1
|
Bhagat J, Singh N, Nishimura N, Shimada Y. A comprehensive review on environmental toxicity of azole compounds to fish. CHEMOSPHERE 2021; 262:128335. [PMID: 33182121 DOI: 10.1016/j.chemosphere.2020.128335] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/04/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Azoles are considered as one of the most efficient fungicides for the treatment of humans, animals, and plant fungal pathogens. They are of significant clinical importance as antifungal drugs and are widely used in personal care products, ultraviolet stabilizers, and in aircraft for its anti-corrosive properties. The prevalence of azole compounds in the natural environment and its accumulation in fish raises questions about its impact on aquatic organisms. OBJECTIVES The objective of this paper is to review the scientific studies on the effects of azole compounds in fish and to discuss future opportunities for the risk evaluation. METHODS A systematic literature search was conducted on Web of Science, PubMed, and ScienceDirect to locate peer-reviewed scientific articles on occurrence, environmental fate, and toxicological impact of azole fungicides on fish. RESULTS Studies included in this review provide ample evidence that azole compounds are not only commonly detected in the natural environment but also cause several detrimental effects on fish. Future studies with environmentally relevant concentrations of azole alone or in combination with other commonly occurring contaminants in a multigenerational study could provide a better understanding. CONCLUSION Based on current knowledge and studies reporting adverse biological effects of azole on fish, considerable attention is required for better management and effective ecological risk assessment of these emerging contaminants.
Collapse
Affiliation(s)
- Jacky Bhagat
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Mie, 514-8507, Japan; Mie University Zebrafish Drug Screening Center, Tsu, Mie, 514-8507, Japan.
| | - Nisha Singh
- Environment Nanoscience Laboratory, Department of Earth Science, Indian Institute of Science Education and Research, Kolkata, 741246, India.
| | - Norihiro Nishimura
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Mie, 514-8507, Japan; Mie University Zebrafish Drug Screening Center, Tsu, Mie, 514-8507, Japan.
| | - Yasuhito Shimada
- Mie University Zebrafish Drug Screening Center, Tsu, Mie, 514-8507, Japan; Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan; Department of Bioinformatics, Mie University Advanced Science Research Promotion Center, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
2
|
Transcriptome-Based Identification and Molecular Evolution of the Cytochrome P450 Genes and Expression Profiling under Dimethoate Treatment in Amur Stickleback ( Pungitius sinensis). Animals (Basel) 2019; 9:ani9110873. [PMID: 31661806 PMCID: PMC6912322 DOI: 10.3390/ani9110873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/11/2019] [Accepted: 10/18/2019] [Indexed: 01/08/2023] Open
Abstract
Cytochrome P450s (CYPs) are a family of membrane-bound mono-oxygenase proteins, which are involved in cell metabolism and detoxification of various xenobiotic substances. In this study, we identified 58 putative CYP genes in Amur stickleback (Pungitius sinensis) based on the transcriptome sequencing. Conserved motif distribution suggested their functional relevance within each group. Some present recombination events have accelerated the evolution of this gene family. Moreover, a few positive selection sites were identified, which may have accelerated the functional divergence of this family of proteins. Expression patterns of these CYP genes were investigated and indicated that most were affected by dimethoate treatment, suggesting that CYPs were involved in the detoxication of dimethoate. This study will provide a foundation for the further functional investigation of CYP genes in fishes.
Collapse
|
3
|
Identification of the full 26 cytochrome P450 (CYP) genes and analysis of their expression in response to benzo[α]pyrene in the marine rotifer Brachionus rotundiformis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 29:185-192. [PMID: 30551045 DOI: 10.1016/j.cbd.2018.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/01/2018] [Accepted: 12/01/2018] [Indexed: 12/31/2022]
Abstract
Cytochrome P450s (CYPs) are a large gene superfamily that are found in all living organisms. CYPs have a key role in detoxification of xenobiotics and endogenous chemicals. Although aquatic invertebrate CYPs and their detoxification mechanisms have been reported, little is known about interspecific comparison of CYPs and their detoxification mechanism in the rotifer Brachionus spp. The aim of this study was to identify the entire CYPs in the rotifer Brachionus rotundiformis (B. rotundiformis) and compare B. rotundiformis-CYPs to the previously reported CYPs in other model Brachionus spp. (B. koreanus, B. plicatilis, and B. calyciflorus). To validate the model, the rotifer, specifically Brachionus rotundiformis was exposed to various concentrations of B[α]P, which is widely used PAH xenobiotic, and analyzed gene expression in response to B[α]P. Here, in silico analysis results showed the total of 26 CYPs from the rotifer B. rotundiformis. Based on the phylogenetic analysis, the 26 B. rotundiformis-CYPs were separated into five different clans: 2, 3, 4, mitochondrial, and 46 clans in comparison to three rotifers species, B. koreanus, B. plicatilis, and B. calyciflorus. To understand the detoxification mechanisms of 26 B. rotundiformis-CYPs, we investigated transcriptional expression of 26 CYPs and found that five CYPs (CYP3045A2, CYP3045B4, CYP3045C10, CYP3049A5, and CYP3049E8) were significantly increased (P < 0.05) in response to 10 and 100 μg B[α]P. In addition, we identified the aryl hydrocarbon receptor (AhR) and aryl hydrocarbon receptor nuclear translocator (ARNT) and observed slight up-regulation of B. rotundiformis-AhR and -ARNT, indicating that these CYPs are likely associated with detoxification mechanism and could be used as potential molecular biomarkers of B[α]P in B. rotundiformis. Overall, this study will be helpful for expanding our knowledge of invertebrate CYPs on detoxification mechanisms associated with AhR signaling pathway in rotifers.
