1
|
Bhoot HR, Zamwar UM, Chakole S, Anjankar A. Dietary Sources, Bioavailability, and Functions of Ascorbic Acid (Vitamin C) and Its Role in the Common Cold, Tissue Healing, and Iron Metabolism. Cureus 2023; 15:e49308. [PMID: 38146585 PMCID: PMC10749424 DOI: 10.7759/cureus.49308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/23/2023] [Indexed: 12/27/2023] Open
Abstract
Ascorbic acid is also popularly known as vitamin C or ascorbate. It is a water-soluble vitamin. Ascorbic acid is necessary for bone formation, wound healing, connective tissue growth, and the maintenance of healthy gum tissue. Antioxidants like ascorbic acid shield the body from free radical damage. In many illnesses and conditions, vitamin C is employed as a medicinal agent. It improves the immunity of the body, reduces the severity of allergies, and aids in the management of infectious disorders. Additionally, ascorbic acid has health benefits for conditions including atherosclerosis, cancer, the common cold, iron deficiency anemia, etc. Therefore, continuous efforts may open new avenues to understand the importance of vitamin C in managing various diseases.
Collapse
Affiliation(s)
- Harshit R Bhoot
- Endocrinology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Udit M Zamwar
- Endocrinology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Swarupa Chakole
- Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Ashish Anjankar
- Biochemistry, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
2
|
Abstract
Vitamin C (Vit C) is an ideal antioxidant as it is easily available, water soluble, very potent, least toxic, regenerates other antioxidants particularly Vit E, and acts as a cofactor for different enzymes. It has received much attention due to its ability in limiting reactive oxygen species, oxidative stress, and nitrosative stress, as well as it helps to maintain some of the normal metabolic functions of the cell. However, over 140 clinical trials using Vit C in different pathological conditions such as myocardial infarction, gastritis, diabetes, hypertension, stroke, and cancer have yielded inconsistent results. Such a divergence calls for new strategies to establish practical significance of Vit C in heart failure or even in its prevention. For a better understanding of Vit C functioning, it is important to revisit its transport across the cell membrane and subcellular interactions. In this review, we have highlighted some historical details of Vit C and its transporters in the heart with a particular focus on heart failure in cancer chemotherapy.
Collapse
|
3
|
The Level of Orally Ingested Vitamin C Affected the Expression of Vitamin C Transporters and Vitamin C Accumulation in the Livers of ODS Rats. Biosci Biotechnol Biochem 2014; 75:2394-7. [DOI: 10.1271/bbb.110312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
4
|
Chambial S, Dwivedi S, Shukla KK, John PJ, Sharma P. Vitamin C in disease prevention and cure: an overview. Indian J Clin Biochem 2013; 28:314-328. [PMID: 24426232 PMCID: PMC3783921 DOI: 10.1007/s12291-013-0375-3] [Citation(s) in RCA: 249] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 08/20/2013] [Indexed: 12/13/2022]
Abstract
The recognition of vitamin C is associated with a history of an unrelenting search for the cause of the ancient haemorrhagic disease scurvy. Isolated in 1928, vitamin C is essential for the development and maintenance of connective tissues. It plays an important role in bone formation, wound healing and the maintenance of healthy gums. Vitamin C plays an important role in a number of metabolic functions including the activation of the B vitamin, folic acid, the conversion of cholesterol to bile acids and the conversion of the amino acid, tryptophan, to the neurotransmitter, serotonin. It is an antioxidant that protects body from free radical damage. It is used as therapeutic agent in many diseases and disorders. Vitamin C protects the immune system, reduces the severity of allergic reactions and helps to fight off infections. However the significance and beneficial effect of vitamin C in respect to human disease such as cancer, atherosclerosis, diabetes, neurodegenerative disease and metal toxicity however remains equivocal. Thus further continuous uninterrupted efforts may open new vistas to understand its significance in disease management.
