corneal clouding and ascites. Both siblings had compound heterozygous damaging variants, c.11420G > C (p.Cys3807Ser) and c.12407T > G (p.Val4136Gly) in LRP1, in which segregation analysis helped dismiss additional variants of interest. LRP1 analysis using multiple human/mouse data sets reveals a correlation to patient phenotypes of Peters plus syndrome with additional severe cardiomyopathy and blood vessel development complications linked to neural crest cells.
Collapse
Affiliation(s)
- Paul R Mark
- Division of Medical Genetics, Spectrum Health, Grand Rapids, Michigan 49503, USA
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan 49503, USA
| | | | - Tao Yang
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan 49503, USA
| | - Alexandra Eby
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan 49503, USA
- Department of Science, Davenport University, Grand Rapids, Michigan 49512, USA
| | - Angela Lai
- Neonatal Intensive Care Unit, Bronson Methodist Hospital, Kalamazoo, Michigan 49007, USA
| | - Di Lu
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan 49503, USA
| | - Jacob Zieba
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan 49503, USA
- Genetics and Genome Sciences Program, Michigan State University, East Lansing, Michigan 48824, USA
| | - Surender Rajasekaran
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan 49503, USA
- Office of Research, Spectrum Health, Grand Rapids, Michigan 49503, USA
| | | | - Linda Z Rossetti
- Division of Medical Genetics, Spectrum Health, Grand Rapids, Michigan 49503, USA
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan 49503, USA
| | - Lucia Guidugli
- Rady Children's Institute for Genomic Medicine, San Diego, California 92123, USA
| | - Kelly Watkins
- Rady Children's Institute for Genomic Medicine, San Diego, California 92123, USA
| | - Meredith S Wright
- Rady Children's Institute for Genomic Medicine, San Diego, California 92123, USA
| | - Caleb P Bupp
- Division of Medical Genetics, Spectrum Health, Grand Rapids, Michigan 49503, USA
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan 49503, USA
| | - Jeremy W Prokop
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan 49503, USA
- Genetics and Genome Sciences Program, Michigan State University, East Lansing, Michigan 48824, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
9
|
Yamamoto K, Scavenius C, Meschis MM, Gremida AME, Mogensen EH, Thøgersen IB, Bonelli S, Scilabra SD, Jensen A, Santamaria S, Ahnström J, Bou-Gharios G, Enghild JJ, Nagase H. A top-down approach to uncover the hidden ligandome of low-density lipoprotein receptor-related protein 1 in cartilage. Matrix Biol 2022; 112:190-218. [PMID: 36028175 DOI: 10.1016/j.matbio.2022.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/26/2022] [Accepted: 08/17/2022] [Indexed: 11/29/2022]
Abstract
The low-density lipoprotein receptor-related protein 1 (LRP1) is a cell-surface receptor ubiquitously expressed in various tissues. It plays tissue-specific roles by mediating endocytosis of a diverse range of extracellular molecules. Dysregulation of LRP1 is involved in multiple conditions including osteoarthritis (OA) but little information is available about the specific profile of direct binding partners of LRP1 (ligandome) for each tissue, which would lead to a better understanding of its role in disease states. Here, we investigated adult articular cartilage where impaired LRP1-mediated endocytosis leads to tissue destruction. We used a top-down approach involving proteomic analysis of the LRP1 interactome in human chondrocytes, direct binding assays using purified LRP1 and ligand candidates, and validation in LRP1-deficient fibroblasts and human chondrocytes, as well as a novel Lrp1 conditional knockout (KO) mouse model. We found that inhibition of LRP1 and ligand interaction results in cell death, alteration of the entire secretome and transcriptional modulations in human chondrocytes. We identified a chondrocyte-specific LRP1 ligandome consisting of more than 50 novel ligand candidates. Surprisingly, 23 previously reported LRP1 ligands were not regulated by LRP1-mediated endocytosis in human chondrocytes. We confirmed direct LRP1 binding of HGFAC, HMGB1, HMGB2, CEMIP, SLIT2, ADAMTS1, TSG6, IGFBP7, SPARC and LIF, correlation between their affinity for LRP1 and the rate of endocytosis, and some of their intracellular localization. Moreover, a conditional LRP1 KO mouse model demonstrated a critical role of LRP1 in regulating the high-affinity ligands in cartilage in vivo. This systematic approach revealed the specificity and the extent of the chondrocyte LRP1 ligandome and identified potential novel therapeutic targets for OA.