Collapse
|
4
|
Independent losses of a xenobiotic receptor across teleost evolution. Sci Rep 2018; 8:10404. [PMID: 29991818 PMCID: PMC6039460 DOI: 10.1038/s41598-018-28498-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/22/2018] [Indexed: 01/25/2023] Open
Abstract
Sensitivity to environmental stressors largely depend on the genetic complement of the organism. Recent sequencing and assembly of teleost fish genomes enable us to trace the evolution of defense genes in the largest and most diverse group of vertebrates. Through genomic searches and in-depth analysis of gene loci in 76 teleost genomes, we show here that the xenosensor pregnane X receptor (Pxr, Nr1i2) is absent in more than half of these species. Notably, out of the 27 genome assemblies that belong to the Gadiformes order, the pxr gene was only retained in the Merluccidae family (hakes) and Pelagic cod (Melanonus zugmayeri). As an important receptor for a wide range of drugs and environmental pollutants, vertebrate PXR regulate the transcription of a number of genes involved in the biotransformation of xenobiotics, including cytochrome P450 enzymes (CYP). In the absence of Pxr, we suggest that the aryl hydrocarbon receptor (Ahr) have evolved an extended regulatory role by governing the expression of certain Pxr target genes, such as cyp3a, in Atlantic cod (Gadus morhua). However, as several independent losses of pxr have occurred during teleost evolution, other lineages and species may have adapted alternative compensating mechanisms for controlling crucial cellular defense mechanisms.
Collapse
|
5
|
Yim B, Kim H, Kim J, Kim H, Won EJ, Lee YM. Identification and molecular characterization of cytochrome P450 (CYP450) family genes in the marine ciliate Euplotes crassus: The effect of benzo[a]pyrene and beta-naphthoflavone. Comp Biochem Physiol C Toxicol Pharmacol 2017; 196:71-80. [PMID: 28341215 DOI: 10.1016/j.cbpc.2017.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/12/2017] [Accepted: 03/19/2017] [Indexed: 11/20/2022]
Abstract
Marine ciliate Euplotes crassus, a single-cell eukaryote, and has been considered as a model organism for monitoring of environmental pollutions in sediments. Cytochrome P450 (CYP450) monooxygenase are phase I enzyme involved in detoxification of environmental pollutants, such as polycyclic aromatic hydrocarbons (PAHs). However, little information on CYP450 family genes in ciliate is available. In the present study, acute toxicity of PAH, benzo[a]pyrene (B[a]P) and PAH-like model compound, beta-naphthoflavone (β-NF), was investigated; full-length cDNA sequences and genomic structure of five CYP450 genes (CYP5680A1, CYP5681A1, CYP5681B1, CYP5682A1, and CYP5683A1) were analyzed; and finally their activities and transcriptional changes were measured after exposure to PAHs for 48h. According to the results, B[a]P exposure showed a negative effect on E. crassus survival, whereas β-NF exposure showed no significant effect. The 8h-LC50 value of B[a]P was determined to be 2.449μM (95%-C.L., 7.726-3.619μM). Five genes belonging to the CYP450 family had conserved domains and clustered with those of ciliate group, as revealed in phylogenetic analysis. CYP activity did not change after exposure to B[a]P, whereas it was slightly, but significantly, induced after exposure to β-NF. The mRNA expression of five CYP450 genes was significantly modulated in a concentration- and time-dependent manner after exposure to both the chemicals. Our findings suggest that CYP450 genes in E. crassus may be involved in detoxification of B[a]P and β-NF. This study would give a better understanding about the mode of action of B[a]P and β-NF in marine ciliates at the molecular level.
Collapse
Affiliation(s)
- Bora Yim
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul 03016, Republic of Korea
| | - Hokyun Kim
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul 03016, Republic of Korea
| | - Jisoo Kim
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul 03016, Republic of Korea
| | - Haeyeon Kim
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul 03016, Republic of Korea
| | - Eun-Ji Won
- Marine Chemistry & Geochemistry Research Center, Korea Institute of Ocean Science & Technology, Ansan 15627, Republic of Korea
| | - Young-Mi Lee
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul 03016, Republic of Korea.
| |
Collapse
|
6
|
Creusot N, Brion F, Piccini B, Budzinski H, Porcher JM, Aït-Aïssa S. BFCOD activity in fish cell lines and zebrafish embryos and its modulation by chemical ligands of human aryl hydrocarbon and nuclear receptors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:16393-16404. [PMID: 25471715 DOI: 10.1007/s11356-014-3882-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 11/17/2014] [Indexed: 06/04/2023]
Abstract
Assessment of exposure and effect of fish to pharmaceuticals that contaminate aquatic environment is a current major issue in ecotoxicology and there is a need to develop specific biological marker to achieve this goal. Benzyloxy-4-trifluoromethylcoumarin-O-debenzyloxylase (BFCOD) enzymatic activity has been commonly used to monitor CYP3A activity in fish. In this study, we assessed the capacity of a panel of toxicologically relevant chemicals to modulate BFCOD activity in fish, by using in vitro and in vivo bioassays based on fish liver cell lines (PLHC-1, ZFL, RTL-W1) and zebrafish embryos, respectively. Basal BFCOD activity was detectable in all biological models and was differently modulated by chemicals. Ligands of human androgens, glucocorticoids, or pregnanes X receptors (i.e., dexamethasone, RU486, rifampicin, SR12813, T0901317, clotrimazole, ketoconazole, testosterone, and dihydrotestosterone) moderately increased or inhibited BFCOD activity, with some variations between the models. No common feature could be drawn by regards to their capacity to bind to these receptors, which contrasts with their known effect on mammalian CYP3A. In contrast, dioxins and polycyclic aromatic hydrocarbons (PAHs) strongly induced BFCOD activity (up to 30-fold) in a time- and concentration-dependent manner, both in vitro in all cell lines and in vivo in zebrafish embryos. These effects were AhR dependent as indicated by suppression of induced BFCOD by the AhR pathway inhibitors 8-methoxypsoralen and α-naphthoflavone. Altogether our result further question the relevance of using liver BFCOD activity as a biomarker of fish exposure to CYP3A-active compounds such as pharmaceuticals.