Collapse
Affiliation(s)
- Shailja Chambial
- />Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, 342005 Rajasthan India
| | - Shailendra Dwivedi
- />Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, 342005 Rajasthan India
| | - Kamla Kant Shukla
- />Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, 342005 Rajasthan India
| | - Placheril J. John
- />Department of Zoology, Centre for Advanced Studies, University of Rajasthan, Jaipur, 302004 India
| | - Praveen Sharma
- />Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, 342005 Rajasthan India
| |
Collapse
|
5
|
Lindblad M, Tveden-Nyborg P, Lykkesfeldt J. Regulation of vitamin C homeostasis during deficiency. Nutrients 2013; 5:2860-79. [PMID: 23892714 PMCID: PMC3775232 DOI: 10.3390/nu5082860] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/15/2013] [Accepted: 07/18/2013] [Indexed: 12/31/2022] Open
Abstract
Large cross-sectional population studies confirm that vitamin C deficiency is common in humans, affecting 5%–10% of adults in the industrialized world. Moreover, significant associations between poor vitamin C status and increased morbidity and mortality have consistently been observed. However, the absorption, distribution and elimination kinetics of vitamin C in vivo are highly complex, due to dose-dependent non-linearity, and the specific regulatory mechanisms are not fully understood. Particularly, little is known about how adaptive mechanisms during states of deficiency affect the overall regulation of vitamin C transport in the body. This review discusses mechanisms of vitamin C transport and potential means of regulation with special emphasis on capacity and functional properties, such as differences in the Km of vitamin C transporters in different target tissues, in some instances demonstrating a tissue-specific distribution.
Collapse
Affiliation(s)
- Maiken Lindblad
- Section of Experimental Animal Models, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, Frederiksberg C 1870, Denmark.
| | | | | |
Collapse
|
6
|
Harrison FE, Best JL, Meredith ME, Gamlin CR, Borza DB, May JM. Increased expression of SVCT2 in a new mouse model raises ascorbic acid in tissues and protects against paraquat-induced oxidative damage in lung. PLoS One 2012; 7:e35623. [PMID: 22558179 PMCID: PMC3340390 DOI: 10.1371/journal.pone.0035623] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 03/21/2012] [Indexed: 12/11/2022] Open
Abstract
A new transgenic mouse model for global increases in the Sodium Dependent Vitamin C transporter 2 (SVCT2) has been generated. The SVCT2-Tg mouse shows increased SVCT2 mRNA levels in all organs tested and correspondingly increased ascorbic acid (ASC) levels in all organs except liver. The extent of the increase in transporter mRNA expression differed among mice and among organs. The increased ASC levels did not have any adverse effects on behavior in the SVCT2-Tg mice, which did not differ from wild-type mice on tests of locomotor activity, anxiety, sensorimotor or cognitive ability. High levels of SVCT2 and ASC were found in the kidneys of SVCT2-Tg mice and urinary albumin excretion was lower in these mice than in wild-types. No gross pathological changes were noted in kidneys from SVCT2-Tg mice. SVCT2 immunoreactivity was detected in both SVCT2 and wild-type mice, and a stronger signal was seen in tubules than in glomeruli. Six treatments with Paraquat (3x10 and 3x15 mg/kg i.p.) were used to induce oxidative stress in mice. SVCT2-Tg mice showed a clear attenuation of Paraquat-induced oxidative stress in lung, as measured by F(2)-isoprostanes. Paraquat also decreased SVCT2 mRNA signal in liver, lung and kidney in SVCT2-Tg mice.
Collapse
Affiliation(s)
- Fiona Edith Harrison
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America.
| | | | | | | | | | | |
Collapse
|
7
|
Meredith ME, Harrison FE, May JM. Differential regulation of the ascorbic acid transporter SVCT2 during development and in response to ascorbic acid depletion. Biochem Biophys Res Commun 2011; 414:737-42. [PMID: 22001929 DOI: 10.1016/j.bbrc.2011.09.146] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 09/28/2011] [Indexed: 11/18/2022]
Abstract
The sodium-dependent vitamin C transporter-2 (SVCT2) is the only ascorbic acid (ASC) transporter significantly expressed in brain. It is required for life and is critical during brain development to supply adequate levels of ASC. To assess SVCT2 function in the developing brain, we studied time-dependent SVCT2 mRNA and protein expression in mouse brain, using liver as a comparison tissue because it is the site of ASC synthesis. We found that SVCT2 expression followed an inverse relationship with ASC levels in the developing brain. In cortex and cerebellum, ASC levels were high throughout late embryonic stages and early post-natal stages and decreased with age, whereas SVCT2 mRNA and protein levels were low in embryos and increased with age. A different response was observed for liver, in which ASC levels and SVCT2 expression were both low throughout embryogenesis and increased post-natally. To determine whether low intracellular ASC might be capable of driving SVCT2 expression, we depleted ASC by diet in adult mice unable to synthesize ASC. We observed that SVCT2 mRNA and protein were not affected by ASC depletion in brain cortex, but SVCT2 protein expression was increased by ASC depletion in the cerebellum and liver. The results suggest that expression of the SVCT2 is differentially regulated during embryonic development and in adulthood.
