1
|
Shahabuddin F, Naseem S, Alam T, Khan AA, Khan F. Chronic aluminium chloride exposure induces redox imbalance, metabolic distress, DNA damage, and histopathologic alterations in Wistar rat liver. Toxicol Ind Health 2024; 40:581-595. [PMID: 39138847 DOI: 10.1177/07482337241269784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Aluminium, a ubiquitous environmental toxicant, is distinguished for eliciting a broad range of physiological, biochemical, and behavioural alterations in laboratory animals and humans. The present work was conducted to study the functional and structural changes induced by aluminium in rat liver. Twenty five adult male Wistar rats (150-200 g) were randomly divided into five groups; control group and four Al-treated groups viz: Al 1 (25 mg AlCl3/kg b.wt), Al 2 (35 mg AlCl3/kg b.wt), Al 3 (45 mg AlCl3/kg b.wt), and Al 4 (55 mg AlCl3/kg b.wt). Rats in the aluminium-treated groups were administered AlCl3 for 30 days through oral gavage. Aluminium significantly increased the serum levels of liver function markers (ALT, AST, and ALP), phospholipids, and cholesterol. The activities of hepatocyte membrane (ALP, GGT, and LAP) and carbohydrate metabolic (G6P, F16BP, HK, LDH, MDH, ME, and G6PDH) enzymes were significantly altered by AlCl3 administration. Prolonged Al exposure induced oxidative stress in the liver, as evident by significant hepatocellular DNA damage, increased lipid peroxidation, and decreased non-enzymatic and enzymatic antioxidants. The toxic effects observed in this study were AlCl3 dose-dependent. Histopathological examination of liver sections revealed enlargement of sinusoidal spaces, derangement of the hepatic chord, loss of discrete hepatic cell boundaries, congestion of hepatic sinusoids, and degeneration of hepatocytes in Al-intoxicated rats. In conclusion, aluminium causes severe hepatotoxicity by inhibiting the hepatocyte membrane enzymes and disrupting the liver's energy metabolism and antioxidant defence.
Collapse
Affiliation(s)
- Farha Shahabuddin
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Samina Naseem
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Tauseef Alam
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Aijaz Ahmed Khan
- Department of Anatomy, Faculty of Medicine, JN Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Farah Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
2
|
Gogoi H, Mani R, Bhatnagar R. Re-inventing traditional aluminum-based adjuvants: Insight into a century of advancements. Int Rev Immunol 2024; 44:58-81. [PMID: 39310923 DOI: 10.1080/08830185.2024.2404095] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 06/01/2023] [Accepted: 08/31/2024] [Indexed: 02/22/2025]
Abstract
Aluminum salt-based adjuvants like alum, alhydrogel and Adju-Phos are by far the most favored clinically approved vaccine adjuvants. They have demonstrated excellent safety profile and currently used in vaccines against diphtheria, tetanus, pertussis, hepatitis B, anthrax etc. These vaccinations cause minimal side effects like local inflammation at the injection site. Aluminum salt-based adjuvants primarily stimulate CD4+ T cells and B cell mediated Th2 immune response leading to generate a robust antibody response. In this review article, we have compiled the role of physio-chemical role of the two commonly used aluminum salt-based adjuvants alhydrogel and Adju-Phos, and the effect of surface properties, buffer composition, and adjuvant dosage on the immune response. After being studied for almost a century, researchers have come up with various mechanism by which these aluminum adjuvants activate the immune system. Firstly, we have covered the initial works of Glenny and his "repository effect" which paved the work for his successors to explore the involvement of cytokines, chemokines, recruitment of innate immune cells, enhanced antigen uptake by antigen presenting cells, and formation of NLRP3 inflammasome complex in mediating the immune response. It has been reported that aluminum adjuvants activate multiple immunological pathways which synergistically activates the immune system. We later discuss the recent developments in nanotechnology-based preparations of next generation aluminum based adjuvants which has enabled precise size control and morphology of the traditional aluminum adjuvants thereby manipulating the immune response as per our desire.
Collapse
Affiliation(s)
- Himanshu Gogoi
- Amity Institute of Microbial Technology, Amity University Rajasthan, Jaipur, India
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, Faridabad, Haryana, India
| | - Rajesh Mani
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Department of Microbiology, Immunology and Molecular Genetics, University Kentucky College of Medicine, Lexington, KY, USA
| | - Rakesh Bhatnagar
- Amity Institute of Microbial Technology, Amity University Rajasthan, Jaipur, India
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
3
|
Wang Y, Yu Q, Liu S, Liu C, Ju Y, Song Q, Cheng D. Aluminum-maltol induced oxidative stress and reduced AMPK activity via BCK-related energy supply failure in C6 cell. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115831. [PMID: 38101974 DOI: 10.1016/j.ecoenv.2023.115831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
Aluminum (Al) exposure significantly interferes with the energy supply in astrocytes, which may be a potential mechanism of Al-induced neurotoxicity. This study was designed to explore the mechanisms of Al-induced energy supply impairment in rat C6 astroglioma cell line. Aluminum-maltolate (Al(mal)3) (0.1 mM, 24 h) exposure significantly decreased brain-type creatine kinase (BCK) co-localization with the endoplasmic reticulum (ER) and resulted in mitochondrial dysfunctions, accompanied by a decrease in AMPK phosphorylation. The results of molecular docking showed that Al(mal)3 increased BCK's hydrophobicity and hindered the localization movement of BCK between subcells·H2O2 co-administration was found to exacerbate mitochondrial dysfunction, Ca2+ dyshomeostasis, and apoptosis. After treated with Al(mal)3, additional oxidative stress contributed to BCK activity inhibition but did not promote a further decrease in AMPK phosphorylation. The activation of p-AMPK by its agonist can partially restore mitochondrial function, BCK activity, and ER-localized-BCK levels in Al(mal)3-treated astrocytes. In summary, Al exposure resulted in a sustained depletion of the mitochondrial and antioxidant systems, which was associated with reduced p-AMPK activity and decreased ER-localized-BCK levels in astrocytes. This study provides a theoretical basis for exploring the mechanisms of neurotoxicity induced by Al exposure.
Collapse
Affiliation(s)
- Yingjie Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Qianqian Yu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Sijia Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Chunxu Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yaojun Ju
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Qi Song
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Dai Cheng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
4
|
Barra PJ, Duran P, Delgado M, Viscardi S, Claverol S, Larama G, Dumont M, Mora MDLL. Proteomic response to phosphorus deficiency and aluminum stress of three aluminum-tolerant phosphobacteria isolated from acidic soils. iScience 2023; 26:107910. [PMID: 37790272 PMCID: PMC10543181 DOI: 10.1016/j.isci.2023.107910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/27/2023] [Accepted: 09/11/2023] [Indexed: 10/05/2023] Open
Abstract
Aluminum (Al)-tolerant phosphobacteria enhance plant growth in acidic soils by improving Al complexing and phosphorus (P) availability. However, the impact of Al stress and P deficiency on bacterial biochemistry and physiology remains unclear. We investigated the single and mutual effects of Al stress (10 mM) and P deficiency (0.05 mM) on the proteome of three aluminum-tolerant phosphobacteria: Enterobacter sp. 198, Enterobacter sp. RJAL6, and Klebsiella sp. RCJ4. Cultivated under varying conditions, P deficiency upregulated P metabolism proteins while Al exposure downregulated iron-sulfur and heme-containing proteins and upregulated iron acquisition proteins. This demonstrated that Al influence on iron homeostasis and bacterial central metabolism. This study offers crucial insights into bacterial behavior in acidic soils, benefiting the development of bioinoculants for crops facing Al toxicity and P deficiency. This investigation marks the first proteomic study on the interaction between high Al and P deficiency in acid soils-adapted bacteria.
Collapse
Affiliation(s)
- Patricio Javier Barra
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
- Biocontrol Research Laboratory, Universidad de La Frontera, Temuco 4811230, Chile
| | - Paola Duran
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
- Biocontrol Research Laboratory, Universidad de La Frontera, Temuco 4811230, Chile
- Facultad de Ciencias Agropecuarias y Medioambiente, Departamento de Producción Agropecuaria, Universidad de La Frontera, Temuco 4811230, Chile
| | - Mabel Delgado
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Sharon Viscardi
- Escuela de la Salud, Campus San Francisco, Universidad Católica de Temuco, Temuco 4811230, Chile
| | - Stéphane Claverol
- Plateforme Protéome, Centre Génomique Fonctionnelle de Bordeaux, Université de Bordeaux, Bordeaux, France
| | - Giovanni Larama
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
- Biocontrol Research Laboratory, Universidad de La Frontera, Temuco 4811230, Chile
| | - Marc Dumont
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - María de la Luz Mora
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
5
|
Desai DN, Mahal A, Varshney R, Obaidullah AJ, Gupta B, Mohanty P, Pattnaik P, Mohapatra NC, Mishra S, Kandi V, Rabaan AA, Mohapatra RK. Nanoadjuvants: Promising Bioinspired and Biomimetic Approaches in Vaccine Innovation. ACS OMEGA 2023; 8:27953-27968. [PMID: 37576639 PMCID: PMC10413842 DOI: 10.1021/acsomega.3c02030] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023]
Abstract
Adjuvants are the important part of vaccine manufacturing as they elicit the vaccination effect and enhance the durability of the immune response through controlled release. In light of this, nanoadjuvants have shown unique broad spectrum advantages. As nanoparticles (NPs) based vaccines are fast-acting and better in terms of safety and usability parameters as compared to traditional vaccines, they have attracted the attention of researchers. A vaccine nanocarrier is another interesting and promising area for the development of next-generation vaccines for prophylaxis. This review looks at the various nanoadjuvants and their structure-function relationships. It compiles the state-of-art literature on numerous nanoadjuvants to help domain researchers orient their understanding and extend their endeavors in vaccines research and development.