Collapse
Affiliation(s)
- N Creusot
- Unité Écotoxicologie in vitro et in vivo, INERIS, Parc ALATTA, BP2, 60550, Verneuil-en-Halatte, France.
| | - F Brion
- Unité Écotoxicologie in vitro et in vivo, INERIS, Parc ALATTA, BP2, 60550, Verneuil-en-Halatte, France
| | - B Piccini
- Unité Écotoxicologie in vitro et in vivo, INERIS, Parc ALATTA, BP2, 60550, Verneuil-en-Halatte, France
| | - H Budzinski
- EPOC/ LPTC - UMR 5805 CNRS Université Bordeaux 1, 33405, Talence, France
| | - J M Porcher
- Unité Écotoxicologie in vitro et in vivo, INERIS, Parc ALATTA, BP2, 60550, Verneuil-en-Halatte, France
| | - S Aït-Aïssa
- Unité Écotoxicologie in vitro et in vivo, INERIS, Parc ALATTA, BP2, 60550, Verneuil-en-Halatte, France.
| |
Collapse
|
7
|
Shaya L, Dejong C, Wilson JY. Expression patterns of cytochrome P450 3B and 3C genes in model fish species. Comp Biochem Physiol C Toxicol Pharmacol 2014; 166:115-25. [PMID: 25073111 DOI: 10.1016/j.cbpc.2014.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 06/12/2014] [Accepted: 06/15/2014] [Indexed: 11/28/2022]
Abstract
Cytochrome P450 (CYP) 3 enzymes are highly expressed in detoxification organs and play an important role in xenobiotic metabolism. In fish, the CYP3 family is diversified and includes several subfamilies (CYP3B, CYP3C, and CYP3D) not found in mammals. The functional role and expression patterns of these novel genes are unknown. In this study, the expression patterns of novel teleost CYP3 genes were determined in medaka(Oryzias latipes; CYP3B4, CYP3B5, CYP3B6) and zebrafish (Danio rerio; CYP3C1, CYP3C2, CYP3C3, CYP3C4), two important model fish species. Expression was quantified with real time PCR in multiple internal organs from adult male and female fish. CYP3C gene expression was determined in zebrafish embryos. Expression in all organs was detected for all genes, except for CYP3B4 in male organs. CYP3C1, CYP3C3, CYP3B4, CYP3B5, and CYP3B6 were more highly expressed in liver and/or intestine from at least one gender, suggesting a role in xenobiotic metabolism. Expression of CYP3C1 and CYP3B5 in olfactory rosette was comparable to liver. CYP3C1, CYP3C4, CYP3B5 and CYP3B6 expression was higher in the female organs; CYP3C2 and CYP3B5 were higher in testis. Estrogen and androgen response elements were found upstream of the start site of many of these genes raising the hypothesis that they are under steroid regulation. CYP3C1-3 were expressed in all developmental stages examined and appear to be maternally deposited. The expression patterns suggest that some of these CYP genes are involved in xenobiotic metabolism.
Collapse
Affiliation(s)
- Lana Shaya
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada.
| | - Chris Dejong
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada.
| | - Joanna Y Wilson
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
8
|
Corcoran J, Lange A, Cumming RI, Owen SF, Ball JS, Tyler CR, Winter MJ. Bioavailability of the imidazole antifungal agent clotrimazole and its effects on key biotransformation genes in the common carp (Cyprinus carpio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 152:57-65. [PMID: 24727216 DOI: 10.1016/j.aquatox.2014.03.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 03/19/2014] [Accepted: 03/20/2014] [Indexed: 06/03/2023]
Abstract
Clotrimazole (CTZ) is a persistent imidazole antifungal agent which is frequently detected in the aquatic environment and predicted to bio-concentrate in fish. Common carp (Cyprinus carpio) were exposed to mean measured concentrations of either 1.02 or 14.63μgl(-1) CTZ for 4 and 10 days, followed by a depuration period of 4 days in a further group of animals. Following each exposure regimen, plasma and liver CTZ concentrations were measured. Mean measured plasma concentrations of CTZ in animals exposed to the lower concentration of CTZ were 30 and 44μgl(-1) on days 4 and 10, respectively, and in the higher concentration were 318 and 336μgl(-1). Mean measured liver levels in the same animals were 514, 1725, 2111 and 7017μgl(-1) suggesting progressive hepatic accumulation. Measurement of CTZ in plasma after depuration suggested efficient elimination within 4 days, but appreciable levels of CTZ remained in the liver after depuration suggesting a degree of persistence in this tissue. In addition we measured responses of a number of key hepatic detoxification gene targets in the liver associated with the transcription factor pregnane X receptor (PXR); namely cyp450s 2k and 3a, glutathione-S-transferases a and p (gsta and p), and drug transporters multidrug resistance protein1 (mdr1), and MDR-related protein2 (mrp2). CTZ is a potent ligand of the PXR in humans and there is some evidence of PXR activation following exposure to CTZ in fish. The highest concentration of CTZ was adopted to explore the potential for alterations to detoxification gene expression in fish at a pharmacologically relevant dose level, and the lower concentration is within the range reported in effluents from waste water treatment works (WWTW). The genes for all biotransformation enzymes were up-regulated after exposure to the higher concentration of CTZ for 10 days, and alterations in expression occurred for the drug transporter genes mdr1 and mrp2 following exposure to the lower concentration of 1.02μgl(-1) CTZ (mean measured concentration). These data support the potential for CTZ to induce alterations in biotransformation and drug transporter genes associated with PXR in fish at concentrations measured in some WWTW effluents.