Collapse
Affiliation(s)
- M Elizabeth Meredith
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2213 Garland Ave., 7465 MRBIV, Nashville, TN 37232-0465, USA.
| | | | | |
Collapse
|
8
|
Sone Y, Ueta E, Sannomaru Y, Miyake N, Sone H, Otsuka Y, Kondo K, Kurata T, Suzuki E. Dose of 3-methylcholanthrene enhances vitamin C accumulation and mRNA expression of its transporter in the liver of ODS rats and in HepG2 cells. J Biochem Mol Toxicol 2011; 25:369-76. [PMID: 21800402 DOI: 10.1002/jbt.20403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Revised: 05/31/2011] [Accepted: 06/10/2011] [Indexed: 11/10/2022]
Abstract
Polycyclic aromatic hydrocarbon (PAH) compounds including 3-methylcholanthrene induce harmful reactive intermediates and reactive oxygen species. This study reports the effect of 3-methylcholanthrene on the accumulation of vitamin C and the expression of vitamin C transporters. ODS rats were given l-ascorbic acid daily and intraperitoneal injections of 10 mg 3-methylcholanthrene in total. On day 10, vitamin C concentrations and the expression of vitamin C transporter in the tissues were measured. As a result, the levels of sodium-dependent vitamin C transporter (SVCTs) 1 and the l-ascorbic acid concentration in 3-methylcholanthrene-treated livers and hepatocytes have increased significantly. However, the content of vitamin C in the urine and TBARS in the liver have not changed. These results suggest that the administration of 3-methylcholanthrene elevates the requirement for vitamin C via (SVCTs) 1 due to xenobitics-metabolizing, such as the induction of cytochrome P450 family.
Collapse
Affiliation(s)
- Yasuko Sone
- Institute of Environmental Science for Human Life, Ochanomizu University, 2-1-1 Otsuka, Bunkyo, Tokyo 1128610, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
May JM, Li L, Qu ZC. Oxidized LDL up-regulates the ascorbic acid transporter SVCT2 in endothelial cells. Mol Cell Biochem 2010; 343:217-22. [PMID: 20549544 DOI: 10.1007/s11010-010-0516-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 06/05/2010] [Indexed: 11/25/2022]
Abstract
Endothelial dysfunction is an early manifestation of atherosclerosis caused in part by oxidized LDL (oxLDL). Since vitamin C, or ascorbic acid, prevents several aspects of endothelial dysfunction, the effects of oxLDL on oxidative stress and regulation of the ascorbate transporter, SVCT2, were studied in cultured EA.hy926 endothelial cells. Cells cultured for 18 h with 0.2 mg/ml oxLDL showed increased lipid peroxidation that was prevented by a single addition of 0.25 mM ascorbate at the beginning of the incubation. This protection caused a decrease in intracellular ascorbate, but no change in the cell content of GSH. In the absence of ascorbate, oxLDL increased SVCT2 protein and function during 18 h in culture. Although culture of the cells with ascorbate did not affect SVCT2 protein expression, the oxLDL-induced increase in SVCT2 protein expression was prevented by ascorbate. These results suggest that up-regulation of endothelial cell SVCT2 expression and function may help to maintain intracellular ascorbate during oxLDL-induced oxidative stress, and that ascorbate in turn can prevent this effect.
Collapse
Affiliation(s)
- James M May
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-0475, USA.
| | | | | |
Collapse
|
10
|
Corti A, Casini AF, Pompella A. Cellular pathways for transport and efflux of ascorbate and dehydroascorbate. Arch Biochem Biophys 2010; 500:107-15. [PMID: 20494648 DOI: 10.1016/j.abb.2010.05.014] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 05/13/2010] [Accepted: 05/14/2010] [Indexed: 11/17/2022]
Abstract
The mechanisms allowing the cellular transport of ascorbic acid represent a primary aspect for the understanding of the roles played by this vitamin in pathophysiology. Considerable research effort has been spent in the field, on several animal models and different cell types. Several mechanisms have been described to date, mediating the movements of different redox forms of ascorbic acid across cell membranes. Vitamin C can enter cells both in its reduced and oxidized form, ascorbic acid (AA) and dehydroascorbate (DHA), utilizing respectively sodium-dependent transporters (SVCT) or glucose transporters (GLUT). Modulation of SVCT expression and function has been described by cytokines, steroids and post-translational protein modification. Cellular uptake of DHA is followed by its intracellular reduction to AA by several enzymatic and non-enzymatic systems. Efflux of vitamin C has been also described in a number of cell types and different pathophysiological functions were proposed for this phenomenon, in dependence of the cell model studied. Cellular efflux of AA is mediated through volume-sensitive (VSOAC) and Ca(2+)-dependent anion channels, gap-junction hemichannels, exocytosis of secretory vesicles and possibly through homo- and hetero-exchange systems at the plasma membrane level. Altogether, available data suggest that cellular efflux of ascorbic acid - besides its uptake - should be taken into account when evaluating the cellular homeostasis and functions of this important vitamin.