Collapse
Affiliation(s)
- Dhruv N. Desai
- Department
of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ahmed Mahal
- Department
of Medical Biochemical Analysis, College of Health Technology, Cihan University−Erbil, Erbil, Kurdistan Region, Iraq
| | - Rajat Varshney
- Department
of Veterinary Microbiology, FVAS, Banaras
Hindu University, Mirzapur 231001, India
| | - Ahmad J. Obaidullah
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Bhawna Gupta
- School
of Biotechnology, KIIT Deemed-to-be University, Bhubaneswar 751024, Odisha, India
| | - Pratikhya Mohanty
- Bioenergy
Lab, BDTC, School of Biotechnology, KIIT
Deemed-to-be University, Bhubaneswar 751024, Odisha, India
| | | | | | - Snehasish Mishra
- Bioenergy
Lab, BDTC, School of Biotechnology, KIIT
Deemed-to-be University, Bhubaneswar 751024, Odisha, India
| | - Venkataramana Kandi
- Department
of Microbiology, Prathima Institute of Medical
Sciences, Karimnagar 505 417, Telangana, India
| | - Ali A. Rabaan
- Molecular
Diagnostic Laboratory, Johns Hopkins Aramco
Healthcare, Dhahran 31311, Saudi Arabia
- College
of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department
of Public Health and Nutrition, The University
of Haripur, Haripur 22610, Pakistan
| | - Ranjan K. Mohapatra
- Department
of Chemistry, Government College of Engineering, Keonjhar 758002, Odisha, India
| |
Collapse
|
6
|
Gaur A, Nayak P, Ghosh S, Sengupta T, Sakthivadivel V. Aluminum as a Possible Cause Toward Dyslipidemia. Indian J Occup Environ Med 2023; 27:112-119. [PMID: 37600652 PMCID: PMC10434801 DOI: 10.4103/ijoem.ijoem_349_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/24/2022] [Indexed: 08/22/2023] Open
Abstract
Aluminum, the third most abundant metal present in the earth's crust, is present almost in all daily commodities we use, and exposure to it is unavoidable. The interference of aluminum with various biochemical reactions in the body leads to detrimental health effects, out of which aluminum-induced neurodegeneration is widely studied. However, the effect of aluminum in causing dyslipidemia cannot be neglected. Dyslipidemia is a global health problem, which commences to the cosmic of non-communicable diseases. The interference of aluminum with various iron-dependent enzymatic activities in the tri-carboxylic acid cycle and electron transport chain results in decreased production of mitochondrial adenosine tri-phosphate. This ultimately contributes to oxidative stress and iron-mediated lipid peroxidation. This mitochondrial dysfunction along with modulation of α-ketoglutarate and L-carnitine perturbs lipid metabolism, leading to the atypical accumulation of lipids and dyslipidemia. Respiratory chain disruption because of the accumulation of reduced nicotinamide adenine di-nucleotide as a consequence of oxidative stress and the stimulatory effect of aluminum exposure on glycolysis causes many health issues including fat accumulation, obesity, and other hepatic disorders. One major factor contributing to dyslipidemia and enhanced pro-inflammatory responses is estrogen. Aluminum, being a metalloestrogen, modulates estrogen receptors, and in this world of industrialization and urbanization, we could corner down to metals, particularly aluminum, in the development of dyslipidemia. As per PRISMA guidelines, we did a literature search in four medical databases to give a holistic view of the possible link between aluminum exposure and various biochemical events leading to dyslipidemia.
Collapse
Affiliation(s)
- Archana Gaur
- Department of Physiology, All India Institute of Medical Sciences, Bibinagar, Hyderabad, Telangana, India
| | - Prasunpriya Nayak
- Department of Physiology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Sutirtha Ghosh
- Department of Physiology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Trina Sengupta
- Department of Physiology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Varatharajan Sakthivadivel
- Department of General Medicine, All India Institute of Medical Sciences, Bibinagar, Hyderabad, Telangana, India
| |
Collapse
|
7
|
Li A, Li Y, Mei Y, Zhao J, Zhou Q, Li K, Zhao M, Xu J, Ge X, Xu Q. Associations of metals and metals mixture with lipid profiles: A repeated-measures study of older adults in Beijing. CHEMOSPHERE 2023; 319:137833. [PMID: 36693480 DOI: 10.1016/j.chemosphere.2023.137833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/25/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Metals inevitably and easily enter into human bodies and can induce a series of pathophysiological changes, such as oxidative stress damage and lipid peroxidation, which then may further induce dyslipidemia. However, the effects of metals and metals mixture on the lipid profiles are still unclear, especially in older adults. A three-visits repeated measurement of 201 older adults in Beijing was conducted from November 2016 to January 2018. Linear Mixed Effects models and Bayesian kernel machine regression models were used to estimate associations of eight blood metals and metals mixture with lipid profiles, including total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), Castelli risk indexes I (CRI-1), Castelli risk indexes II (CRI-2), atherogenic coefficient (AC), and non-HDL cholesterol (NHC). Cesium (Cs) was positively associated with TG (βCs = 0.14; 95% CI: 0.02, 0.26) whereas copper (Cu) was inversely related to TG (βCu = -0.65; 95%CI: -1.14, -0.17) in adjusted models. Manganese (Mn) was mainly related to higher HDL-C (βMn = 0.14; 95% CI: 0.07, 0.21) whereas molybdenum showed opposite association. Metals mixture was marginally positive associated with HDL-C, among which Mn played a crucial role. Our findings suggest that the effects of single metal on lipid profiles may be counteracted in mixtures in the context of multiple metal exposures; however, future studies with large sample size are still needed to focus on the detrimental effects of single metals on lipid profiles as well as to identify key components.
Collapse
Affiliation(s)
- Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Yanbing Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Yayuan Mei
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Jiaxin Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Quan Zhou
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Kai Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Meiduo Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Jing Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Xiaoyu Ge
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
8
|
Metabolic Reprogramming of Macrophages upon In Vitro Incubation with Aluminum-Based Adjuvant. Int J Mol Sci 2023; 24:ijms24054409. [PMID: 36901849 PMCID: PMC10002480 DOI: 10.3390/ijms24054409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Aluminum-based adjuvants have been extensively used in vaccines. Despite their widespread use, the mechanism behind the immune stimulation properties of these adjuvants is not fully understood. Needless to say, extending the knowledge of the immune-stimulating properties of aluminum-based adjuvants is of utmost importance in the development of new, safer, and efficient vaccines. To further our knowledge of the mode of action of aluminum-based adjuvants, the prospect of metabolic reprogramming of macrophages upon phagocytosis of aluminum-based adjuvants was investigated. Macrophages were differentiated and polarized in vitro from human peripheral monocytes and incubated with the aluminum-based adjuvant Alhydrogel®. Polarization was verified by the expression of CD markers and cytokine production. In order to recognize adjuvant-derived reprogramming, macrophages were incubated with Alhydrogel® or particles of polystyrene as control, and the cellular lactate content was analyzed using a bioluminescent assay. Quiescent M0 macrophages, as well as alternatively activated M2 macrophages, exhibited increased glycolytic metabolism upon exposure to aluminum-based adjuvants, indicating a metabolic reprogramming of the cells. Phagocytosis of aluminous adjuvants could result in an intracellular depot of aluminum ions, which may induce or support a metabolic reprogramming of the macrophages. The resulting increase in inflammatory macrophages could thus prove to be an important factor in the immune-stimulating properties of aluminum-based adjuvants.
Collapse
|
9
|
Legendre F, MacLean A, Tharmalingam S, Appanna VD. Metabolic adaptation and ATP homeostasis in Pseudomonas fluorescens exposed to phosphate stress. World J Microbiol Biotechnol 2022; 38:255. [DOI: 10.1007/s11274-022-03432-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
|
10
|
Legendre F, MacLean A, Tharmalingam S, Appanna VD. A Metabolic Network Mediating the Cycling of Succinate, a Product of ROS Detoxification into α-Ketoglutarate, an Antioxidant. Antioxidants (Basel) 2022; 11:antiox11030560. [PMID: 35326210 PMCID: PMC8945261 DOI: 10.3390/antiox11030560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022] Open
Abstract
Sulfur is an essential element for life. However, the soil microbe Pseudomonas (P.) fluorescens can survive in a low sulfur environment. When cultured in a sulfur-deficient medium, the bacterium reprograms its metabolic pathways to produce α-ketoglutarate (KG) and regenerate this keto-acid from succinate, a by-product of ROS detoxification. Succinate semialdehyde dehydrogenase (SSADH) and KG decarboxylase (KGDC) work in partnership to synthesize KG. This process is further aided by the increased activity of the enzymes glutamate decarboxylase (GDC) and γ-amino-butyrate transaminase (GABAT). The pool of succinate semialdehyde (SSA) generated is further channeled towards the formation of the antioxidant. Spectrophotometric analyses, HPLC experiments and electrophoretic studies with intact cells and cell-free extracts (CFE) pointed to the metabolites (succinate, SSA, GABA) and enzymes (SSADH, GDC, KGDC) contributing to this KG-forming metabolic machinery. Real-time polymerase chain reaction (RT-qPCR) revealed significant increase in transcripts of such enzymes as SSADH, GDC and KGDC. The findings of this study highlight a novel pathway involving keto-acids in ROS scavenging. The cycling of succinate into KG provides an efficient means of combatting an oxidative environment. Considering the central role of KG in biological processes, this metabolic network may be operative in other living systems.
Collapse
Affiliation(s)
- Félix Legendre
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (F.L.); (A.M.); (S.T.)
| | - Alex MacLean
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (F.L.); (A.M.); (S.T.)
| | - Sujeenthar Tharmalingam
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (F.L.); (A.M.); (S.T.)
- Northern Ontario School of Medicine, Laurentian University, Sudbury, ON P3E 2C6, Canada
| | - Vasu D. Appanna
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (F.L.); (A.M.); (S.T.)