Collapse
Affiliation(s)
- Jenna Corcoran
- University of Exeter, Biosciences, College of Life & Environmental Sciences, Exeter, UK.
| | - Anke Lange
- University of Exeter, Biosciences, College of Life & Environmental Sciences, Exeter, UK
| | - Rob I Cumming
- AstraZeneca Safety, Health and Environment, Brixham Environmental Laboratory, Freshwater Quarry, Brixham, UK
| | - Stewart F Owen
- AstraZeneca Safety, Health and Environment, Brixham Environmental Laboratory, Freshwater Quarry, Brixham, UK
| | - Jonathan S Ball
- AstraZeneca Safety, Health and Environment, Brixham Environmental Laboratory, Freshwater Quarry, Brixham, UK
| | - Charles R Tyler
- University of Exeter, Biosciences, College of Life & Environmental Sciences, Exeter, UK
| | - Matthew J Winter
- AstraZeneca Safety, Health and Environment, Brixham Environmental Laboratory, Freshwater Quarry, Brixham, UK
| |
Collapse
|
9
|
Gao J, Liu S, Zhang Y, Yuan C, Yang Y, Wang Z. Hepatic expression patterns of aryl hydrocarbon receptor, pregnane X receptor, two cytochrome P450s and five phase II metabolism genes responsive to 17alpha-methyltestosterone in rare minnow Gobiocypris rarus. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:1157-1168. [PMID: 24814259 DOI: 10.1016/j.etap.2014.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/30/2014] [Accepted: 04/01/2014] [Indexed: 06/03/2023]
Abstract
17Alpha-methyltestosterone (MT), a synthetic androgen, is widely used in aquaculture. Aquatic organisms can receive continuous exposure to residual MT throughout their lives. Aiming to evaluate the effects of MT on genes involved in biotransformation pathway, meanwhile attempting to unravel the MT metabolic pathway at the transcriptional level in fish, here we isolated the cDNAs of previously unreported AHR2, Sult1 st1, Ugt2a1 and Ugt2b6 in rare minnow, and predominantly investigated the hepatic transcriptional patterns of AHR2, PXR and five biotransformation genes after MT exposure in both genders adult rare minnow Gobiocypris rarus. The present findings suggest that AHR2 and PXR should play important roles in regulating biotransformation enzymes related to MT catabolism, moreover, CYP1A, CYP3A, SULT1 ST4, SULT1 ST6 and UGT2A1 may play certain roles in catabolism of MT in adult G. rarus. Additionally, UGT2A1 may make greater contribution than SULT1 ST4 and SULT1 ST6 in MT catabolism in males.
Collapse
Affiliation(s)
- Jiancao Gao
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Shaozhen Liu
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Yingying Zhang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Cong Yuan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Yanping Yang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
10
|
Zhang J, Yao J, Wang R, Zhang Y, Liu S, Sun L, Jiang Y, Feng J, Liu N, Nelson D, Waldbieser G, Liu Z. The cytochrome P450 genes of channel catfish: their involvement in disease defense responses as revealed by meta-analysis of RNA-Seq data sets. Biochim Biophys Acta Gen Subj 2014; 1840:2813-28. [PMID: 24780645 DOI: 10.1016/j.bbagen.2014.04.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 04/18/2014] [Accepted: 04/22/2014] [Indexed: 01/08/2023]
Abstract
BACKGROUND Cytochrome P450s (CYPs) encode one of the most diverse enzyme superfamily in nature. They catalyze oxidative reactions of endogenous molecules and exogenous chemicals. METHODS We identified CYPs genes through in silico analysis using EST, RNA-Seq and genome databases of channel catfish. Phylogenetic analyses and conserved syntenic analyses were conducted to determine their identities and orthologies. Meta-analysis of RNA-Seq databases was conducted to analyze expression profile of CYP genes following bacterial infection. RESULTS A full set of 61 CYP genes was identified and characterized in channel catfish. Phylogenetic tree and conserved synteny provided strong evidence of their identities and orthorlogy. Lineage-specific gene duplication was evident in a number of clans in channel catfish. CYP46A1 is missing in the catfish genome as observed with syntenic analysis and RT-PCR analysis. Thirty CYPs were found up- or down-regulated in liver, while seven and eight CYPs were observed regulated in intestine and gill following bacterial infection. CONCLUSION We systematically identified and characterized a full set of 61 CYP genes in channel catfish and studied their expression profiles after bacterial infection. While bacterial challenge altered the expression of large numbers of CYP genes, the mechanisms and significance of these changes are not known. GENERAL SIGNIFICANCE This work provides an example to systematically study CYP genes in non-model species. Moreover, it provides a basis for further toxicological and physiological studies in channel catfish.
Collapse
Affiliation(s)
- Jiaren Zhang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Jun Yao
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Ruijia Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Yu Zhang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Luyang Sun
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Yanliang Jiang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Jianbin Feng
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | - Nannan Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - David Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee, Memphis, TN 38163, USA
| | - Geoff Waldbieser
- USDA, ARS, Catfish Genetics Research Unit, 141 Experiment Station Road, Stoneville, MS 38776, USA
| | - Zhanjiang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
11
|
Ma J, Bu Y, Li Y, Niu D, Li X. Complementary DNA Cloning and Functional Characterization of Cytochrome P450 3A138 in Common Carp (Cyprinus carpioL.). J Biochem Mol Toxicol 2014; 28:239-45. [DOI: 10.1002/jbt.21559] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/28/2014] [Accepted: 02/07/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Junguo Ma
- College of Life Science; Henan Normal University; Xinxiang Henan 453007 People's Republic of China
| | - Yanzhen Bu
- College of Life Science; Henan Normal University; Xinxiang Henan 453007 People's Republic of China
| | - Yao Li
- College of Life Science; Henan Normal University; Xinxiang Henan 453007 People's Republic of China
| | - Daichun Niu
- College of Life Science; Henan Normal University; Xinxiang Henan 453007 People's Republic of China
| | - Xiaoyu Li
- College of Life Science; Henan Normal University; Xinxiang Henan 453007 People's Republic of China
| |
Collapse
|
12
|
Lyssimachou A, Thibaut R, Gisbert E, Porte C. Gemfibrozil modulates cytochrome P450 and peroxisome proliferation-inducible enzymes in the liver of the yellow European eel (Anguilla anguilla). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:862-871. [PMID: 23828728 DOI: 10.1007/s11356-013-1944-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 06/17/2013] [Indexed: 06/02/2023]
Abstract
The human lipid regulator gemfibrozil (GEM) has been shown to induce peroxisome proliferation in rodents leading to hepatocarcinogenesis. Since GEM is found at biological active concentrations in the aquatic environment, the present study investigates the effects of this drug on the yellow European eel (Anguilla anguilla). Eels were injected with different concentrations of GEM (0.1 to 200 μg/g) and sampled 24- and 96-h post-injection. GEM was shown to inhibit CYP1A, CYP3A and CYP2K-like catalytic activities 24-h post-injection, but at 96-h post-injection, only CYP1A was significantly altered in fish injected with the highest GEM dose. On the contrary, GEM had little effect on the phase II enzymes examined (UDP-glucuronyltransferase and glutathione-S-transferase). Peroxisome proliferation inducible enzymes (liver peroxisomal acyl-CoA oxidase and catalase) were very weakly induced. No evidence of a significant effect on the endocrine system of eels was observed in terms of plasmatic steroid levels or testosterone esterification in the liver.