Collapse
Affiliation(s)
- Kazuhiro Yamamoto
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, United Kingdom.
| | - Carsten Scavenius
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Maria M Meschis
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, United Kingdom
| | - Abdulrahman M E Gremida
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, United Kingdom
| | - Emilie H Mogensen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Ida B Thøgersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Simone Bonelli
- Fondazione RiMED - ISMETT via Ernesto Tricomi 5, 90127 Palermo, Italy
| | - Simone D Scilabra
- Fondazione RiMED - ISMETT via Ernesto Tricomi 5, 90127 Palermo, Italy
| | - Anders Jensen
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, United Kingdom
| | - Salvatore Santamaria
- Department of Immunology and Inflammation, Imperial College London, Du Cane Road, W12 0NN, London, United Kingdom
| | - Josefin Ahnström
- Department of Immunology and Inflammation, Imperial College London, Du Cane Road, W12 0NN, London, United Kingdom
| | - George Bou-Gharios
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, United Kingdom
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Hideaki Nagase
- Kennedy Institute of Rheumatology, University of Oxford, Headington, Oxford OX3 7FY, United Kingdom
| |
Collapse
|
10
|
Duxfield A, Munkley J, Briggs MD, Dennis EP. CRELD2 is a novel modulator of calcium release and calcineurin-NFAT signalling during osteoclast differentiation. Sci Rep 2022; 12:13884. [PMID: 35974042 PMCID: PMC9381524 DOI: 10.1038/s41598-022-17347-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/25/2022] [Indexed: 11/09/2022] Open
Abstract
Cysteine rich with epidermal growth factor (EGF)-like domains 2 (CRELD2) is an endoplasmic reticulum (ER) resident chaperone protein with calcium binding properties. CRELD2 is an ER-stress regulated gene that has been implicated in the pathogenesis of skeletal dysplasias and has been shown to play an important role in the differentiation of chondrocytes and osteoblasts. Despite CRELD2 having an established role in skeletal development and bone formation, its role in osteoclasts is currently unknown. Here we show for the first time that CRELD2 plays a novel role in trafficking transforming growth factor beta 1 (TGF-β1), which is linked to an upregulation in the expression of Nfat2, the master regulator of osteoclast differentiation in early osteoclastogenesis. Despite this finding, we show that overexpressing CRELD2 impaired osteoclast differentiation due to a reduction in the activity of the calcium-dependant phosphatase, calcineurin. This in turn led to a subsequent block in the dephosphorylation of nuclear factor of activated T cells 1 (NFATc1), preventing its nuclear localisation and activation as a pro-osteoclastogenic transcription factor. Our exciting results show that the overexpression of Creld2 in osteoclasts impaired calcium release from the ER which is essential for activating calcineurin and promoting osteoclastogenesis. Therefore, our data proposes a novel inhibitory role for this calcium-binding ER-resident chaperone in modulating calcium flux during osteoclast differentiation which has important implications in our understanding of bone remodelling and the pathogenesis of skeletal diseases.
Collapse
Affiliation(s)
- Adam Duxfield
- International Centre for Life, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, NE1 3BZ, UK
| | - Jennifer Munkley
- International Centre for Life, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, NE1 3BZ, UK
| | - Michael D Briggs
- International Centre for Life, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, NE1 3BZ, UK
| | - Ella P Dennis
- International Centre for Life, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, NE1 3BZ, UK.
| |
Collapse
|
11
|
Xia ZJ, Zeng XXI, Tambe M, Ng BG, Dong PDS, Freeze HH. A Dominant Heterozygous Mutation in COG4 Causes Saul-Wilson Syndrome, a Primordial Dwarfism, and Disrupts Zebrafish Development via Wnt Signaling. Front Cell Dev Biol 2021; 9:720688. [PMID: 34595172 PMCID: PMC8476873 DOI: 10.3389/fcell.2021.720688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/13/2021] [Indexed: 12/16/2022] Open
Abstract
Saul-Wilson syndrome (SWS) is a rare, skeletal dysplasia with progeroid appearance and primordial dwarfism. It is caused by a heterozygous, dominant variant (p.G516R) in COG4, a subunit of the conserved oligomeric Golgi (COG) complex involved in intracellular vesicular transport. Our previous work has shown the intracellular disturbances caused by this mutation; however, the pathological mechanism of SWS needs further investigation. We sought to understand the molecular mechanism of specific aspects of the SWS phenotype by analyzing SWS-derived fibroblasts and zebrafish embryos expressing this dominant variant. SWS fibroblasts accumulate glypicans, a group of heparan sulfate proteoglycans (HSPGs) critical for growth and bone development through multiple signaling pathways. Consistently, we find that glypicans are increased in zebrafish embryos expressing the COG4 p.G516R variant. These animals show phenotypes consistent with convergent extension (CE) defects during gastrulation, shortened body length, and malformed jaw cartilage chondrocyte intercalation at larval stages. Since non-canonical Wnt signaling was shown in zebrafish to be related to the regulation of these processes by glypican 4, we assessed wnt levels and found a selective increase of wnt4 transcripts in the presence of COG4 p.G516R . Moreover, overexpression of wnt4 mRNA phenocopies these developmental defects. LGK974, an inhibitor of Wnt signaling, corrects the shortened body length at low concentrations but amplifies it at slightly higher concentrations. WNT4 and the non-canonical Wnt signaling component phospho-JNK are also elevated in cultured SWS-derived fibroblasts. Similar results from SWS cell lines and zebrafish point to altered non-canonical Wnt signaling as one possible mechanism underlying SWS pathology.