- Correspondence:
| |
Collapse
|
11
|
Loughran D, Calello D, Nelson L. Treatment of acute aluminum toxicity due to alum bladder irrigation in a hemodialysis patient: a case report. TOXICOLOGY COMMUNICATIONS 2022. [DOI: 10.1080/24734306.2022.2040148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- David Loughran
- Rutgers New Jersey Medical School, Department of Medical Toxicology, Newark, NJ, USA
| | - Diane Calello
- Rutgers New Jersey Medical School, Department of Medical Toxicology, New Jersey Poison Information and Education System, Newark, NJ, USA
| | - Lewis Nelson
- Rutgers New Jersey Medical School, Department of Medical Toxicology, Newark, NJ, USA
| |
Collapse
|
12
|
Aluminum Poisoning with Emphasis on Its Mechanism and Treatment of Intoxication. Emerg Med Int 2022; 2022:1480553. [PMID: 35070453 PMCID: PMC8767391 DOI: 10.1155/2022/1480553] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 09/21/2021] [Accepted: 12/21/2021] [Indexed: 12/31/2022] Open
Abstract
Aluminum poisoning has been reported in some parts of the world. It is one of the global health problems that affect many organs. Aluminum is widely used daily by humans and industries. Residues of aluminum compounds can be found in drinking water, food, air, medicine, deodorants, cosmetics, packaging, many appliances and equipment, buildings, transportation industries, and aerospace engineering. Exposure to high levels of aluminum compounds leads to aluminum poisoning. Aluminum poisoning has complex and multidimensional effects, such as disruption or inhibition of enzymes activities, changing protein synthesis, nucleic acid function, and cell membrane permeability, preventing DNA repair, altering the stability of DNA organization, inhibition of the protein phosphatase 2A (PP2A) activity, increasing reactive oxygen species (ROS) production, inducing oxidative stress, decreasing activity of antioxidant enzymes, altering cellular iron homeostasis, and changing NF-kB, p53, and JNK pathway leading to apoptosis. Aluminum poisoning can affect blood content, musculoskeletal system, kidney, liver, and respiratory and nervous system, and the extent of poisoning can be diagnosed by assaying aluminum compounds in blood, urine, hair, nails, and sweat. Chelator agents such as deferoxamine (DFO) are used in the case of aluminum poisoning. Besides, combination therapies are recommended.
Collapse
|
13
|
Abstract
The dogma that immunological memory is an exclusive trait of adaptive immunity has been recently challenged by studies showing that priming of innate cells can also result in modified long-term responsiveness to secondary stimuli, once the cells have returned to a non-activated state. This phenomenon is known as 'innate immune memory', 'trained immunity' or 'innate training'. While the main known triggers of trained immunity are microbial-derived molecules such as β-glucan, endogenous particles such as oxidized low-density lipoprotein and monosodium urate crystals can also induce trained phenotypes in innate cells. Whether exogenous particles can induce trained immunity has been overlooked. Our exposure to particulates has dramatically increased in recent decades as a result of the broad medical use of particle-based drug carriers, theragnostics, adjuvants, prosthetics and an increase in environmental pollution. We recently showed that pristine graphene can induce trained immunity in macrophages, enhancing their inflammatory response to TLR agonists, proving that exogenous nanomaterials can affect the long-term response of innate cells. The consequences of trained immunity can be beneficial, for instance, enhancing protection against unrelated pathogens; however, they can also be deleterious if they enhance inflammatory disorders. Therefore, studying the ability of particulates and biomaterials to induce innate trained phenotypes in cells is warranted. Here we analyse the mechanisms whereby particles can induce trained immunity and discuss how physicochemical characteristics of particulates could influence the induction of innate memory. We review the implications of trained immunity in the context of particulate adjuvants, nanocarriers and nanovaccines and their potential applications in medicine. Finally, we reflect on the unanswered questions and the future of the field.
Collapse
|
14
|
Huang Y, Liu Z, Liu S, Song F, Hu X, Qin Y, Jin Y. Urine metabolic profiling of dementia rats with vital energy deficiency using ultra-high-performance liquid chromatography coupled with an orbitrap mass spectrometer. J Sep Sci 2021; 45:507-517. [PMID: 34779121 DOI: 10.1002/jssc.202100837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 01/14/2023]
Abstract
Dementia is a chronic and multifactor-induced neurodegenerative disorder that occurs frequently in the elderly with weak constitution and insufficient vital energy. However, the relationship between vital energy deficiency and the occurrence and development of dementia is still unclear. In this study, a rat model of dementia with vital energy deficiency was established through intraperitoneal injection with d-galactose and AlCl3 and combined with exhaustive swimming. Changes in the dementia with vital energy deficiency rat model were assessed by examining behaviors, hippocampal histopathological and biochemical parameters, and serum biochemical parameters. Urine metabolomics based on ultra-high-performance liquid chromatography coupled with an orbitrap mass spectrometer was also used to discover endogenous metabolic profile and disease-related biomarkers and investigate the potential mechanism of dementia with vital energy deficiency. Among the 31 potential biomarkers that were identified, nine involved metabolic pathways. The four main types were phenylalanine, tyrosine and tryptophan metabolism, taurine and hypotaurine metabolism, and citrate cycle and pyrimidine metabolism. The pathogenesis of dementia with vital energy deficiency is mainly neurotoxin accumulation and body aging that leads to oxidative stress injury and loss of neuronal protective substances. Vital energy deficiency inhibits the body's energy metabolism and eventually leads to aggravate the dementia.
Collapse
Affiliation(s)
- Yu Huang
- College of Chemistry, Jilin University, Changchun, P. R. China
| | - Zhiqiang Liu
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Chemical Biology Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
| | - Shu Liu
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Chemical Biology Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
| | - Fengrui Song
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Chemical Biology Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
| | - Xiuli Hu
- School of Pharmaceutical Sciences, Jilin University, Changchun, P. R. China
| | - Yuhua Qin
- School of food science and Engineering, Hainan Tropical Marine University, Sanya, 572022, China
| | - Yongri Jin
- College of Chemistry, Jilin University, Changchun, P. R. China
| |
Collapse
|
15
|
Mitochondrial Redox Signaling and Oxidative Stress in Kidney Diseases. Biomolecules 2021; 11:biom11081144. [PMID: 34439810 PMCID: PMC8391472 DOI: 10.3390/biom11081144] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/31/2021] [Accepted: 08/01/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are essential organelles in physiology and kidney diseases, because they produce cellular energy required to perform their function. During mitochondrial metabolism, reactive oxygen species (ROS) are produced. ROS function as secondary messengers, inducing redox-sensitive post-translational modifications (PTM) in proteins and activating or deactivating different cell signaling pathways. However, in kidney diseases, ROS overproduction causes oxidative stress (OS), inducing mitochondrial dysfunction and altering its metabolism and dynamics. The latter processes are closely related to changes in the cell redox-sensitive signaling pathways, causing inflammation and apoptosis cell death. Although mitochondrial metabolism, ROS production, and OS have been studied in kidney diseases, the role of redox signaling pathways in mitochondria has not been addressed. This review focuses on altering the metabolism and dynamics of mitochondria through the dysregulation of redox-sensitive signaling pathways in kidney diseases.
Collapse
|
16
|
Haruma T, Yamaji K, Masuya H. Phialocephala fortinii increases aluminum tolerance in Miscanthus sinensis growing in acidic mine soil. Lett Appl Microbiol 2021; 73:300-307. [PMID: 34042204 DOI: 10.1111/lam.13514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/27/2022]
Abstract
Miscanthus sinensis growing in our study mine site contained a high concentration of Al in the adventitious roots. It has a root endophyte, Phialocephala fortinii, in its adventitious roots at a high frequency. The purpose of this study was to elucidate the effects of P. fortinii on Al tolerance mechanisms of M. sinensis and reveal potential underlying mechanisms. In the absence of P. fortinii, M. sinensis produced chlorogenic, citric, and malic acids that could act to alleviate Al toxicity in acidic mine soil. Up on fungal inoculation, the levels of these compounds were reduced, although the growth of seedlings and Mg concentration in the roots were increased. IAA production by the fungus may contribute to enhanced plant growth whereas an increase of Mg uptake could reduce toxicity of reactive oxygen species under Al stress. These actions of P. fortinii could promote growth and survival of M. sinensis in mine sites.
Collapse
Affiliation(s)
- T Haruma
- Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Naka, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - K Yamaji
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - H Masuya
- Department of Mushroom Science and Forest Microbiology Forestry and Forest Products Research Institute, Tsukuba, Japan
| |
Collapse
|
17
|
Gasmi A, Peana M, Arshad M, Butnariu M, Menzel A, Bjørklund G. Krebs cycle: activators, inhibitors and their roles in the modulation of carcinogenesis. Arch Toxicol 2021; 95:1161-1178. [DOI: 10.1007/s00204-021-02974-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
|
18
|
Zhu X, Fan Y, Sheng J, Gu L, Tao Q, Huang R, Liu K, Yang L, Chen G, Cao H, Li K, Tao F, Wang S. Association Between Blood Heavy Metal Concentrations and Dyslipidemia in the Elderly. Biol Trace Elem Res 2021; 199:1280-1290. [PMID: 32651944 DOI: 10.1007/s12011-020-02270-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 06/23/2020] [Indexed: 10/23/2022]
Abstract
Our objective was to evaluate the relationship of blood metal levels including strontium, cadmium, lead, vanadium, aluminum, cobalt, and manganese with dyslipidemia in the elderly Chinese population. In this study, stratified cluster sampling was adopted in the elderly in two communities of Lu'an City from June to September 2016, and 1013 participants were finally included. The inductively coupled plasma mass spectrometry (ICP-MS) was used to measure the metals' concentrations in whole blood. After multivariable adjustment, the odds ratios (95% confidence interval [CI]) of dyslipidemia associated with the highest quartile of metal concentrations were 1.32 (0.89 ~ 1.96), 1.28 (0.83 ~ 1.97), 1.86 (1.23 ~ 2.80), 0.80 (0.55 ~ 1.16), 0.76 (0.51 ~ 1.13), 0.76 (0.53 ~ 1.11), and 1.14 (0.78 ~ 1.67) for strontium, cadmium, lead, vanadium, aluminum, cobalt, and manganese, respectively, compared with the lowest quartile. After reducing the dimensionality of metal elements by principal component analysis, we found that the combined exposure of aluminum, cobalt, and vanadium was the protective factor of non-dyslipidemia, while the combined exposure of cadmium, strontium, and lead was the risk factor of dyslipidemia.