Collapse
Affiliation(s)
- Angeliki Lyssimachou
- Environmental Chemistry Department, IDAEA-CSIC, Jordi Girona 18, 08034, Barcelona, Spain
| | | | | | | |
Collapse
|
13
|
Sun A, Li J, Huang J, Chang Z, Li J, Wang Q. Molecular cloning and expression analysis of cytochrome P450 3A gene in the turbot Scophthalmus maximus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:1239-1251. [PMID: 23525829 DOI: 10.1007/s10695-013-9779-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 02/25/2013] [Indexed: 06/02/2023]
Abstract
In this study, the cytochrome P450 3A (CYP3A) gene was cloned from the turbot Scophthalmus maximus for the first time using reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends approaches. The amino acid sequences were analyzed with corresponding software programs. The cDNA of CYP3A was 1,969 bp in length, which contained a 5'-untranslated region (UTR) of 34 bp, a 3'-UTR of 404 bp and an open reading frame of 1,530 bp encoding a predicted protein of 509 amino acids (GenBank accession No. JN216889). The deduced protein had a molecular weight of 58.09 kDa and an isoelectric point of 5.75. Amino acid sequence alignment indicated that turbot CYP3A shared 60-67% homology with other fish species. It consists of a signal peptide, six conservative substrate recognition sites (SRS 1-6) and the conserved heme-binding motif FXXGXXXCXG in all CYP3As. Quantitative real-time RT-PCR analysis indicated that turbot CYP3A mRNA was widely expressed in liver, kidney, gill, muscle, stomach, intestine, gallbladder and spleen, with the highest level in liver and the lowest in muscle. After oral administration of sulfamethazine, CYP3A expression in all experimental groups enhanced compared with control, and the expression varied with administration time. It suggested that CYP3A expression could be induced by sulfamethazine. Our findings provided molecular characterization and expression profile of turbot CYP3A, and revealed the important role that turbot CYP3A played in drug metabolisms.
Collapse
Affiliation(s)
- Airong Sun
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, People's Republic of China
| | | | | | | | | | | |
Collapse
|
14
|
Li X, Ma J, Lei W, Li J, Zhang Y, Li Y. Cloning of cytochrome P450 3A137 complementary DNA in silver carp and expression induction by ionic liquid. CHEMOSPHERE 2013; 92:1238-1244. [PMID: 23683867 DOI: 10.1016/j.chemosphere.2013.04.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 01/29/2013] [Accepted: 04/21/2013] [Indexed: 06/02/2023]
Abstract
Cytochrome P450 (CYP) enzymes, especially CYP 3A, are responsible for metabolizing of various kinds of endogenous and exogenous compounds in animals. In the present study, a full-length sequence of CYP 3A137 cDNA in silver carp was cloned and sequenced, and then a phylogenetic tree of CYP 3A was structured. Additionally, the acute toxicity of the ionic liquid 1-octyl-3-methylimidazolium bromide ([C8mim]Br) on silver carp and transcription and microsome enzyme activity of CYP 3A137 in the liver of silver fish after rifampicin or [C8mim]Br exposure were also determined in this study. The results show that the full length of CYP 3A137 cDNA is 1810 base pair (bp) long and contains an open reading frame of 1539bp encoding a protein of 513 amino acids. Sequence analysis reveals that CYP 3A137 is highly conserved in fish. Moreover, the results of quantitative real-time polymerase chain reaction reveal that CYP 3A137 in silver carp is constitutively expressed in all tissues examined and the sequence of expression rate is liver>intestine>kidney>spleen>brain>heart>muscle. Finally, the results of acute toxicity tests indicate that both rifampicin and [C8mim]Br significantly up-regulate the expression of CYP 3A137 at mRNA level and increase CYP 3A137 enzyme activity in fish liver, suggesting that CYP 3A137 be involved in metabolism of [C8mim]Br in silver carp.
Collapse
Affiliation(s)
- Xiaoyu Li
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | | | | | | | | | | |
Collapse
|
15
|
Uno T, Ishizuka M, Itakura T. Cytochrome P450 (CYP) in fish. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2012; 34:1-13. [PMID: 22418068 DOI: 10.1016/j.etap.2012.02.004] [Citation(s) in RCA: 230] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Revised: 01/31/2012] [Accepted: 02/05/2012] [Indexed: 05/31/2023]
Abstract
Cytochrome P450 (CYP) enzymes are members of the hemoprotein superfamily, and are involved in the mono-oxygenation reactions of a wide range of endogenous and exogenous compounds in mammals and plants. Characterization of CYP genes in fish has been carried out intensively over the last 20 years. In Japanese pufferfish (Takifugu rubripes), 54 genes encoding P450s have been identified. Across all species of fish, 137 genes encoding P450s have been identified. These genes are classified into 18 CYP families: namely, CYP1, CYP2, CYP3, CYP4, CYP5, CYP7, CYP8, CYP11, CYP17, CYP19, CYP20, CYP21, CYP24, CYP26, CYP27, CYP39, CYP46 and CYP51.We pinpointed eight CYP families: namely, CYP1, CYP2, CYP3, CYP4, CYP11, CYP17, CYP19 and CYP26 in this review because these CYP families are studied in detail. Studies of fish P450s have provided insights into the regulation of P450 genes by environmental stresses including water pollution. In this review, we present an overview of the CYP families in fish.