Collapse
Affiliation(s)
- Alessandro Corti
- Dipartimento di Patologia Sperimentale, Università di Pisa, Italy.
| | | | | |
Collapse
|
11
|
Chi X, May JM. Oxidized lipoprotein induces the macrophage ascorbate transporter (SVCT2): protection by intracellular ascorbate against oxidant stress and apoptosis. Arch Biochem Biophys 2009; 485:174-82. [PMID: 19254685 PMCID: PMC3722556 DOI: 10.1016/j.abb.2009.02.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 02/13/2009] [Accepted: 02/22/2009] [Indexed: 11/25/2022]
Abstract
To assess whether ascorbic acid decreases the cytotoxicity of oxidized human low density lipoprotein (oxLDL) in cells involved in atherosclerosis, its interaction with oxLDL was studied in murine RAW264.7 macrophages. Macrophages took up ascorbate to millimolar intracellular concentrations and retained it with little loss over 18h in culture. Culture of the macrophages with oxLDL enhanced ascorbate uptake. This was associated with increased expression of the ascorbate transporter (SVCT2), which was prevented by ascorbate and by inhibiting the NF-kappaB pathway. Culture of RAW264.7 macrophages with oxLDL increased intracellular dihydrofluorescein oxidation and lipid peroxidation, both of which were decreased by intracellular ascorbate. Ascorbate also protected the cells against oxLDL-induced cytotoxicity and apoptosis, but it did not affect macrophage accumulation of lipid from oxLDL or oxLDL-induced increases in macrophage cytokine secretion. These results suggest that ascorbate protects macrophages against oxLDL-induced oxidant stress and subsequent apoptotic death without impairing their function.
Collapse
Affiliation(s)
- Xiumei Chi
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-6303
| | - James M. May
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-6303
| |
Collapse
|
12
|
Effect of Chronic Administration of Morphine on the Gene Expression Level of Sodium-Dependent Vitamin C Transporters in Rat Hippocampus and Lumbar Spinal Cord. J Mol Neurosci 2009; 38:236-42. [DOI: 10.1007/s12031-009-9203-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Accepted: 04/13/2009] [Indexed: 10/20/2022]
|
13
|
Gournas C, Papageorgiou I, Diallinas G. The nucleobase–ascorbate transporter (NAT) family: genomics, evolution, structure–function relationships and physiological role. MOLECULAR BIOSYSTEMS 2008; 4:404-16. [PMID: 18414738 DOI: 10.1039/b719777b] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Christos Gournas
- Faculty of Biology, Department of Botany, University of Athens, Panepistimioupolis, Athens, Greece
| | | | | |
Collapse
|
14
|
Abstract
Vitamin C is required for collagen synthesis and biosynthesis of certain hormones and recommended dietary intake levels are largely based these requirements. However, to function effectively as an antioxidant (or a pro-oxidant), relatively high levels of this vitamin must be maintained in the body. The instability of vitamin C combined with its relatively poor intestinal absorption and ready excretion from the body reduce physiological availability of this vitamin. This inability to maintain high serum levels of vitamin C may have serious health implications and is particularly relevant in the onset and progression of degenerative disease, such as cancer and cardiovascular disease (CVD), which have a strong contributing oxidative damage factor. In this review, we examine recent studies on the regulation of transport mechanisms for vitamin C, related clinical ramifications, and potential implications in high-dose vitamin C therapy. We also evaluate recent clinical and scientific evidence on the effects of this vitamin on cancer and CVD, with focus on the key mechanisms of action that may contribute to the therapeutic potential of this vitamin in these diseases. Several animal models that could be utilized to address unresolved questions regarding the feasibility of vitamin C therapy are also discussed.
Collapse
Affiliation(s)
- Yi Li
- Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | | |
Collapse
|
15
|
Savini I, Rossi A, Catani MV, Ceci R, Avigliano L. Redox regulation of vitamin C transporter SVCT2 in C2C12 myotubes. Biochem Biophys Res Commun 2007; 361:385-90. [PMID: 17643393 DOI: 10.1016/j.bbrc.2007.07.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 07/04/2007] [Indexed: 10/23/2022]
Abstract
We have previously demonstrated that skeletal muscle cells possess efficient systems for vitamin C accumulation; in particular, the SVCT2 transporter for ascorbic acid uptake seems to play a crucial role. In this study, we investigated the regulatory mechanism(s) accounting for SVCT2 activity in C2C12 myotubes. We found that transcription of the SVCT2 gene could be positively or negatively modulated by the presence of oxidant (H(2)O(2)) or antioxidant (lipoate) compounds, respectively. This redox-mediated regulation of SVCT2 expression seemed to be achieved via AP-1 and NF-kappaB signaling. Our findings could be relevant in skeletal muscle, where reactive oxygen species, naturally produced during physical exercise, can induce muscle damage. Thus, the redox-sensitive SVCT2 expression can be placed among the adaptive responses induced by contractile activity.