Collapse
Affiliation(s)
- Zhi-Jie Xia
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Xin-Xin I Zeng
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States.,Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Mitali Tambe
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States.,National Centre for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States
| | - Bobby G Ng
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - P Duc S Dong
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States.,Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Hudson H Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| |
Collapse
|
12
|
Kern P, Balzer NR, Blank N, Cygon C, Wunderling K, Bender F, Frolov A, Sowa JP, Bonaguro L, Ulas T, Homrich M, Kiermaier E, Thiele C, Schultze JL, Canbay A, Bauer R, Mass E. Creld2 function during unfolded protein response is essential for liver metabolism homeostasis. FASEB J 2021; 35:e21939. [PMID: 34549824 DOI: 10.1096/fj.202002713rr] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 12/11/2022]
Abstract
The unfolded protein response (UPR) is associated with hepatic metabolic function, yet it is not well understood how endoplasmic reticulum (ER) disturbance might influence metabolic homeostasis. Here, we describe the physiological function of Cysteine-rich with EGF-like domains 2 (Creld2), previously characterized as a downstream target of the ER-stress signal transducer Atf6. To this end, we generated Creld2-deficient mice and induced UPR by injection of tunicamycin. Creld2 augments protein folding and creates an interlink between the UPR axes through its interaction with proteins involved in the cellular stress response. Thereby, Creld2 promotes tolerance to ER stress and recovery from acute stress. Creld2-deficiency leads to a dysregulated UPR and causes the development of hepatic steatosis during ER stress conditions. Moreover, Creld2-dependent enhancement of the UPR assists in the regulation of energy expenditure. Furthermore, we observed a sex dimorphism in human and mouse livers with only male patients showing an accumulation of CRELD2 protein during the progression from non-alcoholic fatty liver disease to non-alcoholic steatohepatitis and only male Creld2-deficient mice developing hepatic steatosis upon aging. These results reveal a Creld2 function at the intersection between UPR and metabolic homeostasis and suggest a mechanism in which chronic ER stress underlies fatty liver disease in males.
Collapse
Affiliation(s)
- Paul Kern
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.,Developmental Genetics & Molecular Physiology, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Nora R Balzer
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Nelli Blank
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Cornelia Cygon
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Klaus Wunderling
- Biochemistry & Cell Biology of Lipids, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Franziska Bender
- Developmental Genetics & Molecular Physiology, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Alex Frolov
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Jan-Peter Sowa
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Magdeburg, Magdeburg, Germany.,Department of Medicine, Ruhr University Bochum, University Hospital Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Lorenzo Bonaguro
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.,Platform for Single Cell Genomics and Epigenomics at the Deutsche Zentrum für Neurodegenerative Erkrankungen (DZNE), University of Bonn, Bonn, Germany
| | - Thomas Ulas
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.,Platform for Single Cell Genomics and Epigenomics at the Deutsche Zentrum für Neurodegenerative Erkrankungen (DZNE), University of Bonn, Bonn, Germany
| | - Mirka Homrich
- Immune and Tumor Biology, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Eva Kiermaier
- Immune and Tumor Biology, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Christoph Thiele
- Biochemistry & Cell Biology of Lipids, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Joachim L Schultze
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.,Platform for Single Cell Genomics and Epigenomics at the Deutsche Zentrum für Neurodegenerative Erkrankungen (DZNE), University of Bonn, Bonn, Germany.,Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Ali Canbay
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Magdeburg, Magdeburg, Germany.,Department of Medicine, Ruhr University Bochum, University Hospital Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Reinhard Bauer
- Developmental Genetics & Molecular Physiology, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Elvira Mass
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
13
|
Mitochondrial dysfunction impairs osteogenesis, increases osteoclast activity, and accelerates age related bone loss. Sci Rep 2020; 10:11643. [PMID: 32669663 PMCID: PMC7363892 DOI: 10.1038/s41598-020-68566-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/24/2020] [Indexed: 02/07/2023] Open
Abstract
The pathogenesis of declining bone mineral density, a universal feature of ageing, is not fully understood. Somatic mitochondrial DNA (mtDNA) mutations accumulate with age in human tissues and mounting evidence suggests that they may be integral to the ageing process. To explore the potential effects of mtDNA mutations on bone biology, we compared bone microarchitecture and turnover in an ageing series of wild type mice with that of the PolgAmut/mut mitochondrial DNA ‘mutator’ mouse. In vivo analyses showed an age-related loss of bone in both groups of mice; however, it was significantly accelerated in the PolgAmut/mut mice. This accelerated rate of bone loss is associated with significantly reduced bone formation rate, reduced osteoblast population densities, increased osteoclast population densities, and mitochondrial respiratory chain deficiency in osteoblasts and osteoclasts in PolgAmut/mut mice compared with wild-type mice. In vitro assays demonstrated severely impaired mineralised matrix formation and increased osteoclast resorption by PolgAmut/mut cells. Finally, application of an exercise intervention to a subset of PolgAmut/mut mice showed no effect on bone mass or mineralised matrix formation in vitro. Our data demonstrate that mitochondrial dysfunction, a universal feature of human ageing, impairs osteogenesis and is associated with accelerated bone loss.
Collapse
|