Collapse
Affiliation(s)
- Tomohide Uno
- Laboratory of Biological Chemistry, Department of Biofunctional Chemistry, Faculty of Agriculture, Kobe University, Nada-ku Hyogo, Japan.
| | | | | |
Collapse
|
16
|
Corcoran J, Lange A, Winter MJ, Tyler CR. Effects of pharmaceuticals on the expression of genes involved in detoxification in a carp primary hepatocyte model. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:6306-6314. [PMID: 22559005 DOI: 10.1021/es3005305] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Fish in many surface freshwaters are exposed to a range of pharmaceuticals via wastewater treatment works effluent discharges. In mammals the pregnane X receptor (PXR) plays a key role in the regulation of a suite of genes involved in drug biotransformation, but information on the role of this response pathway in fish is limited. Here we investigated the effects of exposure of carp (Cyprinus carpio) primary hepatocytes to the human PXR agonist rifampicin (RIF) on expression of target genes involved in phase I (cyp2k, cyp3a) and phase II (gstα, gstπ) drug metabolism and drug transporters mdr1 and mrp2. RIF induced expression of all target genes measured and the PXR antagonist ketoconazole (KET) inhibited responses of cyp2k and cyp3a. Exposure of the primary carp hepatocytes to the pharmaceuticals ibuprofen (IBU), clotrimazole (CTZ), clofibric acid (CFA) and propranolol (PRP), found responses to IBU and CFA, but not CTZ or PRP. This is in contrast with mammals, where CTZ is a potent PXR-agonist. Collectively our data indicate potential PXR involvement in regulating selected genes involved in drug metabolism in fish, but suggest some divergence in the regulation pathways with those in mammals. The carp primary hepatocyte model serves as a useful system for screening for responses in these target genes involved in drug metabolism.
Collapse
Affiliation(s)
- Jenna Corcoran
- University of Exeter, Biosciences, College of Life & Environmental Sciences, Exeter, United Kingdom
| | | | | | | |
Collapse
|
17
|
Smith EM, Iftikar FI, Higgins S, Irshad A, Jandoc R, Lee M, Wilson JY. In vitro inhibition of cytochrome P450-mediated reactions by gemfibrozil, erythromycin, ciprofloxacin and fluoxetine in fish liver microsomes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 109:259-266. [PMID: 22000335 DOI: 10.1016/j.aquatox.2011.08.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 08/22/2011] [Accepted: 08/25/2011] [Indexed: 05/31/2023]
Abstract
Inhibition of mammalian cytochrome P450 enzymes (CYPs) is well characterized; major hepatic CYPs can be inhibited by drugs and other environmental contaminants. CYP function and inhibition has not yet been well established in fish yet these studies are important for several reasons. First, such studies will provide functional information for non-mammalian CYPs. Second, specific inhibitors can be used as a diagnostic tool for studying CYP-mediated reactions. Lastly, pharmaceutical mixtures are found in the aquatic environment and adverse effects associated with drug-drug interactions, including CYP inhibition by pharmaceuticals may be of concern. Using liver microsomes from untreated and β-naphthoflavone (BNF)-treated rainbow trout, eight fluorescent CYP-mediated catalytic assays were used to assess in vitro CYP inhibition by four pharmaceuticals: fluoxetine, ciprofloxacin, gemfibrozil and erythromycin. Expressed zebrafish CYP1 proteins (CYP1A, CYP1B1, CYP1C1 and CYP1C2) were assessed for inhibition with selected substrates. All pharmaceuticals decreased the metabolism of a number of substrates. Fluoxetine was the strongest and most broad inhibitor of CYP-mediated reactions in liver microsomes. Zebrafish CYP1s were strongly inhibited by erythromycin and fluoxetine. Although the pharmaceuticals are selective CYP inhibitors in mammals, inhibition across a number of substrates suggests they are broad inhibitors in fish. These data demonstrate that in vitro hepatic CYP inhibition by pharmaceuticals is possible in fish and the patterns seen here are different than what would be expected based on CYP inhibition in mammals.
Collapse
Affiliation(s)
- Emily M Smith
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | | | | | | | | | | | | |
Collapse
|
18
|
James MO. Steroid catabolism in marine and freshwater fish. J Steroid Biochem Mol Biol 2011; 127:167-75. [PMID: 20955793 DOI: 10.1016/j.jsbmb.2010.10.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Revised: 10/01/2010] [Accepted: 10/11/2010] [Indexed: 12/20/2022]
Abstract
Steroids play important roles in regulating many physiological functions in marine and freshwater fish. Levels of active steroid in blood and tissues are determined by the balance between synthetic and catabolic processes. This review examines what is known about pathways of catabolism of steroids, primarily sex steroids, in marine and freshwater fish. Cytochrome P450 (P450) isoforms present in hepatic microsomes catalyze steroid hydroxylation to metabolites with lower or no activity at estrogen or androgen receptors. Important pathways of steroid catabolism to readily excreted metabolites are glucuronidation and sulfonation of hydroxyl groups. Estradiol, testosterone, DHEA and hydroxylated metabolites of these and other steroids readily form glucuronide and sulfate conjugates in those fish species where these pathways have been examined. Little is known, however, of the structure and function of the UDP-glucuronosyltransferase (UGT) and sulfotransferase (SULT) enzymes involved in steroid conjugation in fish. Glucuronide and sulfate conjugates of steroids may be transported into and out of cells by organic anion transporter proteins and multi-drug resistance proteins, and there is growing evidence that these proteins play important roles in steroid conjugate transport and elimination. Induction or inhibition of any of these pathways by environmental chemicals can result in alteration of the natural balance of steroid hormones and could lead to disruption of the endocrine system. Recent studies in this area are presented, with particular focus on phase II (conjugative) pathways.