Collapse
Affiliation(s)
- Xingmeng Zhu
- School of Public Health, Anhui Medical University, Hefei, People's Republic of China
| | - Yong Fan
- Anhui Provincial Center for Disease Control and Prevention, Hefei, People's Republic of China
| | - Jie Sheng
- School of Public Health, Anhui Medical University, Hefei, People's Republic of China
| | - Ling Gu
- School of Public Health, Anhui Medical University, Hefei, People's Republic of China
| | - Qi Tao
- School of Public Health, Anhui Medical University, Hefei, People's Republic of China
| | - Rui Huang
- School of Public Health, Anhui Medical University, Hefei, People's Republic of China
| | - Kaiyong Liu
- School of Public Health, Anhui Medical University, Hefei, People's Republic of China
| | - Linsheng Yang
- School of Public Health, Anhui Medical University, Hefei, People's Republic of China
| | - Guimei Chen
- School of Health Management, Anhui Medical University, Hefei, People's Republic of China
| | - Hongjuan Cao
- Lu'an Center for Disease Control and Prevention, Lu'an, People's Republic of China
| | - Kaichun Li
- Lu'an Center for Disease Control and Prevention, Lu'an, People's Republic of China
| | - Fangbiao Tao
- School of Public Health, Anhui Medical University, Hefei, People's Republic of China
- School of Health Management, Anhui Medical University, Hefei, People's Republic of China
| | - Sufang Wang
- School of Public Health, Anhui Medical University, Hefei, People's Republic of China.
| |
Collapse
|
19
|
Danielsson R, Eriksson H. Aluminium adjuvants in vaccines - A way to modulate the immune response. Semin Cell Dev Biol 2021; 115:3-9. [PMID: 33423930 DOI: 10.1016/j.semcdb.2020.12.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023]
Abstract
Aluminium salts have been used as adjuvants in vaccines for almost a century, but still no clear understanding of the mechanisms behind the immune stimulating properties of aluminium based adjuvants is recognized. Aluminium adjuvants consist of aggregates and upon administration of a vaccine, the aggregates will be recognized and phagocytosed by sentinel cells such as macrophages or dendritic cells. The adjuvant aggregates will persist intracellularly, maintaining a saturated intracellular concentration of aluminium ions over an extended time. Macrophages and dendritic cells are pivotal cells of the innate immune system, linking the innate and adaptive immune systems, and become inflammatory and antigen-presenting upon activation, thus mediating the initiation of the adaptive immune system. Both types of cell are highly adaptable, and this review will discuss and highlight how the occurrence of intracellular aluminium ions over an extended time may induce the polarization of macrophages into inflammatory and antigen presenting M1 macrophages by affecting the: endosomal pH; formation of reactive oxygen species (ROS); stability of the phagosomal membrane; release of damage associated molecular patterns (DAMPs); and metabolism (metabolic re-programming). This review emphasizes that a persistent intracellular presence of aluminium ions over an extended time has the potential to affect the functionality of sentinel cells of the innate immune system, inducing polarization and activation. The immune stimulating properties of aluminium adjuvants is presumably mediated by several discrete events, however, a persistent intracellular presence of aluminium ions appears to be a key factor regarding the immune stimulating properties of aluminium based adjuvants.
Collapse
Affiliation(s)
- Ravi Danielsson
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, SE-205 06, Malmö, Sweden
| | - Håkan Eriksson
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, SE-205 06, Malmö, Sweden.
| |
Collapse
|
20
|
Functional validation of a human GLUD2 variant in a murine model of Parkinson's disease. Cell Death Dis 2020; 11:897. [PMID: 33093440 PMCID: PMC7582183 DOI: 10.1038/s41419-020-03043-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease characterized by Lewy body formation and progressive dopaminergic neuron death in the substantia nigra (SN). Genetic susceptibility is a strong risk factor for PD. Previously, a rare gain-of-function variant of GLUD2 glutamate dehydrogenase (T1492G) was reported to be associated with early onset in male PD patients; however, the function and underlying mechanism of this variant remains elusive. In the present study, we generated adeno-associated virus expressing GLUD2 and its mutant under the control of the glial fibrillary acidic protein promotor and injected the virus into the SN pars compacta of either untreated mice or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD model mice. Our results demonstrate that GLUD2 mutation in MPTP-induced PD mice exacerbates movement deficits and nigral dopaminergic neuron death and reduces glutamate transporters expression and function. Using GC-Q-TOF/MS-based metabolomics, we determined that GLUD2 mutation damages mitochondrial function by decreasing succinate dehydrogenase activity to impede the tricarboxylic acid cycle in the SN of MPTP-induced PD mice. Accordingly, GLUD2 mutant mice had reduced energy metabolism and increased apoptosis, possibly due to downregulation of brain-derived neurotrophic factor/nuclear factor E2-related factor 2 signaling in in vitro and in vivo PD models. Collectively, our findings verify the function of GLUD2 in PD and unravel a mechanism by which a genetic variant in human GLUD2 may contribute to disease onset.
Collapse
|
21
|
Grande-Aztatzi R, Formoso E, Mujika JI, de Sancho D, Lopez X. Theoretical characterization of Al(III) binding to KSPVPKSPVEEKG: Insights into the propensity of aluminum to interact with key sequences for neurofilament formation. J Inorg Biochem 2020; 210:111169. [PMID: 32679460 DOI: 10.1016/j.jinorgbio.2020.111169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 11/15/2022]
Abstract
Classical molecular dynamic simulations and density functional theory are used to unveil the interaction of aluminum with various phosphorylated derivatives of the fragment KSPVPKSPVEEKG (NF13), a major multiphosphorylation domain of human neurofilament medium (NFM). Our calculations reveal the rich coordination chemistry of the resultant structures with a clear tendency of aluminum to form multidentate structures, acting as a bridging agent between different sidechains and altering the local secondary structure around the binding site. Our evaluation of binding energies allows us to determine that phosphorylation has an increase in the affinity of these peptides towards aluminum, although the interaction is not as strong as well-known chelators of aluminum in biological systems. Finally, the presence of hydroxides in the first solvation layer has a clear damping effect on the binding affinities. Our results help in elucidating the potential structures than can be formed between this exogenous neurotoxic metal and key sequences for the formation of neurofilament tangles, which are behind of some of the most important degenerative diseases.
Collapse
Affiliation(s)
| | - Elena Formoso
- Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain; Farmazia Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), 01006 Vitoria-Gasteiz, Euskadi, Spain
| | - Jon I Mujika
- Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain
| | - David de Sancho
- Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain; Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), P.K. 1072, 20080 Donostia, Euskadi, Spain
| | - Xabier Lopez
- Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain; Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), P.K. 1072, 20080 Donostia, Euskadi, Spain.
| |
Collapse
|
22
|
Dalla Torre G, Mujika JI, Lachowicz JI, Ramos MJ, Lopez X. The interaction of aluminum with catecholamine-based neurotransmitters: can the formation of these species be considered a potential risk factor for neurodegenerative diseases? Dalton Trans 2019; 48:6003-6018. [PMID: 30688329 DOI: 10.1039/c8dt04216k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The potential neurotoxic role of Al(iii) and its proposed link with the insurgence of Alzheimer's Disease (AD) have attracted increasing interest towards the determination of the nature of bioligands that are propitious to interact with aluminum. Among them, catecholamine-based neurotransmitters have been proposed to be sensitive to the presence of this non-essential metal ion in the brain. In the present work, we characterize several aluminum-catecholamine complexes in various stoichiometries, determining their structure and thermodynamics of formation. For this purpose, we apply a recently validated computational protocol with results that show a remarkably good agreement with the available experimental data. In particular, we employ Density Functional Theory (DFT) in conjunction with continuum solvation models to calculate complexation energies of aluminum for a set of four important catecholamines: l-DOPA, dopamine, noradrenaline and adrenaline. In addition, by means of the Quantum Theory of Atoms in Molecules (QTAIM) and Energy Decomposition Analysis (EDA) we assessed the nature of the Al-ligand interactions, finding mainly ionic bonds with an important degree of covalent character. Our results point at the possibility of the formation of aluminum-catecholamine complexes with favorable formation energies, even when proton/aluminum competition is taken into account. Indeed, we found that these catecholamines are better aluminum binders than catechol at physiological pH, because of the electron withdrawing effect of the positively-charged amine that decreases their deprotonation penalty with respect to catechol. However, overall, our results show that, in an open biological environment, the formation of Al-catecholamine complexes is not thermodynamically competitive when compared with the formation of other aluminum species in solution such as Al-hydroxide, or when considering other endogenous/exogenous Al(iii) ligands such as citrate, deferiprone and EDTA. In summary, we rule out the possibility, suggested by some authors, that the formation of Al-catecholamine complexes in solution might be behind some of the toxic roles attributed to aluminum in the brain. An up-to-date view of the catecholamine biosynthesis pathway with sites of aluminum interference (according to the current literature) is presented. Alternative mechanisms that might explain the deleterious effects of this metal on the catecholamine route are thoroughly discussed, and new hypotheses that should be investigated in future are proposed.
Collapse
Affiliation(s)
- Gabriele Dalla Torre
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), and Donostia International Physics Center (DIPC), P.K. 1072, 20080 Donostia, Euskadi, Spain.
| | | | | | | | | |
Collapse
|
23
|
Igbokwe IO, Igwenagu E, Igbokwe NA. Aluminium toxicosis: a review of toxic actions and effects. Interdiscip Toxicol 2019; 12:45-70. [PMID: 32206026 PMCID: PMC7071840 DOI: 10.2478/intox-2019-0007] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 08/29/2019] [Indexed: 12/11/2022] Open
Abstract
Aluminium (Al) is frequently accessible to animal and human populations to the extent that intoxications may occur. Intake of Al is by inhalation of aerosols or particles, ingestion of food, water and medicaments, skin contact, vaccination, dialysis and infusions. Toxic actions of Al induce oxidative stress, immunologic alterations, genotoxicity, pro-inflammatory effect, peptide denaturation or transformation, enzymatic dysfunction, metabolic derangement, amyloidogenesis, membrane perturbation, iron dyshomeostasis, apoptosis, necrosis and dysplasia. The pathological conditions associated with Al toxicosis are desquamative interstitial pneumonia, pulmonary alveolar proteinosis, granulomas, granulomatosis and fibrosis, toxic myocarditis, thrombosis and ischemic stroke, granulomatous enteritis, Crohn's disease, inflammatory bowel diseases, anemia, Alzheimer's disease, dementia, sclerosis, autism, macrophagic myofasciitis, osteomalacia, oligospermia and infertility, hepatorenal disease, breast cancer and cyst, pancreatitis, pancreatic necrosis and diabetes mellitus. The review provides a broad overview of Al toxicosis as a background for sustained investigations of the toxicology of Al compounds of public health importance.