Collapse
Affiliation(s)
- Isabella Savini
- Department of Experimental Medicine & Biochemical Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | | | | | | | | |
Collapse
|
16
|
Savini I, Rossi A, Pierro C, Avigliano L, Catani MV. SVCT1 and SVCT2: key proteins for vitamin C uptake. Amino Acids 2007; 34:347-55. [PMID: 17541511 DOI: 10.1007/s00726-007-0555-7] [Citation(s) in RCA: 257] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Accepted: 04/18/2007] [Indexed: 12/13/2022]
Abstract
Vitamin C is accumulated in mammalian cells by two types of proteins: sodium-ascorbate co-transporters (SVCTs) and hexose transporters (GLUTs); in particular, SVCTs actively import ascorbate, the reduced form of this vitamin. SVCTs are surface glycoproteins encoded by two different genes, very similar in structure. They show distinct tissue distribution and functional characteristics, which indicate different physiological roles. SVCT1 is involved in whole-body homeostasis of vitamin C, while SVCT2 protects metabolically active cells against oxidative stress. Regulation at mRNA or protein level may serve for preferential accumulation of ascorbic acid at sites where it is needed. This review will summarize the present knowledge on structure, function and regulation of the SVCT transporters. Understanding the physiological role of SVCT1 and SVCT2 may lead to develop new therapeutic strategies to control intracellular vitamin C content or to promote tissue-specific delivery of vitamin C-drug conjugates.
Collapse
Affiliation(s)
- I Savini
- Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Rome, Italy.
| | | | | | | | | |
Collapse
|
17
|
Savini I, Catani MV, Arnone R, Rossi A, Frega G, Del Principe D, Avigliano L. Translational control of the ascorbic acid transporter SVCT2 in human platelets. Free Radic Biol Med 2007; 42:608-16. [PMID: 17291984 DOI: 10.1016/j.freeradbiomed.2006.11.028] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 11/23/2006] [Accepted: 11/28/2006] [Indexed: 12/15/2022]
Abstract
Reactive oxygen species (ROS) and redox state have emerged as physiological mediators, controlling blood coagulation and thrombosis. The redox balance is obviously linked to the presence of antioxidants; in particular, vitamin C appears to be a key modulator of platelet oxidative state, since these cells physiologically accumulate ascorbic acid and, moreover, platelet ascorbate plays a role during aggregation. Here, we showed that platelets could compensate for fluctuations in ascorbate levels by modulating the expression of the Na+-dependent transporter SVCT2. Furthermore, the use of anucleated cells demonstrated, for the first time, that SVCT2 expression could be regulated at the translational level. The control of ascorbic acid uptake, through regulation of its carrier, was not only related to substrate availability, but it also occurred during platelet activation, which was accompanied by vitamin C deprivation and alteration in the redox state. Finally, we showed that changes in intracellular ascorbic acid content had physiological relevance, since they modulate the surface sulfhydryl content and the thrombus viscoelastic properties. Beside its role during aggregation, vitamin C may also have important effects during postaggregatory events.
Collapse
Affiliation(s)
- Isabella Savini
- Department of Experimental Medicine & Biochemical Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Ascorbic acid and dehydroascorbic acid (DHAA, oxidized vitamin C) are dietary sources of vitamin C in humans. Both nutrients are absorbed from the lumen of the intestine and renal tubules by, respectively, enterocytes and renal epithelial cells. Subsequently vitamin C circulates in the blood and enters all of the other cells of the body. Concerning flux across the plasma membrane, simple diffusion of ascorbic acid plays only a small or negligible role. More important are specific mechanisms of transport and metabolism that concentrate vitamin C intracellularly to enhance its function as an enzyme cofactor and antioxidant. The known transport mechanisms are facilitated diffusion of DHAA through glucose-sensitive and -insensitive transporters, facilitated diffusion of ascorbate through channels, exocytosis of ascorbate in secretory vesicles, and secondary active transport of ascorbate through the sodium-dependent vitamin C transporters SVCT1 and SVCT2 proteins that are encoded by the genes Slc23a1 and Slc23a2, respectively. Evidence is reviewed indicating that these transport pathways are regulated under physiological conditions and altered by aging and disease.