Collapse
Affiliation(s)
- Margaret O James
- Department of Medicinal Chemistry, University of Florida, PO Box 100485, 1600 SW Archer Road, Gainesville, FL 32610-0485, United States.
| |
Collapse
|
19
|
Della Torre C, Corsi I, Nardi F, Perra G, Tomasino MP, Focardi S. Transcriptional and post-transcriptional response of drug-metabolizing enzymes to PAHs contamination in red mullet (Mullus barbatus, Linnaeus, 1758): a field study. MARINE ENVIRONMENTAL RESEARCH 2010; 70:95-101. [PMID: 20417960 DOI: 10.1016/j.marenvres.2010.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 03/18/2010] [Accepted: 03/25/2010] [Indexed: 05/29/2023]
Abstract
Aim of this study was to evaluate the responsiveness of red mullet (Mullus barbatus) liver detoxification enzymes to PAHs at transcriptional and post-transcriptional levels in the field. Fish were captured in the north-eastern Adriatic Sea, close to an oil refinery. Sixteen PAHs (EPA) were determined in sediments and fish fillets; transcription levels of cyp1a, cyp3a and abcc2 genes and EROD, BROD, B(a)PMO, BFCOD, GST and UDPGT enzymatic activities were measured. Levels of PAHs in sediments reflect the oil pollution gradient of the area, with weak correspondence in fish fillets. cyp1a gene transcription and EROD, B(a)PMO and BFCOD activities were significantly induced in the oil refinery site, and a slight up-regulation of cyp3a and abcc2 was also observed. GST and UDPGT remained unchanged. The present study provides the first data on detoxification responses at transcriptional levels in the liver of red mullet and confirms phase I enzymes as suitable biomarkers of exposure to PAHs in field studies.
Collapse
Affiliation(s)
- Camilla Della Torre
- Department of Environmental Sciences "G. Sarfatti", University of Siena, Via Mattioli 4, 53100 Siena, Italy.
| | | | | | | | | | | |
Collapse
|
20
|
Smith EM, Wilson JY. Assessment of cytochrome P450 fluorometric substrates with rainbow trout and killifish exposed to dexamethasone, pregnenolone-16alpha-carbonitrile, rifampicin, and beta-naphthoflavone. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2010; 97:324-333. [PMID: 20167382 DOI: 10.1016/j.aquatox.2010.01.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 12/23/2009] [Accepted: 01/05/2010] [Indexed: 05/28/2023]
Abstract
Cytochrome P450s (CYPs) are important xenobiotic metabolizing proteins. While their functions are well understood in mammals, CYP function in non-mammalian vertebrate systems is much less defined, with function often inferred from mammalian data, assuming similar function across vertebrate species. In this study, we investigate whether in vivo treatment with known mammalian CYP inducers can alter the in vitro catalytic activity of fish microsomes using eleven fluorescent CYP-mediated substrates. We investigate the basal metabolism and induction potential for hepatic CYPs in two fish species, rainbow trout (Oncorhynchus mykiss) and killifish (Fundulus heteroclitus). Species differences were found in the baseline metabolism of these substrates. Killifish have significantly higher metabolic rates for all tested substrates except 7-benzyloxyquinoline and 7-benzyloxy-4-trifluoromethylcoumarin (both mammalian CYP3A substrates); significant differences were also seen between male and female killifish. Treatment with dexamethasone, pregnenolone-16alpha-carbonitrile, and rifampicin did not cause broad, measurable CYP induction in either fish species. In trout, dexamethasone (100 mg kg(-1)) significantly induced 3-cyano-7-ethoxycoumarin metabolism and rifampicin (100 mg kg(-1)) induced the dealkylation of 7-methoxyresorufin, although both were highly variable. Female killifish exposed to pregnenolone-16alpha-carbonitrile (100 mg kg(-1)) showed significantly higher metabolism of 7-pentoxyresorufin. Overall, dexamethasone, pregnenolone-16alpha-carbonitrile and rifampicin did not appear to consistently increase CYP activity in fish. Trout treated with 10 or 50 mg kg(-1) beta-naphthoflavone (BNF), a CYP1A inducer, showed significantly induced activity across almost all substrates tested, exceptions being 7-benzyloxyquinoline, 7-benzyloxy-4-trifluoromethylcoumarin and dibenzylfluorescein. 7-Methoxy-4-(aminomethyl)coumarin, a typical CYP2D substrate in mammals, was not metabolized by untreated fish liver microsomes; however, treatment with BNF significantly induced the metabolism of this substrate in trout. Induced substrate metabolism in BNF-treated microsomes was only correlated across selective substrates, suggesting that BNF induces multiple CYPs in fish liver. These include the known BNF inducible CYP1s plus a number of as yet unidentified fish CYPs. Overall, many of these catalytic assays could be valuable tools for identification of the function of specific CYP subfamilies and individual isoforms in fish.