Collapse
Affiliation(s)
- Ikechukwu Onyebuchi Igbokwe
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, Nigeria
| | - Ephraim Igwenagu
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, Nigeria
| | - Nanacha Afifi Igbokwe
- Department Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, Nigeria
| |
Collapse
|
24
|
Bayliak MM, Lylyk MP, Gospodaryov DV, Kotsyubynsky VO, Butenko NV, Storey KB, Lushchak VI. Protective effects of alpha-ketoglutarate against aluminum toxicity in Drosophila melanogaster. Comp Biochem Physiol C Toxicol Pharmacol 2019; 217:41-53. [PMID: 30508642 DOI: 10.1016/j.cbpc.2018.11.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 01/16/2023]
Abstract
In recent years, Drosophila melanogaster has emerged as a model for studies on aluminum toxicity. The current study aimed to disclose the mechanisms of aluminum toxicity in D. melanogaster at larval and adult stages and examined the potential protective effects of dietary alpha-ketoglutarate (AKG). Flies were reared on food containing 10 mM AlCl3, 10 mM AKG or both additives. Rearing on an AlCl3-containing diet induced behavioral defects, and decreased fecundity and long-term survival of female flies. The addition of dietary AKG did not ameliorate locomotor and taste behavior defects or the higher sensitivity to oxidative stress, but improved heat stress resistance, egg-laying capability and survival of females treated with AlCl3. Metabolic effects of AlCl3 exposure on flies included an imbalance of metal content, decreased glucose levels, increased free iron and storage triacylglyceride (TAG) levels, mitochondria dysfunction, and the development of oxidative stress. Dietary AKG did not prevent AlCl3 effects on glucose and TAG, but improved metal homeostasis, inhibited the increase in free Fe and restored the functional activity of iron-containing enzymes such as aconitase. In addition, AKG decreased the intensity of oxidative stress seen in AlCl3-reared adult flies, probably due to inhibition of iron mobilization. The results show that AKG is not a full antidote against Al toxicity but is able to relieve multiple metabolic effects of high aluminum. Furthermore, the modulating ability of AKG can clearly be helpful in exploring the molecular mechanisms of Al toxicity.
Collapse
Affiliation(s)
- Maria M Bayliak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine.
| | - Maria P Lylyk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| | - Dmytro V Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine.
| | - Volodymyr O Kotsyubynsky
- Department of Materials Science and Advanced Technologies, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| | - Nataliia V Butenko
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| | - Kenneth B Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine.
| |
Collapse
|
25
|
Post-exposure distribution of selenium and aluminum ions and their effects on superoxide dismutase activity in mouse brain. Mol Biol Rep 2018; 45:2421-2427. [DOI: 10.1007/s11033-018-4408-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/26/2018] [Indexed: 10/28/2022]
|
26
|
Sun X, Sun H, Yu K, Wang Z, Liu Y, Liu K, Zhu Y, Li Y. Aluminum Chloride Causes the Dysfunction of Testes Through Inhibiting the ATPase Enzyme Activities and Gonadotropin Receptor Expression in Rats. Biol Trace Elem Res 2018; 183:296-304. [PMID: 28856574 DOI: 10.1007/s12011-017-1120-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 08/04/2017] [Indexed: 12/30/2022]
Abstract
The aim of this experiment is to explore the effects of aluminum chloride (AlCl3) on the ATPase enzymes and gonadotropin receptors in the testes. Eighty male Wistar rats were orally exposed to 0 mg/kg body weight (BW) (control group, CG), 64 mg/kg BW (low-dose group, LG), 128 mg/kg BW (mid-dose group, MG), or 256 mg/kg BW (high-dose group, HG) for 120 days. The microstructure and ultrastructure of testes; the activities of Na+-K+-ATPase, Mg2+-ATPase, and Ca2+-ATPase; and the mRNA and protein expressions of follicle-stimulating hormone receptor (FSHR) and luteinizing hormone receptors (LHR) in the testes were examined. The results showed that the testes histological structure were damaged; the activities of Na+-K+-ATPase, Mg2+-ATPase, and Ca2+-ATPase, the mRNA and protein expressions of FSHR and LHR in the testes were all decreased in the rats with AlCl3 exposure. It indicates that AlCl3 causes the dysfunction of testes in rats.
Collapse
Affiliation(s)
- Xudong Sun
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin, 130062, China
| | - Hao Sun
- Laishan District Bureau of Commerce of Yantai city, Yantan, Shandong Province, 264003, China
| | - Kaiyuan Yu
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Zhongying Wang
- Vascular Surgery Department, The First hospital of Jilin University, Changchun, 130021, China
| | - Yanfen Liu
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Kexiang Liu
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Yanzhu Zhu
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
27
|
Dalla Torre G, Mujika JI, Formoso E, Matito E, Ramos MJ, Lopez X. Tuning the affinity of catechols and salicylic acids towards Al(iii): characterization of Al–chelator interactions. Dalton Trans 2018; 47:9592-9607. [DOI: 10.1039/c8dt01341a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aluminum is a non-essential element in the human body with unclear harmful effects; therefore, the design and tuning of new and efficient Al(iii) chelating agents is a subject of paramount importance nowadays.
Collapse
Affiliation(s)
- Gabriele Dalla Torre
- Kimika Fakultatea
- Euskal Herriko Unibertsitatea UPV/EHU
- and Donostia International Physics Center (DIPC)
- Euskadi
- Spain
| | - Jon I. Mujika
- Kimika Fakultatea
- Euskal Herriko Unibertsitatea UPV/EHU
- and Donostia International Physics Center (DIPC)
- Euskadi
- Spain
| | - Elena Formoso
- Kimika Fakultatea
- Euskal Herriko Unibertsitatea UPV/EHU
- and Donostia International Physics Center (DIPC)
- Euskadi
- Spain
| | - Eduard Matito
- Kimika Fakultatea
- Euskal Herriko Unibertsitatea UPV/EHU
- and Donostia International Physics Center (DIPC)
- Euskadi
- Spain
| | - Maria J. Ramos
- UCIBIO/REQUIMTE
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
- Porto
| | - Xabier Lopez
- Kimika Fakultatea
- Euskal Herriko Unibertsitatea UPV/EHU
- and Donostia International Physics Center (DIPC)
- Euskadi
- Spain
| |
Collapse
|
28
|
Chong TM, Chen JW, See-Too WS, Yu CY, Ang GY, Lim YL, Yin WF, Grandclément C, Faure D, Dessaux Y, Chan KG. Phenotypic and genomic survey on organic acid utilization profile of Pseudomonas mendocina strain S5.2, a vineyard soil isolate. AMB Express 2017; 7:138. [PMID: 28655216 PMCID: PMC5484659 DOI: 10.1186/s13568-017-0437-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/19/2017] [Indexed: 12/30/2022] Open
Abstract
Root exudates are chemical compounds that are released from living plant roots and provide significant energy, carbon, nitrogen and phosphorus sources for microbes inhabiting the rhizosphere. The exudates shape the microflora associated with the plant, as well as influences the plant health and productivity. Therefore, a better understanding of the trophic link that is established between the plant and the associated bacteria is necessary. In this study, a comprehensive survey on the utilization of grapevine and rootstock related organic acids were conducted on a vineyard soil isolate which is Pseudomonas mendocina strain S5.2. Phenotype microarray analysis has demonstrated that this strain can utilize several organic acids including lactic acid, succinic acid, malic acid, citric acid and fumaric acid as sole growth substrates. Complete genome analysis using single molecule real-time technology revealed that the genome consists of a 5,120,146 bp circular chromosome and a 252,328 bp megaplasmid. A series of genetic determinants associated with the carbon utilization signature of the strain were subsequently identified in the chromosome. Of note, the coexistence of genes encoding several iron-sulfur cluster independent isoenzymes in the genome indicated the importance of these enzymes in the events of iron deficiency. Synteny and comparative analysis have also unraveled the unique features of D-lactate dehydrogenase of strain S5.2 in the study. Collective information of this work has provided insights on the metabolic role of this strain in vineyard soil rhizosphere.
Collapse
Affiliation(s)
- Teik Min Chong
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Jian-Woon Chen
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
- UM Omics Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Wah-Seng See-Too
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Choo-Yee Yu
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, 40450 Shah Alam, Selangor Malaysia
| | - Geik-Yong Ang
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, 40450 Shah Alam, Selangor Malaysia
| | - Yan Lue Lim
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Catherine Grandclément
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-Sur-Yvette, France
| | - Denis Faure
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-Sur-Yvette, France
| | - Yves Dessaux
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-Sur-Yvette, France
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
- UM Omics Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
29
|
Arain MS, Kazi TG, Afridi HI, Khan N, Ali J. A innovative switchable polarity solvent, based on 1,8‐diazabicyclo‐[5.4.0]‐ undec‐7‐ene and decanol was prepared for enrichment of aluminum in biological sample prior to analysis by flame atomic absorption spectrometry. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.4157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mariam S. Arain
- Center of Excellence in Analytical ChemistryUniversity of Sindh Jamshoro 76080 Pakistan
| | - Tasneem G. Kazi
- Center of Excellence in Analytical ChemistryUniversity of Sindh Jamshoro 76080 Pakistan
| | - Hassan I. Afridi
- Center of Excellence in Analytical ChemistryUniversity of Sindh Jamshoro 76080 Pakistan
| | | | - Jamshed Ali
- Center of Excellence in Analytical ChemistryUniversity of Sindh Jamshoro 76080 Pakistan
| |
Collapse
|
30
|
Zhou YZ, Yan ML, Gao L, Zhang JQ, Qin XM, Zhang X, Du GH. Metabonomics approach to assessing the metabolism variation and gender gap of Drosophila melanogaster in aging process. Exp Gerontol 2017; 98:110-119. [DOI: 10.1016/j.exger.2017.07.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 07/25/2017] [Accepted: 07/31/2017] [Indexed: 02/06/2023]
|
31
|
Meng J, Wang WX, Li L, Zhang G. Respiration disruption and detoxification at the protein expression levels in the Pacific oyster (Crassostrea gigas) under zinc exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 191:34-41. [PMID: 28780297 DOI: 10.1016/j.aquatox.2017.07.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 06/07/2023]
Abstract
The Pacific oyster (Crassostrea gigas) can accumulate high levels of zinc (Zn) without obvious toxicity, but the related molecular mechanisms are largely unknown. In the present study, C. gigas were exposed to excess Zn for 9days and the differentially expressed proteins (DEPs) were examined using the isobaric tags for relative and absolute quantitation (iTRAQ) method. In total, 2667 proteins containing at least two peptides and detected in both replicates were used for proteomic analysis. Among these DEPs, 332 were up-regulated and 282 were down-regulated. KEGG enrichment analysis of DEPs revealed that Zn exposure mainly distrubed 'tricarboxylic acid (TCA) cycle', 'electron transport chain (ETC)' and 'glutathione (GSH) metabolism' processes in oysters. Further key protein expressions enriched in these metabolism pathways were analyzed. In TCA cycle, Zn inhibited the Fe-containing protein expressions, which may lead to the accumulation of succinate and induce anaerobiosis. In ETC metabolism process, Zn inhibited ETC complex protein expressions, including complex I-IV, which may affect the electron transport process. Furthermore, Zn induced phytochelatin (PC) and glutathione peroxidase (GPX) expression in GSH catabolism. The proteins play important roles in Zn detoxification and ROS elimination process. The transcriptional expressions of genes encoding these proteins were observed using real-time PCR analysis, and there was good consistency between these two datasets. Overall, we provide direct evidence for Zn toxicity and detoxification mechanisms at protein level.