Collapse
Affiliation(s)
- John X Wilson
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York 14214-3079, USA.
| |
Collapse
|
19
|
Pandipati S, Driscoll JE, Franceschi RT. Glucocorticoid stimulation of Na+-dependent ascorbic acid transport in osteoblast-like cells. J Cell Physiol 1998; 176:85-91. [PMID: 9618148 DOI: 10.1002/(sici)1097-4652(199807)176:1<85::aid-jcp10>3.0.co;2-n] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ascorbic acid (AA) is an essential cofactor for osteoblast differentiation both in vivo and in vitro. Before it can function, this vitamin must be transported into cells via a specific Na+-dependent AA transporter. In this study, we examine the regulation of this transport activity by glucocorticoids, a class of steroid hormones known to stimulate in vitro osteoblast differentiation. Dexamethasone stimulated Na+-dependent AA transport activity approximately twofold in primary rat calvarial osteoblasts. Effects of hormone on ascorbic acid transport were rapid (detected within 24 h) and were maximally stimulated by 25-50 nM dexamethasone. Similar effects of dexamethasone on transport activity were also observed in murine MC3T3-E1 cells. This preosteoblast cell line was used for a more detailed characterization of the glucocorticoid response. Transport activity was stimulated selectively by glucocorticoids (dexamethasone > corticosterone) relative to other steroid hormones (progesterone and 17-beta-estradiol) and was blocked when cells were cultured in the presence of cycloheximide, a protein synthesis inhibitor. Kinetic analysis of AA transporter activity in control and dexamethasone-treated cells indicated a Km of approximately 17 microM for both groups. In contrast, dexamethasone increased Vmax by approximately 2.5-fold. Cells also contained an Na+-independent glucose transport activity that has been reported in other systems to transport vitamin C as oxidized dehydroascorbic acid. In marked contrast to Na+-dependent AA transport, this activity was inhibited by dexamethasone. Thus, glucocorticoids increase Na+-dependent AA transport in osteoblasts, possibly via up-regulation of transporter synthesis, and this response can be resolved from actions of glucocorticoids on glucose transport.
Collapse
Affiliation(s)
- S Pandipati
- Department of Periodontics, Prevention, and Geriatrics, School of Dentistry, University of Michigan, Ann Arbor 48109-1078, USA
| | | | | |
Collapse
|
20
|
|
21
|
Qutob S, Dixon SJ, Wilson JX. Insulin stimulates vitamin C recycling and ascorbate accumulation in osteoblastic cells. Endocrinology 1998; 139:51-6. [PMID: 9421397 DOI: 10.1210/endo.139.1.5659] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Insulin modulates the differentiation and synthetic activity of osteoblasts, but its mechanisms of action are not fully understood. Because ascorbate also influences osteoblast differentiation and is a cofactor for collagen synthesis, we examined the effects of insulin on the transport and metabolism of vitamin C in osteoblastic cells. UMR-106 rat osteoblast-like cells accumulated ascorbate intracellularly when incubated with dehydroascorbic acid (DHAA; oxidized vitamin C). Insulin increased the intracellular concentration of ascorbate derived from DHAA and also increased the initial rates of uptake of DHAA and 2-deoxyglucose, but not that of ascorbate. A half-maximal effect on DHAA uptake was observed with approximately 100 pM insulin, whereas insulin-like growth factor I (IGF-I) was less potent. Preincubation with insulin for 6-12 h was required for stimulation, similar to the period needed for increased expression of facilitative hexose transporters (GLUT). DHAA uptake was inhibited by the GLUT antagonist cytochalasin B as well as by the GLUT substrates D-glucose and 2-deoxyglucose, whereas L-glucose and fructose had no effect. We conclude that insulin and IGF-I stimulate osteoblastic uptake of DHAA through facilitative hexose transporters. The relative potency of insulin in stimulating DHAA uptake is consistent with mediation by insulin receptors. DHAA is reduced to ascorbate within osteoblasts, maintaining a high intracellular concentration of ascorbate available for collagen synthesis. Impaired uptake of DHAA may contribute to the osteopenia associated with type I diabetes. In addition, cytotoxic levels of DHAA may accumulate in the extracellular fluid due to decreased transport activity and competitive inhibition by elevated concentrations of glucose.