Collapse
Affiliation(s)
- Emily M Smith
- Department of Biology, McMaster University, Hamilton, Ontario L8S4K1, Canada
| | | |
Collapse
|
21
|
Jones HS, Panter GH, Hutchinson TH, Chipman JK. Oxidative and Conjugative Xenobiotic Metabolism in Zebrafish Larvae In Vivo. Zebrafish 2010; 7:23-30. [DOI: 10.1089/zeb.2009.0630] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Huw S. Jones
- The School of Biosciences, The University of Birmingham, Birmingham, West Midlands, United Kingdom
| | - Grace H. Panter
- Brixham Environmental Laboratory, AstraZeneca, Brixham, Devon, United Kingdom
| | - Thomas H. Hutchinson
- Centre for Environmental, Fisheries, and Aquaculture Science, Weymouth, Dorset, United Kingdom
| | - J. Kevin Chipman
- The School of Biosciences, The University of Birmingham, Birmingham, West Midlands, United Kingdom
| |
Collapse
|
22
|
Christen V, Caminada D, Arand M, Fent K. Identification of a CYP3A form (CYP3A126) in fathead minnow (Pimephales promelas) and characterisation of putative CYP3A enzyme activity. Anal Bioanal Chem 2009; 396:585-95. [PMID: 19898817 DOI: 10.1007/s00216-009-3251-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 10/16/2009] [Accepted: 10/18/2009] [Indexed: 12/01/2022]
Abstract
Cytochrome P450-dependent monooxygenases (CYPs) are involved in the metabolic defence against xenobiotics. Human CYP3A enzymes metabolise about 50% of all pharmaceuticals in use today. Induction of CYPs and associated xenobiotic metabolism occurs also in fish and may serve as a useful tool for biomonitoring of environmental contamination. In this study we report on the cloning of a CYP3A family gene from fathead minnows (Pimephales promelas), which has been designated as CYP3A126 by the P450 nomenclature committee (GenBank no. EU332792). The cDNA was isolated, identified and characterised by extended inverse polymerase chain reaction (PCR), an alternative to the commonly used method of rapid amplification of cDNA ends. In a fathead minnow cell line we identified a full-length cDNA sequence (1,863 base pairs (bp)) consisting of a 1,536 bp open reading frame encoding a 512 amino acid protein. Genomic analysis of the identified CYP3A isoenzyme revealed a DNA sequence consisting of 13 exons and 12 introns. CYP3A126 is also expressed in fathead minnow liver as demonstrated by reverse transcription PCR. Exposure of fathead minnow (FHM) cells with the CYP3A inducer rifampicin leads to dose-dependent increase in putative CYP3A enzyme activity. In contrast, inhibitory effects of diazepam treatment were observed on putative CYP3A enzyme activity and additionally on CYP3A126 mRNA expression. This indicates that CYP3A is active in FHM cells and that CYP3A126 is at least in part responsible for this CYP3A activity. Further investigations will show whether CYP3A126 is involved in the metabolism of environmental chemicals.
Collapse
Affiliation(s)
- Verena Christen
- School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Gründenstrasse 40, 4132 Muttenz, Switzerland
| | | | | | | |
Collapse
|
23
|
Yamauchi R, Ishibashi H, Hirano M, Mori T, Kim JW, Arizono K. Effects of synthetic polycyclic musks on estrogen receptor, vitellogenin, pregnane X receptor, and cytochrome P450 3A gene expression in the livers of male medaka (Oryzias latipes). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2008; 90:261-268. [PMID: 18980782 DOI: 10.1016/j.aquatox.2008.09.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 09/10/2008] [Accepted: 09/11/2008] [Indexed: 05/27/2023]
Abstract
This study demonstrates the effects of synthetic polycyclic musks such as Galaxolide (HHCB), Tonalide (AHTN), Traseolide (ATII), Celestolide (ADBI), Phantolide (AHMI) and Cashmeran (DPMI), both on the early life stage and on gene expression in the livers of male medaka (Oryzias latipes). The toxicity ranking (the 96-h median lethal concentration) of the chemicals tested on 24-h-old medaka larvae descended in the order HHCB (0.95 mg/L)=ATII (0.95 mg/L)>AHTN (1.0 mg/L)>AHMI (1.2 mg/L)>ADBI (2.0 mg/L)>>DPMI (12 mg/L), indicating high acute toxicity of these compounds on the early life stages of medaka. Expression analysis of hepatic vitellogenin (VTG) protein showed potential estrogenic effects upon the addition of AHTN and HHCB, indicative of the induction of VTG synthesis in the livers of male medaka. We also investigated mRNA expression levels of two estrogen receptor (ER) subtypes (ERalpha and beta), two VTGs (VTG I and II), pregnane X receptor (PXR), and two cytochromes P450 (CYP) 3As (CYP3A38 and 3A40) in the livers of male medaka treated with AHTN and HHCB at 5, 50 and 500 microg/L. Quantitative real-time PCR analyses revealed that hepatic ERalpha, VTG I, VTG II, and CYP3A40 mRNA responded to 500 microg/L of AHTN and/or HHCB after 3 days exposure, whereas no effects of these compounds on ERbeta, PXR, and CYP3A38 mRNA transcription were observed. These results suggest that certain polycyclic musks, including AHTN and HHCB, induce the expression levels of hepatic ERalpha and VTG mRNA/protein and modulate expression levels of CYP3A40 mRNA in the livers of male medaka.
Collapse
Affiliation(s)
- Ryoko Yamauchi
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, 3-1-100 Tsukide, Kumamoto 862-8502, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Lim YP, Huang JD. Interplay of pregnane X receptor with other nuclear receptors on gene regulation. Drug Metab Pharmacokinet 2008; 23:14-21. [PMID: 18305371 DOI: 10.2133/dmpk.23.14] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human body needs to protect itself from a diverse array of harmful chemicals. These chemicals are also involved in drug metabolism, enzyme induction, and can cause adverse drug-drug interactions. Being a member of nuclear receptors (NRs), pregnane X receptor (PXR) has recently emerged as transcriptional regulators of cytochrome P450 (CYP) and transporters expression so as to against xenobiotics exposure. This review describes some common nuclear receptors, i.e. farnesoid X receptor (FXR), small heterodimer partner (SHP), hepatocyte nuclear factor-4alpha (HNF-4alpha), liver X receptor (LXR), glucocorticoid receptor (GR), constitutive androstane receptor (CAR) that crosstalk with PXR and involvement of coregulators thus control target genes expression.
Collapse
Affiliation(s)
- Yun-Ping Lim
- Department of Pharmacology, Medical College, National Cheng Kung University, Tainan, Taiwan
| | | |
Collapse
|