Collapse
Affiliation(s)
- Jie Meng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong, China; Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China; National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, Shandong, China
| | - Wen-Xiong Wang
- Marine Environmental Laboratory, HKUST Shenzhen Research Institute, Shenzhen 518057, China
| | - Li Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong, China; Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China; National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, Shandong, China.
| | - Guofan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong, China; National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, Shandong, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, Shandong, China.
| |
Collapse
|
32
|
Morris G, Puri BK, Frye RE. The putative role of environmental aluminium in the development of chronic neuropathology in adults and children. How strong is the evidence and what could be the mechanisms involved? Metab Brain Dis 2017; 32:1335-1355. [PMID: 28752219 PMCID: PMC5596046 DOI: 10.1007/s11011-017-0077-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 07/19/2017] [Indexed: 02/06/2023]
Abstract
The conceptualisation of autistic spectrum disorder and Alzheimer's disease has undergone something of a paradigm shift in recent years and rather than being viewed as single illnesses with a unitary pathogenesis and pathophysiology they are increasingly considered to be heterogeneous syndromes with a complex multifactorial aetiopathogenesis, involving a highly complex and diverse combination of genetic, epigenetic and environmental factors. One such environmental factor implicated as a potential cause in both syndromes is aluminium, as an element or as part of a salt, received, for example, in oral form or as an adjuvant. Such administration has the potential to induce pathology via several routes such as provoking dysfunction and/or activation of glial cells which play an indispensable role in the regulation of central nervous system homeostasis and neurodevelopment. Other routes include the generation of oxidative stress, depletion of reduced glutathione, direct and indirect reductions in mitochondrial performance and integrity, and increasing the production of proinflammatory cytokines in both the brain and peripherally. The mechanisms whereby environmental aluminium could contribute to the development of the highly specific pattern of neuropathology seen in Alzheimer's disease are described. Also detailed are several mechanisms whereby significant quantities of aluminium introduced via immunisation could produce chronic neuropathology in genetically susceptible children. Accordingly, it is recommended that the use of aluminium salts in immunisations should be discontinued and that adults should take steps to minimise their exposure to environmental aluminium.
Collapse
Affiliation(s)
- Gerwyn Morris
- Tir Na Nog, Bryn Road seaside 87, Llanelli, Wales, SA15 2LW, UK
| | - Basant K Puri
- Department of Medicine, Imperial College London, Hammersmith Hospital, London, England, W12 0HS, UK.
| | - Richard E Frye
- College of Medicine, Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock, AR, 72202, USA
| |
Collapse
|
33
|
Xu F, Liu Y, Zhao H, Yu K, Song M, Zhu Y, Li Y. Aluminum chloride caused liver dysfunction and mitochondrial energy metabolism disorder in rat. J Inorg Biochem 2017; 174:55-62. [PMID: 28605655 DOI: 10.1016/j.jinorgbio.2017.04.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 03/07/2017] [Accepted: 04/08/2017] [Indexed: 01/21/2023]
Abstract
Aluminum (Al) is known to exert hepatotoxicity. However, the mechanisms mostly are unclear. Liver is a metabolism organ that maintains the energy level and structural stability of body, mitochondria are the main sites of energy metabolism, thus, we hypothesized that mitochondrial energy metabolism disorder contributes to liver dysfunction in aluminum chloride (AlCl3) treatment rat. To verify the hypothesis, forty male Wistar rats were randomly allocated and orally exposed to 0, 64mg/kg, 128mg/kg and 256mg/kg body weight AlCl3 in drinking water for 120days, respectively. We found that AlCl3 exposure reduced the electron transport chain complexes I-V activities and adenosine triphosphate (ATP) level, as well as disturbed mitochondrial DNA transcript, presenting as the inhibited mRNA expressions of NADH dehydrogenase 1, NADH dehydrogenase 2, cytochrome b, cytochrome c oxidase subunit 1, cytochrome c oxidase subunit 3 and ATP synthase 6, indicating that AlCl3 exposure disturbs the mitochondrial energy metabolism, and it caused an increase in liver enzymes (Aspartate aminotransferase and Alanine aminotransferase) and histopathological lesions. Additionally, we found that reactive oxygen species accumulation and decreased superoxide dismutase activity in mitochondria, and increased 8-Hydroxydeoxyguanosine levels in mitochondrial DNA, demonstrating AlCl3 exposure promotes mitochondrial oxidative stress, which may be a contributing factor to mitochondrial energy metabolism disorder and liver dysfunction. The study displayed that mitochondria are the potential target of liver damage induced by AlCl3, providing considerable direction for the prevention and clinical intervention of liver diseases.
Collapse
Affiliation(s)
- Feibo Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yanfen Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Liaoning Agricultural College, Yingkou 115009, China
| | - Hansong Zhao
- Zhucheng Animal Husbandry Bureau, Zhucheng 262200, China
| | - Kaiyuan Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Miao Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yanzhu Zhu
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Yanfei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
34
|
Xu F, Wang J, Zhao GP. Alpha-ketoglutarate protects Streptomyces coelicolor from visible light-induced phototoxicity. Biochem Biophys Rep 2017; 9:22-28. [PMID: 29114580 PMCID: PMC5632709 DOI: 10.1016/j.bbrep.2016.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 10/28/2016] [Accepted: 11/03/2016] [Indexed: 01/12/2023] Open
Abstract
It has been known that some Streptomyces species, including the model strain Streptomyces coelicolor, are vulnerable to visible light. Much evidence demonstrated that the phototoxicity induced by visible light is a consequence of the formation of intracellular reactive oxygen species (ROS), which are potentially harmful to cells. In this study, we found that α-ketoglutarate (α-KG) has a protective role against the phototoxicity in S. coelicolor. It could be because that α-KG can detoxify the ROS with the concomitant formation of succinate, which mediates the cells getting into anaerobiosis to produce more NADH and maintain intracellular redox homeostasis, a situation that was demonstrated by overexpressing gdhA in S. coelicolor. This finding, therefore, connects the central metabolites with the bacterial resistance against phototoxicity effect induced by visible light.
Collapse
Affiliation(s)
- Feng Xu
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jin Wang
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Guo-Ping Zhao
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- State Key Laboratory of Genetic Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
- Department of Microbiology and Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
35
|
Cetin I, Nalbantcilar MT, Tosun K, Nazik A. How Trace Element Levels of Public Drinking Water Affect Body Composition in Turkey. Biol Trace Elem Res 2017; 175:263-270. [PMID: 27311580 DOI: 10.1007/s12011-016-0779-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 06/12/2016] [Indexed: 12/28/2022]
Abstract
Since waterborne minerals appear in ionic form and are readily absorbed by the gastrointestinal tract, drinking water could be a crucial source of mineral intake. However, no comprehensive research has yet determined how trace elements in drinking water relate to body composition. We aimed to assess the relationship between clinically important trace elements in public drinking water and body composition in average, overweight and obese individuals in Turkey. The study's population consisted of 423 participants: 143 overweight, 138 obese and 142 healthy control individuals, grouped according to clinical cutoff points of body mass index (BMI). We measured levels of lithium (Li), nickel (Ni), lead (Pb), silicon (Si), tin (Sn), strontium (Sr), boron (B), aluminium (Al), barium (Ba) and rubidium (Rb) in samples from wells of municipal water by using inductively coupled plasma mass spectrometry. We gauged all the participants' body composition measurements with a BC-418 body composition analyser. In all the participants, body weight values showed significant positive correlations with Ni levels in drinking water, as did BMI values with Al levels and percentage of obesity with Ni, Si and B levels. In particular, Ni levels showed significant positive correlations with the basal metabolic rate, activity calories, and total activity of participants. Giving findings showing correlations between obesity-related parameters and Al, Si, B and Ni content in drinking water, we hope that these associations will be clarified with further studies including cellular, experimental and clinical studies. Hence, medical practitioners must be aware of trace element levels in drinking water for overweight and obese patients.