Collapse
Affiliation(s)
- S Qutob
- Department of Physiology, Faculty of Medicine and Dentistry, University of Western Ontario, London, Canada
| | | | | |
Collapse
|
22
|
Saitoh Y, Nagao N, O'Uchida R, Yamane T, Kageyama K, Muto N, Miwa N. Moderately controlled transport of ascorbate into aortic endothelial cells against slowdown of the cell cycle, decreasing of the concentration or increasing of coexistent glucose as compared with dehydroascorbate. Mol Cell Biochem 1997; 173:43-50. [PMID: 9278253 DOI: 10.1023/a:1006879001316] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Uptake of L-[1-(14)C]ascorbic acid (Asc) of 12.5-200 microM for 1 h into bovine aortic endothelial BAE-2 cells grown to confluence was as low as 43-64% (per cell) of uptake into the cells grown to nearly one-fourth confluence. [14C]Asc undergoing transmembrane uptake was concentrated and accumulated in the cell less efficiently ([Asc]in/ex = 8-13) at confluence than at subconfluence ([Asc]in/ex = 15-24). The declined Asc uptake at confluence is attributable to slowdown of the cell cycle, because a similar decrease in [Asc]in/ex was shown by subconfluent cells precultured in serum-insufficient medium, resulting in an increase in G1 phase and concurrent decreases in S and G2 + M phase distributions as determined by flow cytometry. [1-(14)C]Dehydroascorbic acid (DehAsc) was taken up and accumulated as Asc, after metabolic reduction, without detectable DehAsc. The [Asc]in/ex values for DehAsc at confluence were as low as 15-69% of those at subconfluence in contrast to the values as retentive as 62-75% for Asc, suggesting the moderate control of Asc uptake against slowdown of the cell cycle. At either confluence or subconfluence, dose-dependence for DehAsc uptake was more marked than for Asc uptake as shown by an uphill slope in a curve of doses versus [Asc]in/ex for DehAsc in contrast to a downhill slope for Asc, suggesting the moderate control for Asc uptake against fluctuation of the dose. Increasing of coexistent glucose of 5 mM to 20-40 mM, plasma concentrations in diabetic patients, declined DehAsc uptake to 46-48%, which was less moderately controlled than Asc uptake retained to 59-73%. Asc uptake did not compete with DehAsc uptake, suggesting different transporter proteins for Asc and DehAsc. Thus, Asc uptake into the aortic endothelial cells is more moderately controlled against slowdown of the cell cycle, decreasing of the extracellular concentrations or increasing of coexistent glucose than DehAsc uptake, suggesting a homeostatic advantage of Asc over DehAsc in terms of retention of intracellular Asc contents within a definite range.
Collapse
Affiliation(s)
- Y Saitoh
- Department of Cell Biochemistry, Hiroshima Prefectural University School of BioScience, Shobara, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Rumsey SC, Kwon O, Xu GW, Burant CF, Simpson I, Levine M. Glucose transporter isoforms GLUT1 and GLUT3 transport dehydroascorbic acid. J Biol Chem 1997; 272:18982-9. [PMID: 9228080 DOI: 10.1074/jbc.272.30.18982] [Citation(s) in RCA: 353] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Dehydroascorbic acid (DHA) is rapidly taken up by cells and reduced to ascorbic acid (AA). Using the Xenopus laevis oocyte expression system we examined transport of DHA and AA via glucose transporter isoforms GLUT1-5 and SGLT1. The apparent Km of DHA transport via GLUT1 and GLUT3 was 1.1 +/- 0.2 and 1.7 +/- 0.3 mM, respectively. High performance liquid chromatography analysis confirmed 100% reduction of DHA to AA within oocytes. GLUT4 transport of DHA was only 2-4-fold above control and transport kinetics could not be calculated. GLUT2, GLUT5, and SGLT1 did not transport DHA and none of the isoforms transported AA. Radiolabeled sugar transport confirmed transporter function and identity of all cDNA clones was confirmed by restriction fragment mapping. GLUT1 and GLUT3 cDNA were further verified by polymerase chain reaction. DHA transport activity in both GLUT1 and GLUT3 was inhibited by 2-deoxyglucose, D-glucose, and 3-O-methylglucose among other hexoses while fructose and L-glucose showed no inhibition. Inhibition by the endofacial inhibitor, cytochalasin B, was non-competitive and inhibition by the exofacial inhibitor, 4,6-O-ethylidene-alpha-glucose, was competitive. Expressed mutant constructs of GLUT1 and GLUT3 did not transport DHA. DHA and 2-deoxyglucose uptake by Chinese hamster ovary cells overexpressing either GLUT1 or GLUT3 was increased 2-8-fold over control cells. These studies suggest GLUT1 and GLUT3 isoforms are the specific glucose transporter isoforms which mediate DHA transport and subsequent accumulation of AA.