Collapse
Affiliation(s)
- Ihsan Cetin
- Health School, Nutrition and Dietetics Department, Batman University, Batman, Turkey.
| | - Mahmut Tahir Nalbantcilar
- Faculty of Engineering and Architecture, Geological Engineering Department, Batman University, Batman, Turkey
| | - Kezban Tosun
- Diet Outpatient Clinic, Batman State Hospital, Batman, Turkey
| | - Aydan Nazik
- Diet Outpatient Clinic, Batman State Hospital, Batman, Turkey
| |
Collapse
|
36
|
Iglesias-González J, Sánchez-Iglesias S, Beiras-Iglesias A, Méndez-Álvarez E, Soto-Otero R. Effects of Aluminium on Rat Brain Mitochondria Bioenergetics: an In vitro and In vivo Study. Mol Neurobiol 2016; 54:563-570. [DOI: 10.1007/s12035-015-9650-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/17/2015] [Indexed: 11/30/2022]
|
37
|
Grande-Aztatzi R, Formoso E, Mujika JI, Ugalde JM, Lopez X. Phosphorylation promotes Al(iii) binding to proteins: GEGEGSGG as a case study. Phys Chem Chem Phys 2016; 18:7197-207. [DOI: 10.1039/c5cp06379e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aluminum, the third most abundant element in the Earth's crust and one of the key industrial components of our everyday life, has been associated with several neurodegenerative diseases due to its ability to promote neurofilament tangles and β-amyloid peptide aggregation.
Collapse
Affiliation(s)
- Rafael Grande-Aztatzi
- Kimika Fakultatea
- Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia Internacional Physics Center (DIPC)
- 20080 Donostia
- Spain
| | - Elena Formoso
- Kimika Fakultatea
- Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia Internacional Physics Center (DIPC)
- 20080 Donostia
- Spain
| | - Jon I. Mujika
- Kimika Fakultatea
- Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia Internacional Physics Center (DIPC)
- 20080 Donostia
- Spain
| | - Jesus M. Ugalde
- Kimika Fakultatea
- Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia Internacional Physics Center (DIPC)
- 20080 Donostia
- Spain
| | - Xabier Lopez
- Kimika Fakultatea
- Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia Internacional Physics Center (DIPC)
- 20080 Donostia
- Spain
| |
Collapse
|
38
|
Zhang F, Yang X, Zhuang C, Wang L, Gu XH, Shen Z, Xu S, Gao C, Gou Z. Design and evaluation of multifunctional antibacterial ion-doped β-dicalcium silicate cements favorable for root canal sealing. RSC Adv 2016. [DOI: 10.1039/c6ra00172f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cu or Zn-doping dicalcium silicate-based cements exhibit multifunctional physiochemical and biological performances and meet some challenging criteria in root canal treatment.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Stomatology
- Children's Hospital
- School of Medicine of Zhejiang University
- Hangzhou 310003
- China
| | - Xianyan Yang
- Zhejiang-California International Nanosystems Institute
- Zhejiang University
- Hangzhou 310058
- China
| | - Chen Zhuang
- Zhejiang-California International Nanosystems Institute
- Zhejiang University
- Hangzhou 310058
- China
| | - Lin Wang
- Department of Stomatology
- The First Affiliated Hospital
- School of Medicine of Zhejiang University
- Hangzhou 310009
- China
| | - Xin-Hua Gu
- Department of Stomatology
- The First Affiliated Hospital
- School of Medicine of Zhejiang University
- Hangzhou 310009
- China
| | - Zheng Shen
- Lab Center Children's Hospital
- School of Medicine of Zhejiang University
- Hangzhou 310003
- China
| | - Sanzhong Xu
- Department of Orthopaedic Surgery
- The First Affiliated Hospital
- School of Medicine of Zhejiang University
- Hangzhou 310009
- China
| | - Changyou Gao
- Zhejiang-California International Nanosystems Institute
- Zhejiang University
- Hangzhou 310058
- China
| | - Zhongru Gou
- Zhejiang-California International Nanosystems Institute
- Zhejiang University
- Hangzhou 310058
- China
| |
Collapse
|
39
|
Aluminum and its effect in the equilibrium between folded/unfolded conformation of NADH. J Inorg Biochem 2015; 152:139-46. [PMID: 26346779 DOI: 10.1016/j.jinorgbio.2015.08.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 08/10/2015] [Accepted: 08/20/2015] [Indexed: 11/22/2022]
Abstract
Nicotinamide adenine dinucleotide (NADH) is one of the most abundant cofactor employed by proteins and enzymes. The molecule is formed by two nucleotides that can lead to two main conformations: folded/closed and unfolded/open. Experimentally, it has been determined that the closed form is about 2 kcal/mol more stable than the open formed. Computationally, a correct description of the NADH unfolding process is challenging due to different reasons: 1) The unfolding process shows a very low energy difference between the two conformations 2) The molecule can form a high number of internal hydrogen bond interactions 3) Subtle effects such as dispersion may be important. In order to tackle all these effects, we have employed a number of different state of the art computational techniques, including: a) well-tempered metadynamics, b) geometry optimizations, and c) Quantum Theory of Atoms in Molecules (QTAIM) calculations, to investigate the conformational change of NADH in solution and interacting with aluminum. All the results indicate that aluminum indeed favors the closed conformation of NADH, due mainly to the formation of a more rigid structure through key hydrogen bond interactions.
Collapse
|
40
|
Auger C, Alhasawi A, Contavadoo M, Appanna VD. Dysfunctional mitochondrial bioenergetics and the pathogenesis of hepatic disorders. Front Cell Dev Biol 2015; 3:40. [PMID: 26161384 PMCID: PMC4479819 DOI: 10.3389/fcell.2015.00040] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 06/12/2015] [Indexed: 12/18/2022] Open
Abstract
The liver is involved in a variety of critical biological functions including the homeostasis of glucose, fatty acids, amino acids, and the synthesis of proteins that are secreted in the blood. It is also at the forefront in the detoxification of noxious metabolites that would otherwise upset the functioning of the body. As such, this vital component of the mammalian system is exposed to a notable quantity of toxicants on a regular basis. It therefore comes as no surprise that there are over a hundred disparate hepatic disorders, encompassing such afflictions as fatty liver disease, hepatitis, and liver cancer. Most if not all of liver functions are dependent on energy, an ingredient that is primarily generated by the mitochondrion, the power house of all cells. This organelle is indispensable in providing adenosine triphosphate (ATP), a key effector of most biological processes. Dysfunctional mitochondria lead to a shortage in ATP, the leakage of deleterious reactive oxygen species (ROS), and the excessive storage of fats. Here we examine how incapacitated mitochondrial bioenergetics triggers the pathogenesis of various hepatic diseases. Exposure of liver cells to detrimental environmental hazards such as oxidative stress, metal toxicity, and various xenobiotics results in the inactivation of crucial mitochondrial enzymes and decreased ATP levels. The contribution of the latter to hepatic disorders and potential therapeutic cues to remedy these conditions are elaborated.
Collapse
Affiliation(s)
- Christopher Auger
- Faculty of Science and Engineering, Laurentian University Greater Sudbury, ON, Canada
| | - Azhar Alhasawi
- Faculty of Science and Engineering, Laurentian University Greater Sudbury, ON, Canada
| | - Manuraj Contavadoo
- Faculty of Science and Engineering, Laurentian University Greater Sudbury, ON, Canada
| | - Vasu D Appanna
- Faculty of Science and Engineering, Laurentian University Greater Sudbury, ON, Canada
| |
Collapse
|
41
|
Mujika JI, Ugalde JM, Lopez X. Aluminum Interaction with Glutamate and α-Ketoglutarate: A Computational Study. J Phys Chem B 2014; 118:6680-6. [DOI: 10.1021/jp502724w] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- J. I. Mujika
- Kimika Fakultatea, Euskal Herriko Unibertsitatea
(UPV/EHU) and Donostia International Physics Center (DIPC), P.K. 1072, 20080 Donostia, Euskadi, Spain
| | - J. M. Ugalde
- Kimika Fakultatea, Euskal Herriko Unibertsitatea
(UPV/EHU) and Donostia International Physics Center (DIPC), P.K. 1072, 20080 Donostia, Euskadi, Spain
| | - X. Lopez
- Kimika Fakultatea, Euskal Herriko Unibertsitatea
(UPV/EHU) and Donostia International Physics Center (DIPC), P.K. 1072, 20080 Donostia, Euskadi, Spain
| |
Collapse
|
42
|
Kumar V, Gill KD. Oxidative stress and mitochondrial dysfunction in aluminium neurotoxicity and its amelioration: a review. Neurotoxicology 2014; 41:154-66. [PMID: 24560992 DOI: 10.1016/j.neuro.2014.02.004] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/12/2014] [Accepted: 02/12/2014] [Indexed: 12/30/2022]
Abstract
Aluminium is light weight and toxic metal present ubiquitously on earth which has gained considerable attention due to its neurotoxic effects. The widespread use of products made from or containing aluminium is ensuring its presence in our body. There is prolonged retention of a fraction of aluminium that enters the brain, suggesting its potential for accumulation with repeated exposures. There is no known biological role for aluminium within the body but adverse physiological effects of this metal have been observed in mammals. The generation of oxidative stress may be attributed to its toxic consequences in animals and humans. The oxidative stress has been implicated in pathogenesis of various neurodegenerative conditions including Alzheimer's disease and Parkinson's disease. Though it remains unclear whether oxidative stress is a major cause or merely a consequence of cellular dysfunction associated with neurodegenerative diseases, an accumulating body of evidence implicates that impaired mitochondrial energy production and increased mitochondrial oxidative damage is associated with the pathogenesis of neurodegenerative disorders. Being involved in the production of reactive oxygen species, aluminium may impair mitochondrial bioenergetics and may lead to the generation of oxidative stress. In this review, we have discussed the oxidative stress and mitochondrial dysfunctions occurring in Al neurotoxicity. In addition, the ameliorative measures undertaken in aluminium induced oxidative stress and mitochondrial dysfunctions have also been highlighted.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| | - Kiran Dip Gill
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India; Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
43
|
Han S, Auger C, Thomas SC, Beites CL, Appanna VD. Mitochondrial Biogenesis and Energy Production in Differentiating Murine Stem Cells: A Functional Metabolic Study. Cell Reprogram 2014; 16:84-90. [DOI: 10.1089/cell.2013.0049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Sungwon Han
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario P3E 2C6, Canada
| | - Christopher Auger
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario P3E 2C6, Canada
| | - Sean C. Thomas
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario P3E 2C6, Canada
| | - Crestina L. Beites
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario P3E 2C6, Canada
- School of Midwifery, Laurentian University, Sudbury, Ontario P3E 2C6, Canada
| | - Vasu D. Appanna
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario P3E 2C6, Canada
| |
Collapse
|
44
|
Mailloux RJ, Jin X, Willmore WG. Redox regulation of mitochondrial function with emphasis on cysteine oxidation reactions. Redox Biol 2013; 2:123-39. [PMID: 24455476 PMCID: PMC3895620 DOI: 10.1016/j.redox.2013.12.011] [Citation(s) in RCA: 221] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 12/13/2013] [Indexed: 12/13/2022] Open
Abstract
Mitochondria have a myriad of essential functions including metabolism and apoptosis. These chief functions are reliant on electron transfer reactions and the production of ATP and reactive oxygen species (ROS). The production of ATP and ROS are intimately linked to the electron transport chain (ETC). Electrons from nutrients are passed through the ETC via a series of acceptor and donor molecules to the terminal electron acceptor molecular oxygen (O2) which ultimately drives the synthesis of ATP. Electron transfer through the respiratory chain and nutrient oxidation also produces ROS. At high enough concentrations ROS can activate mitochondrial apoptotic machinery which ultimately leads to cell death. However, if maintained at low enough concentrations ROS can serve as important signaling molecules. Various regulatory mechanisms converge upon mitochondria to modulate ATP synthesis and ROS production. Given that mitochondrial function depends on redox reactions, it is important to consider how redox signals modulate mitochondrial processes. Here, we provide the first comprehensive review on how redox signals mediated through cysteine oxidation, namely S-oxidation (sulfenylation, sulfinylation), S-glutathionylation, and S-nitrosylation, regulate key mitochondrial functions including nutrient oxidation, oxidative phosphorylation, ROS production, mitochondrial permeability transition (MPT), apoptosis, and mitochondrial fission and fusion. We also consider the chemistry behind these reactions and how they are modulated in mitochondria. In addition, we also discuss emerging knowledge on disorders and disease states that are associated with deregulated redox signaling in mitochondria and how mitochondria-targeted medicines can be utilized to restore mitochondrial redox signaling.