Collapse
Affiliation(s)
- S C Rumsey
- NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
24
|
Franceschi RT, Wilson JX, Dixon SJ. Requirement for Na(+)-dependent ascorbic acid transport in osteoblast function. THE AMERICAN JOURNAL OF PHYSIOLOGY 1995; 268:C1430-9. [PMID: 7611363 DOI: 10.1152/ajpcell.1995.268.6.c1430] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Ascorbic acid is necessary for expression of the osteoblast phenotype. We examined whether Na(+)-dependent transport is required for MC3T3-E1 preosteoblast cells to respond to vitamin C and investigated the role of membrane transport in the intracellular accumulation and function of ascorbate. MC3T3-E1 cells were found to possess a saturable, stereoselective, Na(+)-dependent ascorbic acid transport activity that is sensitive to the transport inhibitors sulfinpyrazone, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid, and phloretin. Transport activity showed no competition with glucose or 2-deoxyglucose and was not inhibited by cytochalasin B, indicating that it is distinct from known hexose transporters. On addition of 100 microM ascorbic acid to the extracellular medium, intracellular concentrations of 10 mM were reached within 5-10 h and remained constant for up to 24 h. A good correlation was observed between intracellular ascorbic acid concentration and rate of hydroxyproline synthesis. Although ascorbic acid was transported preferentially compared with D-isoascorbic acid, both isomers had equivalent activity in stimulating hydroxyproline formation once they entered cells. Marked stereoselectivity for extracellular L-ascorbic acid relative to D-isoascorbic acid was also seen when alkaline phosphatase and total hydroxyproline were measured after 6 days in culture. Moreover, ascorbic acid transport inhibitors that prevented intracellular accumulation of vitamin blocked the synthesis of hydroxyproline. Thus Na(+)-dependent ascorbic acid transport is required for MC3T3-E1 cells to achieve the millimolar intracellular vitamin C concentrations necessary for maximal prolyl hydroxylase activity and expression of the osteoblast phenotype.
Collapse
Affiliation(s)
- R T Franceschi
- Department of Periodontics, Prevention, and Geriatrics, School of Dentistry, University of Michigan, Ann Arbor 48109-1078
| | | | | |
Collapse
|
25
|
Wilson JX, Dixon SJ. Ascorbate concentration in osteoblastic cells is elevated by transforming growth factor-beta. THE AMERICAN JOURNAL OF PHYSIOLOGY 1995; 268:E565-71. [PMID: 7733253 DOI: 10.1152/ajpendo.1995.268.4.e565] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Transforming growth factor-beta modulates the proliferation, differentiation, and synthetic activity of osteoblasts, but its mechanisms of action are not fully understood. Because ascorbate also influences osteoblast differentiation and is a cofactor for collagen synthesis, the present study examined the effect of transforming growth factor-beta on the initial rate of transport and steady-state concentration of ascorbate in an osteoblastic cell line. UMR-106 rat osteosarcoma cells accumulated reduced vitamin C from culture medium. Virtually all accumulation of ascorbate was accomplished by a saturable Na(+)-dependent transport mechanism. Transforming growth factor-beta increased the initial rate of ascorbate transport, measured in either attached or suspended cells. Within 24 h, the growth factor also increased the steady-state intracellular concentration of ascorbate, without significantly changing cell volume or the DNA or protein content of cultures. These data provide evidence that Na(+)-ascorbate cotransport activity controls ascorbate concentration in osteoblasts. Furthermore, the results indicate that both the transport rate and steady-state concentration of ascorbate in these cells are regulated by transforming growth factor-beta.
Collapse
Affiliation(s)
- J X Wilson
- Department of Physiology, Faculty of Dentistry, University of Western Ontario, London, Canada
| | | |
Collapse
|
26
|
Abstract
The transport systems of animal and human tissues for vitamin C are reviewed with respect to their properties. It emerges that pure diffusion plays only a very minor role while a variety of more or less specific transporters is found on cellular membranes. Although most tissues prefer the reduced ascorbate over the oxidized dehydroascorbic acid and have high-affinity transporters for it, there are several examples for the reversed situation. Special attention is given to similarity or identity with glucose transporters, especially the GLUT-1 and the sodium-dependent intestinal and renal transporters, and to the very widespread dependence of ascorbate transport on sodium ions. The significance of ascorbate transport for vitamin C-requiring and nonrequiring species as well as alterations in states of disease can be seen from ample experimental evidence.
Collapse
Affiliation(s)
- H Goldenberg
- Department of Medical Chemistry, University of Vienna Austria
| | | |
Collapse
|