Collapse
Affiliation(s)
- Ryan J. Mailloux
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
- Toxicology Research Division, Food Directorate, HPFB, Health Canada, Ottawa, Ontario, Canada K1A 0K9
| | - Xiaolei Jin
- Toxicology Research Division, Food Directorate, HPFB, Health Canada, Ottawa, Ontario, Canada K1A 0K9
| | - William G. Willmore
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
| |
Collapse
|
45
|
Sun J, Wu Y, Xiao D, Lin X, Li H. Spectrofluorimetric determination of aluminum ions via complexation with luteolin in absolute ethanol. LUMINESCENCE 2013; 29:456-61. [PMID: 24039003 DOI: 10.1002/bio.2571] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 06/08/2013] [Accepted: 07/12/2013] [Indexed: 01/06/2023]
Abstract
An optimized and validated spectrofluorimetric method has been developed for the rapid determination of aluminum in absolute ethanol. The method is based on the chelation of aluminum and luteolin which results in a complex exhibiting an intense emission signal. The characterization of Al-luteolin complex was studied using ultraviolet-visible spectrometry, infrared spectrometry, fluorescence and mass spectrometry. The complex stoichiometry ratio of aluminum:luteolin was 1:2. The fluorescence of the complex was monitored at an emission wavelength of 545 nm with excitation at 518 nm. The linear concentration range was 6.5 × 10(-7) to 4.0 × 10(-5) M with a correlation coefficient of r = 0.998. The detection limit was 5.0 × 10(-7) M. The method was appropriately validated and yielded relative standard deviations of < 2.3% (n = 5), which was considered acceptable. The method was successfully applied in the determination of aluminum in river water, skin care products and pharmaceutical samples.
Collapse
Affiliation(s)
- Jinyu Sun
- College of Chemical Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | | | | | | | | |
Collapse
|
46
|
Han S, Lemire J, Appanna VP, Auger C, Castonguay Z, Appanna VD. How aluminum, an intracellular ROS generator promotes hepatic and neurological diseases: the metabolic tale. Cell Biol Toxicol 2013; 29:75-84. [PMID: 23463459 DOI: 10.1007/s10565-013-9239-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 02/04/2013] [Indexed: 01/10/2023]
Abstract
Metal pollutants are a global health risk due to their ability to contribute to a variety of diseases. Aluminum (Al), a ubiquitous environmental contaminant is implicated in anemia, osteomalacia, hepatic disorder, and neurological disorder. In this review, we outline how this intracellular generator of reactive oxygen species (ROS) triggers a metabolic shift towards lipogenesis in astrocytes and hepatocytes. This Al-evoked phenomenon is coupled to diminished mitochondrial activity, anerobiosis, and the channeling of α-ketoacids towards anti-oxidant defense. The resulting metabolic reconfiguration leads to fat accumulation and a reduction in ATP synthesis, characteristics that are common to numerous medical disorders. Hence, the ability of Al toxicity to create an oxidative environment promotes dysfunctional metabolic processes in astrocytes and hepatocytes. These molecular events triggered by Al-induced ROS production are the potential mediators of brain and liver disorders.
Collapse
Affiliation(s)
- Sungwon Han
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, P3E 2C6, Canada
| | | | | | | | | | | |
Collapse
|
47
|
Gupta N, Gaurav SS, Kumar A. Molecular Basis of Aluminium Toxicity in Plants: A Review. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ajps.2013.412a3004] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Auger C, Lemire J, Cecchini D, Bignucolo A, Appanna VD. The metabolic reprogramming evoked by nitrosative stress triggers the anaerobic utilization of citrate in Pseudomonas fluorescens. PLoS One 2011; 6:e28469. [PMID: 22145048 PMCID: PMC3228765 DOI: 10.1371/journal.pone.0028469] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 11/08/2011] [Indexed: 02/01/2023] Open
Abstract
Nitrosative stress is an ongoing challenge that most organisms have to contend with. When nitric oxide (NO) that may be generated either exogenously or endogenously encounters reactive oxygen species (ROS), it produces a set of toxic moieties referred to as reactive nitrogen species (RNS). As these RNS can severely damage essential biomolecules, numerous organisms have evolved elaborate detoxification strategies to nullify RNS. However, the contribution of cellular metabolism in fending off nitrosative stress is poorly understood. Using a variety of functional proteomic and metabolomic analyses, we have identified how the soil microbe Pseudomonas fluorescens reprogrammed its metabolic networks to survive in an environment enriched by sodium nitroprusside (SNP), a generator of nitrosative stress. To combat the RNS-induced ineffective aconitase (ACN) and tricarboxylic acid (TCA) cycle, the microbe invoked the participation of citrate lyase (CL), phosphoenolpyruvate carboxylase (PEPC) and pyruvate phosphate dikinase (PPDK) to convert citrate, the sole source of carbon into pyruvate and ATP. These enzymes were not evident in the control conditions. This metabolic shift was coupled to the concomitant increase in the activities of such classical RNS detoxifiers as nitrate reductase (NR), nitrite reductase (NIR) and S-nitrosoglutathione reductase (GSNOR). Hence, metabolism may hold the clues to the survival of organisms subjected to nitrosative stress and may provide therapeutic cues against RNS-resistant microbes.
Collapse
Affiliation(s)
- Christopher Auger
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| | - Joseph Lemire
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| | - Dominic Cecchini
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| | - Adam Bignucolo
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| | - Vasu D. Appanna
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
- * E-mail:
| |
Collapse
|
49
|
Lemire J, Appanna VD. Aluminum toxicity and astrocyte dysfunction: a metabolic link to neurological disorders. J Inorg Biochem 2011; 105:1513-7. [PMID: 22099161 DOI: 10.1016/j.jinorgbio.2011.07.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 06/21/2011] [Accepted: 07/08/2011] [Indexed: 12/21/2022]
Abstract
Aluminum (Al) has been implicated in a variety of neurological diseases. However, the molecular mechanisms that enable Al to be involved in these disorders have yet to be fully delineated. Using astrocytes as a model of the cerebral cellular system, we have uncovered the biochemical networks that are affected by Al toxicity. In this review, we reveal how the inhibitory influence of Al on ATP production and on mitochondrial functions help generate globular astrocytes that are fat producing machines. These biological events may be the contributing factors to Al-triggered brain disorders.
Collapse
Affiliation(s)
- Joseph Lemire
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada P3E 2C6
| | | |
Collapse
|
50
|
Mailloux RJ, Lemire J, Appanna VD. Hepatic response to aluminum toxicity: dyslipidemia and liver diseases. Exp Cell Res 2011; 317:2231-8. [PMID: 21787768 DOI: 10.1016/j.yexcr.2011.07.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 07/08/2011] [Accepted: 07/09/2011] [Indexed: 10/17/2022]
Abstract
Aluminum (Al) is a metal toxin that has been implicated in the etiology of a number of diseases including Alzheimer's, Parkinson's, dialysis encephalopathy, and osteomalacia. Al has been shown to exert its effects by disrupting lipid membrane fluidity, perturbing iron (Fe), magnesium, and calcium homeostasis, and causing oxidative stress. However, the exact molecular targets of aluminum's toxicity have remained elusive. In the present review, we describe how the use of a systems biology approach in cultured hepatoblastoma cells (HepG2) allowed the identification of the molecular targets of Al toxicity. Mitochondrial metabolism is the main site of the toxicological action of Al. Fe-dependent and redox sensitive enzymes in the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS) are dramatically decreased by Al exposure. In an effort to compensate for diminished mitochondrial function, Al-treated cells stabilize hypoxia inducible factor-1α (HIF-1α) to increase ATP production by glycolysis. Additionally, Al toxicity leads to an increase in intracellular lipid accumulation due to enhanced lipogenesis and a decrease in the β-oxidation of fatty acids. Central to these effects is the alteration of α-ketoglutarate (KG) homeostasis. In Al-exposed cells, KG is preferentially used to quench ROS leading to succinate accumulation and HIF-1α stabilization. Moreover, the channeling of KG to combat oxidative stress leads to a reduction of l-carnitine biosynthesis and a concomitant decrease in fatty acid oxidation. The fluidity and interaction of these metabolic modules and the implications of these findings in liver-related disorders are discussed herein.
Collapse
Affiliation(s)
- Ryan J Mailloux
- Laurentian University, Department of Chemistry and Biochemistry, Canada
| | | | | |
Collapse
|